19-3555; Rev 2; 7/05
8-Port, 5.5V Constant-Current LED Driver
Features
The MAX6968 serial-interfaced LED driver provides
eight open-drain, constant-current sinking LED driver
outputs rated at 5.5V. The MAX6968 operates from a 3V
to 5.5V supply. The MAX6968 supply and the LEDs’
supply or supplies may power up in any order. The
constant-current outputs are programmed together to
up to 55mA using a single external resistor. The
MAX6968 operates with a 25Mb, industry-standard, 4wire serial interface.
The MAX6968 uses the industry-standard shift-registerplus-latch-type serial interface. The driver accepts data
shifted into an 8-bit shift register using data input DIN
and clock input CLK. Input data appears at the output
DOUT eight clock cycles later to allow cascading of
multiple MAX6968s. The latch-enable input LE loads
the 8 bits of shift register data into an 8-bit output latch
to set which LEDs are on and which are off. The outputenable input OE gates all eight outputs on and off, and
is fast enough to be used as a PWM input for LED
intensity control.
♦ 25Mb Industry-Standard 4-Wire Serial Interface at 5V
For applications requiring LED fault detection, refer to
the MAX6977 data sheet that automatically detects
open-circuit LEDs.
For safety-related applications requiring a watchdog
timer, refer to the MAX6978 data sheet that includes a
fail-safe feature that blanks the display if the serial interface becomes inactive for more than 1s.
The MAX6968 is one of a family of 12 shift-register-pluslatch-type LED drivers. The family includes 8-port and
16-port types, with 5.5V- or 36V-rated LED outputs, with
and without open-circuit LED detection and watchdog.
All versions operate from a 3V to 5.5V supply, and are
specified over the -40°C to +125°C temperature range.
♦ 3V to 5.5V Logic Supply
♦ 8 Constant-Current LED Outputs Rated at 5.5V
♦ Up to 55mA Continuous Current per Output
♦ Output Current Programmed by Single Resistor
♦ 3% Current Matching Between Outputs
♦ 6% Current Matching Between ICs
♦ -40°C to +125°C Temperature Range
Ordering Information
PART
TEMP RANGE
PIN-PACKAGE
MAX6968AUE
-40°C to +125°C
16 TSSOP-EP*
MAX6968APE
-40°C to +125°C
16 PDIP
MAX6968AAE
-40°C to +125°C
16 SSOP
*EP = Exposed pad.
Typical Application Circuit and Selector Guide appear at
end of data sheet.
Pin Configuration
TOP VIEW
Applications
Variable Message Signs
Marquee Displays
Point-of-Order Signs
GND 1
16 V+
DIN 2
15 SET
CLK 3
LE 4
14 DOUT
MAX6968AUE
MAX6968APE
MAX6968AAE
13 OE
Traffic Signs
OUT0 5
Gaming Features
OUT1 6
11 OUT6
Architectural Lighting
OUT2 7
10 OUT5
OUT3 8
9
12 OUT7
OUT4
TSSOP/PDIP/SSOP
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX6968
General Description
MAX6968
8-Port, 5.5V Constant-Current LED Driver
ABSOLUTE MAXIMUM RATINGS
Voltage (with respect to GND)
V+ ............................................................................-0.3V to +6V
OUT_ .......................................................................-0.3V to +6V
DIN, CLK, LE, OE, SET ................................-0.3V to (V+ + 0.3V)
DOUT Current ..................................................................±10mA
OUT_ Sink Current .............................................................60mA
Total GND Current ...........................................................480mA
Continuous Power Dissipation (TA = +70°C)
16-Pin SSOP (derate 7.1mW/°C above +70°C) ............571mW
16-Pin PDIP (derate 10.5mW/°C above +70°C)............842mW
16-Pin TSSOP (derate 21.3mW/°C over
TA = +70°C) ..............................................................1702mW
Operating Temperature Range .........................-40°C to +125°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit, V+ = 3V to 5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at V+ = 5V, TA = +25°C.)
(Note 1)
PARAMETER
Operating Supply Voltage
Output Voltage
SYMBOL
CONDITIONS
V+
MIN
TYP
3.0
VOUT
MAX
UNITS
5.5
V
5.5
V
Standby Current
(Interface Idle, All Output Ports
High Impedance, RSET = 360Ω)
I+
All logic inputs at V+ or GND, DOUT
unloaded
4.5
5.6
mA
Standby Current
(Interface Running, All Output
Ports High Impedance,
RSET = 360Ω)
I+
fCLK = 5MHz, OE = V+, DIN and LE = V+
or GND, DOUT unloaded
4.7
6
mA
Supply Current
(Interface Idle, All Output Ports
Active Low, RSET = 360Ω)
I+
All logic inputs at V+ or GND,
DOUT unloaded
10
25
mA
Input High Voltage
DIN, CLK, LE, OE
VIH
Input Low Voltage
DIN, CLK, LE, OE
VIL
Hysteresis Voltage
DIN, CLK, LE, OE
∆VI
Input Leakage Current
DIN, CLK, LE, OE
0.7 V+
0.3 V+
0.8
IIH, IIL
-1
Output High-Voltage DOUT
VOH
ISOURCE = 4mA
Output Low Voltage
VOL
ISINK = 4mA
Output Current OUT_
IOUT
V+ = 3V to 5.5V, VOUT = 0.5V to 2.5V,
RSET = 360Ω
Output Leakage Current OUT_
ILEAK
OE = V+, VOUT = V+
Watchdog Timeout
2
tWD
V
V
+1
V+
- 0.5V
42
V
µA
V
50
1
_______________________________________________________________________________________
0.5
V
56
mA
1
µA
s
8-Port, 5.5V Constant-Current LED Driver
(Typical Operating Circuit, V+ = 4.5V to 5.5V, TA = TMIN to TMAX, unless otherwise noted.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
CLK Clock Period
tCP
40
ns
CLK Pulse-Width High
tCH
19
ns
CLK Pulse-Width Low
tCL
19
ns
DIN Setup Time
tDS
4
ns
DIN Hold Time
tDH
8
ns
DOUT Propagation Delay
tDO
DOUT Rise and Fall Time
tDR, tDF
LE Pulse-Width High
LE Setup Time
12
CDOUT = 10pF, 20% to 80%
tLW
32
10
20
tLS
ns
ns
ns
10
ns
LE Rising to OUT_ Rising Delay
tLRR
(Note 2)
100
ns
LE Rising to OUT_ Falling Delay
tLRF
(Note 2)
280
ns
CLK Rising to OUT_ Rising Delay
tCRR
(Note 2)
100
ns
CLK Rising to OUT_ Falling Delay
tCRF
(Note 2)
310
ns
OE Rising to OUT_ Rising Delay
tOEH
100
ns
OE Falling to OUT_ Falling Delay
tOEL
300
ns
LED Output OUT_ Turn-On Fall
Time
tf
80% to 20%
200
ns
LED Output OUT_ Turn-Off Rise
Time
tr
20% to 80%
120
ns
_______________________________________________________________________________________
3
MAX6968
5V TIMING CHARACTERISTICS
3.3V TIMING CHARACTERISTICS
(Typical Operating Circuit, V+ = 3V to 5.5V, TA = TMIN to TMAX, unless otherwise noted.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
CLK Clock Period
tCP
52
ns
CLK Pulse-Width High
tCH
24
ns
CLK Pulse-Width Low
tCL
24
ns
DIN Setup Time
tDS
4
ns
DIN Hold Time
tDH
8
DOUT Propagation Delay
tDO
12
DOUT Rise and Fall Time
tDR, tDF
ns
48
CDOUT = 10pF, 20% to 80%
ns
10
ns
LE Pulse-Width High
tLW
20
ns
LE Setup Time
tLS
15
ns
LE Rising to OUT_ Rising Delay
tLRR
100
ns
LE Rising to OUT_ Falling Delay
tLRF
310
ns
CLK Rising to OUT_ Rising Delay
tCRR
100
ns
CLK Rising to OUT_ Falling Delay
tCRF
330
ns
OE Rising to OUT_ Rising Delay
tOEH
100
ns
OE Falling to OUT_ Falling Delay
tOEL
330
ns
LED Output OUT_ Turn-On Fall
Time
tf
80% to 20%
200
ns
LED Output OUT_ Turn-Off Rise
Time
tr
20% to 80%
120
ns
Note 1: All parameters tested at TA = +25°C. Specifications over temperature are guaranteed by design.
Note 2: See Figure 3.
Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
3.0
TA = +25°C
2.8
TA = +125°C
5.0
4.9
4.8
4.7
4.6
4.5
TA = +25°C
4.4
TA = -40°C
2.7
4.2
3.0
3.5
4.0
4.5
SUPPLY VOLTAGE (V)
5.0
5.5
TA = +85°C
TA = +125°C
12
9
6
TA = -40°C
TA = +25°C
3
TA = -40°C
4.3
2.6
15
MAX6968 toc03
TA = +85°C
SUPPLY CURRENT (mA)
3.1
2.9
5.1
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(INTERFACE IDLE, ALL OUTPUTS
ON, RSET = 720Ω)
MAX6968 toc02
TA = +85°C
TA = +125°C
3.2
5.2
SUPPLY CURRENT (mA)
3.3
4
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(INTERFACE IDLE, ALL OUTPUTS
OFF, RSET = 360Ω)
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(INTERFACE IDLE, ALL OUTPUTS OFF,
RSET = 720Ω)
MAX6968 toc01
3.4
SUPPLY CURRENT (mA)
MAX6968
8-Port, 5.5V Constant-Current LED Driver
0
3.0
3.5
4.0
4.5
SUPPLY VOLTAGE (V)
5.0
5.5
3.0
3.5
4.0
4.5
SUPPLY VOLTAGE (V)
_______________________________________________________________________________________
5.0
5.5
8-Port, 5.5V Constant-Current LED Driver
TA = -40°C
6
TA = +25°C
3
20
TA = +25°C
TA = +85°C
15
TA = +125°C
10
5
0
3.5
4.0
4.5
5.0
5.5
MAX6968 toc06
50
TA = -40°C
40
TA = +25°C
TA = +85°C
30
TA = +125°C
20
10
0
3.0
0
0
0.5
1.0
1.5
2.0
2.5
3.0
0
0.5
1.0
1.5
2.0
2.5
3.0
SUPPLY VOLTAGE (V)
PORT OUTPUT VOLTAGE (V)
PORT OUTPUT VOLTAGE (V)
PORT OUTPUT CURRENT vs. PORT OUTPUT
VOLTAGE (RSET = 720Ω, V+ = 5.0V)
PORT OUTPUT CURRENT vs. PORT OUTPUT
VOLTAGE (RSET = 360Ω, V+ = 5.0V)
PORT OUTPUT CURRENT vs. SUPPLY
VOLTAGE (RSET = 720Ω, VOUT = 2V)
20
TA = +25°C
TA = +85°C
15
TA = +125°C
10
5
50
TA = -40°C
40
TA = +25°C
TA = +85°C
30
TA = +125°C
20
26.0
PORT OUTPUT CURRENT (mA)
TA = -40°C
MAX6968 toc08
25
60
PORT OUTPUT CURRENT (mA)
MAX6968 toc07
30
0
0.5
1.0
1.5
2.0
2.5
3.0
TA = +85°C
TA = +125°C
25.0
24.5
TA = +25°C
24.0
TA = -40°C
23.0
0
0
0.5
PORT OUTPUT VOLTAGE (V)
1.0
1.5
2.0
2.5
3.0
3.0
3.5
PORT OUTPUT CURRENT vs. SUPPLY
VOLTAGE (RSET = 360Ω, VOUT = 2V)
51
5.0
5.5
PORT OUTPUT CURRENT
vs. RSET RESISTANCE (V+ = 5.0V)
TA = +85°C
TA = +125°C
50
49
TA = +25°C
TA = -40°C
4.5
48
47
50
MAX6968 toc11
52
4.0
SUPPLY VOLTAGE (V)
PORT OUTPUT VOLTAGE (V)
MAX6968 toc10
0
25.5
23.5
10
PORT OUTPUT CURRENT (mA)
PORT OUTPUT CURRENT (mA)
TA = -40°C
60
MAX6968 toc09
9
25
PORT OUTPUT CURRENT (mA)
SUPPLY CURRENT (mA)
12
30
PORT OUTPUT CURRENT vs. PORT OUTPUT
VOLTAGE (RSET = 360Ω, V+ = 3.3V)
PORT OUTPUT CURRENT (mA)
TA = +85°C
MAX6968 toc05
TA = +125°C
PORT OUTPUT CURRENT vs. PORT OUTPUT
VOLTAGE (RSET = 720Ω, V+ = 3.3V)
PORT OUTPUT CURRENT (mA)
15
MAX6968 toc04
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(INTERFACE IDLE, ALL OUTPUTS ON, RSET = 360Ω)
40
30
20
10
0
3.0
3.5
4.0
4.5
SUPPLY VOLTAGE (V)
5.0
5.5
0
500
1000
1500
2000
2500
RSET RESISTANCE (Ω)
_______________________________________________________________________________________
5
MAX6968
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
8-Port, 5.5V Constant-Current LED Driver
MAX6968
Pin Description
PIN
NAME
1
GND
Ground
2
DIN
Serial-Data Input. Data is loaded into the internal 8-bit shift register on CLK’s rising edge.
3
CLK
Serial-Clock Input. Data is loaded into the internal 8-bit shift register on CLK’s rising edge.
4
LE
5–12
OUT0–OUT7
13
OE
Output-Enable Input. High forces outputs OUT0–OUT7 to high impedance, without altering the contents of
the output latches. Low enables outputs OUT0–OUT7 to follow the state of the output latches.
14
DOUT
Serial-Data Output. Data is clocked out of the 8-bit internal shift register to DOUT on CLK’s rising edge.
15
SET
LED Current Setting. Connect SET to GND through a resistor (RSET) to set the maximum LED current.
16
V+
Positive Supply Voltage. Bypass V+ to GND with a 0.1µF ceramic capacitor.
PAD
FUNCTION
Load-Enable Input. Data is loaded transparently from the internal shift register to the output latch while
LE is high. Data is latched into the output latch on LE's falling edge, and retained while LE is low.
LED Driver Outputs. OUT0–OUT7 are open-drain, constant-current sinking outputs rated to 5.5V.
Exposed pad* Exposed pad on package underside. Connect to GND.
*TSSOP package only.
CLK
MAX6968
DIN
D0
SERIAL-TO-PARALLEL SHIFT REGISTER
D7
LE
D0
LATCHES
D7
DOUT
POWER-ON
RESET
V+
OE
V+
CONSTANT-CURRENT SINKS
D0
D7
CURRENT
REFERENCE
RSET
OUT0
OUT2
OUT1
OUT5
OUT7
OUT6
GND
GND
Figure 1. MAX6968 Block Diagram
6
_______________________________________________________________________________________
8-Port, 5.5V Constant-Current LED Driver
The MAX6968 LED driver comprises a 4-wire serial
interface driving eight constant-current sinking opendrain output ports. The outputs drive LEDs in either
static or multiplex applications (Figure 1). The constantcurrent outputs are guaranteed for current accuracy
not only with chip-supply voltage variations (5V ±10%
and 3V to 5.5V), but also over a realistic range of driver
output voltage drop (0.5V to 2.5V). The drivers use current-sensing feedback circuitry (not simple current mirrors) to ensure very small current variations over the full
allowed range of output voltage (see the Typical
Operating Characteristics).
The 4-wire serial interface comprises an 8-bit shift register and an 8-bit transparent latch. The shift register is
written through a clock input CLK and a data input DIN
and the data propagates to a data output DOUT. The
data output allows multiple drivers to be cascaded and
operated together. The contents of the 8-bit shift register are loaded into the transparent latch through a latch
enable input LE. The latch is transparent to the shift
register outputs when high, and latches the current
state on the falling edge of LE.
Each driver output is an open-drain constant-current
sink that should be connected to the cathode of either
a single LED or a series string of multiple LEDs. The
LED anode can be connected to a supply voltage of up
to 5.5V, independent of the MAX6968 supply, V+. The
constant-current capability is up to 55mA per output,
set for all eight outputs by an external resistor, RSET.
Initial Power-Up and Operation
An internal reset circuit clears the internal registers of
the MAX6968 on power-up. All outputs OUT0–OUT7,
therefore, initialize high impedance, and the interface
output DOUT initializes low, regardless of the initial
logic levels of the CLK, DIN, OE, and LE inputs.
4-Wire Serial Interface
The serial interface on the MAX6968 is a 4-wire serial
interface using four inputs (DIN, CLK, LE, OE) and a
data output (DOUT). This interface is used to write display data to the MAX6968. The serial-interface data
word length is 8 bits, D0–D7. See Figure 2.
The functions of the five interface pins are as follows.
DIN is the serial data input, and must be stable when it
is sampled on the rising edge of CLK. Data is shifted in,
MSB first. This means that data bit D7 is clocked in first,
followed by 7 more data bits finishing with the LSB D0.
LE
tCL
tCH
tLS
tCP
tLW
tLF
CLK
tDH
tDS
DIN
D7
D1
D6
D0
tDO
D7
DOUT
tOEW
OE
tOEL
tOEH
80%
OUT_
.
20%
tf
tr
Figure 2. 4-Wire Serial-Interface Timing Diagram
_______________________________________________________________________________________
7
MAX6968
Detailed Description
8-Port, 5.5V Constant-Current LED Driver
MAX6968
CLK is the serial-clock input, which shifts data at DIN
into the MAX6968 8-bit shift register on its rising edge.
LE
LE is the load input of the MAX6968 latch that transfers
data from the MAX6968 8-bit shift register to its 8-bit
latch when LE is high (transparent latch), and latches
the data on the LE’s falling edge of LE (Figure 2).
The fourth input provides output-enable control of the
output drivers. OE is high to force outputs OUT0–OUT7
high impedance, without altering the contents of the
output latches, and low to enable outputs OUT0–OUT7
to follow the state of the output latches.
tLRF
OUT_
LE
tLRR
OUT_
OE is independent of the operation of the serial interface. Data can be shifted into the serial-interface shift
register and latched, regardless of the state of OE.
CLK
tCRF
OUT_
DOUT is the serial-data output, which shifts data out
from the MAX6968’s 8-bit shift register on the rising edge
of CLK. Data at DIN is propagated through the shift register and appears at DOUT eight clock cycles later.
CLK
tCRR
OUT_
Figure 3. LE and CLK to OUT_ Timing
Table 1. 4-Wire Serial-Interface Truth Table
SERIAL CLOCK
DATA INPUT
INPUT
D0
CLK
DIN
SHIFT-REGISTER
CONTENTS
LOAD
INPUT
BLANKING
INPUT
LATCH CONTENTS
OUTPUT CONTENTS
D1
D2
… Dn-1 Dn
LE
D0
D1
D2
… Dn-1 Dn
OE
D0
D1
… Dn-1 Dn
H
H
R1
R2
… Rn-2 Rn-1
—
—
—
—
—
—
—
—
—
—
—
—
—
—
L
L
R1
R2
… Rn-2 Rn-1
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
R0
R1
R2
… Rn-1 Rn
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
X
X
…
X
H
R0
R1
R2
— Rn-1 Rn
—
—
—
—
—
—
—
—
—
P1
P2
P3
L
P0
P1
P2
P0
P1
P2
—
—
—
—
—
X
X
X
… Pn-1 Pn
…
X
X
L
—
… Pn-1 Pn
— — —
X
H
… Pn-1 Pn
Hi-Z Hi-Z Hi-Z … Hi-Z Hi-Z
L = Low-logic level
H = High-logic level
X = Don’t care
P = Present state
R = Previous state
8
D2
_______________________________________________________________________________________
8-Port, 5.5V Constant-Current LED Driver
Selecting External Component RSET to Set
LED Output Current
The MAX6968 uses an external resistor RSET to set the
LED current for outputs OUT0–OUT7. The minimum
allowed value of RSET is 307.6Ω, which sets the output
currents to 55mA. The maximum allowed value of RSET
is 1.5kΩ. The reference value, 360Ω, sets the output
currents to 50mA. To set a different output current, use
the formula:
RSET = 18,000 / IOUT
where IOUT is the desired output current in mA.
Computing Power Dissipation
The upper limit for power dissipation (P D ) for the
MAX6968 is determined by the following equation:
PD = (V+ x I+) + (VOUT x DUTY x IOUT x N)
where:
V+ = supply voltage
I+ = operating supply current when sinking IOUT LED
drive current into N outputs
DUTY = PWM duty cycle applied to OE
N = number of MAX6968 outputs driving LEDs at the
same time (maximum is 8)
VOUT = MAX6968 port output voltage when driving load
LED(s)
IOUT = LED drive current programmed by RSET
Overtemperature Cutoff
The MAX6968 contains an internal temperature sensor
that turns off all outputs when the die temperature
exceeds approximately +165°C. The outputs are
enabled again when the die temperature drops below
approximately +140°C. Register contents are not
affected, so when a driver is overdissipating, the external symptom will be the load LEDs cycling between on
and off as the driver repeatedly overheats and cools,
alternately turning the LEDs off and then back on again.
Power-Supply Considerations
The MAX6968 operates with a chip supply V+, and one
or more LED supplies. Bypass each supply to GND
with a 0.1µF capacitor as close to the MAX6968 as possible. This is normally adequate for static LED driving.
For multiplex or PWM applications, it is necessary to
add an additional bulk electrolytic capacitor of 4.7µF or
more to each supply for every 4 to 16 MAX6968s. The
necessary capacitance depends on the LED load current, PWM switching frequency, and serial-interface
speed. Inadequate V+ decoupling can cause timing
problems, and very noisy LED supplies can affect LED
current regulation.
For the TSSOP version, connect the underside exposed
pad to GND.
Chip Information
TRANSISTOR COUNT: 2382
PROCESS: BiCMOS
PD = power dissipation, in mW if currents are in mA
Dissipation example:
IOUT = 47mA, N = 8, DUTY = 1, VOUT = 2V, V+ = 5.25V
PD = (5.25V x 25mA) + (2V x 1 x 47mA x 8) = 0.883W
Thus, for a 16-pin TSSOP package (TJA = 1 / 0.0213 =
+46.95°C/W from the Absolute Maximum Ratings), the
maximum allowed ambient temperature TA is given by:
TJ(MAX) = TA + (PD x TJA) = +150°C =
TA + (0.883 x 46.95°C/W)
so TA = +108.5°C.
_______________________________________________________________________________________
9
MAX6968
Applications Information
8-Port, 5.5V Constant-Current LED Driver
MAX6968
Selector Guide
NO. OF
OUTPUTS
PART
MAX OUTPUT
VOLTAGE (V)
MAX OUTPUT
CURRENT
MAX6968
8
MAX6977
5.5
LED FAULT
DETECTION
WATCHDOG
—
—
Yes
—
MAX6978
Yes
Yes
MAX6970
—
—
8
MAX6981
36
MAX6980
55mA
MAX6969
16
MAX6984
5.5
Yes
—
Yes
Yes
—
—
Yes
—
MAX6979
Yes
Yes
MAX6971
—
—
16
MAX6982
36
MAX6983
Yes
—
Yes
Yes
Typical Application Circuit
+5V
+5V
µC
V+
SCLK
CLK
MOSI
DIN
MISO
DOUT
LOAD
LATCH
ENABLE
MAX6968
OUT0
OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7
OE
360Ω
SET
GND
0V
10
0V
______________________________________________________________________________________
8-Port, 5.5V Constant-Current LED Driver
TSSOP 4.4mm BODY.EPS
XX XX
PACKAGE OUTLINE, TSSOP, 4.40 MM BODY,
EXPOSED PAD
21-0108
E
1
1
______________________________________________________________________________________
11
MAX6968
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
PDIPN.EPS
MAX6968
8-Port, 5.5V Constant-Current LED Driver
12
______________________________________________________________________________________
8-Port, 5.5V Constant-Current LED Driver
SSOP.EPS
2
1
INCHES
E
H
MILLIMETERS
DIM
MIN
MAX
MIN
MAX
A
0.068
0.078
1.73
1.99
A1
0.002
0.008
0.05
0.21
B
0.010
0.015
0.25
0.38
C
0.20
0.09
0.004 0.008
SEE VARIATIONS
D
E
e
0.205
0.212
0.0256 BSC
5.20
MILLIMETERS
INCHES
D
D
D
D
D
5.38
MIN
MAX
MIN
MAX
0.239
0.239
0.278
0.249
0.249
0.289
6.07
6.07
7.07
6.33
6.33
7.33
0.317
0.397
0.328
0.407
8.07
10.07
8.33
10.33
N
14L
16L
20L
24L
28L
0.65 BSC
H
0.301
0.311
7.65
7.90
L
0.025
0
0.037
8
0.63
0
0.95
8
N
A
C
B
e
L
A1
D
NOTES:
1. D&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15 MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO150.
5. LEADS TO BE COPLANAR WITHIN 0.10 MM.
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, SSOP, 5.3 MM
APPROVAL
DOCUMENT CONTROL NO.
21-0056
REV.
C
1
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13
© 2005 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products, Inc.
MAX6968
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)