0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX2067EVKIT#

MAX2067EVKIT#

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    KIT EVAL FOR MAX2067

  • 数据手册
  • 价格&库存
MAX2067EVKIT# 数据手册
19-4080; Rev 0; 4/08 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA The MAX2067 high-linearity analog variable-gain amplifier (VGA) is a monolithic SiGe BiCMOS attenuator and amplifier designed to interface with 50Ω systems operating in the 50MHz to 1000MHz frequency range (see the Typical Application Circuit). The analog attenuator is controlled using an external voltage or through the SPI™-compatible interface using an on-chip 8-bit DAC. Because each stage has its own RF input and RF output, this component can be configured to either optimize NF (amplifier configured first), or OIP3 (amplifier last). The device’s performance features include 22dB amplifier gain (amplifier only), 4dB NF at maximum gain (includes attenuator insertion loss), and a high OIP3 level of +43dBm. Each of these features makes the MAX2067 an ideal VGA for numerous receiver and transmitter applications. In addition, the MAX2067 operates from a single +5V supply with full performance, or a single +3.3V supply with slightly reduced performance, and has an adjustable bias to trade current consumption for linearity performance. This device is available in a compact 40pin thin QFN package (6mm x 6mm) with an exposed pad. Electrical performance is guaranteed over the extended temperature range (TC = -40°C to +85°C). Applications IF and RF Gain Stages Temperature Compensation Circuits Features  50MHz to 1000MHz RF Frequency Range  Pin-Compatible Family Includes MAX2065 (Analog/Digital VGA) MAX2066 (Digital VGA)  +21.9dB (typ) Maximum Gain  0.5dB Gain Flatness Over 100MHz Bandwidth  31dB Gain Range  Built-In DAC for Analog Attenuation Control  Excellent Linearity (Configured with Amplifier Last) +43dBm OIP3 +66dBm OIP2 +19dBm Output 1dB Compression Point -70dBc HD2 -87dBc HD3  4dB Typical Noise Figure (NF)  Single +5V Supply (Optional +3.3V Operation)  External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ Reduced-Performance Mode Cellular Band WCDMA and cdma2000® Base Stations Ordering Information GSM 850/GSM 900 EDGE Base Stations WiMAX and LTE Base Stations and Customer Premise Equipment Fixed Broadband Wireless Access Wireless Local Loop Military Systems Video-on-Demand (VOD) and DOCSIS®Compliant EDGE QAM Modulation TEMP RANGE PIN-PACKAGE MAX2067ETL+ PART -40°C to +85°C 40 Thin QFN-EP* MAX2067ETL+T -40°C to +85°C 40 Thin QFN-EP* +Denotes a lead-free package. *EP = Exposed pad. T = Tape and reel. Cable Modem Termination Systems (CMTS) RFID Handheld and Portal Readers Pin Configuration appears at end of data sheet. SPI is a trademark of Motorola, Inc. cdma2000 is a registered trademark of Telecommunications Industry Association. DOCSIS and CableLabs are registered trademarks of Cable Television Laboratories, Inc. (CableLabs®). ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX2067 General Description MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA ABSOLUTE MAXIMUM RATINGS VCC_ to GND ........................................................-0.3V to +5.5V VDD_LOGIC, DATA, CS, CLK, VDAC_EN, VREF_SELECT.....................................-0.3V to (VCC_ + 0.3V) AMP_IN, AMP_OUT, VREF_IN, ANALOG_VCTRL ................................-0.3V to (VCC_ + 0.3V) ATTEN_IN, ATTEN_OUT........................................-1.2V to +1.2V RSET to GND.........................................................-0.3V to +1.2V RF Input Power (ATTEN_IN, ATTEN_OUT).....................+20dBm RF Input Power (AMP_IN)...............................................+18dBm Continuous Power Dissipation (Note 1) ...............................6.5W θJA (Notes 2, 3)..............................................................+38°C/W θJC (Note 3) ...................................................................+10°C/W Operating Temperature Range (Note 4) .....TC = -40°C to +85°C Maximum Junction Temperature .....................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Note 1: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a printed-circuit board (PCB). See the Applications Information section for details. The junction temperature must not exceed +150°C. Note 2: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150°C. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. +3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, high-current (HC) mode, VCC = VDD = +3.0V to +3.6V, TC = -40°C to +85°C. Typical values are at VCC = VDD = +3.3V and TC = +25°C, unless otherwise noted.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS Note 5 MIN TYP MAX UNITS 3.0 3.3 3.6 V 60 82 mA LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT) Input High Voltage VIH 2 V Input Low Voltage VIL 0.8 V +5V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = VDD = +4.75V to +5.25V, TC = -40°C to +85°C. Typical values are at VCC = VDD = +5V and TC = +25°C, unless otherwise noted.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX UNITS 4.75 5 5.25 V Low-current (LC) mode 72 92 High-current (HC) mode 123 146 mA LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT) Input High Voltage VIH Input Low Voltage VIL Input Current Logic-High IIH Input Current Logic-Low IIL 2 3 V 0.8 V -1 +1 µA -1 +1 µA _______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA (Typical Application Circuit, VCC = VDD = +3.0V to +3.6V, TC = -40°C to +85°C. Typical values are at VCC = VDD = +3.3V, HC mode with attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, unless otherwise noted.) (Note 6) PARAMETER SYMBOL RF Frequency Range fRF Small-Signal Gain G Output Third-Order Intercept Point Noise Figure OIP3 NF CONDITIONS (Notes 5, 7) MIN TYP 50 MAX UNITS 1000 MHz 21.3 dB POUT = 0dBm/tone, maximum gain setting 38 dBm Maximum gain setting 4.3 dB 31 dB Total Attenuation Range +5V SUPPLY AC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = VDD = +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz ≤ fRF ≤ 1000MHz, TC = -40°C to +85°C. Typical values are at VCC = VDD = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, unless otherwise noted.) (Note 6) PARAMETER RF Frequency Range SYMBOL fRF CONDITIONS (Notes 5, 7) MIN 50 200MHz G 20.9 19.4 900MHz 18.7 Any 100MHz frequency band from 50MHz to 500MHz NF Output Third-Order Intercept Point OIP3 MHz 22.3 dB 0.5 dB 4 450MHz 4.3 750MHz 4.8 5.2 dB 5 POUT = 0dBm/tone, ∆f = 1MHz, f1 + f2 POUT = 0dBm/tone, HC mode, ∆f = 1MHz 1000 dB/°C 4.2 Total Attenuation Range OIP2 UNITS -0.006 350MHz, TC = +25°C (Note 5) 900MHz Output Second-Order Intercept Point 21.3 750MHz 200MHz Noise Figure 20.3 450MHz Gain Variation vs. Temperature Gain Flatness vs. Frequency MAX 21.9 350MHz, TC = +25°C (Note 5) Small-Signal Gain TYP 31 dB 66 dBm 200MHz 43 350MHz 40.8 450MHz 39.8 750MHz 37.3 900MHz 36.2 200MHz 40 350MHz POUT = 0dBm/tone, 450MHz LC mode, ∆f = 1MHz 750MHz 38.2 900MHz 34.3 dBm 37.4 35.5 _______________________________________________________________________________________ 3 MAX2067 +3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA +5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued) (Typical Application Circuit, VCC = VDD = +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz ≤ fRF ≤ 1000MHz, TC = -40°C to +85°C. Typical values are at VCC = VDD = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, unless otherwise noted.) (Note 6) PARAMETER MIN TYP 350MHz, TC = +25°C (Notes 5, 8) 17 18.7 dBm Second Harmonic POUT = +3dBm, fRF = 200MHz, TC = +25°C (Note 5) -61 -70 dBc Third Harmonic POUT = +3dBm, fRF = 200MHz, TC = +25°C (Note 5) -74 -87 dBc Output -1dB Compression Point SYMBOL P1dB CONDITIONS Input from ANALOG_VCTRL Attenuator Response Time (Note 9) MAX 1 UNITS µs Input from CS rising edge 3.2 Group Delay Maximum gain setting, includes EV kit PCB delays 0.8 Input Return Loss 50Ω source, maximum gain setting 30 dB Output Return Loss 50Ω load, maximum gain setting 16 dB 1.2 dB ns ANALOG ATTENUATOR Insertion Loss Input Second-Order Intercept Point IIP2 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain setting, ∆f = 1MHz, f1 + f2 70 dBm Input Third-Order Intercept Point IIP3 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain setting, ∆f = 1MHz 36 dBm Attenuation Range Analog control input 31 dB Gain-Control Slope Analog control input -12.5 dB/V Maximum Gain-Control Slope Over analog control input range -35 dB/V Insertion Phase Change Over analog control input range 18 Degrees Group Delay vs. Control Voltage Over analog control input range Analog Control Input Range -0.25 0.25 Analog Control Input Impedance ns 2.75 80 V kΩ Input Return Loss 50Ω source, maximum gain setting 22 dB Output Return Loss 50Ω load, maximum gain setting 22 dB DAC Number of Bits Output Voltage 4 8 DAC code = 00000000 DAC code = 11111111 Bits 0.25 2.75 _______________________________________________________________________________________ V 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA (Typical Application Circuit, VCC = VDD = +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz ≤ fRF ≤ 1000MHz, TC = -40°C to +85°C. Typical values are at VCC = VDD = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 6) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS SERIAL PERIPHERAL INTERFACE (SPI) Maximum Clock Speed fCLK 20 MHz ns Data-to-Clock Setup Time tCS 2 Data-to-Clock Hold Time tCH 2.5 ns Clock-to-CS Setup Time tES 3 ns ns CS Positive Pulse Width tEW 7 CS Setup Time tEWS 3.5 ns Clock Pulse Width tCW 5 ns Note 5: Guaranteed by design and characterization. Note 6: All limits include external component losses. Output measurements are performed at RF output port of the Typical Application Circuit Note 7: Operating outside this range is possible, but with degraded performance of some parameters. Note 8: It is advisable not to continuously operate the VGA RF input above +15dBm. Note 9: Response time includes full attenuation range change with output setting to within ±0.1dB. _______________________________________________________________________________________ 5 MAX2067 +5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) SUPPLY CURRENT vs. SUPPLY VOLTAGE 120 21 20 21 20 19 TC = +85°C 18 18 17 17 TC = +85°C 16 16 5.000 5.125 5.250 50 250 VCC (V) 650 850 50 1050 24 MAX2067 toc04 19 50MHz 19 14 200MHz 14 DAC CODE 128 450MHz 4 -1 -1 -6 -6 -6 -11 -11 -11 DAC CODE 256 -16 -16 250 50 450 650 850 1050 TC = -40°C, +25°C, +85°C 9 -16 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 RF FREQUENCY (MHz) DAC CODE DAC CODE GAIN vs. ATTENUATOR SETTING INPUT MATCH vs. ATTENUATOR SETTING OUTPUT MATCH vs. ATTENUATOR SETTING VCC = 4.75V, 5.00V, 5.25V 9 4 -1 -15 1000MHz 50MHz -20 -25 -30 200MHz -6 -5 OUTPUT MATCH (dB) 14 0 MAX2067 toc08 19 -10 INPUT MATCH (dB) fRF = 200MHz MAX2067 toc07 24 MAX2067 toc09 -1 1050 fRF = 200MHz 19 14 1000MHz 4 850 GAIN vs. ATTENUATOR SETTING GAIN (dB) GAIN (dB) DAC CODE 64 4 650 24 DAC CODE 32 9 450 RF FREQUENCY (MHz) GAIN vs. ATTENUATOR SETTING DAC CODE 0 9 250 RF FREQUENCY (MHz) GAIN OVER ATTENENUATOR SETTING vs. RF FREQUENCY 24 450 MAX2067 toc05 4.875 MAX2067 toc06 100 4.750 GAIN (dB) VCC = 4,75V, 5.00V, 5.25V 22 TC = +25°C 19 110 23 GAIN (dB) 130 MAX2067 toc03 TC = -40°C 22 GAIN (dB) SUPPLY CURRENT (mA) 23 TC = +25°C 24 MAX2067 toc02 TC = -40°C 140 GAIN vs. RF FREQUENCY GAIN vs. RF FREQUENCY 24 MAX2067 toc01 150 GAIN (dB) MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA -15 -20 450MHz -35 1000MHz 450MHz -10 50MHz 200MHz -25 -11 -40 -16 0 32 64 96 128 160 192 224 256 DAC CODE 6 -30 0 32 64 96 128 160 192 224 256 DAC CODE 0 32 64 96 128 160 192 224 256 DAC CODE _______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA S21 PHASE CHANGE vs. ATTENUATOR SETTING DAC CODE 255 -55 60 50 1000MHz 450MHz 40 30 200MHz 20 10 -65 TC = +85°C 5 4 3 TC = -40°C 0 50MHz -10 -75 250 450 650 850 2 0 1050 32 64 96 50 250 450 DAC CODE RF FREQUENCY (MHz) OUTPUT P1dB (dBm) VCC = 4.75V, 5.00V, 5.25V 5 4 3 TC = +85°C 20 VCC = 5.25V TC = +25°C 19 TC = -40°C 18 TC = -40°C 17 TC = +25°C 16 1050 21 MAX2067 toc14 20 850 OUTPUT P1dB vs. RF FREQUENCY 21 MAX2067 toc13 6 650 RF FREQUENCY (MHz) OUTPUT P1dB vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY 7 NOISE FIGURE (dB) 128 160 192 224 256 OUTPUT P1dB (dBm) 50 MAX2067 toc12 TC = +25°C 6 MAX2067 toc15 DAC CODE 0 -45 REFERENCED TO HIGH GAIN STATE. POSITIVE PHASE = ELECTRICALLY SHORTER. 70 7 MAX2067 toc11 MAX2067 toc10 -35 NOISE FIGURE vs. RF FREQUENCY 80 S21 PHASE CHANGE (DEG) REVERSE ISOLATION (dB) -25 NOISE FIGURE (dB) REVERSE ISOLATION OVER ATTENUATOR SETTING vs. RF FREQUENCY 19 VCC = 5.00V 18 17 VCC = 4.75V 16 TC = +85°C 15 250 450 650 850 250 450 650 850 1050 50 250 450 650 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) OUTPUT IP3 vs. RF FREQUENCY OUTPUT IP3 vs. RF FREQUENCY OUTPUT IP3 vs. ATTENUATOR STATE POUT = 0dBm/TONE POUT = 0dBm/TONE TC = +25°C, +85°C TONE = LSB, USB OUTPUT IP3 (dBm) 40 TC = -40°C VCC = 5.00V VCC = 5.25V 40 VCC = 4.75V 35 35 1050 POUT = -3dBm/TONE fRF = 200MHz 45 45 TC = +25°C 850 50 OUTPUT IP3 (dBm) 45 50 MAX2067 toc17 50 OUTPUT IP3 (dBm) 15 50 1050 MAX2067 toc16 50 MAX2067 toc18 2 40 35 TC = +85°C TC = -40°C, TONE = LSB, USB 30 30 30 50 250 450 650 RF FREQUENCY (MHz) 850 1050 50 250 450 650 RF FREQUENCY (MHz) 850 1050 0 32 64 96 128 160 192 224 256 DAC CODE _______________________________________________________________________________________ 7 MAX2067 Typical Operating Characteristics (continued) (VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) 80 60 60 VCC = 4.75V 50 40 250 450 650 850 TC = +25°C TC = +85°C 60 50 1050 250 450 650 850 1050 0 32 64 96 128 160 192 224 256 RF FREQUENCY (MHz) RF FREQUENCY (MHz) DAC CODE 3rd HARMONIC vs. FREQUENCY 3rd HARMONIC vs. RF FREQUENCY 3rd HARMONIC vs. ATTENUATOR STATE TC = +25°C 90 POUT = 3dBm 100 80 TC = -40°C VCC = 5.25V 110 90 80 VCC = 4.75V POUT = 0dBm fRF = 200MHz 100 3rd HARMONIC (dBc) 100 110 MAX2067 toc23 POUT = 3dBm 3rd HARMONIC (dBc) 110 MAX2067 toc22 50 70 65 50 40 3rd HARMONIC (dBc) VCC = 5.00V 70 75 90 TC = +85°C TC = +25°C 80 VCC = 5.00V TC = -40°C 70 70 70 MAX2067 toc24 70 VCC = 5.25V POUT = 0dBm fRF = 200MHz TC = -40°C 2nd HARMONIC (dBc) TC = -40°C, +25°C, +85°C 80 MAX2067 toc21 POUT = 3dBm 2nd HARMONIC (dBc) 2nd HARMONIC (dBc) 80 90 MAX2067 toc20 POUT = 3dBm MAX2067 toc19 90 2nd HARMONIC vs. ATTENUATOR STATE 2nd HARMONIC vs. RF FREQUENCY 2nd HARMONIC vs. RF FREQUENCY TC = +85°C 60 250 450 650 850 60 50 1050 250 450 650 850 1050 0 32 64 RF FREQUENCY (MHz) RF FREQUENCY (MHz) OIP2 vs. RF FREQUENCY OIP2 vs. RF FREQUENCY POUT = 0dBm/TONE 80 128 160 192 224 256 OIP2 vs. ATTENUATOR STATE 90 MAX2067 toc25 90 96 DAC CODE POUT = 0dBm/TONE 80 80 MAX2067 toc26 50 POUT = -3dBm/TONE fRF = 200MHz TC = -40°C MAX2067 toc27 60 TC = -40°C, +25°C, +85°C 60 VCC = 5.00V 70 OIP2 (dBm) 70 OIP2 (dBm) 70 OIP2 (dBm) MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA VCC = 5.25V 60 60 TC = +25°C TC = +85°C 50 50 50 VCC = 4.75V 40 40 50 250 450 650 RF FREQUENCY (MHz) 8 850 1050 40 50 250 450 650 RF FREQUENCY (MHz) 850 1050 0 32 64 96 128 160 192 224 256 DAC CODE _______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA DAC VOLTAGE USING INTERNAL REFERENCE vs. DAC CODE DAC VOLTAGE USING INTERNAL REFERENCE vs. DAC CODE 2.0 1.5 1.0 TC = -40°C, +25°C, +85°C 2.0 1.5 1.0 VCC = 4.75V, 5.00V, 5.25V 0.5 0.5 0 32 64 96 32 64 96 128 160 192 224 256 DAC CODE DAC CODE DAC VOLTAGE DRIFT USING INTERNAL REFERENCE vs. DAC CODE DAC VOLTAGE DRIFT USING INTERNAL REFERENCE vs. DAC CODE 0.04 TC CHANGED FROM +25°C to -40°C 0.0100 0.02 0.01 0 -0.01 0.0075 DAC VOLTAGE CHANGE (V) 0.05 0.03 0 128 160 192 224 256 MAX2067 toc30 0 VCC CHANGED FROM 5.00V to 5.25V MAX2067 toc31 0 DAC VOLTAGE CHANGE (V) MAX2067 toc29 2.5 DAC VOLTAGE (V) 2.5 DAC VOLTAGE (V) 3.0 MAX2067 toc28 3.0 0.0050 0.0025 0 -0.0025 -0.02 -0.0050 -0.03 TC CHANGED FROM +25°C to +85°C VCC CHANGED FROM 5.00V to 4.75V -0.0075 -0.04 -0.05 -0.0100 0 32 64 96 128 160 192 224 256 DAC CODE 0 32 64 96 128 160 192 224 256 DAC CODE _______________________________________________________________________________________ 9 MAX2067 Typical Operating Characteristics (continued) (VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = VDD = +5.0V, attenuator only, maximum gain, PIN = -20dBm, and TC = +25°C, unless otherwise noted.) GAIN vs. RF FREQUENCY (ATTENUATOR ONLY) GAIN vs. RF FREQUENCY (ATTENUATOR ONLY) -1 TC = +85°C TC = +25°C -2 VCC = 4.75V, 5.00V, 5.25V -3 -4 -4 -5 -5 50 250 450 650 RF FREQUENCY (MHz) 10 -1 GAIN (dB) -2 MAX2067 toc33 TC = -40°C -3 0 MAX2067 toc32 0 GAIN (dB) MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA 850 1050 50 250 450 650 850 RF FREQUENCY (MHz) ______________________________________________________________________________________ 1050 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA SUPPLY CURRENT vs. SUPPLY VOLTAGE (LOW-CURRENT MODE) 24 TC = -40°C 23 22 22 TC = +25°C GAIN (dB) 20 19 TC = +85°C 55 4.750 5.000 5.125 5.250 20 19 TC = +85°C 18 17 16 4.875 21 16 50 250 450 650 850 1050 50 250 450 650 850 VCC (V) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT MATCH vs. ATTENUATOR SETTING (LOW-CURRENT MODE) OUTPUT MATCH vs. ATTENUATOR SETTING (LOW-CURRENT MODE) NOISE FIGURE vs. RF FREQUENCY (LOW-CURRENT MODE) -20 -30 200MHz -5 OUTPUT MATCH (dB) 50MHz 1000MHz 450MHz 1000MHz 450MHz -10 -15 -20 50MHz -40 200MHz -25 -50 6 NOISE FIGURE (dB) -10 7 MAX2067 toc38 0 MAX2067 toc37 0 32 64 96 128 160 192 224 256 TC = +25°C 5 4 TC = -40°C 2 0 32 64 96 128 160 192 224 256 50 250 450 650 850 DAC CODE DAC CODE RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY (LOW-CURRENT MODE) OUTPUT P1dB vs. RF FREQUENCY (LOW-CURRENT MODE) OUTPUT P1dB vs. RF FREQUENCY (LOW-CURRENT MODE) OUTPUT P1dB (dBm) VCC = 4.75V, 5.00V, 5.25V 5 4 TC = +25°C 16 15 TC = +85°C 14 3 250 450 650 RF FREQUENCY (MHz) 850 1050 VCC = 5.25V VCC = 5.00V 16 VCC = 4.75V 15 14 13 13 2 17 MAX2067 toc42 TC = -40°C 17 OUTPUT P1dB (dBm) 6 1050 18 MAX2067 toc41 18 MAX2067 toc40 7 50 TC = +85°C 3 -30 0 1050 MAX2067 toc39 GAIN (dB) 65 21 17 INPUT MATCH (dB) VCC = 4.75V, 5.00V, 5.25V TC = +25°C 75 18 NOISE FIGURE (dB) MAX2067 toc36 23 GAIN vs. RF FREQUENCY (LOW-CURRENT MODE) MAX2067 toc35 TC = -40°C SUPPLY CURRENT (mA) 24 MAX2067 toc34 85 GAIN vs. RF FREQUENCY (LOW-CURRENT MODE) 50 250 450 650 RF FREQUENCY (MHz) 850 1050 50 250 450 650 850 1050 RF FREQUENCY (MHz) ______________________________________________________________________________________ 11 MAX2067 Typical Operating Characteristics (continued) (VCC = VDD = +5.0V, LC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = VDD = +5.0V, LC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) OUTPUT IP3 vs. RF FREQUENCY (LOW-CURRENT MODE) 40 35 TC = +85°C TC = +25°C VCC = 5.00V 35 VCC = 4.75V 250 450 35 650 850 1050 30 50 250 450 650 850 1050 0 32 64 96 128 160 192 224 256 RF FREQUENCY (MHz) DAC CODE 2nd HARMONIC vs. RF FREQUENCY (LOW-CURRENT MODE) 2nd HARMONIC vs. RF FREQUENCY (LOW-CURRENT MODE) 2nd HARMONIC vs. ATTENUATOR STATE (LOW-CURRENT MODE) 80 60 VCC = 5.00V 70 60 VCC = 4.75V 850 TC = +25°C TC = -40°C TC = +85°C 50 1050 250 450 650 850 0 1050 32 64 96 128 160 192 224 256 RF FREQUENCY (MHz) RF FREQUENCY (MHz) DAC CODE 3rd HARMONIC vs. RF FREQUENCY (LOW-CURRENT MODE) 3rd HARMONIC vs. RF FREQUENCY (LOW-CURRENT MODE) 3rd HARMONIC vs. ATTENUATOR STATE (LOW-CURRENT MODE) 100 TC = -40°C 80 TC = +25°C VCC = 5.00V 90 100 VCC = 5.25V 80 POUT = 0dBm fRF = 200MHz 95 3rd HARMONIC (dBc) 3rd HARMONIC (dBc) 90 POUT = 3dBm MAX2067 toc50 POUT = 3dBm MAX2067 toc49 100 TC = +25°C 90 85 80 TC = +85°C 70 70 MAX2067 toc51 650 70 50 40 450 80 50 40 250 POUT = 0dBm fRF = 200MHz 60 TC = +85°C 50 90 2nd HARMONIC (dBc) TC = +25°C 70 VCC = 5.25V 2nd HARMONIC (dBc) 80 POUT = 3dBm MAX2067 toc47 TC = -40°C 90 MAX2067 toc46 POUT = 3dBm MAX2067 toc48 RF FREQUENCY (MHz) 90 50 40 TC = -40°C, TONE = LSB, USB 25 50 POUT = -3dBm/TONE fRF = 200MHz TC = +25°C, +85°C TONE = LSB, USB 30 25 2nd HARMONIC (dBc) 45 OUTPUT IP3 (dBm) TC = -40°C 30 POUT = 0dBm/TONE VCC = 5.25V OUTPUT IP3 (dBm) OUTPUT IP3 (dBm) 40 45 MAX2067 toc44 POUT = 0dBm/TONE MAX2067 toc43 45 OUTPUT IP3 vs. ATTENUATOR STATE (LOW-CURRENT MODE) MAX2067 toc45 OUTPUT IP3 vs. RF FREQUENCY (LOW-CURRENT MODE) 3rd HARMONIC (dBc) MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA TC = -40°C VCC = 4.75V 75 TC = +85°C 60 60 50 250 450 650 RF FREQUENCY (MHz) 12 850 1050 70 50 250 450 650 RF FREQUENCY (MHz) 850 1050 0 32 64 96 128 160 192 224 256 DAC CODE ______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA OIP2 vs. RF FREQUENCY (LOW-CURRENT MODE) TC = -40°C 80 90 POUT = 0dBm/TONE VCC = 5.25V 80 90 POUT = -3dBm/TONE fRF = 200MHz 80 TC = -40°C TC = +25°C 60 OIP2 (dBm) OIP2 (dBm) OIP2 (dBm) VCC = 5.00V 70 70 60 70 60 TC = +85°C 50 VCC = 4.75V 50 TC = +85°C 50 250 450 650 RF FREQUENCY (MHz) 850 1050 TC = +25°C 50 40 40 MAX2067 toc54 POUT = 0dBm/TONE MAX2067 toc52 90 OIP2 vs. ATTENUATOR STATE (LOW-CURRENT MODE) MAX2067 toc53 OIP2 vs. RF FREQUENCY (LOW-CURRENT MODE) 40 50 250 450 650 RF FREQUENCY (MHz) 850 1050 0 32 64 96 128 160 192 224 256 DAC CODE ______________________________________________________________________________________ 13 MAX2067 Typical Operating Characteristics (continued) (VCC = VDD = +5.0V, LC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = VDD = +3.3V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) 22 21 TC = +25°C 20 45 18 18 17 17 VCC = 3.0V 3.30 3.45 3.60 16 50 250 VCC (V) 850 50 1050 VCC = 3.3V -5 OUTPUT MATCH (dB) -10 50MHz -20 -30 OUTPUT MATCH vs. ATTENUATOR SETTING 0 MAX2067 toc58 VCC = 3.3V 200MHz 450MHz 50MHz 1000MHz -10 450MHz -15 -20 VCC = 3.3V 128 160 192 224 256 5 4 TC = +25°C TC = -40°C 2 0 32 64 DAC CODE 96 128 160 192 224 256 50 250 DAC CODE 6 17 MAX2067 toc61 VCC = 3.3V OUTPUT P1dB (dBm) VCC = 3.0V VCC = 3.3V 16 5 4 VCC = 3.6V TC = -40°C 15 650 850 1050 OUTPUT P1dB vs. RF FREQUENCY TC = +25°C 14 13 12 450 RF FREQUENCY (MHz) OUTPUT P1dB vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY 7 1050 3 17 16 OUTPUT P1dB (dBm) 96 850 TC = +85°C 6 MAX2067 toc62 64 650 NOISE FIGURE vs. RF FREQUENCY -30 32 450 7 200MHz -25 -40 0 250 RF FREQUENCY (MHz) NOISE FIGURE (dB) INPUT MATCH vs. ATTENUATOR SETTING INPUT MATCH (dB) 650 RF FREQUENCY (MHz) 0 1000MHz 450 MAX2067 toc59 3.15 20 19 TC = +85°C 16 3.00 21 MAX2067 toc60 TC = +85°C VCC = 3.6V TC = +85°C VCC = 3.3V VCC = 3.6V 15 MAX2067 toc63 TC = +25°C VCC = 3.3V 22 TC = -40°C 19 55 23 GAIN (dB) 65 24 MAX2067 toc56 MAX2067 toc55 VCC = 3.3V 23 GAIN (dB) SUPPLY CURRENT (mA) TC = -40°C GAIN vs. RF FREQUENCY GAIN vs. RF FREQUENCY 24 MAX2067 toc57 SUPPLY CURRENT vs. SUPPLY VOLTAGE 75 NOISE FIGURE (dB) MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA 14 13 12 11 11 10 10 VCC = 3.0V 3 2 50 250 450 650 RF FREQUENCY (MHz) 14 9 9 850 1050 50 250 450 650 RF FREQUENCY (MHz) 850 1050 50 250 450 650 RF FREQUENCY (MHz) ______________________________________________________________________________________ 850 1050 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA OUTPUT IP3 vs. RF FREQUENCY POUT = 0dBm/TONE 45 45 TC = +25°C, +85°C TONE = LSB, USB MAX2067 toc66 MAX2067 toc64 VCC = 3.3V POUT = 0dBm/TONE 45 OUTPUT IP3 vs. ATTENUATOR STATE 50 MAX2067 toc65 OUTPUT IP3 vs. RF FREQUENCY 50 VCC = 3.3V POUT = -3dBm/TONE fRF = 200MHz 35 30 VCC = 3.6V 35 30 VCC = 3.0V TC = +85°C 25 VCC = 3.3V TC = -40°C, TONE = LSB, USB 20 650 850 25 50 1050 250 2nd HARMONIC vs. RF FREQUENCY 850 1050 0 70 POUT = 3dBm 70 2nd HARMONIC (dBc) TC = +85°C 50 VCC = 3.3V 40 50 850 1050 TC = +25°C 250 450 650 850 0 1050 80 TC = -40°C 90 VCC = 3.3V VCC = 3.6V 80 60 70 60 50 450 650 RF FREQUENCY (MHz) 850 1050 128 160 192 224 256 90 TC = +85°C TC = +25°C 80 TC = -40°C VCC = 3.0V TC = +85°C 50 96 VCC = 3.3V POUT = 0dBm fRF = 200MHz 70 250 64 100 3rd HARMONIC (dBc) POUT = 3dBm 100 3rd HARMONIC (dBc) TC = +25°C 50 32 3rd HARMONIC vs. ATTENUATOR STATE 110 MAX2067 toc70 90 TC = -40°C DAC CODE 3rd HARMONIC vs. RF FREQUENCY VCC = 3.3V POUT = 3dBm 70 60 RF FREQUENCY (MHz) 3rd HARMONIC vs. RF FREQUENCY 100 70 40 50 RF FREQUENCY (MHz) 110 VCC = 3.3V POUT = 0dBm fRF = 200MHz 50 MAX2067 toc71 650 128 160 192 224 256 TC = +85°C 30 450 96 80 VCC = 3.0V 40 30 VCC = 3.6V 60 TC = -40°C 250 64 2nd HARMONIC vs. ATTENUATOR STATE 2nd HARMONIC vs. RF FREQUENCY TC = +25°C 50 32 DAC CODE 80 MAX2067 toc67 VCC = 3.3V POUT = 3dBm 2nd HARMONIC (dBc) 650 RF FREQUENCY (MHz) 80 60 450 2nd HARMONIC (dBc) 450 MAX2067 toc68 250 RF FREQUENCY (MHz) 3rd HARMONIC (dBc) 30 25 20 50 35 MAX2067 toc69 TC = -40°C MAX2067 toc72 TC = +25°C 40 OUTPUT IP3 (dBm) OUTPUT IP3 (dBm) OUTPUT IP3 (dBm) 40 40 60 50 250 450 650 RF FREQUENCY (MHz) 850 1050 0 32 64 96 128 160 192 224 256 DAC CODE ______________________________________________________________________________________ 15 MAX2067 Typical Operating Characteristics (continued) (VCC = VDD = +3.3V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = VDD = +3.3V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.) POUT = 0dBm/TONE OIP2 (dBm) TC = +85°C 50 40 VCC = 3.3V 30 650 RF FREQUENCY (MHz) 16 TC = +25°C TC = -40°C VCC = 3.0V 30 450 50 40 40 250 VCC = 3.3V POUT = -3dBm/TONE fRF = 200MHz 60 VCC = 3.6V 50 TC = -40°C 50 TC = +85°C OIP2 (dBm) 60 TC = +25°C 70 MAX2067 toc75 MAX2067 toc73 VCC = 3.3V POUT = 0dBm/TONE 60 OIP2 vs. ATTENUATOR STATE OIP2 vs. RF FREQUENCY 70 MAX2067 toc74 OIP2 vs. RF FREQUENCY 70 OIP2 (dBm) MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA 850 1050 30 50 250 450 650 RF FREQUENCY (MHz) 850 1050 0 32 64 96 128 160 192 224 256 DAC CODE ______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA PIN NAME 1, 16, 19, 22, 24–28, 30, 31, 33–36 DESCRIPTION GND 2 VREF_SELECT 3 VDAC_EN 4 DATA SPI Data Digital Input 5 CLK SPI Clock Digital Input 6 CS SPI Chip-Select Digital Input 7 VDD_LOGIC 8–15, 23, 29 GND 17 AMP_OUT 18 RSET 20 AMP_IN 21 VCC_AMP 32 ATTEN_OUT 37 ATTEN_IN 38 VCC_ANALOG 39 ANALOG_VCTRL 40 VREF_IN — EP Ground DAC Reference Voltage Selection Logic Input. Logic 1 = internal DAC reference voltage, Logic 0 = external DAC reference voltage. Logic input disabled (don’t care) when VDAC_EN = Logic 0. DAC Enable/Disable Logic Input. Logic 0 = disable DAC circuit, Logic 1 = enable DAC circuit. Digital Logic Supply Input. Connect to the digital logic power supply, VDD, Bypass to GND with a 10nF capacitor as close as possible to the pin. Ground. See the Pin-Compatibility Considerations section. Driver Amplifier Output (50Ω). See the Typical Application Circuit for details. Driver Amplifier Bias-Setting Input. See the External Bias section. Driver Amplifier Input (50Ω). See the Typical Application Circuit for details. Driver Amplifier Supply Voltage Input. Connect to the VCC power supply. Bypass to GND with 1000pF and 10nF capacitors as close as possible to the pin, with the smaller value capacitor closer to the part. Analog Attenuator Output. Internally matched to 50Ω. Requires an external DCblocking capacitor. Analog Attenuator Input. Internally matched to 50Ω. Requires an external DCblocking capacitor. Analog Bias and Control Supply Voltage Input. Bypass to GND with a 10nF capacitor as close as possible to the pin. Analog Attenuator Voltage-Control Input External DAC Voltage Reference Input Exposed Pad. Internally connected to GND. Connect EP to ground for proper RF performance and enhanced thermal dissipation. ______________________________________________________________________________________ 17 MAX2067 Pin Description MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA Detailed Description The MAX2067 high-linearity analog variable-gain amplifier is a general-purpose, high-performance amplifier designed to interface with 50Ω systems operating in the 50MHz to 1000MHz frequency range. The MAX2067 integrates an analog attenuator to provide 31dB of total gain control, as well as a driver amplifier optimized to provide high gain, high IP3, low noise figure, and low power consumption. For applications that do not require high linearity, the bias current of the amplifier can be adjusted by an external resistor to further reduce power consumption. The analog attenuator is controlled using an external voltage or through the SPI-compatible interface using an on-chip DAC. Because each stage has its own external RF input and RF output, this component can be configured to either optimize NF (amplifier configured first), or OIP3 (amplifier last). The device’s performance features include 22dB stand-alone amplifier gain (amplifier only), 4dB NF at maximum gain (includes attenuator insertion loss), and a high OIP3 level of +43dBm. Each of these features makes the MAX2067 an ideal VGA for numerous receiver and transmitter applications. In addition, the MAX2067 operates from a single +5V supply, or a single +3.3V supply with slightly reduced performance, and has adjustable bias to trade current consumption for linearity performance. Analog Attenuator The MAX2067’s analog attenuator has a dynamic range of 31dB and is controlled using an external voltage or through the 3-wire SPI using an on-chip 8-bit DAC. See the Applications Information section and Table 1 for attenuator programming details. The attenuator can be used for both static and dynamic power control. Driver Amplifier The MAX2067 includes a high-performance driver with a fixed gain of 22dB. The driver amplifier circuit is optimized for high linearity for the 50MHz to 1000MHz frequency range. Applications Information Attenuator Control The analog attenuator is controlled by either an external control voltage applied at ANALOG_VCTRL (pin 39) or by the on-chip 8-bit DAC. Through the utilization of this control DAC, the user can easily adjust the analog attenuation in 0.12dB increments through a simple SPI command. The DAC enable/disable logic-input pin (VDAC_EN), and the DAC reference voltage selection logic-input pin (VREF_SELECT) determine how the attenuator is controlled. When the DAC is enabled, either the on-chip voltage reference or the external voltage reference can be selected. See Table 1 for the attenuator and DAC operation truth table. Although this on-chip DAC eliminates the need for an external analog control voltage, the user still has the option of disabling the DAC and using an external analog control voltage for instances where additional attenuation resolution is needed, or in cases where the gain trim/automatic gain-control (AGC) loop is purely analog. SPI Interface and Attenuator Settings The MAX2067 employs a 3-wire SPI/MICROWIRE™compatible serial interface to program the on-chip DAC. Eight bits of data are shifted in MSB first and framed by CS. When CS is low, the clock is active and data is shifted on the rising edge of the clock. When CS transitions high, the data is latched and the attenuator setting changes (Figure 1). See Table 2 for details on the SPI data format. Table 1. Control Logic VDAC_EN VREF_SELECT ANALOG ATTENUATOR D/A CONVERTER 0 X Controlled by external control voltage Disabled 1 1 Controlled by on-chip DAC Enabled (DAC uses on-chip voltage reference) 1 0 Controlled by on-chip DAC Enabled (DAC uses external voltage reference) X = Don’t care. MICROWIRE is a trademark of National Semiconductor Corp. 18 ______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA MAX2067 MSB LSB DN DATA D(N - 1) D1 D0 CLOCK tCW tCS tCH CS tES tEWS tEW Figure 1. SPI Timing Diagram Table 2. SPI Data Format FUNCTION On-Chip DAC BIT DESCRIPTION D7 Bit 7 (MSB) of on-chip DAC used to program the analog attenuator D6 Bit 6 of DAC D5 Bit 5 of DAC D4 Bit 4 of DAC D3 Bit 3 of DAC D2 Bit 2 of DAC D1 Bit 1 of DAC D0 (LSB) Bit 0 (LSB) of the on-chip DAC ______________________________________________________________________________________ 19 MAX2067 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA External Bias Bias currents for the driver amplifier are set and optimized through external resistors. Resistors R1 and R1A connected to RSET (pin 18) set the bias current for the amplifier. The external biasing resistor values can be increased for reduced current operation at the expense of performance. See Tables 4 and 5 for details. Pin-Compatibility Considerations The MAX2067 is a simplified version of the MAX2065 analog/digital VGA. The MAX2067 does not contain a digital attenuator and parallel inputs D0–D4. The associated input/output pins are internally connected to ground (Table 3). Ground the unused input/output pins to optimize isolation. ( See the Typical Application Circuit.) The exposed paddle (EP) of the MAX2067’s 40-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2067 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP must be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. Table 3. MAX2065/MAX2067 Pin Comparison +5V and +3.3V Supply Voltage The MAX2067 features an optional +3.3V supply voltage operation with slightly reduced linearity performance. Layout Considerations The pin configuration of the MAX2067 has been optimized to facilitate a very compact physical layout of the device and its associated discrete components. PIN MAX2065 8 SER/PAR MAX2067 GND 9 STATE_A GND 10 STATE_B GND 11 D4 GND 12 D3 GND 13 D2 GND 14 D1 GND 15 D0 GND 23 ATTEN2_OUT GND 29 ATTEN2_IN GND Table 4. Typical Application Circuit Component Values (HC Mode) DESIGNATION VALUE SIZE VENDOR DESCRIPTION C1, C2, C7, C12 10nF 0402 Murata Mfg. Co., Ltd. X7R C3, C4, C6, C8, C9 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors C10, C11 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC R1, R1A 10Ω 0402 Panasonic Corp. 1% R2 (+3.3V applications only) 1kΩ 0402 Panasonic Corp. 1% R3 (+3.3V applications only) 2kΩ 0402 Panasonic Corp. 1% R4 (+5V applications and using internal DAC only) 47kΩ 0402 Panasonic Corp. 1% U1 — 40-pin thin QFN-EP (6mm x 6mm) Maxim Integrated Products, Inc. MAX2067ETL+ 20 ______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA DESIGNATION VALUE SIZE VENDOR DESCRIPTION C1, C2, C7, C12 10nF 0402 Murata Mfg. Co., Ltd. X7R C3, C4, C6, C8, C9 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors C10, C11 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC R1 24Ω 0402 Vishay 1% R1A 10nF 0402 Murata Mfg. Co., Ltd. X7R R2 (+3.3V applications only) 1kΩ 0402 Panasonic Corp. 1% R3 (+3.3V applications only) 2kΩ 0402 Panasonic Corp. 1% R4 (+5V applications and using internal DAC only) 47kΩ 0402 Panasonic Corp. 1% U1 — 40-pin thin QFN-EP (6mm x 6mm) Maxim Integrated Products, Inc. MAX2067ETL+ ______________________________________________________________________________________ 21 MAX2067 Table 5. Typical Application Circuit Component Values (LC Mode) 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA MAX2067 Typical Application Circuit VCC C12 RF INPUT C10 R4 + GND VREF_SELECT VDAC_EN 40 39 38 37 36 1 35 34 33 GND ATTEN_OUT GND GND GND ATTEN_IN VCC_ANALOG VREF_IN C11 ANALOG_VCTRL VREF_IN GND C9 ANALOG_VCTRL 32 31 30 ANALOG ATTENUATOR 29 2 3 28 MAX2067 8 EP 24 23 DRIVER AMP 9 22 10 21 12 13 14 15 16 17 18 19 GND GND GND GND C8 GND GND GND GND VCC VCC_AMP 20 AMP_IN GND 11 GND GND 7 RSET GND 25 AMP_OUT GND 6 GND C1 DAC GND VDD_LOGIC 26 GND VDD 5 GND CS 27 SPI INTERFACE CLK VREF 4 GND DATA GND C6 R2 R1 R3 VCC L1 C2 C3 R1A* C4 RF OUTPUT NOTE: REMOVE R4 AND C10 WHEN DRIVING ANALOG_VCTRL WITH AN EXTERNAL VOLTAGE. 22 *IN LC MODE, R1A IS A 10nF CAPACITOR. SEE TABLE 5 FOR DETAILS. ______________________________________________________________________________________ C7 50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA VREF_IN ANALOG_VCTRL VCC_ANALOG ATTEN_IN GND GND GND GND ATTEN_OUT GND 40 39 38 37 36 35 34 33 32 31 TOP VIEW + GND 1 30 GND ANALOG ATTENUATOR VREF_SELECT 2 29 GND VDAC_EN 3 28 GND DATA 4 MAX2067 VREF 27 GND CLK 5 26 GND DAC 25 GND SPI INTERFACE CS 6 VDD_LOGIC 7 GND 8 24 GND 23 GND DRIVER AMP GND 9 22 GND 15 16 17 18 19 20 AMP_OUT RSET GND AMP_IN GND 14 GND 13 GND 12 GND 11 GND 21 VCC_AMP GND GND 10 TQFN EXPOSED PAD ON BOTTOM. CONNECT EP TO GND. Package Information Chip Information PROCESS: SiGe BiCMOS For the latest package outline information, go to www.maxim-ic.com/packages. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 40 Thin QFN-EP T4066-3 21-0141 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23 © 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc. MAX2067 Pin Configuration/Functional Block Diagram
MAX2067EVKIT# 价格&库存

很抱歉,暂时无法提供与“MAX2067EVKIT#”相匹配的价格&库存,您可以联系我们找货

免费人工找货