19-1407; Rev 3; 8/99
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
Applications
Portable Instruments
Instruments, Terminals,
and Bar-Code Readers
Keyless Entry
Photodiode Preamps
Smart-Card Readers
Infrared Receivers for
Remote Controls
Low-Side Current-Sense
Amplifiers
Features
♦ GainAmp Family Provides Internal Precision
Gain-Setting Resistors in SOT23 (MAX4174/5)
♦ 0.1% Gain Accuracy (RF/RG) (MAX4174/5,
MAX4274/5)
♦ 54 Standard Gains Available (MAX4174/5,
MAX4274/5)
♦ Open-Loop Unity-Gain-Stable Op Amps
(MAX4281/2/4)
♦ Rail-to-Rail Outputs Drive 1kΩ Load
♦ Internal VCC / 2 Biasing (MAX4175/MAX4275)
♦ +2.5V to +5.5V Single Supply
♦ 300µA Supply Current
♦ Up to 23MHz GBW Product
♦ Fault-Protected Inputs Withstand ±17V
♦ Stable with Capacitive Loads Up to 470pF with
No Isolation Resistor
Ordering Information
TEMP. RANGE
PINPACKAGE
TOP
MARK
MAX4174_EUK-T -40°C to +85°C
MAX4175_EUK-T -40°C to +85°C
5 SOT23-5
5 SOT23-5
††
PART*
††
Ordering Information continued at end of data sheet.
* Insert the desired gain code (from the Gain Selection Guide)
in the blank to complete the part number.
†† Refer to the Gain Selection Guide for a list of preferred gains
and SOT Top Marks.
Selector Guide appears at end of data sheet.
Pin Configurations
Typical Operating Circuit
TOP VIEW
+5V
MAX4174
VCC
OUT 1
0.1µF
VCC
5 VCC
MAX4175
RB
RF
+
IN+
VEE 2
0.1µF
RG
IN+ 3
RB
4
IN-
SOT23-5
Pin Configurations continued at end of data sheet.
INPUT
0.1µF
OUT
VEE
IN-
RF
RG
VEE
†Pg
GainAmp is a trademark of Maxim Integrated Products. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 1-800-835-8769.
MAX4174/5, MAX4274/5, MAX4281/2/4†
General Description
The MAX4174/MAX4175/MAX4274/MAX4275 GainAmp™ family combines a low-cost Rail-to-Rail ® op amp
with precision internal gain-setting resistors and V CC / 2
biasing. Factory-trimmed on-chip resistors decrease
design size, cost, and layout, and provide 0.1% gain
accuracy. Fixed inverting gains from -0.25V/V to
-100V/V or noninverting gains from +1.25V/V to
+101V/V are available. These devices operate from a
single +2.5V to +5.5V supply and consume only 300µA.
GainAmp amplifiers are optimally compensated for
each gain version, achieving exceptional GBW products up to 23MHz (A V = +25V/V to +101V/V). High-voltage fault protection withstands ±17V at either input
without excessive current draw.
Three versions are available in this amplifier family: single/
dual/quad open-loop, unity-gain stable (MAX4281/
MAX4282/MAX4284); single/dual fixed gain (MAX4174/
MAX4274); and single/dual fixed gain plus internal
V CC / 2 bias at the noninverting input (MAX4175/
MAX4275), which simplifies input biasing in single-supply
designs. The input common-mode voltage range of the
open-loop amplifiers extends from 150mV below the
negative supply to within 1.2V of the positive supply.
The outputs can swing rail-to-rail and drive a 1k Ω load
while maintaining excellent DC accuracy. The amplifier
is stable for capacitive loads up to 470pF.
MAX4174/5, MAX4274/5, MAX4281/2/4
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ....................................-0.3V to +6V
Voltage Inputs (IN_)
MAX4281/4282/4284.....................(VEE - 0.3V) to (VCC + 0.3V)
MAX4174/4175/4274/4275 (with respect to GND) ...........±17V
Output Short-Circuit Duration
(OUT_).....................................Continuous to Either VEE or VCC
Continuous Power Dissipation (TA = +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C).............571mW
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) ............330mW
14-Pin SO (derate 8.3mW/°C above +70°C)...............667mW
16-Pin QSOP (derate 8.3mW/°C above +70°C)..........667mW
Operating Temperature Range ...........................-40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress rating s only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—MAX4174/MAX4175/MAX4274/MAX4275 Fixed-Gain
Amplifiers
(VCC = +2.5V to +5.5V, V EE = 0, V IN+ = VIN- = VCC / 2, R L to VCC / 2, R L = open, T A = TMIN to TMAX, unless otherwise noted. Typical
values are at VCC = +5V and TA = +25°C.) (Note 1)
PARAMETER
Supply Voltage Range
SYMBOL
VCC
CONDITIONS
MIN
TYP
MAX
UNITS
5.5
V
VCC = 3V
300
460
VCC = 5V
330
510
VCC = 3V
320
480
Guaranteed by PSRR tests
MAX4174/MAX4274
2.5
Supply Current
(per Amplifier)
ICC
355
530
Input Offset Voltage
VOS
RL = 100kΩ
±0.5
±2.5
IBIAS
IN_+, MAX4174/MAX4274 (Note 2)
±0.05
MAX4175/MAX4275,
includes VCC / 2 bias resistors
VCC = 5V
Input Offset Voltage Drift
Input Bias Current
±5
Inverting Input Resistance
AV < 25V/V
150
AV > 25V/V
40
µA
mV
µV/°C
±10
nA
kΩ
Noninverting Input
Resistance
MAX4174/MAX4274
1000
MΩ
MAX4175/MAX4275
75
kΩ
IN_+ Bias Voltage
MAX4175/MAX4275, VIN+ = VIN-
IN_+ Input Voltage Range
Guaranteed by functional test (Note 3)
IN_- Input Voltage Range
Power-Supply Rejection
Ratio
PSRR
Closed-Loop Output
Impedance
ROUT
Short-Circuit Current
Output Voltage Swing
(Note 4)
2
VCC / 2
- 0.25
VCC / 2
+ 0.25
V
VEE
VCC - 1.2
V
Guaranteed by functional test
VEE
VCC
V
VCC = 2.5V to 5.5V
70
90
dB
0.02
Ω
Shorted to VEE
10
Shorted to VCC
65
RL = 100kΩ
VOH/VOL
RL = 1kΩ
VCC - VOH
2
mA
8
VOL - VEE
2
8
VCC - VOH
150
250
VOL - VEE
60
150
_______________________________________________________________________________________
mV
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
(VCC = +2.5V to +5.5V, V EE = 0, V IN+ = VIN- = VCC / 2, R L to VCC / 2, R L = open, T A = TMIN to TMAX, unless otherwise noted. Typical
PARAMETER
SYMBOL
Power-Up Time
CONDITIONS
MIN
Output settling to 1%
Slew Rate
SR
Settling Time to Within
0.01%
TYP
MAX
UNITS
1
ms
VCC = 5V, VOUT = 4V step
0.7
V/µs
VCC = 5V, VOUT = 4V step
7
µs
Input Noise Voltage Density
en
f = 10kHz (Note 5)
90
nV/√Hz
Input Noise Current Density
in
f = 10kHz
4
fA/√Hz
No sustained oscillations
470
pF
(VEE + 25mV) < VOUT < (VCC - 25mV),
RL = 100kΩ (Note 6)
0.1
Capacitive Load Stability
CLOAD
DC Gain Accuracy
-3dB Bandwidth
BW-3dB
Gain = +1.25V/V
1700
Gain = +3V/V
970
Gain = +5V/V
970
Gain = +10V/V
640
Gain = +25V/V
590
Gain = +51V/V
330
0.5
%
kHz
ELECTRICAL CHARACTERISTICS—MAX4281/MAX4282/MAX4284 Open-Loop Op Amps
(VCC = +2.5V to +5.5V, V EE = 0, V IN+ = VIN- = VCC / 2, R L to VCC / 2, R L = open, T A = TMIN to TMAX, unless otherwise noted. Typical
values are at VCC = +5V and TA = +25°C.) (Note 1)
PARAMETER
Supply Voltage Range
SYMBOL
VCC
Supply Current
(per Amplifier)
ICC
Input Offset Voltage
VOS
CONDITIONS
Guaranteed by PSRR tests
MIN
MAX
V
290
450
µA
VCC = 5V
320
500
µA
RL = 100kΩ
±0.5
±2
±5
IBIAS
Input Offset Current
IOS
Input Resistance
RIN
Input Capacitance
CIN
UNITS
5.5
VCC = 3V
Input Offset Voltage Drift
Input Bias Current
TYP
2.5
Differential or common mode
mV
µV/°C
±0.05
±10
±10
±1000
nA
pA
1000
MΩ
2.5
pF
Common-Mode Input
Voltage Range
CMVR
Guaranteed by CMRR test
Common-Mode Rejection
Ratio
CMRR
VEE - 0.15V ≤ VCM ≤ VCC - 1.2V
60
90
dB
Power-Supply Rejection
Ratio
PSRR
VCC = 2.5V to 5.5V
70
90
dB
Closed-Loop Output
Impedance
ROUT
AV = 1V/V
0.02
Ω
VEE - 0.15
VCC - 1.2
V
_______________________________________________________________________________________
3
MAX4174/5, MAX4274/5, MAX4281/2/4
ELECTRICAL CHARACTERISTICS—MAX4174/MAX4175/MAX4274/MAX4275 Fixed-Gain
Amplifiers (continued)
ELECTRICAL CHARACTERISTICS—MAX4281/MAX4282/MAX4284 Open-Loop Op Amps
(continued)
(VCC = +2.5V to +5.5V, V EE = 0, V IN+ = VIN- = VCC / 2, R L to VCC / 2, R L = open, T A = TMIN to TMAX, unless otherwise noted. Typical
values are at VCC = +5V and TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
Large-Signal Voltage Gain
AVOL
VOH/VOL
RL = 1kΩ
Gain Bandwidth Product
90
80
10
65
120
100
Input Noise Current Density
UNITS
mA
mA
dB
dB
8
VOL - VEE
2
8
VCC - VOH
160
250
VOL - VEE
60
100
mV
2
MHz
0.7
V/µs
SR
VCC = 5V, VOUT = 4V step
VCC = 5V, VOUT = 4V step
7
µs
en
f = 10kHz
60
nV/√Hz
in
f = 10kHz
1.8
fA/√Hz
No sustained oscillations, AV = 1V/V
470
pF
1
ms
Settling Time to within 0.01%
Input Noise Voltage Density
MAX
2
GBW
Slew Rate
Capacitive Load Stability
TYP
VCC - VOH
RL = 100kΩ
Output Voltage Swing
MIN
Shorted to VEE
Shorted to VCC
VEE + 0.05V < VOUT < VCC - 0.1V, RL = 100kΩ
VEE + 0.25V < VOUT < VCC - 0.3V, RL = 1kΩ
Short-Circuit Current
CLOAD
Power-Up Time
Output settling to 1%
Note 1: MAX4174/MAX4175/MAX4281 and MAX4274/MAX4275/MAX4282 and MAX4284 are 100% production tested at
TA = +25°C. All temperature limits are guaranteed by design.
Note 2: Guaranteed by design.
Note 3: The input common-mode range for IN_+ is guaranteed by a functional test. A similar test is done on the IN_- input. See the
Applications Information section for more information on the input voltage range of the GainAmp.
Note 4: For AV = -0.5V/V and AV = -0.25V/V, the output voltage swing is limited by the input voltage range.
Note 5: Includes noise from on-chip resistors.
Note 6: The gain accuracy test is performed with the GainAmp in noninverting configuration. The output voltage swing is limited by
the input voltage range for certain gains and supply voltage conditions. For situations where the output voltage swing is limited by the valid input range, the output limits are adjusted accordingly.
Typical Operating Characteristics
(VCC = +5V, RL = 100kΩ to VCC / 2, small-signal VOUT = 100mVp-p, large-signal VOUT = 1Vp-p, TA = +25°C, unless otherwise noted.)
0
-1
-2
-3
AV = +2.25V/V
-4
2
NORMALIZED GAIN (dB)
AV = +1.25V/V
1
3
-5
-6
AV = +2.5V/V
1
0
-1
AV = +4V/V
-2
-3
10k
100k
FREQUENCY (Hz)
1M
10M
2
AV = +5V/V
1
0
-1
-2
AV = +9V/V
-3
-4
-4
-5
-5
-6
-6
1k
3
NORMALIZED GAIN (dB)
2
4
MAX4174 TOC02
3
4
4
MAX4174 TOC01
4
LARGE-SIGNAL GAIN
vs. FREQUENCY
LARGE-SIGNAL GAIN
vs. FREQUENCY
MAX4174 TOC03
LARGE-SIGNAL GAIN
vs. FREQUENCY
NORMALIZED GAIN (dB)
MAX4174/5, MAX4274/5, MAX4281/2/4
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
1k
10k
100k
FREQUENCY (Hz)
1M
10M
1k
10k
100k
FREQUENCY (Hz)
_______________________________________________________________________________________
1M
10M
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
MAX4174/MAX4175
1
0
-1
AV = +50V/V
-2
-3
0
-1
-2
-4
-4
-5
-5
-6
-6
-6
100k
1M
10M
1k
10k
100k
1M
1k
10M
100k
1M
FREQUENCY (Hz)
FREQUENCY (Hz)
SMALL-SIGNAL GAIN
vs. FREQUENCY
SMALL-SIGNAL GAIN
vs. FREQUENCY
SMALL-SIGNAL GAIN
vs. FREQUENCY
0
-1
-2
-3
AV = +2.25V/V
-4
1
0
-1
AV = +4V/V
-2
3
2
NORMALIZED GAIN (dB)
1
AV = +2.5V/V
-3
0
-1
-3
-4
-4
-5
-6
-6
-6
1M
10M
1k
10k
FREQUENCY (Hz)
3
2
-2
-3
AV = +21V/V
AV = +25V/V
1
0
-1
-2
-3
AV = +50V/V
-4
-5
-6
1M
10M
3
2
0
-2
AV = +100V/V
-3
-4
-6
100k
AV = +51V/V
-1
-5
FREQUENCY (Hz)
10M
1
-6
10k
1M
4
-5
1k
100k
SMALL-SIGNAL GAIN
vs. FREQUENCY
NORMALIZED GAIN (dB)
0
-1
FREQUENCY (Hz)
10k
FREQUENCY (Hz)
4
NORMALIZED GAIN (dB)
AV = +10V/V
1
100k
1k
10M
MAX4174 TOC11
3
10k
1M
SMALL-SIGNAL GAIN
vs. FREQUENCY
MAX4174 TOC10
4
-4
100k
FREQUENCY (Hz)
SMALL-SIGNAL GAIN
vs. FREQUENCY
2
AV = +9V/V
-2
-5
100k
AV = +5V/V
1
-5
10k
10M
MAX4174 TOC09
3
2
4
MAX4174 TOC08
AV = +1.25V/V
4
MAX4174 TOC07
2
1k
10k
FREQUENCY (Hz)
3
1k
AV = +100V/V
-3
-5
10k
AV = +51V/V
1
-4
4
NORMALIZED GAIN (dB)
2
MAX4174 TOC12
AV = +21V/V
-3
AV = +25V/V
3
NORMALIZED GAIN (dB)
0
-1
1k
NORMALIZED GAIN (dB)
2
NORMALIZED GAIN (dB)
1
-2
3
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
AV = +10V/V
4
MAX4174 TOC05
3
2
4
MAX4174 TOC04
4
LARGE-SIGNAL GAIN
vs. FREQUENCY
LARGE-SIGNAL GAIN
vs. FREQUENCY
MAX4174 TOC06
LARGE-SIGNAL GAIN
vs. FREQUENCY
1M
10M
1k
10k
100k
1M
10M
FREQUENCY (Hz)
_______________________________________________________________________________________
5
MAX4174/5, MAX4274/5, MAX4281/2/4
Typical Operating Characteristics (continued)
(VCC = +5V, RL = 100kΩ to VCC / 2, small-signal VOUT = 100mVp-p, large-signal VOUT = 1Vp-p, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5V, RL = 100kΩ to VCC / 2, small-signal VOUT = 100mVp-p, large-signal VOUT = 1Vp-p, TA = +25°C, unless otherwise noted.)
MAX4174/MAX4175
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
VOUT = 1Vp-p
-20
VOUT = 1Vp-p
-20
-40
-60
THD (dB)
-40
THD (dB)
MAX4174 TOC14
0
MAX4174 TOC13
0
AV = +10V/V
AV = +1.25V/V
-80
-60
AV = +51V/V
-80
AV = +25V/V
-100
-100
AV = +3V/V
-120
-120
1k
10k
100k
1k
1M
10k
100k
1M
FREQUENCY (Hz)
FREQUENCY (Hz)
TOTAL HARMONIC DISTORTION
vs. OUTPUT VOLTAGE SWING
-60
MAX4174 TOC15
f = 10kHz
-70
MAX4174 TOC16
TOTAL HARMONIC DISTORTION
vs. OUTPUT VOLTAGE SWING
-60
f = 10kHz
-70
AV = +51V/V
AV = +10V/V
-80
THD (dB)
THD (dB)
-80
-90
AV = +1.25V/V
-100
-90
AV = +25V/V
-100
AV = +3V/V
-110
-110
-120
-120
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VOLTAGE SWING (Vp-p)
VOLTAGE SWING (Vp-p)
VOLTAGE NOISE DENSITY vs. FREQUENCY
(AV = +25, +51)
AV = +3V/V
100
AV = +1.25V/V
MAX4174/5 toc 18
MAX4174/5 toc 17
AV = +10V/V
1000
VOLTAGE NOISE DENSITY (nV/√Hz)
1000
AV = +25V/V
100
AV = +51V/V
CURRENT NOISE DENSITY vs.
FREQUENCY
10
CURRENT NOISE DENSITY (fA/√Hz)
VOLTAGE NOISE DENSITY vs. FREQUENCY
(AV = +1.25, +3, +10)
MAX4174/5 toc19
0
VOLTAGE NOISE DENSITY (nV/√Hz)
MAX4174/5, MAX4274/5, MAX4281/2/4
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
INCLUDES RESISTOR NOISE
10
10
1
10
100
1k
FREQUENCY (Hz)
6
10k
100k
1
1
10
100
1k
FREQUENCY (Hz)
10k
100k
1
10
100
1k
FREQUENCY (Hz)
_______________________________________________________________________________________
10k
100k
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
MAX4174/MAX4175
LARGE-SIGNAL PULSE RESPONSE
INPUT
VOLTAGE
MAX4174/5 toc 21
MAX4174/5 toc 20
SMALL-SIGNAL PULSE RESPONSE
INPUT
VOLTAGE
AV = +1.25V/V
OUTPUT
50mV/div
AV = +1.25V/V
OUTPUT
500mV/div
AV = +3V/V
OUTPUT
50mV/div
AV = +3V/V
OUTPUT
50mV/div
AV = +5V/V
OUTPUT
50mV/div
AV = +5V/V
OUTPUT
500mV/div
AV = +10V/V
OUTPUT
50mV/div
AV = +10V/V
OUTPUT
500mV/div
AV = +25V/V
OUTPUT
50mV/div
AV = +25V/V
OUTPUT
500mV/div
AV = +51V/V
OUTPUT
50mV/div
AV = +51V/V
OUTPUT
500mV/div
2µs/div
CL = 0
2µs/div
CL = 0
_______________________________________________________________________________________
7
MAX4174/5, MAX4274/5, MAX4281/2/4
Typical Operating Characteristics (continued)
(VCC = +5V, RL = 100kΩ to VCC / 2, small-signal VOUT = 100mVp-p, large-signal VOUT = 1Vp-p, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5V, RL = 100kΩ to VCC / 2, small-signal VOUT = 100mVp-p, large-signal VOUT = 1Vp-p, TA = +25°C, unless otherwise noted.)
MAX4174/MAX4175/MAX4281/MAX4282/MAX4284
POWER-SUPPLY REJECTION
vs. FREQUENCY
OUTPUT IMPEDANCE (Ω)
-85
MAX4174 TOC24
4.9
4.8
10
4.7
VSWING (Vp-p)
-80
5.0
MAX4174 TOC23
100
MAX4174 TOC22
-75
PSR (dB)
OUTPUT VOLTAGE SWING
vs. RLOAD
OUTPUT IMPEDANCE
vs. FREQUENCY
-70
1
4.6
4.5
4.4
4.3
-90
0.1
-95
0.01
4.2
4.1
1k
10k
100k
1M
4.0
100
1k
FREQUENCY (Hz)
10k
100k
1
1M
800
50
VCC = 2.5V
-50
VCC = 5.5V
MAX4174/5 toc 26
100
INPUT BIAS CURRENT (pA)
150
INPUT OFFSET VOLTAGE (µV)
1000
MAX4174/5 toc 25
200
0
-100
600
VCC = 5.5V
400
200
VCC = 2.5V
0
-150
-200
-200
-50 -35 -20
-5
10
25
40
55
70
85
-45 -30 -15
TEMPERATURE (°C)
VOH AND VOL vs. TEMPERATURE
(VCC = 2.5V)
VCC = 4V
80
VOLTAGE (mV)
300
VOH, RL = 10kΩ
0
-20
-60
VCC = 2.5V
VOH, RL = 100kΩ
20
-40
VCC = 3V
VOH, RL = 1kΩ
60
40
320
260
VOL, RL = 100kΩ
VOL, RL = 10kΩ
VOL, RL = 1kΩ
-80
240
-100
-50 -35 -20
-5
10
25
40
TEMPERATURE (°C)
8
100
VOLTAGE (mV)
VCC = 5V
340
55
70
85
15
30
45
60
75
90
VOH AND VOL vs. TEMPERATURE
(VCC = 5.5V)
MAX4174/5 toc 28
VCC = 5.5V
MAX4174/5 toc 27
380
0
TEMPERATURE (°C)
SUPPLY CURRENT vs. TEMPERATURE
280
100
INPUT BIAS CURRENT
vs. TEMPERATURE
INPUT OFFSET VOLTAGE vs.
TEMPERATURE
360
10
RLOAD (kΩ)
FREQUENCY (Hz)
-50 -35 -20
-5
10
25
40
TEMPERATURE (°C)
55
70
85
200
180
160
140
120
100
80
60
40
20
0
-20
-40
-60
-80
-100
MAX4174/5 toc 29
100
SUPPLY CURRENT (µA)
MAX4174/5, MAX4274/5, MAX4281/2/4
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
VOH, RL = 1kΩ
VOH, RL = 100kΩ
VOH, RL = 10kΩ
VOL, RL = 100kΩ
VOL, RL = 100kΩ
VOL, RL = 1kΩ
-50 -35 -20
-5
10
25
40
TEMPERATURE (°C)
_______________________________________________________________________________________
55
70
85
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
MAX4281/MAX4282/MAX4284
10
100
1k
10k
100k
1M
2
3
2
1
1
0
GAIN (dB)
GAIN (dB)
MAX4174/5 toc32
4
MAX4174/5 toc31
3
PHASE (degrees)
0
-45
-90
-135
-180
-225
-270
-315
10M
LARGE-SIGNAL GAIN
vs. FREQUENCY
-1
-2
0
-1
-2
-3
-3
-4
-4
-5
-5
-6
-6
1k
10k
100k
1M
10M
1k
10k
100k
1M
FREQUENCY (Hz)
FREQUENCY (Hz)
FREQUENCY (Hz)
COMMON-MODE REJECTION
vs. FREQUENCY
VOLTAGE NOISE DENSITY
vs. FREQUENCY
CURRENT NOISE DENSITY
vs. FREQUENCY
-30
-40
-50
-60
-70
-80
100
10
10M
MAX4174/5 toc35
-20
1000
CURRENT NOISE DENSITY (fA/√Hz)
MAX4174/5 toc33
0
-10
MAX4174/5 toc34
1
CMR (dB)
4
MAX4174/5 toc30
160
140
120
100
80
60
40
20
0
-20
-40
SMALL-SIGNAL GAIN
vs. FREQUENCY
VOLTAGE NOISE DENSITY (nV/√Hz)
OPEN-LOOP GAIN (dB)
OPEN-LOOP GAIN AND PHASE
vs. FREQUENCY
-90
10
-100
1k
10k
100k
1
1
10M
10
100
1k
10k
100k
1
10
100
1k
10k
FREQUENCY (Hz)
FREQUENCY (Hz)
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
MAX4282
CROSSTALK vs. FREQUENCY
MAX4284
CROSSTALK vs. FREQUENCY
MAX4174/5 toc36
-50
-55
-60
-70
-80
-90
-65
-70
-75
-80
-85
-100
-110
-120
THREE AMPLIFIERS DRIVEN,
ONE OUTPUT MEASURED
-55
CROSSTALK (dB)
-60
CROSSTALK (dB)
-40
-50
-50
100k
MAX4174/5 toc38
FREQUENCY (Hz)
0
AV = 1
-10 VOUT = 1Vp-p
-20
-30
THD (dB)
1M
MAX4174/5 toc37
100
-60
-65
-70
-90
-95
1k
10k
100k
FREQUENCY (Hz)
1M
-75
1k
10k
100k
FREQUENCY (Hz)
1M
10M
1k
10k
100k
1M
10M
FREQUENCY (Hz)
_______________________________________________________________________________________
9
MAX4174/5, MAX4274/5, MAX4281/2/4
Typical Operating Characteristics
(VCC = +5V, RL = 100kΩ to VCC / 2, small-signal VOUT = 100mVp-p, large-signal VOUT = 1Vp-p, TA = +25°C, unless otherwise noted.)
MAX4174/5, MAX4274/5, MAX4281/2/4
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
Pin Description
PIN
MAX4281
5 SOT23
8 SO
MAX4174/
MAX4175
MAX4282
MAX4274/
MAX4275
5 SOT23
8 SO/µMAX
8 SO/µMAX
14 SO/TSSOP
1
6
1
1, 7
1, 7
1, 7,
8, 14
2
4
2
4
4
11
3
3
3
3, 5
NAME
FUNCTION
16 QSOP
NAME
FUNCTION
1, 7,
10, 16
OUT, OUTA,
OUTB,
OUTC,
OUTD
13
VEE
Negative Supply or
Ground
Noninverting
Amplifier Input.
Internally biased to
VCC / 2 for
MAX4175/MAX4275
MAX4284
3, 5
3, 5,
10, 12
3, 5,
12, 14
IN+, INA+,
INB+, INC+,
IND+
2, 6,
11, 15
IN-, INA-,
INB-, INC-,
IND-
Amplifier Output
Inverting Amplifier
Input. Connects to
RG for MAX4174/
4175/4274/4275.
4
2
4
2, 6
2, 6
2, 6,
9, 13
5
7
5
8
8
4
4
VCC
Positive Supply
—
1, 5,
8
—
—
—
—
8, 9
N.C.
No Connection.
Not internally
connected.
Functional Diagrams
VCC
VCC
VCC
VCC
MAX4174
IN+
MAX4281
IN+
OUT
OUT
IN-
RG
RB
150k
RB
150k
MAX4175
IN+
RF
OUT
VEE
RG
IN-
RF
IN-
VEE
VEE
VEE
10
______________________________________________________________________________________
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
Maxim’s GainAmp fixed-gain amplifiers combine a lowcost rail-to-rail op amp with internal gain-setting resistors. Factory-trimmed on-chip resistors provide 0.1%
gain accuracy while decreasing design size, cost, and
layout. Three versions are available in this amplifier
family: single/dual/quad open-loop, unity-gain-stable
devices (MAX4281/MAX4282/MAX4284); single/dual
fixed-gain devices (MAX4174/MAX4274); and single/
dual devices with fixed gain plus internal V CC / 2 bias
at the noninverting input (MAX4175/MAX4275). All
amplifiers feature rail-to-rail outputs and drive a 1k Ω
load while maintaining excellent DC accuracy.
Open-Loop Op Amps
The single/dual/quad MAX4281/MAX4282/MAX4284
are high-performance, open-loop op amps with rail-torail outputs. These devices are compensated for unitygain stability, and feature a gain bandwidth (GBW) of
2MHz. The op amps in these ICs feature an input common-mode range that extends from 150mV below the
negative rail to within 1.2V of the positive rail. These
high performance op amps serve as the core for this
family of GainAmp fixed-gain amplifiers. Although the
-3dB bandwidth will not correspond to that of a fixedgain amplifier in higher gain configurations, these
open-loop op-amps can be used to prototype designs.
ly increases usable bandwidth, while decompensation
above gains of +25V/V offers diminished returns.
VCC / 2 Internal Bias
The MAX4175/MAX4275 GainAmp fixed-gain amplifiers
with the V CC / 2 bias option are identical to standard
GainAmp fixed-gain amplifiers, with the added feature
of V CC / 2 internal bias at the noninverting inputs. Two
150kΩ resistors form a voltage-divider for self-biasing
the noninverting input, eliminating external bias resistors for AC-coupled applications, and allowing maximum signal swing at the op amp’s rail-to-rail output for
single-supply systems (see Typical Operating Circuit ).
For DC-coupled applications, use the MAX4174/
MAX4274.
High-Voltage (±17V) Input Fault Protection
The MAX4174/MAX4175/MAX4274/MAX4275 include
±17V input fault protection. For normal operation, see
the input voltage range specification in the Electrical
Characteristics. Overdriven inputs up to ±17V will not
VCC
AV =
R
AV = 1 + F
RG
RF
RG
-RF
RG
IN-
Internal Gain-Setting Resistors
Maxim’s proprietary laser trimming techniques produce
the necessary R F/RG values (Figure 1), so many gain
offerings are easily available. These GainAmp fixed-gain
amplifiers feature a negative-feedback resistor network
that is laser trimmed to provide a gain-setting feedback
ratio (R F/RG) with 0.1% typical accuracy. The standard
op amp pinouts allow the GainAmp fixed-gain amplifiers
to drop in directly to existing board designs, easily
replacing op-amp-plus-resistor gain blocks.
VEE
OUT
IN+
Figure 1. Internal Gain-Setting Resistors
60
GainAmp Bandwidth
50
GAIN (dB)
GainAmp fixed-gain amplifiers feature factory-trimmed
precision resistors to provide fixed inverting gains from
-0.25V/V to -100V/V or noninverting gains from
+1.25V/V to +101V/V. The op-amp core is decompensated strategic ally over the gain-set options to maximize bandwidth. Open-loop decompensation increases
GBW product, ensuring that usable bandwidth is maintained with increasing closed-loop gains. A GainAmp
with a fixed gain of A V = 100V/V has a -3dB bandwidth
of 230kHz. By comparison, a unity-gain-stable op amp
configured for A V = 100V/V would yield a -3dB bandwidth of only 20kHz (Figure 2). Decompensation is performed at five intermediate gain sets, as shown in the
Gain Selection Guide . Low gain decompensation great-
MAX4281, AV = 100
2MHz GBW
MAX4174,
AV = 100
23MHz GBW
40
-3dB
20kHz
30
230kHz
20
10
0
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 2. Gain-Bandwidth Comparison
______________________________________________________________________________________
11
MAX4174/5, MAX4274/5, MAX4281/2/4
Detailed Description
MAX4174/5, MAX4274/5, MAX4281/2/4
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
cause output phase reversal. A back-to-back SCR
structure at the input pins allows either input to safely
swing ±17V relative to V EE (Figure 3). Additionally, the
internal op-amp inputs are diode clamped to either
supply rail for the protection of sensitive input stage circuitry. Current through the clamp diodes is limited by a
5kΩ resistor at the noninverting input, and by R G at the
inverting input. An IN+ or IN- fault voltage as high as
±17V will cause less than 3.5mA of current to flow
through the input pin, protecting both the GainAmp and
the signal source from damage.
Applications Information
GainAmp fixed-gain amplifiers offer a precision, fixed
gain amplifier in a small package that can be used in a
variety of circuit board designs. GainAmp fixed-gain
amplifiers can be used in many op amp circuits that use
resistive negative feedback to set gain, and that do not
require other connections to the op-amp inverting input.
Both inverting and noninverting op-amp configurations
can be implemented easily using a GainAmp.
GainAmp Input Voltage Range
The MAX4174/MAX4175/MAX4274/MAX4275 combine
both an op amp and gain-setting feedback resistors on
the same chip. Because the inverting input pin is actually tied to the R G input series resistor, the inverting
input voltage range is different from the noninverting
input voltage range. Just as with a discrete design,
care must be taken not to saturate the inputs/output of
the core op amp, to avoid signal distortions or clipping.
The inverting inputs (IN_-) of the MAX4174/MAX4175/
MAX4274/MAX4275 must be within the supply rails or
signal distortion may result. The GainAmp’s inverting
input structure includes diodes to both supplies, such
that driving the inverting input beyond the rails may
cause signal distortions (Figure 1). For applications that
require sensing voltages beyond the rails, use the
MAX4281/MAX4282/MAX4284 open-loop op amps
(Figure 4).
RF
RG
IN17V
SCR
VCC
VCC
VEE
MAX4174
MAX4175
MAX4274
MAX4275
5k
IN+
17V
SCR
VEE
VEE
VEE
NOTE: INPUT STAGE PROTECTION INCLUDES
TWO 17V SCRs AND TWO DIODES AT THE INPUT STAGE.
BIAS RESISTORS (MAX4175/MAX4275 ONLY)
Figure 3. Input Protection
12
______________________________________________________________________________________
OUT
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
VCC
MAX4175
RB
VCC
0.1µF
VOUT =
RB
VCC
- VIN
2
( RRFG )
VIN
RG
RF
VOUT =
-RF
(VIN)
RG
VIN
RG
Figure 4. Single-Supply, DC-Coupled Inverting Amplifier with
Negative Input Voltage
RF
Figure 6. Single-Supply, AC-Coupled Inverting Amplifier
MAX4174
VCC
VCC
MAX4174
VIN
VOUT = - VIN
R
VOUT = VIN 1+ F
RG
(
( RRFG )
)
VEE
VEE
RF
VIN
RG
RF
Figure 5. Dual-Supply, DC-Coupled Inverting Amplifier
GainAmp Signal Coupling
and Configurations
Common op-amp configurations include both noninverting and inverting amplifiers. Figures 5–8 show various single and dual-supply circuit configurations.
Single-supply systems benefit from a midsupply bias
on the noninverting input (provided internally on
MAX4175/MAX4275), as this produces a quiescent DC
level at the center of the rail-to-rail output stage signal
swing. For dual-supply systems, ground-referenced
signals may be DC-coupled into the inverting or noninverting inputs.
RG
Figure 7. Dual-Supply, AC-Coupled Noninverting Amplifier
IN_+ Filter on MAX4175/MAX4275
Internal resistor biasing of the V CC / 2 bias options couples power-supply noise directly to the op amp’s noninverting input. To minimize high-frequency power-supply
noise coupling, add a 1µF to 0.1µF capacitor from IN+
to ground to create a lowpass filter (Figure 6). The lowpass filter resulting from the internal bias resistors and
added capacitor can help eliminate higher frequency
power-supply noise coupling through the noninverting
input.
______________________________________________________________________________________
13
MAX4174/5, MAX4274/5, MAX4281/2/4
MAX4281
VCC
MAX4174/5, MAX4274/5, MAX4281/2/4
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
Supply Bypassing and Board Layout
All devices in the GainAmp family operate from a +2.5V
to +5.5V single supply or from ±1.25V to ±2.75V dual
supplies. For single-supply operation, bypass the
power supply with a 0.1µF capacitor to ground. For
dual supplies, bypass each supply to ground. Bypass
with capacitors as close to the device as possible, to minimize lead inductance and noise. A printed circuit board
with a low-inductance ground plane is recommended.
Capacitive-Load Stability
Driving large capacitive loads can cause instability in
most low-power, rail-to-rail output amplifiers. The fixed-
gain amplifiers of this GainAmp family are stable with
capacitive loads up to 470pF. Stability with higher
capacitive loads can be improved by adding an isolation
resistor in series with the op-amp output, as shown in
Figure 9. This resistor improves the circuit’s phase margin by isolating the load capacitor from the amplifier’s
output. In Figure 10, a 1000pF capacitor is driven with a
100Ω isolation resistor exhibiting some overshoot but no
oscillation. Figures 11 and 12 show the typical small-signal pulse responses of GainAmp fixed-gain amplifiers
with 250pF and 470pF capacitive loads and no isolation
resistor.
MAX4174
INPUT
VCC
VIN
R
VOUT = VIN 1+ F
RG
(
)
AV = +5V/V
50mV/div
OUTPUT
AV = +5V/V
500mV/div
OUTPUT
VEE
RF
RG
Figure 8. Dual-Supply, DC-Coupled Noninverting Amplifier
Figure 10. Small-Signal/Large-Signal Transient Response with
Excessive Capacitive Load with Isolation Resistor
MAX4174
RG
RF
VCC
RISO
INPUT
OUTPUT
CL
RL
VEE
Figure 9. Dual-Supply, Capacitive-Load Driving Circuit
14
______________________________________________________________________________________
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
INPUT
AV = +1.25V/V
OUTPUT
50mV/div
AV = +1.25V/V
OUTPUT
50mV/div
AV = +3V/V
OUTPUT
50mV/div
AV = +3V/V
OUTPUT
50mV/div
AV = +5V/V
OUTPUT
50mV/div
AV = +5V/V
OUTPUT
50mV/div
AV = +10V/V
OUTPUT
50mV/div
AV = +10V/V
OUTPUT
50mV/div
MAX4174/5, MAX4274/5, MAX4281/2/4
INPUT
AV = +25V/V
OUTPUT
50mV/div
AV = +25V/V
OUTPUT
50mV/div
AV = +51V/V
OUTPUT
50mV/div
AV = +51V/V
OUTPUT
50mV/div
2µs/div
Figure 11. MAX4174/MAX4175 Small-Signal Pulse Response
(CL = 250pF, RL = 100kΩ)
2µs/div
Figure 12. MAX4174/MAX4175 Small-Signal Pulse Response
(CL = 470pF, RL = 100kΩ)
______________________________________________________________________________________
15
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
MAX4174/5, MAX4274/5, MAX4281/2/4
Gain Selection Guide
GAIN
CODE
RF/RG
INVERTING
GAIN
1+ (RF/RG)
NONINVERTING
GAIN
-3dB BW
(kHz)†
MAX4174
AB*
0.25
1.25
1700
ACDS
ACET
AC
0.5
1.5
1280
ACDT
ACEU
TOP MARK
MAX4175
AD*
1
2
590
ACDU
ACEV
AE
1.25
2.25
450
ACDV
ACEW
AF
1.5
2.5
1180
ACDW
ACEX
ACEY
AG*
2
3
970
ACDX
AH
2.5
3.5
820
ACDY
ACEZ
AJ
3
4
690
ACDZ
ACFA
AK*
4
5
970
ACEA
ACFB
AL
5
6
790
ACEB
ACFC
AM
6
7
640
ACEC
ACFD
AN
8
9
480
ACED
ACFE
AO*
9
10
640
ACEE
ACFF
BA*
10
11
560
ACEF
ACFG
ACFH
BB
12.5
13.5
460
ACEG
BC
15
16
390
ACEH
ACFI
BD
20
21
300
ACEI
ACFJ
BE*
24
25
590
ACEJ
ACFK
BF
25
26
580
ACEK
ACFL
BG
30
31
510
ACEL
ACFM
BH
40
41
390
ACEM
ACFN
BJ*
49
50
310
ACEN
ACFO
BK*
50
51
330
ACEO
ACFP
BL
60
61
310
ACEP
ACFQ
BM
80
81
260
ACEQ
ACFR
BN*
99
100
230
ACER
ACFS
CA*
100
101
230
ACES
ACFT
Note: Gains in the noninverting configuration are 1+ (RF/RG) and range from +1.25V/V to +101V/V. For a +1V/V gain, use the
MAX4281/MAX4282/MAX4284.
* Preferred Gains. These gain versions are available as samples and in small quantities.
† The -3dB bandwidth is the same for inverting and noninverting configurations.
16
______________________________________________________________________________________
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
TOP VIEW
MAX4175
MAX4281
OUT 1
5 VCC
OUT 1
+ VEE 2
VEE 2
+ -
RG
R
R
IN+ 3
5 VCC
RF
VCC
4
IN+ 3
SOT23-5
4
IN-
SOT23-5
MAX4281
MAX4282
N.C. 1
8
N.C.
OUTA 1
MAX4274
8
VCC
OUTA 1
8
VCC
7
OUTB
6
INB-
5
INB+
RF
- +
IN- 2
7
VCC
- +
INA- 2
7
OUTB
INA- 2
- +
+ -
+ -
IN+ 3
6
OUT
INA+ 3
6
INB-
INA+ 3
VEE 4
5
N.C.
VEE 4
5
INB+
VEE 4
µMAX/SO
µMAX/SO
MAX4275
MAX4284
MAX4284
8
VCC
OUTA 1
RF
- +
INA- 2
INA- 2
7
RF
VEE 4
R
16 OUTD
- +
+ -
13 IND-
INA- 2
INA+ 3
12 IND+
INA+ 3
14 IND+
VCC 4
11 VEE
VCC 4
13 VEE
INB+ 5
10 INC+
INB+ 5
12 INC+
9
INC-
INB- 6
8
OUTC
OUTB 7
15 IND-
RG
INA+ 3
R
OUTA 1
OUTB
6
INB-
5
INB+
VCC
R
µMAX/SO
INB- 6
+ -
+ -
R
+ -
+ -
OUTB 7
SO/TSSOP
+ -
VCC
14 OUTD
- +
RF
RG
SO
OUTA 1
RG
RG
+ -
11 INC10 OUTC
N.C. 8
9
N.C.
QSOP
______________________________________________________________________________________
17
MAX4174/5, MAX4274/5, MAX4281/2/4
Pin Configurations (continued)
MAX4174/5, MAX4274/5, MAX4281/2/4
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
Chip Information
Ordering Information (continued)
PART*
TEMP. RANGE
PINPACKAGE
TOP
MARK
MAX4274_EUA
MAX4274_ESA
MAX4275_EUA
MAX4275_ESA
MAX4281EUK-T
MAX4281ESA
MAX4282EUA
MAX4282ESA
MAX4284EUD
MAX4284ESD
MAX4284EEE
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
8 µMAX
8 SO
8 µMAX
8 SO
5 SOT23-5
8 SO
8 µMAX
8 SO
14 TSSOP
14 SO
16 QSOP
—
—
—
—
ACDR
—
—
—
—
—
—
TRANSISTOR COUNTS:
MAX4174: 178
MAX4175: 178
MAX4274: 332
MAX4275: 332
MAX4281: 178
MAX4282: 332
MAX4284: 328
SUBSTRATE CONNECTED TO VEE
Note: Refer to Gain Selection Guide for SOT top marks.
*Insert the desired gain code (from the Gain Selection Guide) in
the blank to complete the part number. Refer to Gain Selection
Guide for a list of preferred gains.
Selector Guide
INVERTING GAINS
AVAILABLE (V/V)
(INVERTING, RF/RG)
NONINVERTING
GAIN
(V/V)
INTERNAL
RESISTORS
MAX4174_
-0.25 to -100
+1.25 to +101
MAX4175_
-0.25 to -100
+1.25 to +101
MAX4274_
-0.25 to -100
MAX4275_
-0.25 to -100
PART*
INTERNAL
VCC/2 BIAS
NO. OF
AMPS PER
PACKAGE
Yes
No
1
5-pin SOT23
Yes
Yes
1
5-pin SOT23
+1.25 to +101
Yes
No
2
8-pin µMAX/SO
+1.25 to +101
PIN-PACKAGE
Yes
Yes
2
8-pin µMAX/SO
MAX4281_
Open Loop,
Unity-Gain Stable
No
No
1
5-pin SOT23,
8-pin SO
MAX4282_
Open Loop,
Unity-Gain Stable
No
No
2
8-pin µMAX/SO
MAX4284_
Open Loop,
Unity-Gain Stable
No
No
4
14-pin SO/TSSOP,
16-pin QSOP
* Insert the desired gain code (from the Gain Selection Guide) in the blank to complete the part number.
18
______________________________________________________________________________________
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
SOT5L.EPS
______________________________________________________________________________________
19
MAX4174/5, MAX4274/5, MAX4281/2/4
Package Information
SOT23, Rail-to-Rail, Fixed-Gain
GainAmps/Open-Loop Op Amps
8LUMAXD.EPS
MAX4174/5, MAX4274/5, MAX4281/2/4
Package Information
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circu
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
it patent licenses are
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.