0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX77503AEWC+T

MAX77503AEWC+T

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFBGA12

  • 描述:

    IC REG BUCK ADJ 1.5A 12WLP

  • 数据手册
  • 价格&库存
MAX77503AEWC+T 数据手册
EVALUATION KIT AVAILABLE Click here for production status of specific part numbers. MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ General Description Benefits and Features The MAX77503 is a synchronous 1.5A step-down DCDC converter optimized for portable 2-cell and 3-cell battery-operated and USB-C applications. The converter operates on an input supply between 3V and 14V. Output voltage is adjustable between 0.8V and 5V in 50mV steps through an I2C serial interface or 1.55V to 99% of the supply voltage with external feedback resistors. Factory-programmed default voltages of 1.2V, 1.8V, and 3.3V are offered to reduce component count for common rails. The device features a low-IQ SKIP mode which allows excellent efficiency at light loads. ● 1.5A Single Channel Buck Regulator ● 3V to 14V Input Voltage Range ● 0.8V to 99%VSUP Output Voltage Range • 0.8V to 5V I2C Programmable in 50mV Steps • 1.55V to 99%VSUP with External Feedback Resistors • 1.2V, 1.8V, or 3.3V Factory Preset Options ● High-Efficiency, Low-IQ Extends Battery Life • 94% Peak Efficiency at 7.4VSUP, 3.3VOUT (2520 Inductor) • 9μA IQ (12VSUP, 1.8VOUT Internal Feedback Version) • Selectable Light-Load SKIP and Forced-PWM Modes Dedicated enable and power-OK pins allow simple hardware control. An I2C serial interface is optionally used for full configuration and control for dynamic voltage scaling and system power optimization. ● 1MHz or 550kHz Fixed-Frequency Switching ● Hardware or Software Control • Enable Input and Power-OK Output Pins • Optional I2C Full Control Interface Built-in undervoltage lockout (UVLO), output active discharge, cycle-by-cycle current limit, thermal shutdown, and short-circuit protection ensure safe operation under abnormal operating conditions. ● Protection Features • Cycle-by-Cycle Inductor Peak Current Limit • Short-Circuit Hiccup Mode, UVLO, and Thermal Shutdown Protections • 1ms Default Soft-Start The MAX77503 is available in a 12-bump, 0.4mm pitch wafer-level package (WLP). Applications ● ● ● ● 2-cell/3-cell High Power Density Supplies Portable Li+/Li-ion Battery Powered Devices Drones, HD Cameras, and Notebook Computers Space-Constrained Portable Electronics ● Small Size • 1.85mm x 1.4mm (0.7mm max. height) WLP • 12-Bump, 0.4mm Pitch, 3 x 4 Array Ordering Information appears at end of data sheet. Simplified Application Circuit EFFICIENCY vs. LOAD 7.4V SUPPLY, 2520 INDUCTOR CASE SIZE MAX77503 SUP BST 4.7μF 100 0.22μF LX COUT OUT HARDWARE OR SOFTWARE ENABLE VOUT 1.5A MAX EN BIASEN SDA SCL AGND POK VL POWER OK 2.2μF PGND 14V, 1.5A HIGH-EFFICIENCY BUCK CONVERTER OPTIMIZED FOR 2 OR 3 CELL BATTERY APPLICATIONS 19-100131; Rev 2; 12/18 90 L 80 EFFICIENCY (%) 3V TO 14V DC INPUT FEEDBACK INTERNAL EXTERNAL VOUT RANGE 0.8V TO 5V 1.55V TO 99%VSUP 70 V OUT = 5.0V (EXT FB) 60 V OUT = 3.3V (INT FB) 50 V OUT = 1.8V (INT FB) V OUT = 1.2V (INT FB) 40 V OUT = 0.8V (INT FB) 30 20 10 0 0.00001 0.0001 SKIP MODE 0.001 0.01 0.1 LOAD CURRENT (A) 1 10 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ TABLE OF CONTENTS General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 12 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Bump Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 12 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Bump Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Buck Regulator Control Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SKIP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 FPWM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Buck Enable Control (EN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Bias Enable Control (BIASEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 VL Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Power-OK (POK) Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Peak Inductor Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Active Discharge Resistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Short-Circuit Protection and Hiccup Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Register Reset Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 MAX77503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Register Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Buck Enable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Always-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Hardware Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Software Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 SUP Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 www.maximintegrated.com Maxim Integrated | 2 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ TABLE OF CONTENTS (CONTINUED) Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Setting VOUT and Choosing CFF (MAX77503AEWC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PCB Layout Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Typical Application Circuit(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 External Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Internal Feedback, 3.3V Factory Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Internal Feedback, 1.8V Factory Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Internal Feedback, 1.2V Factory Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 www.maximintegrated.com Maxim Integrated | 3 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ LIST OF FIGURES Figure 1. Buck Control Scheme Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 2. Buck Enable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 3. External Feedback Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 4. PCB Top-Metal and Component Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 www.maximintegrated.com Maxim Integrated | 4 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ LIST OF TABLES Table 1. Buck Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 2. Buck Enable Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 3. VL Enable Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 4. I2C Slave Address Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 5. Inductor Value vs. Output Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 6. Common Feedback Network Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 www.maximintegrated.com Maxim Integrated | 5 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Absolute Maximum Ratings SUP to PGND......................................................... -0.3V to +16V EN to PGND ............................................... -0.3V to VSUP + 0.3V BST to LX .............................................................. -0.3V to +2.2V BST to PGND ...................................................... -0.3V to +17.8V SDA, SCL to PGND.................................................. -0.3V to +6V VL to PGND ........................................................... -0.3V to +2.2V BIASEN, POK to PGND .............. -0.3V to MIN(VSUP+0.3V, +6V) OUT/FB to PGND ..................................................... -0.3V to +6V AGND to PGND ..................................................... -0.3V to +0.3V OUT/FB Short-Circuit Duration ...................................Continuous LX Continuous Current (Note 1) .................................... 1.6ARMS Continuous Power Dissipation (Multilayer Board, TA = +70°C) (derate 13.74mW/°C above +70°C) ............................1099mW Operating Ambient Temperature Range...............-40°C to +85°C Junction Temperature ....................................................... +150°C Soldering Temperature (reflow) ........................................ +260°C Note 1: LX has internal clamp diodes to PGND and SUP. Applications that forward bias these diodes should not exceed the ICs package power dissipation limits. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 12 WLP Package Code W121A1+3 Outline Number 21-100250 Land Pattern Number Refer to Application Note 1891 Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) www.maximintegrated.com 72.82°C/W Maxim Integrated | 6 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. www.maximintegrated.com Maxim Integrated | 7 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Electrical Characteristics (VSUP = VEN = 12V, SKIP mode, VL = 1.8V, configuration registers in reset, TA = TJ = -40ºC to +85ºC, typical values are at TA = TJ = +25°C, unless otherwise noted. Note 2.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 14 V 3.0 V STEP-DOWN CONVERTER SUP Valid Voltage Range VSUP SUP Undervoltage Lockout VSUP-UVLO 3 VSUP rising 2.8 SUP UndervoltageLockout Hysteresis 2.9 300 mV SUP Shutdown Current ISUP-SHDN VEN = VBIASEN = 0V (device disabled) 1.2 3 μA SUP Standby Current ISUP-STNBY VEN = 0V, VBIASEN = 1.8V (VL regulator and internal logic enabled, buck converter output disabled) 40 60 μA VOUT = 3.3V, internal feedback version 14 30 External feedback version 40 60 All versions, FPWM mode 1 1.5 SUP Quiescent Current VL Regulator Voltage OUT Voltage Accuracy FB Voltage Accuracy FB Input Current ISUP-Q VL VOUT VFB μA VSUP = 3V to 14V 3.3V factory-default version (VOUT-REG = 3.3V), FPWM mode External feedback version, FPWM mode 1.8 VSUP = 12V, IOUT = 250mA, TJ = +25°C 3.267 3.3 V 3.333 V VSUP = 4.5V to 14V, IOUT = 0mA to 1.5A, TJ = -40°C to +85°C 3.234 3.3 3.366 VSUP = 12V, ILOAD = 250mA, TJ = +25°C 0.792 0.8 0.808 VSUP = 3.0V to 14V, ILOAD = 0mA to 1.5A, TJ = -40°C to +85°C mA V 0.784 0.8 0.816 VFB = 0.8V, external feedback version 0.02 μA OUT/FB Load Regulation FPWM mode, 0A to 1.5A load, all versions 0.1 % OUT/FB Line Regulation VSUP = 3V to 14V, VOUT = 1.8V, FPWM mode, IOUT = 0A to 1.5A 0.02 %/VSUP OUT/FB Soft-Start Ramp Time www.maximintegrated.com IFB ILOAD = 0mA, no switching tSS SFT_STRT[1:0] = 0b00 1 SFT_STRT[1:0] = 0b01 2 SFT_STRT[1:0] = 0b10 4 SFT_STRT[1:0] = 0b11 8 ms Maxim Integrated | 8 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Electrical Characteristics (continued) (VSUP = VEN = 12V, SKIP mode, VL = 1.8V, configuration registers in reset, TA = TJ = -40ºC to +85ºC, typical values are at TA = TJ = +25°C, unless otherwise noted. Note 2.) PARAMETER SYMBOL High-Side DMOS OnResistance RON-HS Low-Side DMOS OnResistance RON-LS High-Side DMOS Peak Current Limit ILX-PEAK Low-Side DMOS Valley Current Threshold ILX-VALLEY High-Side DMOS Minimum Current Threshold ILX-PK-MIN Low-Side DMOS ZeroCrossing Threshold IZX Low-Side DMOS Negative Current-Limit Threshold INEG Minimum On-Time Maximum Duty Cycle Switching Frequency CONDITIONS TYP MAX UNITS VL = 1.8V, ILX = 90mA 90 180 mΩ VL = 1.8V, ILX = 90mA 55 110 mΩ ILX-PEAK = 500mA (I_PEAK = 0) 350 500 600 ILX-PEAK = 2000mA (I_PEAK = 1) 1800 2000 2200 Output overloaded (VOUT < 25% of target), threshold below where ontimes are allowed to start. ILX-PEAK = 500mA (I_PEAK = 0) 250 ILX-PEAK = 2000mA (I_PEAK = 1) 1000 Soft-Short Output Voltage Monitor Threshold Output-Overloaded Retry (Hiccup) Timer www.maximintegrated.com mA 200 mA SKIP mode 40 mA -700 mA 100 ns 99 % FPWM Mode tON-MIN DMAX FSW FSW-MIN mA Inductor current ramps to at least ILX-PKMIN in SKIP mode FPWM mode External feedback version 0.9 1 1.1 Internal feedback version, VOUT-REG ≥ 1.55V 0.9 1 1.1 Internal feedback version, VOUT-REG ≤ 1.5V Minimum Switching Frequency MIN SKIP mode VOUT-OVRLD MHz 0.55 1.43 kHz 0.25 x VOUT- V REG tRETRY Switching stopped due to output overload (Note 3) External feedback version 12 Internal feedback version, VOUTREG ≥ 1.55V 12 Internal feedback version, VOUTREG ≤ 1.5V 21.8 ms Maxim Integrated | 9 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Electrical Characteristics (continued) (VSUP = VEN = 12V, SKIP mode, VL = 1.8V, configuration registers in reset, TA = TJ = -40ºC to +85ºC, typical values are at TA = TJ = +25°C, unless otherwise noted. Note 2.) PARAMETER SYMBOL Active Discharge Resistor RAD CONDITIONS MIN Between OUT and PGND, buck output disabled, active discharge resistor enabled (ADEN = 1), internal feedback versions only TYP MAX 100 UNITS Ω POWER-OK OUTPUT (POK) VPOK-RISE VOUT rising, expressed as a percentage of VOUT-REG 90 92 94 VPOK-FALL VOUT falling, expressed as a percentage of VOUT-REG 88 90 92 POK Threshold % VOUT rising or falling, 1MHz clock frequency POK Debounce Timer tPOK-DB POK Leakage Current IPOK POK = high (high-Z), VPOK = 5V, TA = +25°C POK Low Voltage VPOK POK = low, sinking 1mA 20 μs 1 μA 0.4 V ENABLE INPUTS (EN, BIASEN) EN Logic High Threshold VEN_HI EN Logic Low Threshold VEN_LO EN Leakage Current IEN BIASEN Logic High Threshold VBIASEN_HI BIASEN Logic Low Threshold VBIASEN_LO 1.1 V 0.4 VEN = VSUP = 12V 0.1 V μA 1.1 V 0.4 V SERIAL INTERFACE / I/O STAGE SCL, SDA Input High Voltage VIH SCL, SDA Input Low Voltage VIL SCL, SDA Input Hysteresis VHYS SCL, SDA Input Leakage Current II SDA Output Low Voltage VOL SCL, SDA Pin Capacitance Input Filter Suppressed Spike Maximum Pulse Width tSP 1.44 V 0.54 0.3 VSCL = VSDA = 0V or 1.8V -1 Sinking 20mA V V +1 μA 0.4 V (Note 4) 10 pF (Note 4) 50 ns SERIAL INTERFACE / TIMING Clock Frequency www.maximintegrated.com fSCL 1 MHz Maxim Integrated | 10 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Electrical Characteristics (continued) (VSUP = VEN = 12V, SKIP mode, VL = 1.8V, configuration registers in reset, TA = TJ = -40ºC to +85ºC, typical values are at TA = TJ = +25°C, unless otherwise noted. Note 2.) PARAMETER SYMBOL Bus Free Time between STOP and START Condition tBUF 0.5 μs Setup Time REPEATED START Condition tSU;STA 260 ns Hold Time REPEATED START Condition tHD;STA 260 ns tLOW 500 ns SCL High Period tHIGH 260 ns Data Setup Time tSU;DAT 50 ns Data Hold Time tHD;DAT 0 μs Setup Time for STOP Condition tSU;STO 260 ns SCL Low Period CONDITIONS MIN TYP MAX UNITS THERMAL PROTECTION Thermal Shutdown Thermal-Shutdown Hysteresis TSHDN Junction temperature rising +165 °C +15 °C Note 2: The MAX77503 is tested under pulsed load conditions such that TA ≈ TJ. Min/Max limits are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design and characterization using statistical quality control methods. Note that the maximum ambient temperature consistent with this specification is determined by specific operating conditions, board layout, rated package thermal impedance, and other environmental factors. Note 3: See the Short-Circuit Protection and Hiccup Mode section. Note 4: Design guidance only. Not production tested. www.maximintegrated.com Maxim Integrated | 11 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Typical Operating Characteristics (VSUP = 12V, VOUT = 1.8V, L = 2.2μH (MURATA 2520 case size), SKIP Mode, ILX-PEAK = 2A, TA = +25ºC, internal feedback version, unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 12 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Typical Operating Characteristics (continued) (VSUP = 12V, VOUT = 1.8V, L = 2.2μH (MURATA 2520 case size), SKIP Mode, ILX-PEAK = 2A, TA = +25ºC, internal feedback version, unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 13 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Typical Operating Characteristics (continued) (VSUP = 12V, VOUT = 1.8V, L = 2.2μH (MURATA 2520 case size), SKIP Mode, ILX-PEAK = 2A, TA = +25ºC, internal feedback version, unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 14 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Typical Operating Characteristics (continued) (VSUP = 12V, VOUT = 1.8V, L = 2.2μH (MURATA 2520 case size), SKIP Mode, ILX-PEAK = 2A, TA = +25ºC, internal feedback version, unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 15 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Typical Operating Characteristics (continued) (VSUP = 12V, VOUT = 1.8V, L = 2.2μH (MURATA 2520 case size), SKIP Mode, ILX-PEAK = 2A, TA = +25ºC, internal feedback version, unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 16 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Typical Operating Characteristics (continued) (VSUP = 12V, VOUT = 1.8V, L = 2.2μH (MURATA 2520 case size), SKIP Mode, ILX-PEAK = 2A, TA = +25ºC, internal feedback version, unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 17 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Bump Configuration 12 WLP TOP VIEW (BUMP SIDE DOWN) MAX77503 1 2 3 4 SUP LX PGND SDA EN POK AGND SCL VL BIASEN OUT/FB + BST A B C 12 WLP (1.85mm x 1.4mm x 0.7mm, 0.4mm PITCH) Bump Descriptions PIN NAME FUNCTION A1 BST High-Side FET Driver Supply. Connect a 0.22μF ceramic capacitor between BST and LX. A2 SUP Buck Supply Input. Bypass to PGND with a 4.7μF ceramic capacitor as close to the IC as possible. A3 LX A4 PGND Power Ground. Connect to AGND on the PCB. B4 AGND Quiet Ground. Connect to PGND on the PCB. Switching Node. LX is high-impedance when the converter is disabled. Internal Feedback Versions: Output Voltage Sense Input. Connect to the positive voltage side of the output capacitors to regulate the buck output voltage. C4 OUT/FB C2 VL Low-Voltage Internal IC Supply Output. Bypass to AGND with a 2.2μF ceramic capacitor. Do not load this pin externally. B3 POK Open-Drain Power-OK Output. An external pullup resistor (10kΩ to 100kΩ) is required to use this pin. Leave this pin unconnected if unused. B2 EN Enable Input. Drive EN above VEN_HI to enable the buck output. Drive EN to PGND to disable. EN is compatible with the SUP voltage domain. If using I2C to control the buck, the enable bit (EN_BIT) interacts with the EN pin. See the Buck Enable Control (EN) section. C3 BIASEN BIAS Enable Input. Enables the I2C interface without enabling the buck output. Drive BIASEN above VBIASEN_HI to enable the I2C interface. Drive to PGND to disable. See the Bias Enable Control (BIASEN) section for more information. B1 SDA I2C Serial Interface Data. Connect to PGND if not used. C1 SCL I2C Serial Interface Clock. Connect to PGND if not used. www.maximintegrated.com External Feedback Version: Feedback Sense Input. Connect a resistor voltage divider between the converter's output and AGND to set the output voltage. Connect a 5.6pF feed-forward capacitor between the converter's output and FB. Do not route FB close to sources of EMI or noise. Maxim Integrated | 18 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Detailed Description The MAX77503 is a small, high-efficiency 1.5A step-down (buck) DC-DC converter. The step-down converter uses synchronous rectification and internal current-mode compensation. The buck operates on a supply voltage between 3V and 14V. Output voltage is configurable through I2C from 0.8V to 5V or external programming resistors between 1.55V and 99% of VSUP. Factory-default voltage options of 1.2V, 1.8V, and 3.3V are available (see the Ordering Information table). The buck utilizes an ultra-low quiescent current (IQ) SKIP mode (9μA typ for 1.8VOUT) that maintains very highefficiency at light loads. Buck Regulator Control Scheme The step-down converter uses a PWM peak current-mode control scheme with a high-gain architecture. Peak currentmode control provides precise control of the inductor current on a cycle-by-cycle basis and inherent compensation for supply voltage variation. On-times (MOSFET Q1 on) are started by a fixed-frequency clock and terminated by a PWM comparator. See Figure 1. When an on-time ends (starting an off-time) current conducts through the low-side MOSFET (Q2 on). Shoot-through current from SUP to PGND is avoided by introducing a brief period of dead time between switching events when neither MOSFET is on. Inductor current conducts through Q2's intrinsic body diode during dead time. The PWM comparator regulates VOUT by controlling duty cycle. The negative input of the PWM comparator is a voltage proportional to the actual output voltage error. The positive input is the sum of the current-sense signal through MOSFET Q1 and a slope-compensation ramp. The PWM comparator ends an on-time when the error voltage becomes less than the slope-compensated current-sense signal. On-times begin again due to a fixed-frequency clock pulse. The controller's compensation components and current-sense circuits are integrated. This reduces the risk of routing sensitive control signals on the PCB. A high-gain architecture is present in the controller design. The feedback uses an integrator to eliminate steady-state output voltage error while the converter is conducting heavy loads. See the Typical Operating Characteristics section for information about the converter's typical voltage regulation behavior versus load. VL AGND EN SCL SDA SUP VL LDO BIASEN ILX-PEAK SLOPE COMPENSATION I2C SERIAL INTERFACE VL BST ILIM Q1 CLOCK VOUT-REG REFERENCE SOFT-START RAMP REGISTERS & CONTROL OUT/FB PWM S Q R Q LX LOGIC VL Q2 gm RCOMP IZX CCOMP POK ILX-VALLEY AGND PGND Figure 1. Buck Control Scheme Diagram www.maximintegrated.com Maxim Integrated | 19 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Mode Control Write the MODE bit to 0 to enable SKIP mode. Write MODE to 1 to enable forced-PWM (FPWM) mode. The default value of MODE is 0 (SKIP). SKIP Mode SKIP mode causes discontinuous inductor current at light loads by forcing the low-side MOSFET (Q2) off if inductor current falls below IZX (40mA typ) during an off-time. This prevents inductor current from sourcing back to the input (SUP) and enables high-efficiency by reducing the total number of switching cycles required to regulate the output voltage. When the load is very light and the output voltage is in regulation, then the converter automatically transitions to standby mode. In this mode, the LX node is high-impedance and the converter's internal circuit blocks are deactivated to reduce IQ consumption. Output voltage typically rests 2.5% above the regulation target in standby mode. A lowpower comparator monitors the output voltage during standby. The converter reactivates and starts switching again when VOUT drops below 102% of regulation target. FPWM Mode The low-side MOSFET (Q1) current-limit threshold is INEG (-700mA typ) in FPWM mode, which allows the converter to switch at constant frequency at light loads. The buck has the best possible load-transient response in this mode at the cost of higher IQ consumption. Use FPWM for applications that do not require low-IQ and/or when heavy load transients are expected. Switching frequency is fixed by an internal oscillator in FPWM mode. See Table 1. Table 1. Buck Switching Frequency FEEDBACK External (VOUT set by resistors) OUTPUT VOLTAGE SWITCHING FREQUENCY (FSW) 1.55V to 99%VSUP 1MHz Internal (VOUT set by serial interface) 1.55V to 5V 1MHz Internal (VOUT set by serial interface) 0.8V to 1.5V 550kHz www.maximintegrated.com Maxim Integrated | 20 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Buck Enable Control (EN) Raise the EN pin voltage above VEN_HI (or tie to SUP) to enable the buck output. Lower EN to PGND to disable. When using I2C to control the device, the EN pin interacts with the enable bit (EN_BIT). The logical relationship between the EN pin and EN_BIT is by default an OR. Use the EN_LOGIC bit to change this relationship to a logical AND. See Table 2. Table 2. Buck Enable Truth Table EN_LOGIC (BIT) EN (PIN) EN_BIT (BIT) BUCK OUTPUT 0 0 OFF 0 1 ON 1 0 ON 1 1 ON 0 0 OFF 0 1 OFF 1 0 OFF 1 1 ON 0 (logical OR) 1 (logical AND) The reset state (default state) of EN_BIT and EN_LOGIC is 0. This means that the default relationship between the enable pin and the enable bit is a logical OR. Bias Enable Control (BIASEN) BIASEN is an active-high digital input that enables the device's VL regulator and I2C serial interface. Raise BIASEN above VBIASEN_HI to activate the serial interface. Lower BIASEN to PGND to deactivate. Serial I2C reads and writes may happen while SUP is valid and BIASEN is high regardless of whether the buck output is on or off. This allows the host controller to change the device's configuration registers before enabling the buck output. When the device is enabled through the EN pin, the BIASEN signal is a don't care. See Table 3. Table 3. VL Enable Truth Table EN (PIN) BIASEN (PIN) VL AND I2C SERIAL INTERFACE 0 0 OFF 0 1 ON 1 X ON VL Regulator An integrated 1.8V linear regulator (VL) provides power to low-voltage internal circuit blocks and switching FET gate drivers. VL activates according to Table 3. VL is powered from SUP for the internal feedback versions of the device when VOUT-REG is < 1.8V. If VOUT-REG is ≥ 1.8V, then the VL regulator power input switches from SUP to OUT after the buck soft-start ramp is finished and POK = 1. Switching VL's input to OUT utilizes the buck's high-efficiency to power the linear regulator (as opposed to SUP) and improves the buck's total power efficiency. VL is permanently powered from SUP for the external feedback version of the device. Do not load VL externally for any MAX77503 version. The VL regulator is on whenever EN or BIASEN is high. Connect a 2.2μF ceramic capacitor from VL to ground on the PCB. www.maximintegrated.com Maxim Integrated | 21 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Soft-Start The device has an internal soft-start timer (tSS) that controls the ramp time of the output as the converter is starting. Softstart limits inrush current during buck startup. SFT_STRT[1:0] programs tSS to 1ms/2ms/4ms/8ms. The default value of SFT_STRT[1:0] can be programmed at the factory. The converter soft-starts every time buck is enabled, exits a UVLO condition, and/or retries from an overcurrent (hiccup) or overtemperature condition. Power-OK (POK) Output The device features an active-high, open-drain POK output to monitor the output voltage. POK requires an external pullup resistor (typically 10kΩ to 100kΩ). POK goes high (high-impedance) after the buck converter output increases above 92% (VPOK-RISE) of the target regulation voltage (VOUT-REG) and the soft-start ramp is done. POK goes low when the output drops below 90% (VPOK-FALL) of target or when the buck is disabled. Peak Inductor Current Limit The buck converter's high-side MOSFET peak current limit (ILX-PEAK) is register programmable. Applications can use ILX-PEAK programmability to ensure that the converter never exceeds the saturation current rating of the inductor on the PCB. Program the I_PEAK bit to 0 to set ILX-PEAK to 500mA. Program I_PEAK to 1 to set ILX-PEAK to 2000mA. The default value is 1 (2000mA). Active Discharge Resistor The device integrates a 100Ω active discharge resistor (RAD) between OUT and PGND that discharges the output capacitor when the buck is disabled. Write ADEN = 1 through I2C to enable the active discharge resistor function. The default value of ADEN can be programmed at the factory. The active discharge function is permanently disabled for the external feedback version of the device. RAD discharges the output capacitor for 16383 clock periods when ADEN = 1 and the buck is disabled. ● For VOUT-REG ≥ 1.55V, this is approximately 16ms. ● For VOUT-REG ≤ 1.5V, this is approximately 30ms. The OUT pin returns to a high-impedance state after this time. Short-Circuit Protection and Hiccup Mode The device has fault protection designed to protect itself from abnormal conditions. If the output is overloaded, cycle-bycycle current limit prevents inductor current from increasing beyond ILX-PEAK. The buck stops switching if VOUT falls to less than 25% of programmed VOUT-REG and 15 consecutive on-times are ended by current limit. After switching stops, the buck waits for tRETRY before attempting to soft-start again (hiccup mode). While VOUT is less than 25% of target, the converter prevents new on-times if the inductor current has not fallen below ILX-VALLEY. This prevents inductor current from increasing uncontrollably due to the short-circuited output. Thermal Shutdown The device has an internal thermal protection circuit which monitors die temperature. The temperature monitor disables the buck if the die temperature exceeds TSHDN (165°C typ). The buck soft-starts again after the die temperature cools by approximately 15°C. Register Reset Condition The device's internal configuration registers reset to their default values if VSUP falls below the UVLO falling threshold (VSUP-UVLO minus UVLO hysteresis, 2.6V typ). Contact the factory to request a version of the device that holds configuration registers in reset if BIASEN is low. www.maximintegrated.com Maxim Integrated | 22 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ I2C Serial Interface All MAX77503 versions feature a revision 3.0 I2C-compatible, 2-wire serial interface consisting of a bidirectional serial data line (SDA) and a serial clock line (SCL). The MAX77503 is a slave-only device that relies on an external bus master to generate SCL. SCL clock rates from 0Hz to 3.4MHz are supported. I2C is an open-drain bus, and therefore, SDA and SCL require pullups. The device's I2C communication controller implements 7-bit slave addressing. An I2C bus master initiates communication with the slave by issuing a START condition followed by the slave address. The slave address is factory-programmable to one of four options (see Table 4). All slave addresses not mentioned in Table 4 are not acknowledged. The device uses 8-bit registers with 8-bit register addressing. They support standard communication protocols: (1) Writing to a single register (2) Writing to multiple sequential registers with an automatically incrementing data pointer (3) Reading from a single register (4) Reading from multiple sequential registers with an automatically incrementing data pointer. For additional information on the I2C protocols, refer to the MAX77503 I2C Implementer's Guide and/or the I2C specification that is freely available on the internet. Table 4. I2C Slave Address Options 7-BIT SLAVE ADDRESS 8-BIT WRITE ADDRESS 8-BIT READ ADDRESS 0x1E 0b 001 1110 0x3C 0b 0011 1100 0x3D 0b 0011 1101 0x24 0b 010 0100 0x48 0b 0100 1000 0x49 0b 0100 1001 0x37 0b 011 0111 0x6E 0b 0110 1110 0x6F 0b 0110 1111 0x77 0b 111 0111 0xEE 0b 1110 1110 0xEF 0b 1110 1111 See the Ordering Information table for the slave address associated with each part number. Register Map MAX77503 ADDRESS NAME MSB LSB Configuration Registers 0x00 CONFIG_A[7:0] RSVD 0x01 CONFIG_B[7:0] RSVD ADEN SFT_STRT[1:0] I_PEAK MODE EN_LOG IC EN_BIT V_OUTREG[6:0] Register Details CONFIG_A (0x00) 7 6 3 2 1 0 Field BIT RSVD ADEN SFT_STRT[1:0] I_PEAK MODE EN_LOGIC EN_BIT Reset 0b0 OTP OTP 0b1 0b0 0b0 0b0 Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Access Type BITFIELD RSVD BITS 7 www.maximintegrated.com 5 4 DESCRIPTION Reserved. Bit is a don't care. DECODE N/A Maxim Integrated | 23 MAX77503 BITFIELD 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ BITS DESCRIPTION 6 Active discharge resistor enable. This function is only available in the internal feedback versions of the device. This function is permanently disabled in the external feedback version (bit is a don't care). 0 = disabled 1 = enabled Soft-start control. Sets the buck converter's startup ramp time (tSS). 00 = 1ms 01 = 2ms 10 = 4ms 11 = 8ms ADEN SFT_STRT 5:4 DECODE I_PEAK 3 High-side DMOS peak current-limit threshold control. Sets peak LX current limit (ILX-PEAK). 0 = 500mA 1 = 2000mA MODE 2 Buck converter mode control. 0 = SKIP mode 1 = FPWM mode EN_LOGIC 1 Enable logic control bit. Determines the logical relationship between EN_BIT (enable bit) and EN (enable pin). 0 = logical OR relationship 1 = logical AND relationship EN_BIT 0 Buck enable bit. 0 = disabled 1 = enabled CONFIG_B (0x01) BIT 7 6 5 4 3 2 1 Field RSVD V_OUTREG[6:0] Reset 0b0 0x08 / 0x14 / 0x32 (See the Ordering Information table) Write, Read Write, Read Access Type BITFIELD RSVD BITS 7 DESCRIPTION Reserved. Bit is a don't care. Output Voltage Control (internal feedback versions only). Sets VOUT-REG. Programmable in 50mV per LSB from 0x00 (0.8V) to 0x54 (5V). V_OUTREG 6:0 The default value of this register is preset for internal feedback versions of the device. See the Ordering Information table. Overwriting the default value sets a new target output voltage. This register is a don't care for the external feedback version of the device. Avoid changing this bitfield while the converter is both enabled and loaded. Increasing the VOUT target while the buck is supplying load may cause the converter to enter hiccup mode. www.maximintegrated.com 0 DECODE N/A 0x00 = 0.80V 0x01 = 0.85V 0x02 = 0.90V ... 0x08 = 1.20V .... 0x14 = 1.80V ... 0x32 = 3.30V ... 0x53 = 4.95V 0x54-0x7F = 5.0V Maxim Integrated | 24 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ Applications Information Buck Enable Options The MAX77503 offers a high degree of control flexibility. See Figure 2 for suggested methods of controlling the buck converter. ALWAYS-ON CONFIGURATION BUCK INPUT CONNECT EN TO SUP MAX77503 SUP HARDWARE CONTROL CONFIGURATION BUCK INPUT EN MAX77503 SUP EN DRIVE EN PIN SOFTWARE CONTROL CONFIGURATION BUCK INPUT GROUND EN FOR FULL SOFTWARE CONTROL SET BIASEN HIGH & SEND SOFTWARE COMMANDS MAX77503 SUP EN BIASEN SDA SCL Figure 2. Buck Enable Options Always-On Strap the EN pin to SUP to configure the device in an always-on configuration. See Figure 2 (left). The buck converter activates whenever VSUP is valid and TJ < TSHDN. Hardware Control Drive the EN pin externally to control the buck. See Figure 2 (center). The buck converter activates whenever VEN > VEN_HI (1.1V min), TJ < TSHDN, and VSUP is valid. The default relationship between the EN pin and the EN_BIT is a logic OR. See Table 2 for more details. Software Control Use the I2C serial interface to control the buck by connecting SDA and SCL to a serial host. See Figure 2 (right). Assert BIASEN logic high to first activate the I2C serial interface. The serial host can now do the following: ● ● ● ● ● ● Set the target output voltage, VOUT-REG (internal feedback versions only). Set the desired soft-start time, tSS. Set the peak inductor current limit, ILX-PEAK. Enable the buck output using EN_BIT. Change the converter mode (SKIP/FPWM) dynamically. Control the active discharge resistor (internal feedback versions only). See the I2C Serial Interface and Register Map sections for more information. Configuration registers reset if VSUP falls below VSUP-UVLO (2.6V typ). Contact the factory to request a version of the device that holds configuration registers in reset if BIASEN is low. SUP Capacitor Selection Choose the input capacitor (CSUP) to be a 4.7μF nominal capacitor that maintains 1μF effective capacitance at its working voltage. Larger values improve the decoupling of the buck converter, but increase inrush current from the voltage supply when connected. CSUP reduces the current peaks drawn from the input power source during buck operation and www.maximintegrated.com Maxim Integrated | 25 MAX77503 14V Input, 1.5A High-Efficiency Buck Converter with 9μA IQ reduces switching noise in the system. The ESR/ESL of CSUP and its series PCB trace should be very low (i.e.,
MAX77503AEWC+T 价格&库存

很抱歉,暂时无法提供与“MAX77503AEWC+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货