0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX77827BEWC+

MAX77827BEWC+

  • 厂商:

    MAXIM(美信)

  • 封装:

    WFBGA12

  • 描述:

    IC REG BUCK BST 1.8A 12WLP

  • 数据手册
  • 价格&库存
MAX77827BEWC+ 数据手册
EVALUATION KIT AVAILABLE Click here to ask about the production status of specific part numbers. MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ General Description Benefits and Features The MAX77827 is a high-efficiency buck-boost regulator targeted for one-cell Li-ion powered applications with the lowest typical quiescent current in the industry of 6μA. It supports input voltages of 1.8V to 5.5V and an output voltage range of 2.3V to 5.3V. The IC provides two different switching current levels (1.8A and 3.1A) to optimize external component sizing based on given load current requirements. With the 1.8A switching current-limit option, the IC can support up to 1.0A load current in buck mode and 900mA in boost mode (VIN = 3.0V, VOUT = 3.3V). ● 1.8V to 5.5V Input Voltage Range ● 2.3V to 5.3V Single Resistor Adjustable Output Voltage ● 1.6A Maximum Output Current (3.1A ILIM Option, Buck Mode) ● 900mA Maximum Output Current (1.8A ILIM Option, Boost Mode 3.0VIN, 3.3VOUT) ● 96% Peak Efficiency (3.3VIN, 3.3VOUT) ● SKIP Mode for Higher Light-Load Efficiency ● 6μA Ultra-Low Typical Quiescent Current (At TJ = +25°C) ● 2.5MHz Nominal Switching Frequency ● Enable Pin ● GPIO Pins for System Design Convenience • FPWM (Forced PWM) Mode Selection Pin • POK Indicator Pin The peak efficiency of 96% makes the IC one of the best solutions as a DC/DC converter to supply a rail for batterypowered portable applications. The IC features an adjustable output voltage, which can be programmed from 2.3V to 5.3V through a single resistor. Two GPIO pins are available to support force PWM enable function and power-OK (POK) indicator. A unique control algorithm allows high-efficiency, outstanding line/ load transient response, and seamless transition between buck and boost modes. These options provide design flexibility that allow the IC to cover a wide range of applications and use cases while minimizing board space. ● UVLO, Soft-Start, Active-Output Discharge, Overcurrent, and Thermal Shutdown Protections ● 1.61mm x 2.01mm, 12-Bump WLP ● 2.5mm x 2.5mm, 14-Lead FC2QFN Ordering Information appears at end of data sheet. The MAX77827 is available in a 1.61mm x 2.01mm, 12-bump wafer-level package (WLP), and a 2.5mm x 2.5mm, 14-lead FC2QFN package. Applications ● ● ● ● 1-Cell Li+ Battery Powered Equipment Smartphones/Portable/Wearables Internet of Things (IoT) Devices LPWAN (LTE/NB-IoT, LTE/Cat-M1) Simplified Block Diagram L 1μH MAX77827 OUT COUT 22μF OUTS FPWM ENABLE FPWM EN POWER-OK POK CBIAS 1μF BIAS VOUT 2.3V TO 5.3V L 2012 SEL AGND PGND 4.00mm RSEL* *CHOOSE RSEL VALUE BASED ON VOUT, SEE TABLE 2 19-100546; Rev 5; 8/21 COUT 0603 LX2 RSEL LX1 CIN 0603 ENABLE IN 3.63mm CIN 10μF CBIAS 14.52mm2 SOLUTION SIZE 1.8V TO 5.5V DC SOURCE MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 12 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 14 FC2QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 14 FC2QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Function Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Start Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Immediate Shutdown Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Buck-Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Buck-Boost Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output Voltage Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 FPWM Mode Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Power-OK (POK) Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Output Active Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Overcurrent Protection (OCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PCB Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 www.maximintegrated.com Maxim Integrated | 2 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ TABLE OF CONTENTS (CONTINUED) Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 www.maximintegrated.com Maxim Integrated | 3 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ LIST OF FIGURES Figure 1. Start-Up Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 2. Buck-Boost H-Bridge Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 3. Short-Circuit Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 4. PCB Layout Example (WLP—B and D Options) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 5. PCB Layout Example (FC2QFN—B and D Options) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 www.maximintegrated.com Maxim Integrated | 4 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ LIST OF TABLES Table 1. ILIM Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 2. RSEL Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 3. Inductor Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 www.maximintegrated.com Maxim Integrated | 5 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Absolute Maximum Ratings IN, OUT, BIAS to PGND ........................................... -0.3V to +6V PGND to AGND ..................................................... -0.3V to +0.3V EN, SEL, FPWM, POK to AGND ................-0.3V to VBIAS + 0.3V FB to AGND................................................ -0.3V to VOUT + 0.3V LX1 to PGND ......................................................... -0.3V to +6.0V LX2 to PGND ......................................................... -0.3V to +6.0V IN, LX1, LX2, OUT Continuous RMS current ....................... 1.6A Operating Junction Temperature Range ............ -40°C to +125°C Maximum Junction Temperature ...................................... +150°C Storage Temperature Range ..............................-65°C to +150°C Soldering Temperature (reflow) ........................................ +260°C Continuous Power Dissipation WLP Package (TA = +70°C, derate 13.73mW/°C above +70°C) ......................................................................1098.4mW FC2QFN Package (TA = +70°C, derate 15.77mW/°C above +70°C) ......................................................................1261.8mW Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information 12 WLP Package Code W121H2+1 Outline Number 21-100302 Land Pattern Number Refer to Application Note 1891 Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 72.82 C°/W Junction to Case (θJC) N/A 14 FC2QFN Package Code F142A2F+1 Outline Number 21-100382 Land Pattern Number 90-100127 Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 63.4°C/W Junction to Case (θJC) N/A For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. www.maximintegrated.com Maxim Integrated | 6 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Electrical Characteristics (VIN = 3.8V, VOUT = 3.3V, typicals are at TA ≈ TJ = +25°C. Limits are 100% production tested at TJ = +25°C. Limits over the operating temperature range (TJ = -40°C to +125°C) are guaranteed by design and characterization, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS GENERAL Input Voltage Range Shutdown Supply Current Input Supply Current Active Discharge Resistance Thermal Shutdown VIN For A and D options 1.8 5.5 For B and C options 2.6 5.5 0.1 2 EN = Low, TJ = -40°C to +125°C (Note 2) 3 8 IQ_SKIP SKIP mode, no switching 6 14 µA IQ_PWM FPWM mode, no load, no switching 2 6 mA ISHDN EN = Low, TJ = +25°C V RDISCHG µA 100 Ω 165 °C TSHDN Rising, +20°C hysteresis VOUT External resistor programmable 2.3 5.3 PWM mode, TJ = +25°C -1 +1 PWM mode, TJ = -40°C to +125°C -2 +2 SKIP mode, no load, TJ = +25°C -1 H-BRIDGE Output Voltage Range Output Voltage Accuracy VOUT_ACC1 VOUT_ACC2 V % +4.5 VIN = 1.8V to 5.5V (for A and D options) 0.4 VIN = 2.6V to 5.5V (for B and C options) 0.4 Load Regulation Note 1 0.25 %/A Line Transient Response VOS1/VUS1 IOUT = 0.5A, VIN changes from 3.4V to 2.9V in 25µs (20mV/µs), L = 1µH, COUT_NOM = 8µF (Note 1) 50 mV Load Transient Response VOS2/VUS2 IOUT changes from 10mA to 0.5A in 15µs, L = 1µH, COUT_NOM = 8µF (Note 1) 250 mV Line Regulation LX1/2 Current Limit ILIM_LX %/V TJ = -40°C to +125°C, for A and C options 2.5 3.1 3.7 TJ = -40°C to +125°C, for B and D options 1.3 1.8 2.3 A High-Side PMOS On Resistance RDSON_P ILX = 100mA per switch 10 130 mΩ Low-Side NMOS On Resistance RDSON_N ILX = 100mA per switch 15 110 mΩ Switching Frequency fSW PWM mode, TJ = +25°C 2.25 2.5 2.75 PWM mode, TJ = -40°C to +125°C 2.2 2.5 2.8 Turn-On Delay Time tON_DLY SEL Detection Time tSEL www.maximintegrated.com MHz From EN asserting to SEL detection (Note 2) 100 µs After turn-on delay to LX switching (Note 2) 600 µs Maxim Integrated | 7 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Electrical Characteristics (continued) (VIN = 3.8V, VOUT = 3.3V, typicals are at TA ≈ TJ = +25°C. Limits are 100% production tested at TJ = +25°C. Limits over the operating temperature range (TJ = -40°C to +125°C) are guaranteed by design and characterization, unless otherwise noted.) PARAMETER Soft-Start Time Minimum Effective Output Capacitance LX1, LX2 Leakage Current SYS UndervoltageLockout Threshold SYMBOL tSS CEFF_MIN ILK_85 VUVLO_R VUVLO_F CONDITIONS After SEL detection to soft-start timer finish MIN TYP IOUT = 10mA (Note 1), for B and D options 1500 IOUT = 10mA (Note 1), for A and C options 200 MAX UNITS µs 0A < IOUT < 1A 8 VLX1/2 = 0V or 5.5V, VOUT = 5.5V, VIN = 5.5V, TJ = +85°C 0.1 µF 2 SYS rising, options B and C 2.4 2.5 2.6 SYS rising, options A and D 1.70 1.75 1.80 SYS falling, options B and C 1.9 2.05 2.2 SYS falling, options A and D 1.62 1.68 1.74 µA V ENABLE INPUT (EN) EN Logic-Low Threshold VEN_L EN Logic-High Threshold VEN_H 0.4 1.3 V V FPWM INPUT FPWM Logic-Low Threshold VIL FPWM Logic-High Threshold VIH FPWM Internal Pulldown Resistance RPD 0.4 1.3 Pulldown resistor to GND 400 V V 800 1600 kΩ 0.4 V +1 µA POK OUTPUT POK Output Low Voltage VPOK_L ISINK = 1mA POK Output High Leakage IPOK_25C TJ = +25°C -1 IPOK_R VOUT rising, expressed as a percentage of VOUT 92.5 IPOK_F VOUT falling, expressed as a percentage of VOUT 90 POK Threshold % Note 1: Guaranteed by ATE characterization. Not directly tested in production. Note 2: Guaranteed by design. Production tested through scan. www.maximintegrated.com Maxim Integrated | 8 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Typical Operating Characteristics (VIN = 3.8V, VOUT = 3.3V, L = 1μH (Coilcraft XAL4020-102ME), Skip Mode, ILIM_LX = 1.8A, TA = +25°C, unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 9 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Typical Operating Characteristics (continued) (VIN = 3.8V, VOUT = 3.3V, L = 1μH (Coilcraft XAL4020-102ME), Skip Mode, ILIM_LX = 1.8A, TA = +25°C, unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 10 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Typical Operating Characteristics (continued) (VIN = 3.8V, VOUT = 3.3V, L = 1μH (Coilcraft XAL4020-102ME), Skip Mode, ILIM_LX = 1.8A, TA = +25°C, unless otherwise noted.) www.maximintegrated.com Maxim Integrated | 11 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Pin Configurations 12 WLP TOP VIEW (BUMP SIDE DOWN) MAX77827 1 2 3 4 A LX1 IN BIAS AGND B PGND FPWM POK SEL C LX2 OUT OUTS EN + 12 WLP (1.61mm x 2.01mm, 0.4mm PITCH) 14 FC2QFN 1 POK 2 EN 3 14 13 OUT SEL OUTS + FPWM TOP VIEW 11 12 10 LX2 9 PGND MAX77827 8 5 AGND BIAS 7 6 IN 4 LX1 14 FC2 FC2QFN QFN (2.5 2.5mm mm x 2.5mm x 0.55mm PITCH) www.maximintegrated.com Maxim Integrated | 12 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Pin Description PIN 12 WLP NAME 14 FC2QFN FUNCTION TYPE A1 8 LX1 A2 6, 7 IN Switching Node 1 Power Input. Bypass to PGND with a 10V 10μF capacitor. Power A3 5 BIAS Internal Bias. Bypass to PGND with a 10V 1μF capacitor. Analog A4 4 AGND Analog Ground Ground B1 9 PGND Power Ground B2 14 FPWM FPWM Mode Selection (active-high) Ground B3 2 POK Power-OK Open-Drain Output (active-high) Digital Input Digital Output B4 1 SEL Select the output voltage with resistor (see Table 2). Analog C1 10 LX2 Switching Node 2 Power C2 11, 12 OUT Output. Bypass to PGND with a 10V 22μF capacitor. Power C3 13 OUTS Output Sense Analog C4 3 EN Enable Pin Digital Input Functional Diagrams Function Diagram LX1 LX2 IN OUT UVLO CS2 CS1 CS2 ILIM_PEAK OCP BIAS PGND MAX77827 OUT ACTIVE DISCHARGE LOGIC CONTROL EN FPWM OUTS POK SLOPE COMPENSATION POK TSHDN COMP CS1/CS2 EAMP SOFTSTART REF TARGET OUTPUT SELECTOR SEL AGND www.maximintegrated.com Maxim Integrated | 13 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Detailed Description Start Up When the EN pin is set to high, the IC turns on the internal bias circuitry which takes typically 100µs (tON_DLY) to settle. After the internal bias circuitry is settled, the controller senses the SEL pin resistance to set the reference voltage. The RSEL reading takes about 600µs (typ). After the IC reads the RSEL value, it begins the soft-start process. During the soft-start process, the IC lowers the ILIM level from normal ILIM level and ramps the output voltage. This prevents the buck-boost from drawing too much current from the input supply during start up. The soft-start process takes 1.5ms (typ) for options B and D, and takes 200µs (typ) for options A and C. EN VOUT TON_DLY TSEL TSS ILIM ILIM_SS IL Figure 1. Start-Up Waveform The buck-boost is in FPWM mode for the entire duration of TSS. Current limit during soft-start (ILIM_SS) increases to ILIM after approximately half of TSS. See Table 1 for a list of parts with their respective soft-start and normal operation ILIM levels. Table 1. ILIM Levels PART NUMBER ILIM_SS (A) ILIM (A) MAX77827BEWC+T, MAX77827BEFD+T, MAX77827DEWC+T, MAX77827DEFD+T 1.15 1.8 MAX77827AEWC+T, MAX77827AEFD+T, MAX77827CEWC+T, MAX77827CEFD+T 1.8 3.1 www.maximintegrated.com Maxim Integrated | 14 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Immediate Shutdown Conditions The following events immediately shutdown the buck-boost: ● Thermal Protection (TJ > +165°C) ● VSYS < SYS UVLO Falling Threshold (VUVLO_F) The events in this category shutdown the output until fault conditions are removed from the system. Power Down When EN pin is set to low, the IC stops switching and turns on the discharge switches until the output is discharged. Buck-Boost Regulator The IC buck-boost regulator utilizes a four-switch H-bridge configuration to realize buck and boost operating modes. This topology maintains output voltage regulation when the input voltage is greater than, equal to, or less than the output voltage. The buck-boost is ideal in one-cell Li-ion battery powered applications and two-cell Alkaline battery powered applications, providing 2.3V to 5.3V of output voltage range. High-switching frequency and a unique control algorithm allow for the smallest solution size, low output noise, and the highest-efficiency across a wide input voltage and output current range. Buck-Boost Control Scheme The buck-boost converter operates using a 2.5MHz fixed-frequency pulse-width modulated (PWM) control scheme with current-mode compensation. The buck-boost utilizes an H-bridge topology using a single inductor and output capacitor. The H-bridge topology has three switching phases. See Figure 2 for details. ● Φ1 Switch period (Phase 1: HS1 = ON, LS2 = ON) stores energy in the inductor. Inductor current ramps up at a rate proportional to the input voltage divided by inductance: VIN/L. ● Φ2 Switch period (Phase 2: HS1 = ON, HS2 = ON) ramps inductor current up or down depending on the differential voltage across the inductor: (VIN – VOUT)/L. ● Φ3 Switch period (Phase 3: LS1 = ON, HS2 = ON) ramps inductor current down at a rate proportional to the output voltage divided by inductance: (-VOUT/L). Boost operation (VIN < VOUT) utilizes phase 1 and phase 2 within a single clock period. See the representation of inductor current waveform for boost mode operation in Figure 2. Buck operation (VIN > VOUT) utilizes phase 2 and phase 3 within a single clock period. See the representation of inductor current waveform for buck mode operation in Figure 2. www.maximintegrated.com Maxim Integrated | 15 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ BUCK OPERATION BUCK-BOOST H-BRIDGE TOPOLOGY IN Ф2 OUT Ф2 Ф3 HS1 Ф2 CHARGE/DISCHARGE L TSW HS2 TSW CLK CLK CLK BOOST OPERATION L LS1 Ф3 Ф3 DISCHARGE L LS2 Ф1 CHARGE L Ф1 Ф2 Ф1 Ф2 TSW CLK TSW CLK CLK Figure 2. Buck-Boost H-Bridge Topology Output Voltage Configuration The IC allows a SEL pin to configure the output voltage. Resistors with 1% tolerance (or better) should be chosen, with nominal values specified in Table 2. Table 2. RSEL Selection Table www.maximintegrated.com RSEL (kΩ) VOUT (V) 909 2.3 768 2.4 634 2.5 536 2.6 452 2.7 383 2.8 324 2.8 267 2.85 191 2.9 133 3 113 3 95.3 3.1 80.6 3.15 66.5 3.15 Maxim Integrated | 16 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Table 2. RSEL Selection Table (continued) RSEL (kΩ) VOUT (V) 56.2 3.2 Open 3.3 Short to GND 3.3 47.5 3.4 40.2 3.45 34 3.5 28 3.6 23.7 3.7 20 3.75 16.9 3.8 14 3.9 11.8 4 10 4.1 8.45 4.2 7.15 4.4 5.9 4.5 4.99 5 226 5.2 162 5.3 FPWM Mode Enable The IC automatically defaults to SKIP mode operation at no load and light load conditions. Transition from skip mode to PWM occurs when load current increases past a certain threshold. Another way to enable PWM operation is by connecting the FPWM pin to logic HIGH level. This forces PWM mode (FPWM) regardless of load current at the output. FPWM mode benefits applications where the lowest output ripple is required, whereas skip mode helps maximize the buck-boost regulator’s efficiency at light loads. Power-OK (POK) Indicator The device features an open-drain POK output to monitor the output voltage. The POK pin requires an external pullup resistor and goes high (high-impedance) after the output increases above 92.5% (typ) of the target output voltage (VOUT_TARGET). The POK pin goes low when the regulator output drops below 90% (typ) of VOUT_TARGET. Protection Features Undervoltage Lockout (UVLO) The device supports a UVLO feature that prevents operation in abnormal input voltage conditions when VIN falls below the VIN_UVLO_F threshold. Regardless of the EN pin status, the device disables until the input voltage VIN rises above the VIN_UVLO_R threshold. Soft-Start The IC is equipped with a soft-start feature to limit large input-current draw from the system supply during device start-up. During the soft-start time, the IC lowers the switching current-limit level from normal level and operates in FPWM mode. See Table 1 for the ILIM levels of each part number. www.maximintegrated.com Maxim Integrated | 17 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Output Active Discharge The buck-boost provides an internal 100Ω switch for output active discharge function. The internal switch provides a path to discharge the energy stored in the output capacitor to PGND whenever the regulator is disabled. While the regulator remains enabled, the internal switch is disconnected from the output. Overcurrent Protection (OCP) The device features a robust switching current-limit scheme that protects the device and the inductor during overload and fast transient conditions. The current-sense circuit takes current information from the high-side MOSFETs to determine the peak-switching current (RDS(ON) x IL). The IC provides two different cycle-by-cycle current limit levels (1.8A (typ) and 3.1A (typ)) for the high-side MOSFET. If the switching current (ILIM) hits current limit for about 3ms, the IC shuts off the output for about 12ms, retries, and repeats this cycle until the over-current condition is removed from the system. SHORT CIRCUIT VOUT 3ms 3ms ILIM IL 12ms Figure 3. Short-Circuit Waveform Thermal Shutdown The device has an internal thermal-protection circuit which monitors die temperature. The buck-boost disables if the die temperature exceeds TSHDN (+165°C typ). The buck-boost enables again after the die temperature cools by approximately +20°C. www.maximintegrated.com Maxim Integrated | 18 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Applications Information Inductor Selection Buck-boost is optimized for a 1µH inductance. The lower the inductor DCR, the higher the buck-boost efficiency. Users need to trade off inductor size with DCR value and choose a suitable inductor for the buck-boost. The saturation current of the inductor should be higher than the maximum switching current limit to avoid inductor saturation during operation. See the Electrical Characteristics table specifications for the maximum ILIM of each IC option. Table 3 lists recommended inductors for the IC. Always choose the inductor carefully by consulting the manufacturer’s latest released data sheet. Table 3. Inductor Recommendations NOMINAL INDUCTANCE (µH) TYPICAL DC RESISTANCE (mΩ) CURRENT RATING (A) -30 (ΔL/L) CURRENT RATING (A) ΔT = 40°C RISE DIMENSIONS LxWxH (mm) DFE18SBN1R0ME0 1.0 120 3.1 2.4 1.6 x 0.8 x 0.8 B, D CIGT201610EH1R0MNE 1.0 38 4.5 4.3 2.0 x 1.6 x 1.0 A, B, C, D TaiyoYuden MEKK2016H1R0M 1.0 41 4.5 3.7 2.0 x 1.6 x 1.0 A, B, C, D MFGR. Murata Samsung SERIES OPTIONS Cyntec HTEH20120H-1R0MSR 1.0 45 3.8 3.5 2.0 x 1.2 x 0.8 A, B, C, D Samsung CIGT252010EH1R0MNE 1.0 26 5.0 4.3 2.5 x 2.0 x 1.0 A, B, C, D Sumida CDMT40D20HF-1R0NC 1.0 26 8.7 9.6 4.3 x 4.3 x 2.1 A, B, C, D Coilcraft XAL4020-102MEB 1.0 13 8.7 9.6 4.0 x 4.0 x 2.1 A, B, C, D Input Capacitor Selection The input capacitor, CIN, reduces the current peaks drawn from the battery or input power source and reduces switching noise in the device. The impedance of CIN at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R dielectrics are highly recommended due to their small size, low ESR, and small temperature coefficients. For most applications, a 10V 10µF capacitor is sufficient. Output Capacitor Selection The output capacitor, COUT, is required to keep the output-voltage ripple small and to ensure regulation loop stability. COUT must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. For stable operation, the buck-boost requires 8µF of minimum effective output capacitance. Considering DC bias characteristic of ceramic capacitors, a 10V 22µF capacitor is recommended for most applications. www.maximintegrated.com Maxim Integrated | 19 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ PCB Layout Guidelines Careful circuit board layout is critical to achieve low switching power losses and clean, stable operation. Figure 5 shows an example PCB layout for the MAX77827 FC2QFN package. For the WLP package, a high density interconnect (HDI) PCB is required. Figure 4 shows an example HDI PCB layout for the MAX77827 WLP package. When designing the PCB, follow these guidelines: 1. Place the input capacitors CIN and output capacitors COUT immediately next to the IN pin and OUT pin, respectively, of the IC. Since the IC operates at a high switching frequency, this placement is critical for minimizing parasitic inductance within the input and output current loops, which can cause high voltage spikes and can damage the internal switching MOSFETs. 2. Place the inductor next to the LX bumps/pins (as close as possible) and make the traces between the LX bumps/pins and the inductor short and wide to minimize PCB trace impedance. Excessive PCB impedance reduces converter efficiency. When routing LX traces on a separate layer (as in the examples), make sure to include enough vias to minimize trace impedance. Routing LX traces on multiple layers is recommended to further reduce trace impedance. Furthermore, do not allow LX traces to take up an excessive amount of area. The voltage on this node switches very quickly and additional area creates more radiated emissions. 3. Prioritize the low-impedance ground plane of the PCB directly underneath the IC, COUT, CIN, and the inductor. Cutting this ground plane risks interrupting the switching current loops. 4. AGND must carefully connect to PGND on the PCBs low-impedance ground plane. Connect AGND to the lowimpedance ground plane on the PCB (the same net as PGND) away from any critical loops. 5. The IC requires a supply input (BIAS) which is often the same net as IN. Carefully bypass BIAS to PGND with a dedicated capacitor (CBIAS) as close as possible to the IC. Route a dedicated trace between CBIAS and the BIAS bump/pin. Avoid connecting BIAS directly to the nearest IN bumps/pins without dedicated bypassing. 6. Connect the OUTS bump/pin to the regulating point with a dedicated trace away from noisy nets such as LX1 and LX2. 7. Keep the power traces and load connections short and wide. This is essential for high converter efficiency. 8. Do not neglect ceramic capacitor DC voltage derating. Choose capacitor values and case sizes carefully. See the Output Capacitor Selection section and refer to Tutorial 5527 for more information. CBIAS 0402 AGND RSEL 0402 K PO EN LEGEND FPWM + IN COUT 0603 CIN 0603 OUT 0805 (2012) 0603 0402 PGND LX1 L 2012 LX2 NOTE: PLACE CIN AND COUT CLOSE TO THE IC TO MINIMIZE PARASITIC INDUCTANCE WITHIN THE LOOP HDI µVIA 6 mil hole, 12 mil pad COMPONENT SIZES LISTED IN IMPERIAL (METRIC) Figure 4. PCB Layout Example (WLP—B and D Options) www.maximintegrated.com Maxim Integrated | 20 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ POK EN AGND FPWM MAX77827 RSEL 0402 LEGEND CBIAS 0402 + OUT 0805 (2012) IN CIN 0603 COUT 0603 0603 0402 NON-HDI VIA 8 mil hole, 18 mil pad PGND COMPONENT SIZES LISTED IN IMPERIAL (METRIC) L 2012 LX1 LX2 NOTE: PLACE CIN AND COUT CLOSE TO THE IC TO MINIMIZE PARASITIC INDUCTANCE WITHIN THE LOOP Figure 5. PCB Layout Example (FC2QFN—B and D Options) Typical Application Circuits Typical Application Circuit L 1μH LX2 LX1 1.8V TO 5.5V DC SOURCE CIN 10μF ENABLE OUT IN MAX77827 COUT 22μF OUTS FPWM ENABLE FPWM EN POWER-OK POK CBIAS 1μF BIAS VOUT 2.3V TO 5.3V SEL AGND PGND RSEL* *CHOOSE RSEL VALUE BASED ON VOUT, SEE TABLE 2 www.maximintegrated.com Maxim Integrated | 21 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Ordering Information PART NUMBER TYP ILIM (A) UVLO RISING MAX (V) PIN-PACKAGE MAX77827AEWC+T 3.1 1.8 12 WLP MAX77827BEWC+T 1.8 2.6 12 WLP MAX77827CEWC+T 3.1 2.6 12 WLP MAX77827DEWC+T 1.8 1.8 12 WLP MAX77827AEFD+T 3.1 1.8 14 FC2QFN MAX77827BEFD+T 1.8 2.6 14 FC2QFN MAX77827CEFD+T 3.1 2.6 14 FC2QFN MAX77827DEFD+T 1.8 1.8 14 FC2QFN +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. www.maximintegrated.com Maxim Integrated | 22 MAX77827 5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ Revision History REVISION NUMBER REVISION DATE PAGES CHANGED 0 4/19 Initial release — 1 5/19 Updated Ordering Information table 22 2 6/19 Updated Ordering Information table 22 3 10/19 Updated General Description, Applications, Benefits and Features, and Package Information sections, replaced all Typical Operating Characteristics and FC2QFN Pin Configuration, updated Pin Description table, Table 1, Figure 2, and Table 3, replaced PCB Layout Guidelines section, updated Ordering Information table 1, 6, 9–13, 15, 17, 20–22 4 3/20 Updated Electrical Characteristics table, Start Up section, Table 1, Table 3, and Ordering Information table 7, 8, 15, 20, 23 5 8/21 Updated Table 2 DESCRIPTION 16, 17 For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2021 Maxim Integrated Products, Inc.
MAX77827BEWC+ 价格&库存

很抱歉,暂时无法提供与“MAX77827BEWC+”相匹配的价格&库存,您可以联系我们找货

免费人工找货