19-4080; Rev 0; 4/08
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
The MAX2067 high-linearity analog variable-gain amplifier (VGA) is a monolithic SiGe BiCMOS attenuator and
amplifier designed to interface with 50Ω systems operating in the 50MHz to 1000MHz frequency range (see
the Typical Application Circuit). The analog attenuator
is controlled using an external voltage or through the
SPI™-compatible interface using an on-chip 8-bit DAC.
Because each stage has its own RF input and RF output, this component can be configured to either optimize NF (amplifier configured first), or OIP3 (amplifier
last). The device’s performance features include 22dB
amplifier gain (amplifier only), 4dB NF at maximum gain
(includes attenuator insertion loss), and a high OIP3
level of +43dBm. Each of these features makes the
MAX2067 an ideal VGA for numerous receiver and
transmitter applications.
In addition, the MAX2067 operates from a single +5V
supply with full performance, or a single +3.3V supply
with slightly reduced performance, and has an
adjustable bias to trade current consumption for linearity
performance. This device is available in a compact 40pin thin QFN package (6mm x 6mm) with an exposed
pad. Electrical performance is guaranteed over the
extended temperature range (TC = -40°C to +85°C).
Applications
IF and RF Gain Stages
Temperature Compensation Circuits
Features
50MHz to 1000MHz RF Frequency Range
Pin-Compatible Family Includes
MAX2065 (Analog/Digital VGA)
MAX2066 (Digital VGA)
+21.9dB (typ) Maximum Gain
0.5dB Gain Flatness Over 100MHz Bandwidth
31dB Gain Range
Built-In DAC for Analog Attenuation Control
Excellent Linearity (Configured with Amplifier
Last)
+43dBm OIP3
+66dBm OIP2
+19dBm Output 1dB Compression Point
-70dBc HD2
-87dBc HD3
4dB Typical Noise Figure (NF)
Single +5V Supply (Optional +3.3V Operation)
External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/
Reduced-Performance Mode
Cellular Band WCDMA and cdma2000® Base
Stations
Ordering Information
GSM 850/GSM 900 EDGE Base Stations
WiMAX and LTE Base Stations and Customer
Premise Equipment
Fixed Broadband Wireless Access
Wireless Local Loop
Military Systems
Video-on-Demand (VOD) and DOCSIS®Compliant EDGE QAM Modulation
TEMP RANGE
PIN-PACKAGE
MAX2067ETL+
PART
-40°C to +85°C
40 Thin QFN-EP*
MAX2067ETL+T
-40°C to +85°C
40 Thin QFN-EP*
+Denotes a lead-free package.
*EP = Exposed pad.
T = Tape and reel.
Cable Modem Termination Systems (CMTS)
RFID Handheld and Portal Readers
Pin Configuration appears at end of data sheet.
SPI is a trademark of Motorola, Inc.
cdma2000 is a registered trademark of Telecommunications
Industry Association.
DOCSIS and CableLabs are registered trademarks of Cable
Television Laboratories, Inc. (CableLabs®).
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX2067
General Description
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
ABSOLUTE MAXIMUM RATINGS
VCC_ to GND ........................................................-0.3V to +5.5V
VDD_LOGIC, DATA, CS, CLK, VDAC_EN,
VREF_SELECT.....................................-0.3V to (VCC_ + 0.3V)
AMP_IN, AMP_OUT, VREF_IN,
ANALOG_VCTRL ................................-0.3V to (VCC_ + 0.3V)
ATTEN_IN, ATTEN_OUT........................................-1.2V to +1.2V
RSET to GND.........................................................-0.3V to +1.2V
RF Input Power (ATTEN_IN, ATTEN_OUT).....................+20dBm
RF Input Power (AMP_IN)...............................................+18dBm
Continuous Power Dissipation (Note 1) ...............................6.5W
θJA (Notes 2, 3)..............................................................+38°C/W
θJC (Note 3) ...................................................................+10°C/W
Operating Temperature Range (Note 4) .....TC = -40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a printed-circuit board (PCB). See the Applications Information section
for details. The junction temperature must not exceed +150°C.
Note 2: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, high-current (HC) mode, VCC = VDD = +3.0V to +3.6V, TC = -40°C to +85°C. Typical values are at VCC =
VDD = +3.3V and TC = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
Note 5
MIN
TYP
MAX
UNITS
3.0
3.3
3.6
V
60
82
mA
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT)
Input High Voltage
VIH
2
V
Input Low Voltage
VIL
0.8
V
+5V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = VDD = +4.75V to +5.25V, TC = -40°C to +85°C. Typical values are at VCC = VDD = +5V and
TC = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
UNITS
4.75
5
5.25
V
Low-current (LC) mode
72
92
High-current (HC) mode
123
146
mA
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT)
Input High Voltage
VIH
Input Low Voltage
VIL
Input Current Logic-High
IIH
Input Current Logic-Low
IIL
2
3
V
0.8
V
-1
+1
µA
-1
+1
µA
_______________________________________________________________________________________
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
(Typical Application Circuit, VCC = VDD = +3.0V to +3.6V, TC = -40°C to +85°C. Typical values are at VCC = VDD = +3.3V, HC mode
with attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, unless otherwise noted.) (Note 6)
PARAMETER
SYMBOL
RF Frequency Range
fRF
Small-Signal Gain
G
Output Third-Order Intercept
Point
Noise Figure
OIP3
NF
CONDITIONS
(Notes 5, 7)
MIN
TYP
50
MAX
UNITS
1000
MHz
21.3
dB
POUT = 0dBm/tone, maximum gain setting
38
dBm
Maximum gain setting
4.3
dB
31
dB
Total Attenuation Range
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = VDD = +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz ≤ fRF ≤ 1000MHz,
TC = -40°C to +85°C. Typical values are at VCC = VDD = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, unless
otherwise noted.) (Note 6)
PARAMETER
RF Frequency Range
SYMBOL
fRF
CONDITIONS
(Notes 5, 7)
MIN
50
200MHz
G
20.9
19.4
900MHz
18.7
Any 100MHz frequency band from 50MHz
to 500MHz
NF
Output Third-Order Intercept
Point
OIP3
MHz
22.3
dB
0.5
dB
4
450MHz
4.3
750MHz
4.8
5.2
dB
5
POUT = 0dBm/tone, ∆f = 1MHz, f1 + f2
POUT = 0dBm/tone,
HC mode, ∆f = 1MHz
1000
dB/°C
4.2
Total Attenuation Range
OIP2
UNITS
-0.006
350MHz, TC = +25°C (Note 5)
900MHz
Output Second-Order Intercept
Point
21.3
750MHz
200MHz
Noise Figure
20.3
450MHz
Gain Variation vs. Temperature
Gain Flatness vs. Frequency
MAX
21.9
350MHz, TC = +25°C (Note 5)
Small-Signal Gain
TYP
31
dB
66
dBm
200MHz
43
350MHz
40.8
450MHz
39.8
750MHz
37.3
900MHz
36.2
200MHz
40
350MHz
POUT = 0dBm/tone,
450MHz
LC mode, ∆f = 1MHz
750MHz
38.2
900MHz
34.3
dBm
37.4
35.5
_______________________________________________________________________________________
3
MAX2067
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit, VCC = VDD = +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz ≤ fRF ≤ 1000MHz,
TC = -40°C to +85°C. Typical values are at VCC = VDD = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, unless
otherwise noted.) (Note 6)
PARAMETER
MIN
TYP
350MHz, TC = +25°C (Notes 5, 8)
17
18.7
dBm
Second Harmonic
POUT = +3dBm, fRF = 200MHz, TC = +25°C
(Note 5)
-61
-70
dBc
Third Harmonic
POUT = +3dBm, fRF = 200MHz, TC = +25°C
(Note 5)
-74
-87
dBc
Output -1dB Compression Point
SYMBOL
P1dB
CONDITIONS
Input from ANALOG_VCTRL
Attenuator Response Time
(Note 9)
MAX
1
UNITS
µs
Input from CS rising edge
3.2
Group Delay
Maximum gain setting, includes EV kit PCB
delays
0.8
Input Return Loss
50Ω source, maximum gain setting
30
dB
Output Return Loss
50Ω load, maximum gain setting
16
dB
1.2
dB
ns
ANALOG ATTENUATOR
Insertion Loss
Input Second-Order Intercept
Point
IIP2
PRF1 = 0dBm, PRF2 = 0dBm, maximum gain
setting, ∆f = 1MHz, f1 + f2
70
dBm
Input Third-Order Intercept Point
IIP3
PRF1 = 0dBm, PRF2 = 0dBm, maximum gain
setting, ∆f = 1MHz
36
dBm
Attenuation Range
Analog control input
31
dB
Gain-Control Slope
Analog control input
-12.5
dB/V
Maximum Gain-Control Slope
Over analog control input range
-35
dB/V
Insertion Phase Change
Over analog control input range
18
Degrees
Group Delay vs. Control Voltage
Over analog control input range
Analog Control Input Range
-0.25
0.25
Analog Control Input Impedance
ns
2.75
80
V
kΩ
Input Return Loss
50Ω source, maximum gain setting
22
dB
Output Return Loss
50Ω load, maximum gain setting
22
dB
DAC
Number of Bits
Output Voltage
4
8
DAC code = 00000000
DAC code = 11111111
Bits
0.25
2.75
_______________________________________________________________________________________
V
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
(Typical Application Circuit, VCC = VDD = +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz ≤ fRF ≤ 1000MHz,
TC = -40°C to +85°C. Typical values are at VCC = VDD = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless
otherwise noted.) (Note 6)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
SERIAL PERIPHERAL INTERFACE (SPI)
Maximum Clock Speed
fCLK
20
MHz
ns
Data-to-Clock Setup Time
tCS
2
Data-to-Clock Hold Time
tCH
2.5
ns
Clock-to-CS Setup Time
tES
3
ns
ns
CS Positive Pulse Width
tEW
7
CS Setup Time
tEWS
3.5
ns
Clock Pulse Width
tCW
5
ns
Note 5: Guaranteed by design and characterization.
Note 6: All limits include external component losses. Output measurements are performed at RF output port of the Typical
Application Circuit
Note 7: Operating outside this range is possible, but with degraded performance of some parameters.
Note 8: It is advisable not to continuously operate the VGA RF input above +15dBm.
Note 9: Response time includes full attenuation range change with output setting to within ±0.1dB.
_______________________________________________________________________________________
5
MAX2067
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
Typical Operating Characteristics
(VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
SUPPLY CURRENT vs. SUPPLY VOLTAGE
120
21
20
21
20
19
TC = +85°C
18
18
17
17
TC = +85°C
16
16
5.000
5.125
5.250
50
250
VCC (V)
650
850
50
1050
24
MAX2067 toc04
19
50MHz
19
14
200MHz
14
DAC CODE 128
450MHz
4
-1
-1
-6
-6
-6
-11
-11
-11
DAC CODE 256
-16
-16
250
50
450
650
850
1050
TC = -40°C, +25°C, +85°C
9
-16
0
32
64
96
128 160 192 224 256
0
32
64
96
128 160 192 224 256
RF FREQUENCY (MHz)
DAC CODE
DAC CODE
GAIN vs. ATTENUATOR SETTING
INPUT MATCH vs.
ATTENUATOR SETTING
OUTPUT MATCH vs.
ATTENUATOR SETTING
VCC = 4.75V, 5.00V, 5.25V
9
4
-1
-15
1000MHz
50MHz
-20
-25
-30
200MHz
-6
-5
OUTPUT MATCH (dB)
14
0
MAX2067 toc08
19
-10
INPUT MATCH (dB)
fRF = 200MHz
MAX2067 toc07
24
MAX2067 toc09
-1
1050
fRF = 200MHz
19
14
1000MHz
4
850
GAIN vs. ATTENUATOR SETTING
GAIN (dB)
GAIN (dB)
DAC CODE 64
4
650
24
DAC CODE 32
9
450
RF FREQUENCY (MHz)
GAIN vs. ATTENUATOR SETTING
DAC CODE 0
9
250
RF FREQUENCY (MHz)
GAIN OVER ATTENENUATOR
SETTING vs. RF FREQUENCY
24
450
MAX2067 toc05
4.875
MAX2067 toc06
100
4.750
GAIN (dB)
VCC = 4,75V, 5.00V, 5.25V
22
TC = +25°C
19
110
23
GAIN (dB)
130
MAX2067 toc03
TC = -40°C
22
GAIN (dB)
SUPPLY CURRENT (mA)
23
TC = +25°C
24
MAX2067 toc02
TC = -40°C
140
GAIN vs. RF FREQUENCY
GAIN vs. RF FREQUENCY
24
MAX2067 toc01
150
GAIN (dB)
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
-15
-20
450MHz
-35
1000MHz
450MHz
-10
50MHz
200MHz
-25
-11
-40
-16
0
32
64
96
128 160 192 224 256
DAC CODE
6
-30
0
32
64
96
128 160 192 224 256
DAC CODE
0
32
64
96
128 160 192 224 256
DAC CODE
_______________________________________________________________________________________
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
S21 PHASE CHANGE vs.
ATTENUATOR SETTING
DAC CODE 255
-55
60
50
1000MHz
450MHz
40
30
200MHz
20
10
-65
TC = +85°C
5
4
3
TC = -40°C
0
50MHz
-10
-75
250
450
650
850
2
0
1050
32
64
96
50
250
450
DAC CODE
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
VCC = 4.75V, 5.00V, 5.25V
5
4
3
TC = +85°C
20
VCC = 5.25V
TC = +25°C
19
TC = -40°C
18
TC = -40°C
17
TC = +25°C
16
1050
21
MAX2067 toc14
20
850
OUTPUT P1dB vs. RF FREQUENCY
21
MAX2067 toc13
6
650
RF FREQUENCY (MHz)
OUTPUT P1dB vs. RF FREQUENCY
NOISE FIGURE vs. RF FREQUENCY
7
NOISE FIGURE (dB)
128 160 192 224 256
OUTPUT P1dB (dBm)
50
MAX2067 toc12
TC = +25°C
6
MAX2067 toc15
DAC CODE 0
-45
REFERENCED TO HIGH GAIN STATE.
POSITIVE PHASE = ELECTRICALLY
SHORTER.
70
7
MAX2067 toc11
MAX2067 toc10
-35
NOISE FIGURE vs. RF FREQUENCY
80
S21 PHASE CHANGE (DEG)
REVERSE ISOLATION (dB)
-25
NOISE FIGURE (dB)
REVERSE ISOLATION OVER ATTENUATOR
SETTING vs. RF FREQUENCY
19
VCC = 5.00V
18
17
VCC = 4.75V
16
TC = +85°C
15
250
450
650
850
250
450
650
850
1050
50
250
450
650
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
OUTPUT IP3 vs. RF FREQUENCY
OUTPUT IP3 vs. RF FREQUENCY
OUTPUT IP3 vs.
ATTENUATOR STATE
POUT = 0dBm/TONE
POUT = 0dBm/TONE
TC = +25°C, +85°C
TONE = LSB, USB
OUTPUT IP3 (dBm)
40
TC = -40°C
VCC = 5.00V
VCC = 5.25V
40
VCC = 4.75V
35
35
1050
POUT = -3dBm/TONE
fRF = 200MHz
45
45
TC = +25°C
850
50
OUTPUT IP3 (dBm)
45
50
MAX2067 toc17
50
OUTPUT IP3 (dBm)
15
50
1050
MAX2067 toc16
50
MAX2067 toc18
2
40
35
TC = +85°C
TC = -40°C, TONE = LSB, USB
30
30
30
50
250
450
650
RF FREQUENCY (MHz)
850
1050
50
250
450
650
RF FREQUENCY (MHz)
850
1050
0
32
64
96
128 160 192 224 256
DAC CODE
_______________________________________________________________________________________
7
MAX2067
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
80
60
60
VCC = 4.75V
50
40
250
450
650
850
TC = +25°C
TC = +85°C
60
50
1050
250
450
650
850
1050
0
32
64
96
128 160 192 224 256
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
DAC CODE
3rd HARMONIC vs. FREQUENCY
3rd HARMONIC vs. RF FREQUENCY
3rd HARMONIC vs.
ATTENUATOR STATE
TC = +25°C
90
POUT = 3dBm
100
80
TC = -40°C
VCC = 5.25V
110
90
80
VCC = 4.75V
POUT = 0dBm
fRF = 200MHz
100
3rd HARMONIC (dBc)
100
110
MAX2067 toc23
POUT = 3dBm
3rd HARMONIC (dBc)
110
MAX2067 toc22
50
70
65
50
40
3rd HARMONIC (dBc)
VCC = 5.00V
70
75
90
TC = +85°C
TC = +25°C
80
VCC = 5.00V
TC = -40°C
70
70
70
MAX2067 toc24
70
VCC = 5.25V
POUT = 0dBm
fRF = 200MHz
TC = -40°C
2nd HARMONIC (dBc)
TC = -40°C, +25°C, +85°C
80
MAX2067 toc21
POUT = 3dBm
2nd HARMONIC (dBc)
2nd HARMONIC (dBc)
80
90
MAX2067 toc20
POUT = 3dBm
MAX2067 toc19
90
2nd HARMONIC vs.
ATTENUATOR STATE
2nd HARMONIC vs. RF FREQUENCY
2nd HARMONIC vs. RF FREQUENCY
TC = +85°C
60
250
450
650
850
60
50
1050
250
450
650
850
1050
0
32
64
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
OIP2 vs. RF FREQUENCY
OIP2 vs. RF FREQUENCY
POUT = 0dBm/TONE
80
128 160 192 224 256
OIP2 vs. ATTENUATOR STATE
90
MAX2067 toc25
90
96
DAC CODE
POUT = 0dBm/TONE
80
80
MAX2067 toc26
50
POUT = -3dBm/TONE
fRF = 200MHz
TC = -40°C
MAX2067 toc27
60
TC = -40°C, +25°C, +85°C
60
VCC = 5.00V
70
OIP2 (dBm)
70
OIP2 (dBm)
70
OIP2 (dBm)
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
VCC = 5.25V
60
60
TC = +25°C
TC = +85°C
50
50
50
VCC = 4.75V
40
40
50
250
450
650
RF FREQUENCY (MHz)
8
850
1050
40
50
250
450
650
RF FREQUENCY (MHz)
850
1050
0
32
64
96
128 160 192 224 256
DAC CODE
_______________________________________________________________________________________
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
DAC VOLTAGE USING INTERNAL
REFERENCE vs. DAC CODE
DAC VOLTAGE USING INTERNAL
REFERENCE vs. DAC CODE
2.0
1.5
1.0
TC = -40°C, +25°C, +85°C
2.0
1.5
1.0
VCC = 4.75V, 5.00V, 5.25V
0.5
0.5
0
32
64
96
32
64
96
128 160 192 224 256
DAC CODE
DAC CODE
DAC VOLTAGE DRIFT USING
INTERNAL REFERENCE vs. DAC CODE
DAC VOLTAGE DRIFT USING
INTERNAL REFERENCE vs. DAC CODE
0.04
TC CHANGED FROM +25°C to -40°C
0.0100
0.02
0.01
0
-0.01
0.0075
DAC VOLTAGE CHANGE (V)
0.05
0.03
0
128 160 192 224 256
MAX2067 toc30
0
VCC CHANGED FROM 5.00V to 5.25V
MAX2067 toc31
0
DAC VOLTAGE CHANGE (V)
MAX2067 toc29
2.5
DAC VOLTAGE (V)
2.5
DAC VOLTAGE (V)
3.0
MAX2067 toc28
3.0
0.0050
0.0025
0
-0.0025
-0.02
-0.0050
-0.03
TC CHANGED FROM +25°C to +85°C
VCC CHANGED FROM 5.00V to 4.75V
-0.0075
-0.04
-0.05
-0.0100
0
32
64
96
128 160 192 224 256
DAC CODE
0
32
64
96
128 160 192 224 256
DAC CODE
_______________________________________________________________________________________
9
MAX2067
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, attenuator only, maximum gain, PIN = -20dBm, and TC = +25°C, unless otherwise noted.)
GAIN vs. RF FREQUENCY
(ATTENUATOR ONLY)
GAIN vs. RF FREQUENCY
(ATTENUATOR ONLY)
-1
TC = +85°C
TC = +25°C
-2
VCC = 4.75V, 5.00V, 5.25V
-3
-4
-4
-5
-5
50
250
450
650
RF FREQUENCY (MHz)
10
-1
GAIN (dB)
-2
MAX2067 toc33
TC = -40°C
-3
0
MAX2067 toc32
0
GAIN (dB)
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
850
1050
50
250
450
650
850
RF FREQUENCY (MHz)
______________________________________________________________________________________
1050
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(LOW-CURRENT MODE)
24
TC = -40°C
23
22
22
TC = +25°C
GAIN (dB)
20
19
TC = +85°C
55
4.750
5.000
5.125
5.250
20
19
TC = +85°C
18
17
16
4.875
21
16
50
250
450
650
850
1050
50
250
450
650
850
VCC (V)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT MATCH vs. ATTENUATOR SETTING
(LOW-CURRENT MODE)
OUTPUT MATCH vs. ATTENUATOR SETTING
(LOW-CURRENT MODE)
NOISE FIGURE vs. RF FREQUENCY
(LOW-CURRENT MODE)
-20
-30
200MHz
-5
OUTPUT MATCH (dB)
50MHz
1000MHz
450MHz
1000MHz
450MHz
-10
-15
-20
50MHz
-40
200MHz
-25
-50
6
NOISE FIGURE (dB)
-10
7
MAX2067 toc38
0
MAX2067 toc37
0
32
64
96
128 160 192 224 256
TC = +25°C
5
4
TC = -40°C
2
0
32
64
96
128 160 192 224 256
50
250
450
650
850
DAC CODE
DAC CODE
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LOW-CURRENT MODE)
OUTPUT P1dB vs. RF FREQUENCY
(LOW-CURRENT MODE)
OUTPUT P1dB vs. RF FREQUENCY
(LOW-CURRENT MODE)
OUTPUT P1dB (dBm)
VCC = 4.75V, 5.00V, 5.25V
5
4
TC = +25°C
16
15
TC = +85°C
14
3
250
450
650
RF FREQUENCY (MHz)
850
1050
VCC = 5.25V
VCC = 5.00V
16
VCC = 4.75V
15
14
13
13
2
17
MAX2067 toc42
TC = -40°C
17
OUTPUT P1dB (dBm)
6
1050
18
MAX2067 toc41
18
MAX2067 toc40
7
50
TC = +85°C
3
-30
0
1050
MAX2067 toc39
GAIN (dB)
65
21
17
INPUT MATCH (dB)
VCC = 4.75V, 5.00V, 5.25V
TC = +25°C
75
18
NOISE FIGURE (dB)
MAX2067 toc36
23
GAIN vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc35
TC = -40°C
SUPPLY CURRENT (mA)
24
MAX2067 toc34
85
GAIN vs. RF FREQUENCY
(LOW-CURRENT MODE)
50
250
450
650
RF FREQUENCY (MHz)
850
1050
50
250
450
650
850
1050
RF FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX2067
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, LC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, LC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
OUTPUT IP3 vs. RF FREQUENCY
(LOW-CURRENT MODE)
40
35
TC = +85°C
TC = +25°C
VCC = 5.00V
35
VCC = 4.75V
250
450
35
650
850
1050
30
50
250
450
650
850
1050
0
32
64
96
128 160 192 224 256
RF FREQUENCY (MHz)
DAC CODE
2nd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
2nd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
2nd HARMONIC vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
80
60
VCC = 5.00V
70
60
VCC = 4.75V
850
TC = +25°C TC = -40°C
TC = +85°C
50
1050
250
450
650
850
0
1050
32
64
96
128 160 192 224 256
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
DAC CODE
3rd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
3rd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
3rd HARMONIC vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
100
TC = -40°C
80
TC = +25°C
VCC = 5.00V
90
100
VCC = 5.25V
80
POUT = 0dBm
fRF = 200MHz
95
3rd HARMONIC (dBc)
3rd HARMONIC (dBc)
90
POUT = 3dBm
MAX2067 toc50
POUT = 3dBm
MAX2067 toc49
100
TC = +25°C
90
85
80
TC = +85°C
70
70
MAX2067 toc51
650
70
50
40
450
80
50
40
250
POUT = 0dBm
fRF = 200MHz
60
TC = +85°C
50
90
2nd HARMONIC (dBc)
TC = +25°C
70
VCC = 5.25V
2nd HARMONIC (dBc)
80
POUT = 3dBm
MAX2067 toc47
TC = -40°C
90
MAX2067 toc46
POUT = 3dBm
MAX2067 toc48
RF FREQUENCY (MHz)
90
50
40
TC = -40°C, TONE = LSB, USB
25
50
POUT = -3dBm/TONE
fRF = 200MHz
TC = +25°C, +85°C
TONE = LSB, USB
30
25
2nd HARMONIC (dBc)
45
OUTPUT IP3 (dBm)
TC = -40°C
30
POUT = 0dBm/TONE
VCC = 5.25V
OUTPUT IP3 (dBm)
OUTPUT IP3 (dBm)
40
45
MAX2067 toc44
POUT = 0dBm/TONE
MAX2067 toc43
45
OUTPUT IP3 vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
MAX2067 toc45
OUTPUT IP3 vs. RF FREQUENCY
(LOW-CURRENT MODE)
3rd HARMONIC (dBc)
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
TC = -40°C
VCC = 4.75V
75
TC = +85°C
60
60
50
250
450
650
RF FREQUENCY (MHz)
12
850
1050
70
50
250
450
650
RF FREQUENCY (MHz)
850
1050
0
32
64
96
128 160 192 224 256
DAC CODE
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
OIP2 vs. RF FREQUENCY
(LOW-CURRENT MODE)
TC = -40°C
80
90
POUT = 0dBm/TONE
VCC = 5.25V
80
90
POUT = -3dBm/TONE
fRF = 200MHz
80
TC = -40°C
TC = +25°C
60
OIP2 (dBm)
OIP2 (dBm)
OIP2 (dBm)
VCC = 5.00V
70
70
60
70
60
TC = +85°C
50
VCC = 4.75V
50
TC = +85°C
50
250
450
650
RF FREQUENCY (MHz)
850
1050
TC = +25°C
50
40
40
MAX2067 toc54
POUT = 0dBm/TONE
MAX2067 toc52
90
OIP2 vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
MAX2067 toc53
OIP2 vs. RF FREQUENCY
(LOW-CURRENT MODE)
40
50
250
450
650
RF FREQUENCY (MHz)
850
1050
0
32
64
96
128 160 192 224 256
DAC CODE
______________________________________________________________________________________
13
MAX2067
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, LC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = VDD = +3.3V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
22
21
TC = +25°C
20
45
18
18
17
17
VCC = 3.0V
3.30
3.45
3.60
16
50
250
VCC (V)
850
50
1050
VCC = 3.3V
-5
OUTPUT MATCH (dB)
-10
50MHz
-20
-30
OUTPUT MATCH vs. ATTENUATOR SETTING
0
MAX2067 toc58
VCC = 3.3V
200MHz
450MHz
50MHz
1000MHz
-10
450MHz
-15
-20
VCC = 3.3V
128 160 192 224 256
5
4
TC = +25°C
TC = -40°C
2
0
32
64
DAC CODE
96
128 160 192 224 256
50
250
DAC CODE
6
17
MAX2067 toc61
VCC = 3.3V
OUTPUT P1dB (dBm)
VCC = 3.0V
VCC = 3.3V
16
5
4
VCC = 3.6V
TC = -40°C
15
650
850
1050
OUTPUT P1dB vs. RF FREQUENCY
TC = +25°C
14
13
12
450
RF FREQUENCY (MHz)
OUTPUT P1dB vs. RF FREQUENCY
NOISE FIGURE vs. RF FREQUENCY
7
1050
3
17
16
OUTPUT P1dB (dBm)
96
850
TC = +85°C
6
MAX2067 toc62
64
650
NOISE FIGURE vs. RF FREQUENCY
-30
32
450
7
200MHz
-25
-40
0
250
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
INPUT MATCH vs. ATTENUATOR SETTING
INPUT MATCH (dB)
650
RF FREQUENCY (MHz)
0
1000MHz
450
MAX2067 toc59
3.15
20
19
TC = +85°C
16
3.00
21
MAX2067 toc60
TC = +85°C
VCC = 3.6V
TC = +85°C
VCC = 3.3V
VCC = 3.6V
15
MAX2067 toc63
TC = +25°C
VCC = 3.3V
22
TC = -40°C
19
55
23
GAIN (dB)
65
24
MAX2067 toc56
MAX2067 toc55
VCC = 3.3V
23
GAIN (dB)
SUPPLY CURRENT (mA)
TC = -40°C
GAIN vs. RF FREQUENCY
GAIN vs. RF FREQUENCY
24
MAX2067 toc57
SUPPLY CURRENT vs. SUPPLY VOLTAGE
75
NOISE FIGURE (dB)
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
14
13
12
11
11
10
10
VCC = 3.0V
3
2
50
250
450
650
RF FREQUENCY (MHz)
14
9
9
850
1050
50
250
450
650
RF FREQUENCY (MHz)
850
1050
50
250
450
650
RF FREQUENCY (MHz)
______________________________________________________________________________________
850
1050
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
OUTPUT IP3 vs. RF FREQUENCY
POUT = 0dBm/TONE
45
45
TC = +25°C, +85°C
TONE = LSB, USB
MAX2067 toc66
MAX2067 toc64
VCC = 3.3V
POUT = 0dBm/TONE
45
OUTPUT IP3 vs. ATTENUATOR STATE
50
MAX2067 toc65
OUTPUT IP3 vs. RF FREQUENCY
50
VCC = 3.3V
POUT = -3dBm/TONE
fRF = 200MHz
35
30
VCC = 3.6V
35
30
VCC = 3.0V
TC = +85°C
25
VCC = 3.3V
TC = -40°C, TONE = LSB, USB
20
650
850
25
50
1050
250
2nd HARMONIC vs. RF FREQUENCY
850
1050
0
70
POUT = 3dBm
70
2nd HARMONIC (dBc)
TC = +85°C
50
VCC = 3.3V
40
50
850
1050
TC = +25°C
250
450
650
850
0
1050
80
TC = -40°C
90
VCC = 3.3V
VCC = 3.6V
80
60
70
60
50
450
650
RF FREQUENCY (MHz)
850
1050
128 160 192 224 256
90
TC = +85°C
TC = +25°C
80
TC = -40°C
VCC = 3.0V
TC = +85°C
50
96
VCC = 3.3V
POUT = 0dBm
fRF = 200MHz
70
250
64
100
3rd HARMONIC (dBc)
POUT = 3dBm
100
3rd HARMONIC (dBc)
TC = +25°C
50
32
3rd HARMONIC vs. ATTENUATOR STATE
110
MAX2067 toc70
90
TC = -40°C
DAC CODE
3rd HARMONIC vs. RF FREQUENCY
VCC = 3.3V
POUT = 3dBm
70
60
RF FREQUENCY (MHz)
3rd HARMONIC vs. RF FREQUENCY
100
70
40
50
RF FREQUENCY (MHz)
110
VCC = 3.3V
POUT = 0dBm
fRF = 200MHz
50
MAX2067 toc71
650
128 160 192 224 256
TC = +85°C
30
450
96
80
VCC = 3.0V
40
30
VCC = 3.6V
60
TC = -40°C
250
64
2nd HARMONIC vs. ATTENUATOR STATE
2nd HARMONIC vs. RF FREQUENCY
TC = +25°C
50
32
DAC CODE
80
MAX2067 toc67
VCC = 3.3V
POUT = 3dBm
2nd HARMONIC (dBc)
650
RF FREQUENCY (MHz)
80
60
450
2nd HARMONIC (dBc)
450
MAX2067 toc68
250
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
30
25
20
50
35
MAX2067 toc69
TC = -40°C
MAX2067 toc72
TC = +25°C
40
OUTPUT IP3 (dBm)
OUTPUT IP3 (dBm)
OUTPUT IP3 (dBm)
40
40
60
50
250
450
650
RF FREQUENCY (MHz)
850
1050
0
32
64
96
128 160 192 224 256
DAC CODE
______________________________________________________________________________________
15
MAX2067
Typical Operating Characteristics (continued)
(VCC = VDD = +3.3V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = VDD = +3.3V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
POUT = 0dBm/TONE
OIP2 (dBm)
TC = +85°C
50
40
VCC = 3.3V
30
650
RF FREQUENCY (MHz)
16
TC = +25°C
TC = -40°C
VCC = 3.0V
30
450
50
40
40
250
VCC = 3.3V
POUT = -3dBm/TONE
fRF = 200MHz
60
VCC = 3.6V
50
TC = -40°C
50
TC = +85°C
OIP2 (dBm)
60
TC = +25°C
70
MAX2067 toc75
MAX2067 toc73
VCC = 3.3V
POUT = 0dBm/TONE
60
OIP2 vs. ATTENUATOR STATE
OIP2 vs. RF FREQUENCY
70
MAX2067 toc74
OIP2 vs. RF FREQUENCY
70
OIP2 (dBm)
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
850
1050
30
50
250
450
650
RF FREQUENCY (MHz)
850
1050
0
32
64
96
128 160 192 224 256
DAC CODE
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
PIN
NAME
1, 16, 19, 22, 24–28,
30, 31, 33–36
DESCRIPTION
GND
2
VREF_SELECT
3
VDAC_EN
4
DATA
SPI Data Digital Input
5
CLK
SPI Clock Digital Input
6
CS
SPI Chip-Select Digital Input
7
VDD_LOGIC
8–15, 23, 29
GND
17
AMP_OUT
18
RSET
20
AMP_IN
21
VCC_AMP
32
ATTEN_OUT
37
ATTEN_IN
38
VCC_ANALOG
39
ANALOG_VCTRL
40
VREF_IN
—
EP
Ground
DAC Reference Voltage Selection Logic Input. Logic 1 = internal DAC reference
voltage, Logic 0 = external DAC reference voltage. Logic input disabled (don’t care)
when VDAC_EN = Logic 0.
DAC Enable/Disable Logic Input. Logic 0 = disable DAC circuit, Logic 1 = enable
DAC circuit.
Digital Logic Supply Input. Connect to the digital logic power supply, VDD, Bypass
to GND with a 10nF capacitor as close as possible to the pin.
Ground. See the Pin-Compatibility Considerations section.
Driver Amplifier Output (50Ω). See the Typical Application Circuit for details.
Driver Amplifier Bias-Setting Input. See the External Bias section.
Driver Amplifier Input (50Ω). See the Typical Application Circuit for details.
Driver Amplifier Supply Voltage Input. Connect to the VCC power supply. Bypass to
GND with 1000pF and 10nF capacitors as close as possible to the pin, with the
smaller value capacitor closer to the part.
Analog Attenuator Output. Internally matched to 50Ω. Requires an external DCblocking capacitor.
Analog Attenuator Input. Internally matched to 50Ω. Requires an external DCblocking capacitor.
Analog Bias and Control Supply Voltage Input. Bypass to GND with a 10nF
capacitor as close as possible to the pin.
Analog Attenuator Voltage-Control Input
External DAC Voltage Reference Input
Exposed Pad. Internally connected to GND. Connect EP to ground for proper RF
performance and enhanced thermal dissipation.
______________________________________________________________________________________
17
MAX2067
Pin Description
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
Detailed Description
The MAX2067 high-linearity analog variable-gain amplifier is a general-purpose, high-performance amplifier
designed to interface with 50Ω systems operating in the
50MHz to 1000MHz frequency range.
The MAX2067 integrates an analog attenuator to provide
31dB of total gain control, as well as a driver amplifier
optimized to provide high gain, high IP3, low noise figure,
and low power consumption. For applications that do not
require high linearity, the bias current of the amplifier can
be adjusted by an external resistor to further reduce
power consumption.
The analog attenuator is controlled using an external
voltage or through the SPI-compatible interface using
an on-chip DAC. Because each stage has its own external RF input and RF output, this component can be configured to either optimize NF (amplifier configured first),
or OIP3 (amplifier last). The device’s performance features include 22dB stand-alone amplifier gain (amplifier
only), 4dB NF at maximum gain (includes attenuator
insertion loss), and a high OIP3 level of +43dBm. Each
of these features makes the MAX2067 an ideal VGA for
numerous receiver and transmitter applications.
In addition, the MAX2067 operates from a single +5V
supply, or a single +3.3V supply with slightly reduced
performance, and has adjustable bias to trade current
consumption for linearity performance.
Analog Attenuator
The MAX2067’s analog attenuator has a dynamic range
of 31dB and is controlled using an external voltage or
through the 3-wire SPI using an on-chip 8-bit DAC. See
the Applications Information section and Table 1 for
attenuator programming details. The attenuator can be
used for both static and dynamic power control.
Driver Amplifier
The MAX2067 includes a high-performance driver with
a fixed gain of 22dB. The driver amplifier circuit is optimized for high linearity for the 50MHz to 1000MHz frequency range.
Applications Information
Attenuator Control
The analog attenuator is controlled by either an external
control voltage applied at ANALOG_VCTRL (pin 39) or
by the on-chip 8-bit DAC. Through the utilization of this
control DAC, the user can easily adjust the analog
attenuation in 0.12dB increments through a simple SPI
command. The DAC enable/disable logic-input pin
(VDAC_EN), and the DAC reference voltage selection
logic-input pin (VREF_SELECT) determine how the
attenuator is controlled. When the DAC is enabled,
either the on-chip voltage reference or the external voltage reference can be selected. See Table 1 for the
attenuator and DAC operation truth table.
Although this on-chip DAC eliminates the need for an
external analog control voltage, the user still has the
option of disabling the DAC and using an external analog control voltage for instances where additional attenuation resolution is needed, or in cases where the gain
trim/automatic gain-control (AGC) loop is purely analog.
SPI Interface and Attenuator Settings
The MAX2067 employs a 3-wire SPI/MICROWIRE™compatible serial interface to program the on-chip DAC.
Eight bits of data are shifted in MSB first and framed by
CS. When CS is low, the clock is active and data is
shifted on the rising edge of the clock. When CS transitions high, the data is latched and the attenuator setting
changes (Figure 1). See Table 2 for details on the SPI
data format.
Table 1. Control Logic
VDAC_EN
VREF_SELECT
ANALOG ATTENUATOR
D/A CONVERTER
0
X
Controlled by external control voltage
Disabled
1
1
Controlled by on-chip DAC
Enabled (DAC uses on-chip voltage reference)
1
0
Controlled by on-chip DAC
Enabled (DAC uses external voltage reference)
X = Don’t care.
MICROWIRE is a trademark of National Semiconductor Corp.
18
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
MAX2067
MSB
LSB
DN
DATA
D(N - 1)
D1
D0
CLOCK
tCW
tCS
tCH
CS
tES
tEWS
tEW
Figure 1. SPI Timing Diagram
Table 2. SPI Data Format
FUNCTION
On-Chip DAC
BIT
DESCRIPTION
D7
Bit 7 (MSB) of on-chip DAC used to program the analog attenuator
D6
Bit 6 of DAC
D5
Bit 5 of DAC
D4
Bit 4 of DAC
D3
Bit 3 of DAC
D2
Bit 2 of DAC
D1
Bit 1 of DAC
D0 (LSB)
Bit 0 (LSB) of the on-chip DAC
______________________________________________________________________________________
19
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
External Bias
Bias currents for the driver amplifier are set and optimized through external resistors. Resistors R1 and R1A
connected to RSET (pin 18) set the bias current for the
amplifier. The external biasing resistor values can be
increased for reduced current operation at the expense
of performance. See Tables 4 and 5 for details.
Pin-Compatibility Considerations
The MAX2067 is a simplified version of the MAX2065
analog/digital VGA. The MAX2067 does not contain a
digital attenuator and parallel inputs D0–D4. The associated input/output pins are internally connected to
ground (Table 3). Ground the unused input/output pins
to optimize isolation. ( See the Typical Application
Circuit.)
The exposed paddle (EP) of the MAX2067’s 40-pin thin
QFN-EP package provides a low thermal-resistance
path to the die. It is important that the PCB on which the
MAX2067 is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP must be
soldered to a ground plane on the PCB, either directly
or through an array of plated via holes.
Table 3. MAX2065/MAX2067 Pin
Comparison
+5V and +3.3V Supply Voltage
The MAX2067 features an optional +3.3V supply voltage
operation with slightly reduced linearity performance.
Layout Considerations
The pin configuration of the MAX2067 has been optimized to facilitate a very compact physical layout of the
device and its associated discrete components.
PIN
MAX2065
8
SER/PAR
MAX2067
GND
9
STATE_A
GND
10
STATE_B
GND
11
D4
GND
12
D3
GND
13
D2
GND
14
D1
GND
15
D0
GND
23
ATTEN2_OUT
GND
29
ATTEN2_IN
GND
Table 4. Typical Application Circuit Component Values (HC Mode)
DESIGNATION
VALUE
SIZE
VENDOR
DESCRIPTION
C1, C2, C7, C12
10nF
0402
Murata Mfg. Co., Ltd.
X7R
C3, C4, C6, C8, C9
1000pF
0402
Murata Mfg. Co., Ltd.
C0G ceramic capacitors
C10, C11
150pF
0402
Murata Mfg. Co., Ltd.
C0G ceramic capacitors
L1
470nH
1008
Coilcraft, Inc.
1008CS-471XJLC
R1, R1A
10Ω
0402
Panasonic Corp.
1%
R2 (+3.3V applications only)
1kΩ
0402
Panasonic Corp.
1%
R3 (+3.3V applications only)
2kΩ
0402
Panasonic Corp.
1%
R4 (+5V applications and
using internal DAC only)
47kΩ
0402
Panasonic Corp.
1%
U1
—
40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc.
MAX2067ETL+
20
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
DESIGNATION
VALUE
SIZE
VENDOR
DESCRIPTION
C1, C2, C7, C12
10nF
0402
Murata Mfg. Co., Ltd.
X7R
C3, C4, C6, C8, C9
1000pF
0402
Murata Mfg. Co., Ltd.
C0G ceramic capacitors
C10, C11
150pF
0402
Murata Mfg. Co., Ltd.
C0G ceramic capacitors
L1
470nH
1008
Coilcraft, Inc.
1008CS-471XJLC
R1
24Ω
0402
Vishay
1%
R1A
10nF
0402
Murata Mfg. Co., Ltd.
X7R
R2 (+3.3V applications only)
1kΩ
0402
Panasonic Corp.
1%
R3 (+3.3V applications only)
2kΩ
0402
Panasonic Corp.
1%
R4 (+5V applications and
using internal DAC only)
47kΩ
0402
Panasonic Corp.
1%
U1
—
40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc.
MAX2067ETL+
______________________________________________________________________________________
21
MAX2067
Table 5. Typical Application Circuit Component Values (LC Mode)
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
MAX2067
Typical Application Circuit
VCC
C12
RF INPUT
C10
R4
+
GND
VREF_SELECT
VDAC_EN
40
39
38
37
36
1
35
34
33
GND
ATTEN_OUT
GND
GND
GND
ATTEN_IN
VCC_ANALOG
VREF_IN
C11
ANALOG_VCTRL
VREF_IN
GND
C9
ANALOG_VCTRL
32
31
30
ANALOG ATTENUATOR
29
2
3
28
MAX2067
8
EP
24
23
DRIVER AMP
9
22
10
21
12
13
14
15
16
17
18
19
GND
GND
GND
GND
C8
GND
GND
GND
GND
VCC
VCC_AMP
20
AMP_IN
GND
11
GND
GND
7
RSET
GND
25
AMP_OUT
GND
6
GND
C1
DAC
GND
VDD_LOGIC
26
GND
VDD
5
GND
CS
27
SPI INTERFACE
CLK
VREF
4
GND
DATA
GND
C6
R2
R1
R3
VCC
L1
C2
C3
R1A*
C4
RF OUTPUT
NOTE: REMOVE R4 AND C10 WHEN DRIVING
ANALOG_VCTRL WITH AN EXTERNAL VOLTAGE.
22
*IN LC MODE, R1A IS A 10nF CAPACITOR.
SEE TABLE 5 FOR DETAILS.
______________________________________________________________________________________
C7
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
VREF_IN
ANALOG_VCTRL
VCC_ANALOG
ATTEN_IN
GND
GND
GND
GND
ATTEN_OUT
GND
40
39
38
37
36
35
34
33
32
31
TOP VIEW
+
GND 1
30 GND
ANALOG ATTENUATOR
VREF_SELECT 2
29 GND
VDAC_EN 3
28 GND
DATA 4
MAX2067
VREF
27 GND
CLK 5
26 GND
DAC
25 GND
SPI INTERFACE
CS 6
VDD_LOGIC 7
GND 8
24 GND
23 GND
DRIVER AMP
GND 9
22 GND
15
16
17
18
19
20
AMP_OUT
RSET
GND
AMP_IN
GND
14
GND
13
GND
12
GND
11
GND
21 VCC_AMP
GND
GND 10
TQFN
EXPOSED PAD ON BOTTOM.
CONNECT EP TO GND.
Package Information
Chip Information
PROCESS: SiGe BiCMOS
For the latest package outline information, go to
www.maxim-ic.com/packages.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
40 Thin QFN-EP
T4066-3
21-0141
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23
© 2008 Maxim Integrated Products
is a registered trademark of Maxim Integrated Products, Inc.
MAX2067
Pin Configuration/Functional Block Diagram