0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX32625IWG+T

MAX32625IWG+T

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFBGA81

  • 描述:

    IC MCU 32BIT 512KB FLASH 81WLP

  • 数据手册
  • 价格&库存
MAX32625IWG+T 数据手册
MAX32625/MAX32626 General Description DARWIN is a new breed of low-power microcontrollers built to thrive in the rapidly evolving Internet of Things (IoT). They are smart, with the biggest memories in their class and a massively scalable memory architecture. They run forever, thanks to wearable-grade power technology. They are also tough enough to withstand the most advanced cyberattacks. DARWIN microcontrollers are designed to run any application imaginable—in places where you wouldn’t dream of sending other microcontrollers. Generation U microcontrollers are perfect for wearables and IoT applications that cannot afford to compromise power or performance. The MAX32625/MAX32626 feature an Arm® Cortex®-M4 with FPU CPU that delivers high-efficiency signal processing, ultra-low power consumption and ease of use. Flexible power modes, an intelligent PMU, and dynamic clock and power gating optimize performance and power consumption for each application. Internal oscillators run at 96MHz for high-performance or 4MHz to maximize battery life in applications requiring always-on monitoring. Multiple SPI, UART, I2C, 1-Wire® master, and USB interfaces are provided. The four-input, 10-bit ADC with selectable references can monitor external sensors. All versions provide a hardware AES engine. The MAX32626 provides a secure trust protection unit (TPU) with a modular arithmetic accelerator (MAA) for fast ECDSA, a hardware PRNG entropy generator, and a secure boot loader. The MAX32625L provides a reduced 256KB of flash memory and 128KB of SRAM. Applications ●● ●● ●● ●● ●● Sports Watches Fitness Monitors Wearable Medical Patches Portable Medical Devices Sensor Hubs Ordering Information appears at end of data sheet. Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 1-Wire is a registered trademark of Maxim Integrated Products, Inc. 19-8596; Rev 6; 2/20 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Benefits and Features ●● High-Efficiency Microcontroller for Wearable Devices • Internal Oscillator Operates Up to 96MHz • Low Power 4MHz Oscillator System Clock Option for Always-On Monitoring Applications • 512KB Flash Memory (256KB “L” Version) • 160KB SRAM (128KB “L” Version) • 8KB Instruction Cache • 1.2V Core Supply Voltage • 1.8V to 3.3V I/O • Optional 3.3V ±5% USB Supply Voltage • Wide Operating Temperature: -30°C to +85°C ●● Power Management Maximizes Uptime for Battery Applications • 106μA/MHz Active Current Executing from Cache • 49μA/MHz Active Current Executing from Flash • Wake-Up to 96MHz Clock or 4MHz Clock • 600nA Low Power Mode (LP0) Current with RTC Enabled • 2.56μW Ultra-Low Power Data Retention Sleep Mode (LP1) with Fast 5μs Wake-Up on 96MHz Clock Source • 27μA/MHz Low Power Mode (LP2) Current ●● Optimal Peripheral Mix Provides Platform Scalability • SPI Execute in Place (SPIX) Engine for Memory Expansion with Minimal Footprint • Three SPI Masters, One SPI Slave • Three UARTs • Up to Two I2C Masters, One I2C Slave • 1-Wire Master • Full-Speed USB 2.0 Device with Internal Transceiver • Sixteen Pulse Train (PWM) Engines • Six 32-Bit Timers and 3 Watchdog Timers • Up to 40 General-Purpose I/O Pins • 10-Bit Delta-Sigma ADC Operating at 7.8ksps • AES -128, -192, -256 • RTC Calibration Output ●● Secure Valuable IP and Data with Robust Internal Hardware Security (MAX32626 Only) • Trust Protection Unit (TPU) Provides ECDSA and Modular Arithmetic Acceleration Support • True Random Number Generator • Secure Boot Loader MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 63 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 68 TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics—ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics—USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Characteristics—SPI Master / SPIX Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical Characteristics—SPI Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical Characteristics—I2C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 MAX32625/MAX32626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ARM Cortex-M4 with FPU Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Power Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Low Power Mode 0 (LP0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Low Power Mode 1 (LP1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Low Power Mode 2 (LP2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Low Power Mode 3 (LP3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Pulse Train Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Clocking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Real-Time Clock and Wake-Up Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 General-Purpose I/O and Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CRC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Watchdog Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Programmable Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Serial Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I2C Master and Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SPI (Master) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 www.maximintegrated.com Maxim Integrated │  2 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM TABLE OF CONTENTS (CONTINUED) SPI (Slave) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SPI (Execute in Place (SPIX) Master) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1-Wire Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Peripheral Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Additional Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Development and Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Trust Protection Unit (TPU) (MAX32626 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 General-Purpose I/O Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LIST OF FIGURES Figure 1. SPI Master and SPI XIP Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 2. MAX32625/MAX32626 Clock Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 3. 32-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 LIST OF TABLES Table 1. General-Purpose I/O Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 www.maximintegrated.com Maxim Integrated │  3 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Simplified Block Diagram MAX32625/MAX32626 96 MHz SRSTN NVIC 6 × 32 BIT TIMERS MEMORY 16 × PULSE TRAIN ENGINE JTAG SWD (Serial Wire Debug) 160KB SRAM PERIPHERAL MANAGEMENT UNIT VOLTAGE REGULATION & POWER CONTROL 2 × WINDOWED WATCHDOG TIMER RECOVERY WATCHDOG TIMER 32KHz OUTPUT 32KHz CRYSTAL DP VDDB TIMERS/PWM CAPTURE/COMPARE 2 × I2C MASTER 1 × I2C SLAVE UP TO 40 GPIO/ SPECIAL FUNCTION SPI SPI XIP I2C UART 1-Wire 1 × SPI XIP EXTERNAL INTERRUPTS (MAX. 2 PORTS) 3 × UART 1-WIRE MASTER REAL-TIME CLOCK INDIVIDUALLY SELECTABLE VDDIO OR VDDIOH SUPPLY FOR EACH PIN AES-128,-192,-256 WAKE UP TIMER DM 3 × SPI MASTER GPIO AND SHARED PAD FUNCTIONS 1 × SPI SLAVE 8KB CACHE 16B FIFOS VDDIOH VDDIO VDD12 VDD18 VRTC VSS POR, BROWNOUT MONITOR, SUPPLY VOLTAGE MONITORS BUS MATRIX – AHB, APB, IBUS, DBUS… RSTN 32B FIFOS 512KB FLASH 32B FIFOS TCK / SWCLK TMS / SWDIO TDO TDI GPIO WITH INTERRUPTS ARM CORTEX-M4 WITH FPU 4 MHz USB 2.0 FULL SPEED CONTROLLER CRC 16/32 VDDIO VDDIOH UNIQUE ID TRUST PROTECTION UNIT (TPU) MAX32626 MAA SECURE NV KEY TRNG SECURE BOOTLOADER (MAX32626BL ONLY) www.maximintegrated.com 10-BIT ΣΔ ADC ÷5 ÷5 ÷2 ÷4 AIN0 AIN1 AIN2 AIN3 VDDB VDD18 VDD12 VRTC Maxim Integrated │  4 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Absolute Maximum Ratings VDD18..................................................................-0.3V to +1.89V VDD12..................................................................-0.3V to +1.32V VRTC....................................................................-0.3V to +1.89V VDDB.....................................................................-0.3V to +3.6V VDDIO....................................................................-0.3V to +3.6V VDDIOH..................................................................-0.3V to +3.6V 32KIN, 32KOUT....................................................-0.3V to +3.6V RSTN, SRSTN, DP, DM, GPIO, JTAG..................-0.3V to +3.6V AIN[1:0].................................................................-0.3V to +5.5V AIN[3:2].................................................................-0.3V to +3.6V Total Current into All VDDIO and VDDIOH Power Pins Combined (Sink)........................................100mA Total Current into VSS.......................................................100mA Output Current (Sink) by Any I/O Pin..................................25mA Output Current (Source) by Any I/O Pin............................-25mA Continuous Package Power Dissipation TQFN (multilayer board) TA = +70°C (derate 49.5mW/°C above +70°C).......3960.4mW Operating Temperature Range............................ -30°C to +85°C Storage Temperature Range............................. -65°C to +150°C Soldering Temperature (reflow)........................................+260°C (All voltages with respect to VSS, unless otherwise noted.) Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 63 WLP PACKAGE CODE W6333B+1 Outline Number 21-100084 Land Pattern Number Refer to Application Note 1891 Thermal Resistance, Single Layer Board: Junction-to-Ambient (θJA) N/A Junction-to-Case Thermal Resistance (θJC) N/A Thermal Resistance, Four Layer Board: Junction-to-Ambient (θJA) 35.87​ºC/W Junction-to-Case Thermal Resistance (θJC) N/A 68 TQFN-EP PACKAGE CODE T6888+1 Outline Number 21-0510 Land Pattern Number 90-0354 Thermal Resistance, Single Layer Board: Junction-to-Ambient (θJA) N/A Junction-to-Case Thermal Resistance (θJC) N/A Thermal Resistance, Four Layer Board: Junction-to-Ambient (θJA) 20.20ºC/W Junction-to-Case Thermal Resistance (θJC) 1ºC/W For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packaging. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. www.maximintegrated.com Maxim Integrated │  5 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Electrical Characteristics (Limits are 100% tested at TA = +25ºC and TA = +85ºC. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to -30°C are guaranteed by design and are not production tested.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS VDD18 1.71 1.8 1.89 VDD12 1.14 1.2 1.26 VRTC 1.75 1.8 1.89 1.71 1.8 3.6 1.71 1.8 3.6 1.14 1.2 1.26 V 1.7 V POWER SUPPLIES Supply Voltage VDDIO VDDIOH 1.2V Internal Regulator VDDIOH must be ≥ VDDIO VREG12 Power-Fail Reset Voltage VRST Monitors VDD18 Power-On Reset Voltage VPOR Monitors VDD18 VDRV VDD12 supply, retention in LP1 RAM Data Retention Voltage VDD12 Dynamic Current, LP3 Mode VDD12 Fixed Current, LP3 Mode VDD18 Fixed Current, LP3 Mode VDD12 Dynamic Current, LP2 Mode www.maximintegrated.com IDD12_DLP3 IDD12_FLP3 IDD18_FLP3 IDD12_DLP2 1.61 V 1.5 V 0.930 mV Measured on the VDD12 pin and executing code from cache memory, all inputs are tied to VSS or VDD18, outputs do not source/sink any current, PMU disabled 106 μA/MHz 96MHz oscillator selected as system clock, measured on the VDD12 pin and executing code from cache memory, all inputs are tied to VSS or VDD18, outputs do not source/sink any current 87 4MHz oscillator selected as system clock, measured on the VDD12 pin and executing code from cache memory, all inputs are tied to VSS or VDD18, outputs do not source/sink any current 39 96MHz oscillator selected as system clock, measured on the VDD18 pin and executing code from cache memory, all inputs are tied to VSS or VDD18, outputs do not source/sink any current 366 4MHz oscillator selected as system clock, measured on the VDD18 pin and executing code from cache memory, all inputs are tied to VSS or VDD18, outputs do not source/sink any current 33 Measured on the VDD12 pin, ARM in sleep mode, PMU with two channels active 27 μA μA μA/MHz Maxim Integrated │  6 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Electrical Characteristics (continued) (Limits are 100% tested at TA = +25ºC and TA = +85ºC. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to -30°C are guaranteed by design and are not production tested.) PARAMETER VDD12 Fixed Current, LP2 Mode VDD18 Fixed Current, LP2 Mode SYMBOL IDD12_FLP2 IDD18_FLP2 CONDITIONS MIN TYP 96MHz oscillator selected as system clock, measured on the VDD12 pin, ARM in sleep mode, PMU with two channels active 87 4MHz oscillator selected as system clock, measured on the VDD12 pin, ARM in sleep mode, PMU with two channels active 39 96MHz oscillator selected as system clock, measured on the VDD18 pin, ARM in sleep mode, PMU with two channels active 366 4MHz oscillator selected as system clock, measured on the VDD18 pin, ARM in sleep mode, PMU with two channels active 33 MAX UNITS μA μA VDD12 Fixed Current, LP1 Mode IDD12_FLP1 Standby state with full data retention 1.06 μA VDD18 Fixed Current, LP1 Mode IDD18_FLP1 Standby state with full data retention 120 nA VRTC Fixed Current, LP1 Mode IDDRTC_FLP1 RTC enabled, retention regulator powered by VDD12 594 nA VDD12 Fixed Current, LP0 Mode IDD12_FLP0 14 nA VDD18 Fixed Current, LP0 Mode IDD18_FLP0 120 nA VRTC Fixed Current, LP0 Mode IDDRTC_FLP0 LP2 Mode Resume Time tLP2_ON 0 μs LP1 Mode Resume Time tLP1_ON 5 μs LP0 Mode Resume Time tLP0_ON 11 μs RTC enabled 505 RTC disabled 105 Polling flash ready nA GENERAL-PURPOSE I/O VDDIO selected as I/O supply, pin configured as GPIO 0.3 × VDDIO Input Low Voltage for All GPIO VIL_GPIO Input Low Voltage for RSTN VIL_RSTN 0.3 x VRTC Input Low Voltage for SRSTN VIL_SRSTN 0.3 x VDDIO Input High Voltage for All GPIO www.maximintegrated.com VIH_GPIO VIH_GPIOH VDDIOH selected as I/O supply, pin configured as GPIO VDDIO selected as I/O supply, pin configured as GPIO VDDIOH selected as I/O supply, pin configured as GPIO 0.3 × VDDIOH 0.7 × VDDIO 0.7 × VDDIOH V V V Maxim Integrated │  7 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Electrical Characteristics (continued) (Limits are 100% tested at TA = +25ºC and TA = +85ºC. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to -30°C are guaranteed by design and are not production tested.) PARAMETER SYMBOL Input High Voltage for RSTN VIH_RSTN 0.7 x VRTC V Input High Voltage for SRSTN VIH_SRSTN 0.7 x VDDIO V Output Low Voltage for All GPIO Output High Voltage for All GPIO VOL_GPIO VOH_GPIO CONDITIONS MIN TYP MAX IOL = 4mA, VDDIO = VDDIOH = 1.71V, VDDIO selected as I/O supply, normal drive configuration, pin configured as GPIO 0.2 0.4 IOL = 24mA, VDDIO = VDDIOH = 1.71V, VDDIO selected as I/O supply, fast drive configuration, pin configured as GPIO 0.2 0.4 IOL = 900μA, VDDIO = 1.71V, VDDIOH = 2.97V, VDDIOH selected as I/O supply, pin configured as GPIO 0.2 0.4 IOH = -2mA, VDDIO = VDDIOH = 1.71V, VDDIO selected as I/O supply, normal drive configuration, pin configured as GPIO VDDIO 0.4 IOH = -8mA, VDDIO = VDDIOH = 1.71V, VDDIO selected as I/O supply, fast drive configuration, pin configured as GPIO VDDIO 0.4 IOH = -900μA, VDDIOH = 3.6V, VDDIOH selected as I/O supply, pin configured as GPIO VDDIOH - 0.4 IOH = -2mA, VDDIO = 1.71V, VDDIOH = 3.6V, VDDIO selected as I/O supply, pin configured as GPIO VDDIO 0.50 UNITS V V Combined IOL, All GPIO IOL_TOTAL 48 mA Combined IOH, All GPIO IOH_TOTAL -48 mA Input Hysteresis (Schmitt) Input/Output Pin Capacitance for All Pins Input Leakage Current Low Input Leakage Current High www.maximintegrated.com VIHYS 300 mV CIO 3 pF IIL VDDIO = 1.89V, VDDIOH = 3.6V, VDDIOH selected as I/O supply, VIN = 0V, internal pullup disabled -100 +100 nA IIH VDDIO = 1.89V, VDDIOH = 3.6V, VDDIOH selected as I/O supply, VIN = 3.6V, internal pulldown disabled -100 +100 nA IOFF VDDIO = 0V, VDDIOH = 0V, VDDIO selected as I/O supply, VIN < 1.89V -1 +1 IIH3V VDDIO = VDDIOH = 1.71V, VDDIO selected as I/O supply, VIN = 3.6V -2 +2 μA Maxim Integrated │  8 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Electrical Characteristics (continued) (Limits are 100% tested at TA = +25ºC and TA = +85ºC. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to -30°C are guaranteed by design and are not production tested.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Input Pullup Resistor to SRSTN, TMS, TCK, TDI RPU_VDDIO Pullup to VDDIO 25 kΩ Input Pullup Resistor to RSTN RPU_VRTC Pullup to VRTC 25 kΩ RPU_NORM Normal resistance, pin configured as GPIO 25 kΩ RPU_HIGH Highest resistance, pin configured as GPIO 1 MΩ Input Pullup/Pulldown Resistor for All GPIO JTAG Input Low Voltage for TCK, TMS, TDI VIL 0.3 x VDDIO Input High Voltage for TCK, TMS, TDI VIH Output Low Voltage for TDO VOL Output High Voltage for TDO VOH VDDIO 0.4 System Clock Frequency fSYS_CLK 0.001 System Clock Period tSYS_CLK 0.7 x VDDIO V V 0.2 0.4 V V CLOCKS fINTCLK Internal RC Oscillator Frequency fRCCLK RTC Input Frequency f32KIN RTC Operating Current RTC Power-Up Time 1/fSYS_ Firmware trimmed, required for USB compliance 94 96 98 95.76 96 96.24 3.9 4 4.1 32kHz watch crystal, 6pF, ESR < 70kΩ 32.768 IRTC_LP23 LP2 or LP3 mode 0.7 IRTC_LP01 LP0 or LP1 mode 0.35 tRTC_ ON MHz ns CLK Factory default Internal Relaxation Oscillator Frequency 98 MHz MHz kHz μA 250 ms 8 KB FLASH MEMORY Page Size Flash Erase Time Flash Programming Time Per Word tM_ERASE Mass erase 30 tP_ERASE Page erase 30 tPROG 60 Flash Endurance Data Retention www.maximintegrated.com tRET TA = +25°C ms μs 10 kcycles 10 years Maxim Integrated │  9 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Electrical Characteristics—ADC (Internal bandgap reference selected and ADC_SCALE = ADC_REFSCL = 1 unless otherwise specified. Specifications marked GBD are guaranteed by design and not production tested.) PARAMETER SYMBOL CONDITIONS MIN Resolution MAX UNITS 8 MHz 10 ADC Clock Rate fADC_CLK ADC Clock Period tADC_CLK Input Voltage Range TYP VAIN Input Dynamic Current, Switched Capacitance IAIN Analog Input Capacitance CAIN 0.1 Bits 1/fADC_ μs CLK AIN0-AIN3, ADC_CHSEL = 0–3, BUF_BYPASS = 0 0.05 VDD18 AIN0–AIN1, ADC_CHSEL = 4–5, BUF_BYPASS = 0 0.05 5.5 AIN0–AIN3, ADC_CHSEL = 0–3, BUF_BYPASS = 1 VSS VDD18 AIN0-AIN1, ADC_CHSEL = 4–5, BUF_BYPASS = 1 VSS 5.5 V ADC active, ADC buffer bypassed 4.5 μA ADC active, ADC buffer enabled 50 nA 1 pF 250 nF Fixed capacitance to VSS Dynamically switched capacitance Integral Nonlinearity INL ±2 LSB Differential Nonlinearity DNL ±1 LSB Offset Error VOS ±1 LSB Gain Error GE ±2 LSB Signal-to-Noise Ratio Signal-to-Noise and Distortion Total Harmonic Distortion SNR 58.5 dB SINAD 58.5 dB THD -68.5 dB Spurious Free Dynamic Range SFDR 74 dB ADC Active Current IADC 240 µA 53 μA Input Buffer Active Current ADC Setup Time IINBUF tADC_SU ADC Output Latency tADC ADC Sample Rate fADC ADC Input Leakage www.maximintegrated.com ADC active, reference buffer enabled, input buffer disabled IADC_LEAK Any power-up of ADC clock, ADC bias, reference buffer or input buffer, to CpuAdcStart 10 µs Any power-up of ADC clock or ADC bias to CpuAdcStart 48 tACLK 1025 tACLK 7.8 AIN0 or AIN1, ADC inactive or channel not selected 0.12 4 AIN2 or AIN3, ADC inactive or channel not selected 0.02 1 ksps nA Maxim Integrated │  10 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Electrical Characteristics—ADC (continued) (Internal bandgap reference selected and ADC_SCALE = ADC_REFSCL = 1 unless otherwise specified. Specifications marked GBD are guaranteed by design and not production tested.) PARAMETER SYMBOL AIN0/AIN1 Resistor Divider Error Full-Scale Voltage Bandgap Temperature Coefficient VFS VTEMPCO CONDITIONS MIN TYP MAX UNITS ADC_CHSEL = 4 or 5, not including ADC offset/gain error ±2 LSB ADC code = 0x3FF 1.2 V Box method 30 ppm/°C Electrical Characteristics—USB (VDD18 = VRST to 1.89V, TA = -30°C to +85°C.) PARAMETER SYMBOL USB PHY Supply Voltage VDDB Single-Ended Input High Voltage DP, DM VIHD Single-Ended Input Low Voltage DP, DM VILD CONDITIONS MIN TYP MAX 3.3 UNITS V 2 V 0.8 V 0.3 V Output Low Voltage DP, DM VOLD RL = 1.5kΩ from DP to 3.6V Output High Voltage DP, DM VOHD RL = 15kΩ from DP and DM to VSS 2.8 V V Differential Input Sensitivity DP, DM VDI DP to DM 0.2 Common-Mode Voltage Range VCM Includes VDI range 0.8 2.5 V Single-Ended Receiver Threshold VSE 0.8 2 V Single-Ended Receiver Hysteresis VSEH Differential Output Signal Cross-Point Voltage VCRS DP, DM Off-State Input Impedance Driver Output Impedance 200 CL = 50pF, GBD RLZ RDRV 1.3 mV 2 300 Steady-state drive DP Pullup Resistor RPU Idle DP Pullup Resistor RPU Receiving V kΩ 28 44 Ω 0.9 1.575 kΩ 1.425 3.09 kΩ USB TIMING DP, DM Rise Time (Transmit) tR CL = 50pF, GBD 4 20 ns DP, DM Fall Time (Transmit) tF CL = 50pF, GBD 4 20 ns tR, tF CL = 50pF, GBD 90 110 % Rise/Fall Time Matching (Transmit) www.maximintegrated.com Maxim Integrated │  11 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Electrical Characteristics—SPI Master/SPIX Master (Timing specifications are guaranteed by design and are not production tested.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 48 MHz Master Operating Frequency fMCK Master SCLK Period tMCK SCLK Output PulseWidth High tMCH tMCK/2 ns SCLK Output PulseWidth Low tMCL (tMCK/2) -4 ns MOSI Output Hold Time After SCLK Sample Edge tMOH (tMCK/2) -4 ns MOSI Output Valid to Sample Edge tMOV (tMCK/2) -4 ns MISO Input Valid to SCLK Sample Edge Setup tMIS 1 ns MISO Input to SCLK Sample Edge tMIH SHIFT 1/fMCK ns 1 SAMPLE SHIFT ns SAMPLE SS tMCK SCK CKPOL/CKPHA 0/1 OR 1/0 tMCH tMCL SCK CKPOL/CKPHA 0/0 OR 1/1 tMOH tMOV MSB MOSI/SDIO (OUTPUT) tMIS MISO/SDIO (INPUT) MSB LSB MSB-1 tMIH MSB-1 LSB Figure 1. SPI Master and SPI XIP Master Timing www.maximintegrated.com Maxim Integrated │  12 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Electrical Characteristics—SPI Slave (AC Electrical Specifications are guaranteed by design and are not production tested, VDD18 = VRST to 1.89V, TA = -30°C to +85°C.) PARAMETER SYMBOL Slave Operating Frequency fSCK SCLK Period tSCK CONDITIONS MIN TYP MAX Standard SPI mode 22.7 Fast SPI mode 45.5 1/fSCK UNITS MHz ns Electrical Characteristics—I2C Bus (Limits are 100% tested at TA = +25°C and TA = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.) PARAMETER I2C SYMBOL CONDITIONS MIN TYP MAX UNITS BUS Standard mode, VDDIO selected as I/O supply Input High Voltage VIH_I2C Standard mode, VDDIOH selected as I/O supply 0.7 × VDDIOH Fast mode, VDDIO selected as I/O supply 0.7 × VDDIO VDDIO + 0.5 0.7 × VDDIOH VDDIOH + 0.5 Standard mode, VDDIO selected as I/O supply -0.5 0.3 × VDDIO Standard mode, VDDIOH selected as I/O supply -0.5 0.3 × VDDIOH Fast mode, VDDIO selected as I/O supply -0.5 0.3 × VDDIO Fast mode, VDDIOH selected as I/O supply -0.5 0.3 × VDDIOH Fast mode, VDDIOH selected as I/O supply Input Low Voltage Input Hysteresis (Schmitt) Output Logic-Low (Open Drain or Open Collector) VIL_I2C VIHYS_I2C VOL_I2C 0.7 × VDDIO Fast mode, VDDIO selected as I/O supply Fast mode, VDDIOH selected as I/O supply 0.05 x VDDIO 0 Fast mode, IIL = 3mA V V 0.05 x VDDIOH Standard mode, IIL = 3mA V 0.4 0 0.4 Fast mode, IIL = 2mA, VDDIO selected as I/O supply 0 0.2 x VDDIO Fast mode, IIL = 2mA, VDDIOH selected as I/O supply 0 0.2 x VDDIOH Standard mode 0 100 Fast mode 0 400 V I2C TIMING SCL Clock Frequency www.maximintegrated.com fSCL kHz Maxim Integrated │  13 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Pin Configurations MAX32625/MAX32626 TOP VIEW (BUMP SIDE DOWN) 1 2 3 4 5 6 7 8 9 A P0.2 P0.0 SRSTN AIN0 AIN1 AIN2 AIN3 VDD18 32KIN B P0.5 P0.1 RSTN TCK TMS TDO TDI VSS 32KOUT C VDDIOH P0.7 P0.4 P0.3 P4.5 P4.6 P4.7 VSS VRTC D VSS P1.2 P1.0 P0.6 P3.3 P3.4 P4.4 VDDIO VDDB E VDD12 P1.4 P1.3 P1.1 P2.5 P3.0 P4.1 DP DM F P1.6 P1.5 P1.7 P2.3 P2.6 P3.1 P3.6 P4.2 P4.3 G P2.0 P2.1 P2.2 P2.4 P2.7 P3.2 P3.5 P3.7 P4.0 + 63 WLP www.maximintegrated.com Maxim Integrated │  14 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM P4.6 VRTC 32KOUT 32KIN 36 35 VDDIO 42 37 DP 43 38 DM 44 VDDB P4.5 VDDIOH P4.4 46 39 P4.3 47 40 P4.2 48 VSS P4.1 49 41 P4.0 50 45 P3.7 TOP VIEW 51 Pin Configurations (continued) VSS 52 34 P3.6 P3.5 53 33 54 32 P3.4 55 31 VDD18 AIN3 P3.3 56 30 TDI P3.2 57 29 AIN2 P3.1 58 28 TDO P3.0 P2.7 59 27 AIN1 26 TCK P2.6 61 25 AIN0 P2.5 62 24 TMS VSS P2.4 63 23 64 22 VDD18 SRSTN P2.3 65 21 RSTN P2.2 66 20 P0.0 P2.1 67 19 P2.0 68 VDDIOH P0.1 MAX32625/MAX32626 60 EP = EXPOSED PAD 14 15 16 17 P0.5 P0.4 P0.3 P0.2 11 P1.0 12 10 P1.1 13 9 P0.6 8 VDD12 P1.2 18 P0.7 7 P1.3 VDDIO P1.5 6 3 5 2 P1.6 VSS P1.4 1 P1.7 4 + VSS P4.7 68 TQFN-EP www.maximintegrated.com Maxim Integrated │  15 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Pin Description PIN 68 TQFNEP NAME A8 23, 32 VDD18 B8, C8, D1 5, 34, 41, 52, 63 VSS C1 19, 46 VDDIOH C9 37 VRTC RTC Supply Voltage. This pin must be bypassed to VSS with a 1.0μF capacitor as close as possible to the package. D8 3, 42 VDDIO I/O Supply Voltage. 1.8V ≤ VDDIO ≤ 3.6V. See EC table for VDDIO specification. This pin must be bypassed to VSS with a 1.0μF capacitor as close as possible to the package. D9 40 VDDB USB Transceiver Supply Voltage. This pin must be bypassed to VSS with a 1.0μF capacitor as close as possible to the package. E1 8 VDD12 1.2V Nominal Supply Voltage. This pin must be bypassed to VSS with a 1.0μF capacitor as close as possible to the package. — — EP Exposed Pad (TQFN-EP Only). This pad must be connected to VSS. Refer to Application Note 3273: Exposed Pads: A Brief Introduction for additional information. 32kHz Crystal Oscillator Input. Connect a 6pF 32kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, an external clock source can be driven on 32KIN if the 32KOUT pin is left unconnected. A 32kHz crystal or external clock source is required for proper USB operation. 63 WLP FUNCTION POWER PINS 1.8V Supply Voltage. This pin must be bypassed to VSS with a 1.0μF capacitor as close as possible to the package. Digital Ground I/O Supply Voltage, High. 1.8V ≤ VDDIOH ≤ 3.6V, always with VDDIOH ≥ VDDIO. See EC table for VDDIOH specification. This pin must be bypassed to VSS with a 1.0μF capacitor as close as possible to the package. CLOCK PINS A9 35 32KIN B9 36 32KOUT E8 43 DP USB DP Signal. This bidirectional pin carries the positive differential data or singleended data. This pin is weakly pulled high internally when the USB is disabled. E9 44 DM USB DM Signal. This bidirectional pin carries the negative differential data or singleended data. This pin is weakly pulled high internally when the USB is disabled. B4 26 TCK/SWCLK JTAG Clock Serial Wire Debug Clock This pin has an internal 25kΩ pullup to VDDIO. B5 24 TMS/SWDIO JTAG Test Mode Select Serial Wire Debug I/O This pin has an internal 25kΩ pullup to VDDIO. 32kHz Crystal Oscillator Output USB PINS JTAG PINS www.maximintegrated.com Maxim Integrated │  16 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Pin Description (continued) PIN 63 WLP 68 TQFNEP NAME FUNCTION B6 28 TDO JTAG Test Data Output B7 30 TDI JTAG Test Data Inputt. This pin has an internal 25kΩ pullup to VDDIO. RESET PINS A3 B3 22 21 SRSTN RSTN Software Reset, Active-Low Input/Output. The device remains in software reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a reset to the ARM core, digital registers and peripherals (resetting most of the core logic on the VDD12 supply). This reset does not affect the POR only registers, RTC logic, ARM debug engine or JTAG debugger allowing for a soft reset without having to reconfigure all registers. After the device senses SRSTN as a logic 0, the pin automatically reconfigures as an output sourcing a logic 0. The device continues to output for 6 system clock cycles and then repeats the input sensing/output driving until SRSTN is sensed inactive. This pin is internally connected with an internal 25kΩ pullup to the VDDIO supply. This pin should be left unconnected if the system design does not provide a reset signal to the device. Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin is internally connected with an internal 25kΩ pullup to the VRTC supply. This pin should be left unconnected if the system design does not provide a reset signal to the device. GENERAL-PURPOSE I/O AND SPECIAL FUNCTIONS (See Table 1. General-Purpose I/O Matrix) A2 20 P0.0 GPIO Port 0.0 B2 18 P0.1 GPIO Port 0.1 A1 17 P0.2 GPIO Port 0.2 C4 16 P0.3 GPIO Port 0.3 C3 15 P0.4 GPIO Port 0.4 B1 14 P0.5 GPIO Port 0.5 D4 13 P0.6 GPIO Port 0.6 C2 12 P0.7 GPIO Port 0.7 D3 11 P1.0 GPIO Port 1.0 E4 10 P1.1 GPIO Port 1.1 D2 9 P1.2 GPIO Port 1.2 E3 7 P1.3 GPIO Port 1.3 E2 6 P1.4 GPIO Port 1.4 F2 4 P1.5 GPIO Port 1.5 F1 2 P1.6 GPIO Port 1.6 F3 1 P1.7 GPIO Port 1.7 G2 67 P2.1 GPIO Port 2.1 G3 66 P2.2 GPIO Port 2.2 www.maximintegrated.com Maxim Integrated │  17 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Pin Description (continued) PIN 63 WLP 68 TQFNEP NAME FUNCTION F4 65 P2.3 GPIO Port 2.3 G4 64 P2.4 GPIO Port 2.4 E5 62 P2.5 GPIO Port 2.5 F5 61 P2.6 GPIO Port 2.6 G5 60 P2.7 GPIO Port 2.7 E6 59 P3.0 GPIO Port 3.0 F6 58 P3.1 GPIO Port 3.1 G6 57 P3.2 GPIO Port 3.2 D5 56 P3.3 GPIO Port 3.3 D6 55 P3.4 GPIO Port 3.4 G7 54 P3.5 GPIO Port 3.5 F7 53 P3.6 GPIO Port 3.6 G8 51 P3.7 GPIO Port 3.7 G9 50 P4.0 GPIO Port 4.0 E7 49 P4.1 GPIO Port 4.1 F8 48 P4.2 GPIO Port 4.2 F9 47 P4.3 GPIO Port 4.3 D7 45 P4.4 GPIO Port 4.4 C5 39 P4.5 GPIO Port 4.5 C6 38 P4.6 GPIO Port 4.6 C7 33 P4.7 GPIO Port 4.7 ANALOG INPUT PINS A4 25 AIN0 ADC Input 0. 5V Tolerant Input A5 27 AIN1 ADC Input 1. 5V Tolerant Input A6 29 AIN2 ADC Input 2 A7 31 AIN3 ADC Input 3 www.maximintegrated.com Maxim Integrated │  18 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Detailed Description Power Operating Modes MAX32625/MAX32626 Low Power Mode 0 (LP0) The MAX32625/MAX32626 is an ultra-low power, highefficiency, mixed-signal microcontroller based on the ARM Cortex-M4 with FPU with a maximum operating frequency of 96MHz with a hardware AES engine. An internal 4MHz oscillator supports minimal power consumption for applications requiring always-on monitoring. The MAX32626 is a secure version of the MAX32625, incorporating a trust protection unit (TPU) with advanced security features. This mode places the core and peripheral logic in a static, low-power state. All features of the device are disabled except: Application code executes from an internal 512KB program flash memory with up to 160KB SRAM available for general-application use. An 8KB instruction cache improves execution throughput, and a transparent code scrambling scheme is used to protect customer intellectual property residing in the internal program flash memory. Additionally, a SPI execute in place (SPIX) external memory interface allows application code and data (up to 16MB) to be accessed from an external SPI memory device. ●● Voltage supply monitoring The MAX32625L is a lower-cost version of the MAX32625, providing 256KB of flash and 128KB of SRAM. Low Power Mode 2 (LP2) A 10-bit delta-sigma ADC is provided with a multiplexer front end for four external input channels (two of which are 5.5V tolerant) and internal channels to monitor internal voltages. Built-in limit monitors allow converted input samples to be compared against user-configurable high and low limits with an option to trigger an interrupt and wake the CPU from a low power mode if attention is required. A wide variety of communications and interface peripherals are provided. Other communications peripherals include a USB 2.0 slave interface, three master SPI interfaces, one slave SPI interface, three UART interfaces with multidrop support, up to two master I2C interfaces, and one slave I2C interface. ●● Power sequencer ●● RTC clock (if enabled) ●● Key data retention registers ●● Power-on reset Data retention in this mode can be maintained using only the VRTC supply with all other voltage supplies disabled. Low Power Mode 1 (LP1) This mode places the core logic in a static, low-power state that supports a fast wake-up feature. Data retention in this mode can be maintained using only the VRTC supply with all other voltage supplies disabled. This configuration allows the ADC and some peripherals to operate while the ARM core is in sleep mode. The peripheral management unit provides intelligent, dynamic clocking of any enabled peripherals, ensuring the lowest possible power consumption. Low Power Mode 3 (LP3) During this state, the CPU is executing application code and all digital and analog peripherals are fully powered and awake. Dynamic clocking disables peripherals not in use, providing the optimal mix of high performance and low power consumption. Analog-to-Digital Converter ARM Cortex-M4 with FPU Processor The 10-bit delta-sigma ADC provides 4 external inputs and can also measure all internal power supplies. It operates at a maximum of 7.8ksps. AIN0 and AIN1 are 5V tolerant, making them suitable for monitoring batteries. The ARM Cortex-M4 with FPU DSP supports single instruction multiple data (SIMD) path DSP extensions, providing: An optional feature allows samples captured by the ADC to be automatically compared against user-programmable high and low limits. Up to four channel limit pairs can be configured in this way. The comparison allows the ADC to trigger an interrupt (and potentially wake the CPU from a low power sleep mode) when a captured sample goes outside the preprogrammed limit range. Since this comparison is performed directly by the sample limit monitors, it can be performed even while the main CPU is suspended in a low power mode. The ARM Cortex-M4 with FPU processor is ideal for the emerging category of wearable medical and wellness applications. The architecture combines high-efficiency signal processing functionality with the low power, low cost, and ease-of-use benefits. ●● ●● ●● ●● ●● 4 parallel 8-bit add/sub 2 parallel 16-bit add/sub 2 parallel MACs 32- or 64-bit accumulate Signed, unsigned data with or without saturation www.maximintegrated.com Maxim Integrated │  19 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM The ADC measures: ●● AIN[3:2] (up to 3.3V) ●● AIN[1:0] (up to 5.5V) ●● VDD12 ●● VDD18 ●● VDDB ●● VRTC ●● VDDIO ●● VDDIOH ●● Pulse trains can be started/synchronized independently or as a group Pulse Train Engine 16 independent pulse train generators can provide either a square wave or a repeating pattern from 2 bits to 32 bits in length. Any single pulse train generator or any desired group of pulse train generators can be synchronized at the bit level allowing for multibit patterns Each pulse train generator is independently configurable. The pulse train generators provide the following features: ●● Independently enabled ●● Multiple pin configurations allow for flexible layout ●● Frequency of each enabled pulse train generator is also set separately, based on a divide down (divide by 2, divide by 4, divide by 8, and so on) of the input pulse train module clock ●● Multiple repetition options for pulse train mode • Single shot (nonrepeating pattern of 2–32 bits) • Pattern repeats user-configurable number of times or indefinitely • End of one pulse train's loop count can restart one or more other pulse trains Clocking Scheme The high-frequency internal relaxation oscillator operates at a nominal frequency of 96MHz. It is the primary clock source for the digital logic and peripherals. Select the 4MHz internal oscillator to optimize active power consumption. Wake-up is possible from either the 4MHz or the 96MHz internal oscillator. An external 32.766kHz time base is required when using the RTC or USB features of the device. Figure 2. MAX32625/MAX32626 Clock Scheme www.maximintegrated.com Maxim Integrated │  20 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Interrupt Sources ●● Configurable strong or weak internal pullup/pulldown resistors The ARM nested vector interrupt controller (NVIC) provides high speed, deterministic interrupt response, interrupt masking, and multiple interrupt sources. Each peripheral is connected to the NVIC and can have multiple interrupt flags indicating the specific source of the interrupt within the peripheral. The NVIC provides: ●● Up to 43 distinct interrupt sources (including internal and external interrupts) ●● 8 priority levels ●● A dedicated interrupt for each port Real-Time Clock and Wake-Up Timer A real-time clock (RTC) keeps the time of day in absolute seconds. The time base can be generated by connecting a 32kHz crystal between 32KIN and 32KOUT or an external clock source can be applied to the 32KIN pin. The external clock source must meet the electrical/timing requirements in the Electrical Characteristics table. The 32kHz output can be directed on a GPIO for observation and use. The 32-bit seconds register can count up to approximately 136 years and be translated to calendar format by application software. A time-of-day alarm and independent subsecond alarm can cause an interrupt or wake the device from stop mode. The wake-up timer allows the device to remain in low power mode for extended periods of time. The minimum wake-up interval is 244μs. The VRTC supply supports SRAM retention in power mode LP0. General-Purpose I/O and Special Function Pins General-purpose I/O (GPIO) pins are controlled directly by firmware or one or more peripheral modules connected to that pin. GPIO are logically divided into 8-pin ports. Each 8-bit port provides a dedicated interrupt. The alternate functions for each pin are shown in Table 1. The following features are independently configurable for each GPIO pin: ●● GPIO or special function mode operation ●● VDDIO or VDDIOH supply voltage ●● Normal and fast output drive strength ●● Open-drain output or high impedance input www.maximintegrated.com ●● Simple output-only functions • Output from pulse trains (0 through 15) • Output from timers running in 32-bit mode Some peripherals have optional pin assignments, allowing for greater flexibility during PCB layout. These optional pin assignments are identified with the letter "B," "C," or "D" after the peripheral name. For example, if the "A" configuration is chosen for UART0, the UART0_RX signal is mapped to the P0.0 pin. If the "B" configuration is chosen, the UART0_RX signal is mapped to the P0.1 pin. CRC Module A CRC hardware module provides fast calculations and data integrity checks by application software. The CRC module supports both the CRC-16-CCITT and CRC-32 (X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1) polynomials. Watchdog Timers Two independent watchdog timers (WDT0 and WDT1) with window support are provided. The watchdog timers are independent and have multiple clock source options to ensure system security. The watchdog uses a 32-bit timer with prescaler to generate the watchdog reset. When enabled, the watchdog timers must be fed prior to timeout or within a window of time if window mode is enabled. Failure to reset the watchdog timer during the programmed timing window results in a watchdog timeout. The WDT0 or WDT1 flags are set on reset if a watchdog expiration caused the system reset. The clock source options for the watchdog timers include: ●● Scaled-system clock ●● Real-time clock ●● Power-management clock A third watchdog timer (WDT2) is provided for recovery from runaway code or system unresponsiveness. When enabled, this watchdog must be reset prior to timeout, resulting in a watchdog timeout. The WDT2 flag is set on reset if a watchdog expiration caused the system reset. WDT2 is unique in that is in the always-on domain, and continues to run even in LP1 or LP0. The timeout period for WDT2 can be programmed as long as 8 seconds. The granularity of the timeout period is intended only for system recovery. Maxim Integrated │  21 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Programmable Timers Serial Peripherals Six 32-bit timers provide timing, capture/compare, or generation of pulse-width modulated (PWM) signals. Each of the 32-bit timers can also be split into two 16-bit timers, enabling 12 standard 16-bit timers. The 32-bit timer provide a number of features: ●● 32-bit up/down autoreload ●● Programmable prescaler ●● PWM output generation ●● Capture, compare, and capture/compare capability ●● External input pin for timer input, clock gating or capture, limited to an input frequency of 1/4 of the peripheral clock frequency ●● Timer output pin ●● Configurable as 2x 16-bit general-purpose timers ●● Timer interrupt USB The integrated USB slave controller is compliant with the full-speed (12Mb/s) USB 2.0 specification. The integrated USB physical interface (PHY) reduces board space and system cost. The USB is powered by the VDDB supply. The USB controller supports DMA for the endpoint buffers. A total of 7 endpoint buffers are supported with configurable selection of IN or OUT in addition to endpoint 0. An external 32kHz crystal or clock source is required for USB operation, even if the RTC function is not used. Although the USB timing is derived from the internal 96MHz oscillator, the default accuracy is not sufficient for USB operation. Periodic firmware adjustments of the 96MHz oscillator, using the 32kHz timebase as a reference, are necessary to comply with the USB timing requirements. Figure 3. 32-Bit Timer www.maximintegrated.com Maxim Integrated │  22 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM I2C Master and Slave ●● Programmable SCK alternate timing The I2C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can operate as a one-to-one, one-to-many, or many-tomany communications medium. Two I2C interfaces allow combinations of up to two I2C master engines and/or one I2C-selectable slave engine to connect to a wide variety of I2C-compatible peripherals. These engines support both standard-mode and fastmode I2C standards. The slave engine shares the same I/O port as the master engines and is selected through the I/O configuration settings. It provides the following features: ●● Master or slave mode operation ●● Supports standard (7-bit) addressing or 10-bit addressing ●● Support for clock stretching to allow slower slave devices to operate on higher speed busses ●● SS assertion and deassertion timing with respect to leading/trailing SCK edge SPI (Slave) The SPI slave (SPIS) port provides a highly configurable, flexible, and efficient interface to communicate with a wide variety of SPI master devices. The SPI slave interface provides the following features: ●● Supports SPI modes 0 and 3 ●● Full-duplex operation in single-bit, 4-wire mode ●● Slave select polarity fixed (active low) ●● Dual and quad I/O supported ●● High-speed AHB access to transmit and receive using 32-byte FIFOs ●● Four interrupts to monitor FIFO levels SPI (Execute in Place (SPIX) Master) ●● Transmitter FIFO depth of 16 bytes The SPI execute in place (SPIX) master allows the CPU to transparently execute instructions stored in an external SPI flash. Instructions fetched through the SPIX master are cached just like instructions fetched from internal program memory. The SPIX master can also be used to access large amounts of external static data that would otherwise reside in internal data memory. SPI (Master) UART ●● Multiple transfer rates • Standard mode: 100KBps • Fast mode: 400KBps ●● Internal filter to reject noise spikes ●● Receiver FIFO depth of 16 bytes The SPI master-mode-only (SPIM) interface operates independently in a single or multiple slave system and is fully accessible to the user application. The SPI ports provide a highly configurable, flexible, and efficient interface to communicate with a wide variety of SPI slave devices. The three SPI master ports (SPI0, SPI1, SPI2) support the following features: ●● Supports all four SPI modes (0, 1, 2, 3) for single-bit communication ●● High-speed AHB access to transmit and receive using 32-byte Rx FIFO and 16-byte Tx FIFO All three universal asynchronous receiver-transmitter (UART) interfaces support full-duplex asynchronous communication with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra pins to implement the industry standard request to send (RTS) and clear to send (CTS) methodology. Each UART is individually programmable. ●● 2-wire interface or 4-wire interface with flow control ●● 32-byte send/receive FIFO ●● Full-duplex operation for asynchronous data transfers ●● 3- or 4-wire mode for single-bit slave device communication ●● Programmable interrupt for receive and transmit ●● Full-duplex operation in single-bit, 4-wire mode ●● Dual and quad I/O supported ●● Programmable 9th bit supports even/odd parity or multi-drop mode ●● Up to 5 slave select lines per port ●● User-selectable UART slave address ●● Up to 2 slave ready lines ●● Start/stop bit support ●● Programmable interface timing ●● Hardware flow control using RTS/CTS ●● Programmable SCK frequency and duty cycle ●● Maximum baud rate: 1843.2KB www.maximintegrated.com ●● Independent baud-rate generator Maxim Integrated │  23 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM 1-Wire Master ●● PMU action can be initiated from interrupt conditions from peripherals without CPU ●● Integrated AHB bus master ●● Coprocessor-like state machine Maxim's DeepCover® 1-Wire security solutions provide a cost-effective solution to authenticate medical sensors and peripherals, preventing counterfeit products. The integrated 1-Wire master communicates with slave devices through the bidirectional, multidrop 1-Wire bus. All of the devices on the 1-Wire bus share one signal that carries data communication and also supplies power to the slave devices. The single contact serial interface is ideal for communication networks requiring minimal interconnect. Features of the 1-Wire bus include: ●● Single contact for control and operation ●● Unique factory identifier for any 1-Wire device ●● Power is distributed to all slave device (parasitic power) ●● Multiple device capability on a single line ●● Supports 1-Wire standard (15.6KBps) and overdrive (110KBps) speeds The incorporation of the 1-Wire master enables the creation of 1-Wire enhanced consumable and reusable accessories. The following benefits can be added to products by the addition of only one contact: ●● OEM authenticity is verifiable with SHA-256 and ECDSA ●● External tracking is eliminated because calibration data can be securely stored within an accessory ●● Reuse of single-use accessories can be prevented ●● Counterfeit products can be identified and use denied using the unique, factory identifier ●● Environmental temperature and humidity sensing Peripheral Management Unit (PMU) The PMU is a DMA-based link list processing engine that performs operations and data transfers involving memory and/or peripherals in the advanced peripheral bus (APB) and advanced high-performance bus (AHB) peripheral memory space while the main CPU is in a sleep state. This allows low-overhead peripheral operations to be performed without the CPU, significantly reducing overall power consumption. Using the PMU with the CPU in a sleep state provides a lower-noise environment critical for obtaining optimum ADC performance. Key features of the PMU engine include: ●● Six independent channels with round-robin scheduling allows for multiple parallel operations ●● Programmed using PMU opcodes stored in SRAM Additional Documentation Engineers must have the following documents to fully use this device: ●● This data sheet, containing pin descriptions, feature overviews, and electrical specifications ●● The device-appropriate user guide, containing detailed information and programming guidelines for core features and peripherals ●● Errata sheets for specific revisions noting deviations from published specifications Development and Technical Support Contact technical support for information about highly versatile, affordable development tools, available from Maxim Integrated and third-party vendors. ●● ●● ●● ●● ●● Evaluation kits Software development kit Compilers Integrated development environments (IDEs) USB interface modules for programming and debugging Trust Protection Unit (TPU) (MAX32626 Only) The TPU enhances cryptographic data security for valuable intellectual property (IP) and data. High-speed, hardware-based cryptographic accelerators perform mathematical computations that support cryptographic algorithms, including: ●● ●● ●● ●● ●● AES-128 AES-192 AES-256 1024-bit DSA 2048-bit (CRT) The device provides a true random number generator (TRNG) that can be used to create cryptographic keys for any application. A user-selectable entropy source further increases the randomness and key strength. The secure bootloader protects against unauthorized access to program memory. DeepCover is a registered trademark of Maxim Integrated Products, Inc. www.maximintegrated.com Maxim Integrated │  24 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM MAX32625/MAX32626 Applications Information General-Purpose I/O Matrix Table 1. General-Purpose I/O Matrix SECONDARY FUNCTION PULSE TRAIN OUTPUT TIMER INPUT GPIO INTERRUPT UART0A_RX UART0B_TX PT_PT0 TIMER_TMR0 GPIO_INT(P0) UART0A_TX UART0B_RX PT_PT1 TIMER_TMR1 GPIO_INT(P0) UART0A_CTS UART0B_RTS PT_PT2 TIMER_TMR2 GPIO_INT(P0) UART0A_RTS UART0B_CTS PT_PT3 TIMER_TMR3 GPIO_INT(P0) GPIO PRIMARY FUNCTION P0.0 P0.1 P0.2 P0.3 P0.4 SPIM0A_SCK PT_PT4 TIMER_TMR4 GPIO_INT(P0) P0.5 SPIM0A_MOSI/SDIO0 PT_PT5 TIMER_TMR5 GPIO_INT(P0) P0.6 SPIM0A_MISO/SDIO1 PT_PT6 TIMER_TMR0 GPIO_INT(P0) P0.7 SPIM0A_SS0 PT_PT7 TIMER_TMR1 GPIO_INT(P0) P1.0 SPIM1A_SCK SPIX0A_SCK PT_PT8 TIMER_TMR2 GPIO_INT(P1) P1.1 SPIM1A_MOSI/SDIO0 SPIX0A_SDIO0 PT_PT9 TIMER_TMR3 GPIO_INT(P1) P1.2 SPIM1A_MISO/SDIO1 SPIX0A_SDIO1 PT_PT10 TIMER_TMR4 GPIO_INT(P1) P1.3 SPIM1A_SS0 SPIX0A_SS0 PT_PT11 TIMER_TMR5 GPIO_INT(P1) P1.4 SPIM1A_SDIO2 SPIX0A_SDIO2 PT_PT12 TIMER_TMR0 GPIO_INT(P1) P1.5 SPIM1A_SDIO3 SPIX0A_SDIO3 PT_PT13 TIMER_TMR1 GPIO_INT(P1) P1.6 I2CM0A_SDA / I2CS0A_SDA PT_PT14 TIMER_TMR2 GPIO_INT(P1) P1.7 I2CM0A_SCL / I2CS0A_SCL PT_PT15 TIMER_TMR3 GPIO_INT(P1) P2.0 UART1A_RX UART1B_TX PT_PT0 TIMER_TMR4 GPIO_INT(P2) P2.1 UART1A_TX UART1B_RX PT_PT1 TIMER_TMR5 GPIO_INT(P2) P2.2 UART1A_CTS UART1B_RTS PT_PT2 TIMER_TMR0 GPIO_INT(P2) P2.3 UART1A_RTS UART1B_CTS PT_PT3 TIMER_TMR1 GPIO_INT(P2) P2.4 SPIM2A_SCK PT_PT4 TIMER_TMR2 GPIO_INT(P2) P2.5 SPIM2A_MOSI/SDIO0 PT_PT5 TIMER_TMR3 GPIO_INT(P2) P2.6 SPIM2A_MISO/SDIO1 PT_PT6 TIMER_TMR4 GPIO_INT(P2) P2.7 SPIM2A_SS0 PT_PT7 TIMER_TMR5 GPIO_INT(P2) P3.0 UART2A_RX UART2B_TX PT_PT8 TIMER_TMR0 GPIO_INT(P3) P3.1 UART2A_TX UART2B_RX PT_PT9 TIMER_TMR1 GPIO_INT(P3) P3.2 UART2A_CTS UART2B_RTS PT_PT10 TIMER_TMR2 GPIO_INT(P3) P3.3 UART2A_RTS UART2B_CTS PT_PT11 TIMER_TMR3 GPIO_INT(P3) P3.4 I2CM1A_SDA / I2CS0B_SDA SPIM2A_SS1 PT_PT12 TIMER_TMR4 GPIO_INT(P3) P3.5 I2CM1A_SCL / I2CS0B_SCL SPIM2A_SS2 PT_PT13 TIMER_TMR5 GPIO_INT(P3) P3.6 SPIM1A_SS1 SPIX_SS1 PT_PT14 TIMER_TMR0 GPIO_INT(P3) P3.7 SPIM1A_SS2 SPIX_SS2 PT_PT15 TIMER_TMR1 GPIO_INT(P3) P4.0 OWM_I/O SPIM2A_SR0 PT_PT0 TIMER_TMR2 GPIO_INT(P4) P4.1 OWM_PUPEN SPIM2A_SR1 PT_PT1 TIMER_TMR3 GPIO_INT(P4) P4.2 SPIM0A_SDIO2 SPIS0A_SDIO2 PT_PT2 TIMER_TMR4 GPIO_INT(P4) www.maximintegrated.com Maxim Integrated │  25 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM MAX32625/MAX32626 Table 1. General-Purpose I/O Matrix (continued) GPIO PRIMARY FUNCTION SECONDARY FUNCTION PULSE TRAIN OUTPUT TIMER INPUT GPIO INTERRUPT P4.3 SPIM0A_SDIO3 SPIS0A_SDIO3 PT_PT3 TIMER_TMR5 GPIO_INT(P4) P4.4 SPIM0A_SS1 SPIS0A_SCLK PT_PT4 TIMER_TMR0 GPIO_INT(P4) P4.5 SPIM0A_SS2 SPIS0A_MOSI/SDIO0 PT_PT5 TIMER_TMR1 GPIO_INT(P4) P4.6 SPIM0A_SS3 SPIS0A_MISO/SDIO1 PT_PT6 TIMER_TMR2 GPIO_INT(P4) P4.7 SPIM0A_SS4 SPIS0A_SS0 PT_PT7 TIMER_TMR3 GPIO_INT(P4) Typical Application Circuit MAX14690N PMIC MAX32625/MAX32626 I 2C PMIC CONTROL RTC USB PHY VRTC POWER MANAGER 96MHZ OSCILLATOR GPIO VOLTAGE SELECT 4MHZ OSCILLATOR CHARGER VBUS 1.8V LDO1 VDDB 3.3V LDO2 AIN ADC CONTROL Li-ION MONITOR VDDA VDD18 1.8V BUCK2 VDDIO 3.0V LDO3 VDDIOH VDD12 1.2V BUCK1 ARM CORTEX-M4 WITH FPU CORE VDD SPI 2MB FLASH STANDBY PFN1 EM9301 BLE RADIO SPI BRIDGE 512 KB SRAM 24MHz 32kHz AFE CONTROL SPI MAX30003 BIOPOTENTIAL AFE ECGP EXTERNAL EMI FILTERS AVDD DVDD VDD18 www.maximintegrated.com OVDD PHYSICAL ELECTRODES ECGN Maxim Integrated │  26 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM MAX32625/MAX32626 Ordering Information PART FLASH (KB) SRAM (KB) TRUST PROTECTION UNIT (TPU) PIN-PACKAGE MAX32625IWY+ 512 160 No 63 WLP MAX32625IWY+T 512 160 No 63 WLP MAX32625ITK+ 512 160 No 68 TQFN-EP MAX32625ITK+T 512 160 No 68 TQFN-EP MAX32625IWYL+ 256 128 No 63 WLP MAX32625IWYL+T 256 128 No 63 WLP MAX32625ITKL+ 256 128 No 68 TQFN-EP MAX32625ITKL+T 256 128 No 68 TQFN-EP MAX32626IWY+ 512 160 Yes 63 WLP MAX32626IWY+T 512 160 Yes 63 WLP MAX32626ITK+ 512 160 Yes 68 TQFN-EP MAX32626ITK+T 512 160 Yes 68 TQFN-EP MAX32626ITKBL+ 512 160 Yes (includes secure boot) 68 TQFN-EP MAX32626ITKBL+T 512 160 Yes (includes secure boot) 68 TQFN-EP MAX32626IWYBL+* 512 160 Yes (includes secure boot) 63 WLP MAX32626IWYBL+T* 512 160 Yes (includes secure boot) 63 WLP +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. *Future product—contact factory for availability. www.maximintegrated.com Maxim Integrated │  27 MAX32625/MAX32626 Ultra-Low-Power Arm Cortex-M4 with FPU-Based Microcontroller (MCU) with 512KB Flash and 160KB SRAM Revision History REVISION NUMBER REVISION DATE 0 8/16 Initial release 6/17 Corrected ARM trademarks, clarified 1-Wire master functions are listed in GPIO matrix table, added Typical Application Circuit diagram, corrected Figure 1. SPI Master and SPI XIP Master Timing, explained VRTC supply supports SRAM retention in LP0, corrected pin 46 from VDDIO to VDDIOH on 68 TQFN-EP Pin Configuration drawing to match Pin Description table (no change to fit or function), added EP to Pin Description, changed PRNG to TRNG 2 8/17 Updated Simplified Block Diagram, removed future product references 3 10/17 Removed future product references 4 3/18 Updated General Description, updated Arm trademarks, corrected TQFN instances to TQFN-EP 1 4.1 PAGES CHANGED DESCRIPTION — 1, 15, 16, 19, 24, 26 4, 27 27 Corrected typo in General Description 1–28 1 5 10/18 Updated title, General Description, Benefits and Features, Additional Documentation, Development and Technical Support, and Trust Protection Unit (TPU) (MAX32626 Only) sections 1–28 6 2/20 Updated Simplified Block Diagram and Ordering Information 4, 27 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2020 Maxim Integrated Products, Inc. │  28
MAX32625IWG+T 价格&库存

很抱歉,暂时无法提供与“MAX32625IWG+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货