0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX4213EVKIT

MAX4213EVKIT

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVALUATIONKITFORMAX4213

  • 数据手册
  • 价格&库存
MAX4213EVKIT 数据手册
19-1178; Rev 3; 10/03 L MANUA ION KIT T A U L EVA BLE AVAILA Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable Features ♦ High Speed: 300MHz -3dB Bandwidth (MAX4212/MAX4213) 200MHz -3dB Bandwidth (MAX4216/MAX4218/MAX4220) 50MHz 0.1dB Gain Flatness (MAX4212/MAX4213) 600V/µs Slew Rate ♦ Single 3.3V/5.0V Operation ♦ Rail-to-Rail Outputs ♦ Input Common-Mode Range Extends Beyond VEE ♦ Low Differential Gain/Phase: 0.02%/0.02° ♦ Low Distortion at 5MHz: -78dBc SFDR -75dB Total Harmonic Distortion ♦ High-Output Drive: ±100mA ♦ 400µA Shutdown Capability (MAX4213/MAX4218) ♦ High-Output Impedance in Off State (MAX4213/MAX4218) ♦ Space-Saving SOT23, µMAX, or QSOP Packages Ordering Information Applications Battery-Powered Instruments Video Line Driver Analog-to-Digital Converter Interface CCD Imaging Systems Video Routing and Switching Systems TEMP RANGE PIN PACKAGE TOP MARK MAX4212EUK-T -40°C to +85°C 5 SOT23-5 ABAF MAX4213ESA -40°C to +85°C 8 SO — MAX4213EUA -40°C to +85°C 8 µMAX — PART Ordering Information continued at end of data sheet. Pin Configurations Typical Operating Circuit RF 24Ω TOP VIEW RTO 50Ω MAX4212 VOUT OUT 1 5 VCC ZO = 50Ω RO 50Ω IN RTIN 50Ω VEE 2 UNITY-GAIN LINE DRIVER (RL = RO + RTO) Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. 4 SOT23-5 EN 7 VCC IN+ 3 6 OUT VEE 4 5 N.C. IN- 2 MAX4212 IN+ 3 8 N.C. 1 IN- MAX4213 µMAX/SO Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 General Description The MAX4212/MAX4213 single, MAX4216 dual, MAX4218 triple, and MAX4220 quad op amps are unity-gain-stable devices that combine high-speed performance with Rail-to-Rail ® outputs. The MAX4213/ MAX4218 have a disable feature that reduces powersupply current to 400µA and places the outputs into a high-impedance state. These devices operate from a 3.3V to 10V single supply or from ±1.65V to ±5V dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications). These devices require only 5.5mA of quiescent supply current while achieving a 300MHz -3dB bandwidth and a 600V/µs slew rate. Input-voltage noise is only 10nV/√Hz and input-current noise is only 1.3pA/√Hz for either the inverting or noninverting input. These parts are an excellent solution in low-power/low-voltage systems that require wide bandwidth, such as video, communications, and instrumentation. In addition, when disabled, their high-output impedance makes them ideal for multiplexing applications. The MAX4212 comes in a miniature 5-pin SOT23 package, while the MAX4213/MAX4216 come in 8-pin µMAX and SO packages. The MAX4218/MAX4220 are available in space-saving 16-pin QSOP and 14-pin SO packages. MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE) ..................................................12V IN_-, IN_+, OUT_, EN_ .....................(VEE - 0.3V) to (VCC + 0.3V) Output Short-Circuit Duration to VCC or VEE ............. Continuous Continuous Power Dissipation (TA = +70°C) 5-Pin SOT23 (derate 7.1mW/°C above +70°C) ...........571mW 8-Pin SO (derate 5.9mW/°C above +70°C) .................471mW 8-Pin µMAX (derate 4.5mW/°C above +70°C) ............221mW 14-Pin SO (derate 8.3mW/°C above +70°C) ...............667mW 16-Pin QSOP (derate 8.3mW/°C above +70°C) ..........667mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (VCC = 5V, VEE = 0, EN_ = 5V, RL = 2kΩ to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL Input Common-Mode Voltage Range VCM Input Offset Voltage (Note 1) VOS Input Offset Voltage Temperature Coefficient Input Offset Current Input Resistance Common-Mode Rejection Ratio Open-Loop Gain (Note 1) Guaranteed by CMRR test VEE 0.20 MAX VCC 2.25 MAX4212EUK, MAX421_EUA 4 12 4 9 UNITS V mV 8 µV/°C Any channels for MAX4216/MAX4218/ MAX4220 ±1 mV IB (Note 1) 5.4 20 IOS (Note 1) 0.1 4.0 Differential mode (-1V ≤ VIN ≤ +1V) 70 kΩ Common mode (-0.2V ≤ VCM ≤ +2.75V) 3 MΩ dB RIN CMRR AVOL (VEE - 0.2V) ≤ VCM ≤ (VCC - 2.25V) 70 100 0.25V ≤ VOUT ≤ 4.75V, RL = 2kΩ 55 61 0.5V ≤ VOUT ≤ 4.5V, RL = 150Ω 52 RL = 10kΩ RL = 2kΩ VOUT RL = 150Ω RL = 50Ω 2 TYP MAX42_ _ES_, MAX42_ _EEE 1.0V ≤ VOUT ≤ 4V, RL = 50Ω Output Voltage Swing MIN TCVOS Input Offset Voltage Matching Input Bias Current CONDITIONS 59 µA µA dB 57 VCC - VOH 0.05 VOL - VEE 0.05 VCC - VOH 0.06 0.20 VOL - VEE 0.06 0.20 VCC - VOH 0.30 0.50 VOL - VEE 0.30 0.50 VCC - VOH 0.70 VOL - VEE 0.60 _______________________________________________________________________________________ V Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable (VCC = 5V, VEE = 0, EN_ = 5V, RL = 2kΩ to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER Output Current Output Short-Circuit Current SYMBOL CONDITIONS IOUT RL = 20Ω to VCC or VEE ISC Sinking or sourcing Open-Loop Output Resistance ROUT Power-Supply Rejection Ratio (Note 2) PSRR MIN TYP TA = +25°C ±70 ±120 TA = TMIN to TMAX ±60 VCC = 5V, VEE = 0, VCM = 2.0V 46 VCC = 5V, VEE = -5V, VCM = 0 54 VCC = 3.3V, VEE = 0, VCM = 0.90V Operating Supply-Voltage Range Disabled Output Resistance VS ROUT (OFF) EN_ Logic-Low Threshold VIL EN_ Logic-High Threshold VIH EN_ Logic Input Low Current IIL EN_ Logic Input High Current IIH Quiescent Supply Current (per Amplifier) IS VCC to VEE EN_ = 0, 0 ≤ VOUT ≤ 5V (Note 3) MAX UNITS mA ±150 mA 8 Ω 57 dB 66 45 3.15 20 11.0 V kΩ 35 VCC - 2.6 VCC - 1.6 V V (VEE + 0.2V) ≤ EN_ ≤ VCC 0.5 EN_ = 0 200 EN_ = 5V 0.5 10 Enabled 5.5 7.0 Disabled (EN_ = 0) 0.40 0.65 400 µA µA mA _______________________________________________________________________________________ 3 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 DC ELECTRICAL CHARACTERISTICS (continued) MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable AC ELECTRICAL CHARACTERISTICS (VCC = 5V, VEE = 0, VCM = 2.5V, EN_ = 5V, RF = 24Ω, RL = 100Ω to VCC/2, VOUT = VCC/2, AVCL = +1, TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Small-Signal -3dB Bandwidth BWSS VOUT = 20mVP-P Large-Signal -3dB Bandwidth BWLS VOUT = 2VP-P Bandwidth for 0.1dB Gain Flatness Slew Rate Settling Time to 0.1% MIN TYP MAX4212/MAX4213 300 MAX4216/MAX4218/ MAX4220 200 MAX 180 MAX4212/MAX4213 50 MAX4216/MAX4218/ MAX4220 35 UNITS MHz MHz BW0.1dB VOUT = 20mVP-P SR VOUT = 2V step 600 V/µs tS MHz VOUT = 2V step 45 ns Rise/Fall Time tR, tF VOUT = 100mVP-P 1 ns Spurious-Free Dynamic Range SFDR fC = 5MHz, VOUT = 2VP-P -78 dBc Harmonic Distortion Two-Tone, Third-Order Intermodulation Distortion HD IP3 Input 1dB Compression Point 2nd harmonic -78 3rd harmonic -82 Total harmonic distortion -75 dB f1 = 10.0MHz, f2 = 10.1MHz, VOUT = 1VP-P 35 dBc fC = 10MHz, AVCL = 2 11 dBm degrees fC = 5MHz, VOUT = 2VP-P dBc Differential Phase Error DP NTSC, RL = 150Ω 0.02 Differential Gain Error DG NTSC, RL = 150Ω 0.02 % Input Noise-Voltage Density en f = 10kHz 10 nV/√Hz Input Noise-Current Density in f = 10kHz 1.3 pA/√Hz 1 pF EN_ = 0 2 pF f = 10MHz 6 Ω Input Capacitance Disabled Output Capacitance Output Impedance CIN COUT (OFF) ZOUT Amplifier Enable Time tON 100 ns Amplifier Disable Time tOFF 1 µs MAX4216/MAX4218/MAX4220, f = 10MHz, VOUT = 20mVP-P 0.1 dB MAX4216/MAX4218/MAX4220, f = 10MHz, VOUT = 2VP-P -95 dB Amplifier Gain Matching Amplifier Crosstalk XTALK Note 1: Tested with VCM = 2.5V. Note 2: PSR for single 5V supply tested with VEE = 0, VCC = 4.5V to 5.5V; for dual ±5V supply with VEE = -4.5V to -5.5V, VCC = 4.5V to 5.5V; and for single 3.3V supply with VEE = 0, VCC = 3.15V to 3.45V. Note 3: Does not include the external feedback network’s impedance. 4 _______________________________________________________________________________________ Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable 3 2 2 1 8 -1 -2 6 -1 -2 -3 5 4 3 -3 -4 2 -4 -5 1 -5 -6 0 -6 -7 -1 1M 10M 100M 1M 10M 100M 100k 1G 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) MAX4216/MAX4218/MAX4220 SMALL-SIGNAL GAIN vs. FREQUENCY LARGE-SIGNAL GAIN vs. FREQUENCY MAX4212/MAX4213 GAIN FLATNESS vs. FREQUENCY 7 3 VOUT = 2VP-P VOUT BIAS = 1.75V 2 6 0.7 0.6 0.5 0.4 4 3 GAIN (dB) GAIN (dB) 1 5 0 -1 -2 0.3 0.2 0.1 2 -3 0 1 -4 -0.1 0 -5 -0.2 -1 -6 1M 10M 100M 1G -0.3 100k 1M 10M 100M 1M 10M 100M 1G FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) MAX4216/MAX4218/MAX4220 GAIN FLATNESS vs. FREQUENCY MAX4216/MAX4218/MAX4220 CROSSTALK vs. FREQUENCY CLOSED-LOOP OUTPUT IMPEDANCE vs. FREQUENCY 0.3 10 CROSSTALK (dB) 0.2 30 0.1 0 -0.1 -0.2 -0.3 -10 -30 -50 -70 -90 -0.4 -130 -150 1M 10M 100M FREQUENCY (Hz) 1G 100 10 1 -110 -0.5 1000 IMPEDANCE (Ω) 0.4 MAX4212/3/6/8/20-09 50 MAX4212/3/6/8/20-07 0.5 0.1M 0.1M 1G MAX4212/3/6/8/20-08 100k 1G MAX4212/3/6/8/20-06 AVCL = 2 VOUT = 20mVP-P MAX4212/3/6/8/20-05 4 MAX4212/3/6/8/20-04 9 8 100k 1G AVCL = 2 VOUT = 20mVP-P 7 GAIN (dB) GAIN (dB) GAIN (dB) 0 100k GAIN (dB) 9 0 1 GAIN (dB) VOUT = 20mVP-P MAX4212/3/6/8/20-03 VOUT = 20mVP-P MAX4212/3/6/8/20-02 3 MAX4212/3/6/8/20-01 4 MAX4212/MAX4213 SMALL-SIGNAL GAIN vs. FREQUENCY MAX4216/MAX4218/MAX4220 SMALL-SIGNAL GAIN vs. FREQUENCY MAX4212/MAX4213 SMALL-SIGNAL GAIN vs. FREQUENCY 0.1 100k 1M 10M 100M FREQUENCY (Hz) 1G 0.1M 1M 10M 100M FREQUENCY (Hz) _______________________________________________________________________________________ 5 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 __________________________________________Typical Operating Characteristics (VCC = 5V, VEE = 0, AVCL = 1, RF = 24Ω, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.) ____________________________Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0, AVCL = 1, RF = 24Ω, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.) HARMONIC DISTORTION vs. FREQUENCY (AVCL = 2) -60 2ND HARMONIC -80 -60 -100 100k 1M 10M -80 3RD HARMONIC -60 -70 2ND HARMONIC -80 3RD HARMONIC 200 -30 -40 800 -60 -70 2ND HARMONIC -80 3RD HARMONIC 0.5 -30 -40 -50 -60 -70 -80 6 -20 -30 -40 -50 100M MAX4212/3/6/8/20-12 0.01 0.00 -0.01 100 OUTPUT SWING vs. LOAD RESISTANCE (RL) 4.5 4.0 3.5 3.0 2.5 2.0 -60 -80 10M VCM = 1.35V 0.02 0 MAX4212/3/6/8/20-17 -10 -100 FREQUENCY (Hz) 100 IRE 0.03 IRE 0 -70 1M 100M 0.00 2.0 10 -90 100k 1.0 1.5 OUTPUT SWING (VP-P) 20 POWER-SUPPLY REJECTION (dB) -20 0.01 POWER-SUPPLY REJECTION vs. FREQUENCY MAX4212/3/6/8/20-16 0 VCM = 1.35V 0.02 0 COMMON-MODE REJECTION vs. FREQUENCY -10 10M 0.03 -50 1000 1M -0.01 -100 400 600 LOAD (Ω) 100k DIFFERENTIAL GAIN AND PHASE MAX4212/3/6/8/20-14 -20 -90 -100 -80 FREQUENCY (Hz) fO = 5MHz -10 3RD HARMONIC -70 100M 0 HARMONIC DISTORTION (dBc) MAX4212/3/6/8/20-13 -50 0 10M HARMONIC DISTORTION vs. OUTPUT SWING -40 -90 1M HARMONIC DISTORTION vs. LOAD -30 -60 -90 100k 2ND HARMONIC -50 -100 FREQUENCY (Hz) -20 -40 -100 100M f = 5MHz VOUT = 2VP-P -30 -90 FREQUENCY (Hz) 0 -10 2ND HARMONIC -70 3RD HARMONIC -90 HARMONIC DISTORTION (dBc) -50 -20 MAX4212/3/6/8/20-18 -70 -40 VOUT = 2VP-P AVCL = 5 MAX4212/3/6/8/20-15 -50 -30 DIFF. GAIN (%) -40 -20 0 -10 DIFF. PHASE (deg) -30 VOUT = 2VP-P AVCL = 2 -10 OUTPUT SWING (Vp-p) -20 0 MAX4212/3/6/8/20-11 VOUT = 2VP-P HARMONIC DISTORTION (dBc) HARMONIC DISTORTION (dBc) MAX4212/3/6/8/20-10 0 -10 HARMONIC DISTORTION vs. FREQUENCY (AVCL = 5) HARMONIC DISTORTION (dBc) HARMONIC DISTORTION vs. FREQUENCY (AVCL = 1) CMR (dB) MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable 1.5 AVCL = 2 1.0 100k 1M 10M FREQUENCY (Hz) 100M 25 50 75 100 125 LOAD RESISTANCE (Ω) _______________________________________________________________________________________ 150 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable SMALL-SIGNAL PULSE RESPONSE (AVCL = 2) SMALL-SIGNAL PULSE RESPONSE (AVCL = 1) SMALL-SIGNAL PULSE RESPONSE (CL = 5pF, AVCL = 1) MAX4212/3/6/8/20-20 IN (25mV/ div) IN (50mV/ div) VOLTAGE VOLTAGE MAX4212/3/6/8/20-21 VOLTAGE MAX4212/3/6/8/20-19 OUT (25mV/ div) OUT (25mV/ div) OUT (25mV/ div) IN (50mV/ div) 20ns/div 20ns/div VCM = 1.75V, RL = 100Ω to GROUND LARGE-SIGNAL PULSE RESPONSE (AVCL = 2) LARGE-SIGNAL PULSE RESPONSE (AVCL = 1) LARGE-SIGNAL PULSE RESPONSE (CL = 5pF, AVCL = 2) MAX4212/3/6/8/20-24 MAX4212/3/6/8/20-23 MAX4212/3/6/8/20-22 IN (1V/ div) VOLTAGE VOLTAGE VOLTAGE IN (500mV/ div) IN (1V/div) OUT (500mV/ div) OUT (1V/div) OUT (500mV/ div) 20ns/div 20ns/div 20ns/div MAX4213 VOLTAGE-NOISE DENSITY vs. FREQUENCY MAX4218 CURRENT-NOISE DENSITY vs. FREQUENCY ENABLE RESPONSE TIME MAX4212/3/6/8/20-27 5.0V (ENABLE) EN_ NOISE (pA/√Hz) MAX4212/3/6/8/20-26 10 MAX4212/3/6/8/20-25 100 VCM = 1.75V, RL = 100Ω to GROUND VCM = 0.9V, RL = 100Ω to GROUND VCM = 1.75V, RL = 100Ω to GROUND NOISE (nV/√Hz) 20ns/div VCM = 1.25V, RL = 100Ω to GROUND VCM = 2.5V, RL = 100Ω to GROUND 10 0 (DISABLE) OUT 1V 0 1 1 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 1µs/div VIN = 1.0V _______________________________________________________________________________________ 7 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 ____________________________Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0, AVCL = 1, RF = 24Ω, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.) ____________________________Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0, AVCL = 1, RF = 24Ω, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.) CLOSED-LOOP BANDWIDTH vs. LOAD RESISTANCE 30 20 300 250 200 150 100 1k 0 100 200 300 400 500 LOAD RESISTANCE (Ω) 100k 600 5 4 MAX4212/3/6/8/20-32 5.5 5.0 4.5 POWER-SUPPLY CURRENT vs. POWER-SUPPLY VOLTAGE -25 0 25 50 TEMPERATURE (°C) 75 6 4 2 0 4 3 2 4 5 6 7 8 9 10 POWER-SUPPLY VOLTAGE (V) 11 0.04 -50 -25 0 25 50 TEMPERATURE (°C) 75 100 5.0 RL = 150Ω TO VCC/2 4.8 4.6 4.4 4.2 1 4.0 0 3 0.08 VOLTAGE SWING vs. TEMPERATURE MAX4212/3/6/8/20-35 5 INPUT OFFSET VOLTAGE (mV) MAX4212/3/6/8/20-34 8 0.12 100 INPUT OFFSET VOLTAGE vs. TEMPERATURE 10 0.16 0 -50 100 100M 0.20 VOLTAGE SWING (Vp-p) 75 10M FREQUENCY (Hz) 4.0 3 1M INPUT OFFSET CURRENT vs. TEMPERATURE 6.0 INPUT BIAS CURRENT (µA) MAX4212/3/6/8/20-31 POWER-SUPPLY CURRENT (mA) 6 0 25 50 TEMPERATURE (°C) -60 INPUT BIAS CURRENT vs. TEMPERATURE 7 -25 -50 -80 POWER-SUPPLY CURRENT vs. TEMPERATURE -50 -40 MAX4212/3/6/8/20-33 400 600 800 LOAD RESISTANCE (Ω) -30 -90 INPUT OFFSET CURRENT (µA) 200 -20 -70 50 0 0 8 0 -10 MAX4212/3/6/8/20-36 40 350 OFF-ISOLATION (dB) 50 OFF-ISOLATION vs. FREQUENCY 10 MAX4212/3/6/8/20-29 OPEN-LOOP GAIN (dB) 60 400 CLOSED-LOOP BANDWIDTH (MHz) MAX4212/3/6/8/20-28 70 MAX4212/3/6/8/20-30 OPEN-LOOP GAIN vs. LOAD RESISTANCE POWER-SUPPLY CURRENT (mA) MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable -50 -25 0 25 50 TEMPERATURE (°C) 75 100 -50 -25 0 25 50 TEMPERATURE (°C) _______________________________________________________________________________________ 75 100 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable PIN MAX4212 MAX4213 MAX4216 SOT23 SO/µMAX SO/µMAX MAX4218 MAX4220 SO QSOP SO QSOP NAME FUNCTION — 1, 5 — — 8, 9 — 8, 9 N.C. No Connection. Not internally connected. Tie to ground or leave open. 1 6 — — — — — OUT Amplifier Output 2 4 4 11 13 11 13 VEE Negative Power Supply or Ground (in single-supply operation) 3 3 — — — — — IN+ Noninverting Input 4 2 — — — — — IN- Inverting Input 5 7 8 4 4 4 4 VCC Positive Power Supply — — 1 7 7 1 1 OUTA — — 2 6 6 2 2 INA- Amplifier A Inverting Input — — 3 5 5 3 3 INA+ Amplifier A Noninverting Input — — 7 8 10 7 7 OUTB Amplifier B Output — — 6 9 11 6 6 INB- Amplifier B Inverting Input — — 5 10 12 5 5 INB+ Amplifier B Noninverting Input — — — 14 16 8 10 OUTC Amplifier C Output — — — 13 15 9 11 INC- Amplifier C Inverting Input — — — 12 14 10 12 INC+ Amplifier C Noninverting Input — — — — — 14 16 OUTD Amplifier D Output — — — — — 13 15 IND- Amplifier D Inverting Input — — — — — 12 14 IND+ Amplifier D Noninverting Input — 8 — — — — — EN — — — 1 1 — — ENA Enable Amplifier A — — — 3 3 — — ENB Enable Amplifier B — — — 2 2 — — ENC Enable Amplifier C Amplifier A Output Enable Amplifier _______________________________________________________________________________________ 9 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 ______________________________________________________________Pin Description MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable _______________Detailed Description The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 600V/µs slew rates and 300MHz bandwidths. Excellent harmonic distortion and differential gain/ phase performance make these amplifiers an ideal choice for a wide variety of video and RF signalprocessing applications. The output voltage swing comes to within 50mV of each supply rail. Local feedback around the output stage assures low open-loop output impedance to reduce gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for ±100mA drive capability, while constraining total supply current to less than 7mA. The input stage permits common-mode voltages beyond the negative supply and to within 2.25V of the positive supply rail. __________Applications Information Choosing Resistor Values Unity-Gain Configuration The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are internally compensated for unity gain. When configured for unity gain, the devices require a 24Ω resistor (R F ) in series with the feedback path. This resistor RG improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance. Inverting and Noninverting Configurations Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier’s input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using 1kΩ resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the 1kΩ resistors to 100Ω extends the pole frequency to 1.59GHz, but could limit output swing by adding 200Ω in parallel with the amplifier’s load resistor. Table 1 shows suggested feedback, gain resistors, and bandwidth for several gain values in the configurations shown in Figures 1a and 1b. Layout and Power-Supply Bypassing These amplifiers operate from a single 3.3V to 11V power supply or from dual supplies to ±5.5V. For single-supply operation, bypass VCC to ground with a 0.1µF capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a 0.1µF capacitor. RF RF RG IN RTO IN VOUT = [1+ (RF / RG)] VIN RTIN Figure 1a. Noninverting Gain Configuration 10 VOUT RTIN RTO RO VOUT = -(RF / RG) VIN RS Figure 1b. Inverting Gain Configuration ______________________________________________________________________________________ VOUT RO Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable • Use surface-mount instead of through-hole components for better high-frequency performance. • Use a PC board with at least two layers; it should be as free from voids as possible. • Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners. Rail-to-Rail Outputs, Ground-Sensing Input The input common-mode range extends from (VEE - 200mV) to (VCC - 2.25V) with excellent commonmode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup. The output swings to within 50mV of either powersupply rail with a 10kΩ load. The input ground-sensing and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single 5V application, the input can swing 2.95VP-P, and the output can swing 4.9VP-P with minimal distortion. Enable Input and Disabled Output The enable feature (EN_) allows the amplifier to be placed in a low-power, high-output-impedance state. Typically, the EN_ logic low input current (IIL) is small. However, as the EN voltage (VIL) approaches the negative supply rail, IIL increases (Figure 2). A single resistor connected as shown in Figure 3 prevents the rise in the logic-low input current. This resistor provides a feedback mechanism that increases VIL as the logic input is brought to VEE. Figure 4 shows the resulting input current (IIL). When the MAX4213/MAX4218 are disabled, the amplifier’s output impedance is 35kΩ. This high resistance and the low 2pF output capacitance make these parts ideal in RF/video multiplexer or switch applications. For larger arrays, pay careful attention to capacitive loading. See the Output Capacitive Loading and Stability section for more information. Table 1. Recommended Component Values GAIN (V/V) COMPONENT +1 -1 +2 -2 +5 -5 +10 -10 +25 -25 RF (Ω) 24 500 500 500 500 500 500 500 500 1200 RG (Ω) ∞ 500 500 250 124 100 56 50 20 50 RS (Ω) — 0 — 0 — 0 — 0 — 0 RTIN (Ω) 49.9 56 49.9 62 49.9 100 49.9 ∞ 49.9 ∞ RTO (Ω) 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 Small-Signal -3dB Bandwidth (MHz) 300 90 105 60 25 33 11 25 6 10 Note: RL = RO + RTO; RTIN and RTO are calculated for 50Ω applications. For 75Ω systems, RTO = 75Ω; calculate RTIN from the following equation: R TIN = 75 Ω 75 1RG ______________________________________________________________________________________ 11 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier’s performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following guidelines when designing the board: • Don’t use wire-wrap boards because they are too inductive. • Don’t use IC sockets because they increase parasitic capacitance and inductance. 20 ENABLE 0 INPUT CURRENT (µA) -20 10kΩ -40 IN- EN_ -60 MAX42_ _ -80 OUT IN+ -100 -120 -140 -160 0 50 100 150 200 250 300 350 400 450 500 Figure 3. Circuit to Reduce Enable Logic-Low Input Current mV ABOVE VEE Output Capacitive Loading and Stability Figure 2. Enable Logic-Low Input Current vs. VIL 0 -1 -2 INPUT CURRENT (µA) MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable -3 -4 -5 -6 -7 -8 -9 -10 0 50 100 150 200 250 300 350 400 450 500 mV ABOVE VEE Figure 4. Enable Logic-Low Input Current vs. VIL with 10kΩ Series Resistor 12 The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are optimized for AC performance. They are not designed to drive highly reactive loads, which decreases phase margin and may produce excessive ringing and oscillation. Figure 5 shows a circuit that eliminates this problem. Figure 6 is a graph of the optimal isolation resistor (RS) vs. capacitive load. Figure 7 shows how a capacitive load causes excessive peaking of the amplifier’s frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ω to 30Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 8 shows the effect of a 27Ω isolation resistor on closed-loop response. Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line’s capacitance. ______________________________________________________________________________________ Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 RF RG RISO VOUT MAX42_ _ VIN CL 50Ω RTIN ISOLATION RESISTANCE, RISO (Ω) 30 25 20 15 10 5 0 0 Figure 5. Driving a Capacitive Load through an Isolation Resistor 100 150 200 CAPACITIVE LOAD (pF) 250 Figure 6. Capacitive Load vs. Isolation Resistance 6 3 5 2 CL = 15pF 4 RISO = 27Ω CL = 47pF 1 3 0 CL = 10pF 2 GIAN (dB) GIAN (dB) 50 1 0 CL = 5pF -1 -2 -4 -5 -3 -6 -4 1M 10M 100M CL = 120pF -3 -2 100k CL = 68pF -1 1G FREQUENCY (Hz) Figure 7. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor -7 100k 1M 10M 100M 1G FREQUENCY (Hz) Figure 8. Small-Signal Gain vs. Frequency with Load Capacitance and 27Ω Isolation Resistor ______________________________________________________________________________________ 13 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Pin Configurations (continued) TOP VIEW ENA 1 14 OUTC OUTA 1 14 OUTD ENC 2 ENB 3 13 INC- INA- 2 13 IND- 12 INC+ INA+ 3 12 IND+ 11 VEE VCC 4 INA+ 5 10 INB+ INB+ 5 10 INC+ INA- 6 9 INB- INB- 6 9 INC- OUTA 7 8 OUTB OUTB 7 8 OUTC VCC 4 MAX4218 SO OUTA 1 INA- 2 INA+ 3 MAX4216 VEE 4 ENA 1 16 OUTC ENC 2 ENB 3 MAX4218 VCC 7 OUTB 6 INB- 5 INB+ 11 VEE SO OUTA 1 16 OUTD 15 INC- INA- 2 15 IND- 14 INC+ INA+ 3 14 IND+ MAX4220 13 VEE VCC 4 INA+ 5 12 INB+ INB+ 5 12 INC+ INA- 6 11 INB- INB- 6 11 INC- OUTA 7 10 OUTB OUTB 7 10 OUTC N.C. 8 9 N.C. N.C. 8 9 N.C. VCC 4 QSOP 14 µMAX/SO 8 MAX4220 13 VEE QSOP ______________________________________________________________________________________ Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable Chip Information MAX4216ESA -40°C to +85°C 8 SO — MAX4212/MAX4213 TRANSISTOR COUNT: 95 MAX4216 TRANSISTOR COUNT: 190 MAX4218 TRANSISTOR COUNT: 299 MAX4216EUA -40°C to +85°C 8 µMAX — MAX4220 TRANSISTOR COUNT: 362 MAX4218ESD -40°C to +85°C 14 SO — MAX4218EEE -40°C to +85°C 16 QSOP — MAX4220ESD -40°C to +85°C 14 SO — MAX4220EEE -40°C to +85°C 16 QSOP — PART TEMP RANGE PIN PACKAGE TOP MARK Package Information SOT-23 5L .EPS (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) PACKAGE OUTLINE, SOT-23, 5L 21-0057 E 1 1 ______________________________________________________________________________________ 15 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 _Ordering Information (continued) Package Information (continued) 4X S 8 8 INCHES DIM A A1 A2 b E ÿ 0.50±0.1 H c D e E H 0.6±0.1 L 1 1 α 0.6±0.1 S BOTTOM VIEW D MIN 0.002 0.030 MAX 0.043 0.006 0.037 0.014 0.010 0.007 0.005 0.120 0.116 0.0256 BSC 0.120 0.116 0.198 0.188 0.026 0.016 6∞ 0∞ 0.0207 BSC 8LUMAXD.EPS (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) MILLIMETERS MAX MIN 0.05 0.75 1.10 0.15 0.95 0.25 0.36 0.13 0.18 2.95 3.05 0.65 BSC 2.95 3.05 4.78 5.03 0.41 0.66 0∞ 6∞ 0.5250 BSC TOP VIEW A1 A2 A α c e b L SIDE VIEW FRONT VIEW PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE, 8L uMAX/uSOP APPROVAL DOCUMENT CONTROL NO. 21-0036 REV. J 1 1 QSOP.EPS MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MAX4213EVKIT 价格&库存

很抱歉,暂时无法提供与“MAX4213EVKIT”相匹配的价格&库存,您可以联系我们找货

免费人工找货