0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX77874BEWM+T

MAX77874BEWM+T

  • 厂商:

    MAXIM(美信)

  • 封装:

    WFBGA48

  • 描述:

    IC REG 16A UNCOUPLED QUAD-PHASE

  • 数据手册
  • 价格&库存
MAX77874BEWM+T 数据手册
Evaluation Kit Available Design Resources Tools and Models Support Click here to ask an associate for production status of specific part numbers. MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors General Description The MAX77874 is a quad-phase, high-current, step-down buck regulator for CPU and GPU multicore processors. Proprietary IP provides industry-leading transient response, output voltage accuracy, high efficiency, and miniature PCB footprint. The output voltage is I2C programmable from 0.25V to 1.30V in 5mV steps. Output current capability is 16A. Rotational phase spreading ensures high efficiency and low ripple at light loads with seamless operation across all varying loads. Turbo skip mode combines the same transient response of forced-PWM mode with light load efficiency similar to Skip mode. Soft-start and DVS ramp rates are I2C programmable and controlled through dedicated logic inputs. The MAX77874 is offered in a 48-bump, 0.35mm pitch WLP array and is specified over the -40°C to +85°C temperature range. Ordering Information appears and Benefits and Features continued at end of data sheet. Applications ● ● ● ● Smartphones, Tablets, Ultrabooks DSLR, Mirrorless, Action Cameras Gaming, Drones, Robots, Virtual Reality AI, Machine Vision, Embedded Microprocessors Benefits and Features ● Operating Range • VIN: 2.7V to 4.8V • VOUT: 0.25V to 1.30V in 5mV Steps • IOUT: Up to 16A ● Fast Load-Transient Response • 25mV Droop in FPWM and Turbo-Skip Modes • 40mV Droop in Skip Mode • Conditions: 3.7VIN, 0.9VOUT, 200mA to 9.2A ● Tight VOUT Accuracy • 0.28% (max) Initial Accuracy at 0.9VOUT • 1.5% (max) Over Line/Temperature • 3mVP-P (typ) Ripple at All Loads Simplified Block Diagram for 16A Multiphase Buck for Multicore Processors MAX77874 INPUT 2.7V TO 4.8V LA CIN OUTPUT 0.25V TO 1.30V UP TO 16A LC 4-PHASE PWM BUCK VDD LB COUT LD BIAS AND REF MICROPROCESSOR VIO 1.65V TO 4.8V I2C INTERFACE AND REGISTERS SCL SDA IRQ DVS EN 19-8692; Rev 1; 9/21 ©  2021 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2021 Analog Devices, Inc. All rights reserved. MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 16A Quad-Phase Core Buck for High-Performance Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Characteristics - Quad Phase Core Buck Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Characteristics - I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Block Diagram and Simplified Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Detailed Description - Quad Phase Core Buck Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Skip, Turbo Skip, and Forced PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Rotational Phase Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Enhanced Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Enable and Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Disable and Active Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Full Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Dynamic Voltage Scaling (DVS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DVS Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DVS and Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Interrupt Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Power OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Thermal Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Internal Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Trim Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 www.analog.com Analog Devices │  2 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors TABLE OF CONTENTS (CONTINUED) Detailed Description - I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I2C System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I2C Interface Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I2C Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 I2C Start and Stop Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 I2C Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 I2C Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C Clock Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C General Call Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C Communication Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Writing to a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Writing Multiple Bytes to Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Reading from a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Reading from Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Engaging HS-mode for operation up to 3.4MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Detailed Description - Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Top-Level Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 I2C Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Top-Level Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Buck Regulator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 I2C Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Buck I2C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Register Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Applications Information - Quad Phase Core Buck Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Local Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Remote Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Bias Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 PCB Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 www.analog.com Analog Devices │  3 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors LIST OF FIGURES Figure 1. DVS Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 2. I2C Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 3. I2C ​ System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 4. I2​C Start and Stop Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 5. Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 6. Example I2C Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 7. Writing to a Single Register with the Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 8. Writing to Sequential Registers X to N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 9. Reading from a Single Register with the Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 10. Reading Continuously from Sequential Registers X to N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 11. Engaging HS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 12. Typical Applications Circuit to Power a Multicore CPU/GPU Processor Up to 16A with MAX77874 . . . . . 36 LIST OF TABLES Table 1. I2C Slave Address Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 www.analog.com Analog Devices │  4 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Absolute Maximum Ratings PG_, AGND_, SNS- to AGND...............................-0.3V to +0.3V EN, DVS, SDA, SCL, IRQ to AGND.............-0.3V to VIO + 0.3V IN_, LX_ to PG_....................................................-0.3V to +5.5V VDD_ANA to AGND..............................................-0.3V to +1.85V SNS+ to AGND.............................................-0.3V to VCC + 0.3V VDD_DIG to AGND...............................................-0.3V to +1.85V VCC, VIO to AGND................................................-0.3V to +5.5V VPP to AGND...........................................................-0.3V to +8V LX_ Current (Note 1)......................................................4.3ARMS Operating Temperature Range............................ -40°C to +85°C Junction Temperature.......................................................+150°C Storage Temperature Range............................. -65°C to +150°C Soldering Temperature (reflow)........................................+260°C Note 1: LX_ has internal clamping diodes to PG_ and IN_. Applications that forward bias these diodes should take care not to exceed the power dissipation limits of the device. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information WLP Package Code W482B2+1 Outline Number 21-0784 Land Pattern Number Refer to Application Note 1891 Thermal Resistance, Four-Layer Board: Junction to Ambient (θJA) 57°C/W Junction to Case (θJC) For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (VIN = 3.7V, VIO = 1.8V, VOUT = 0.9V, CVDD_ANA = 1μF, CVDD_DIG = 1μF, CVCC = 1μF, TA = -40°C to +85°C, typical values at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Power Supplies VCC Falling UVLO Threshold VUVLO_F 2.5 2.6 2.7 V VCC Rising UVLO Threshold VUVLO_R 2.7 2.8 2.9 V VCC Falling UVLO Threshold Delay Time tUVLO_F VCC Operating Voltage Range VCC VCC falling, 20mV overdrive 20 2.7 Shutdown Supply Current ISHDN BUCK0EN[0] = 0, VIO = 0V, VIN = VCC = VPP = 4.8V, TA = +25°C 0.2 Shutdown Supply Current (Note 1) ISHDN BUCK0EN[0] = 0, VVIO = 0V, VIN = VCC = VPP = 4.8V, TA = +85°C 1 www.analog.com μs 4.8 V 5 μA μA Analog Devices │  5 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Electrical Characteristics (continued) (VIN = 3.7V, VIO = 1.8V, VOUT = 0.9V, CVDD_ANA = 1μF, CVDD_DIG = 1μF, CVCC = 1μF, TA = -40°C to +85°C, typical values at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 14 30 μA Disable Supply Current IDISABLE BUCK0EN[0] = 0, VIO = 1.8V, VIN = VCC = VPP = 4.8V, TA = +25°C Disable Supply Current (Note 1) IDISABLE BUCK0EN[0] = 0, VIO = 1.8V, VIN = VCC = VPP = 4.8V, TA = +85°C 25 IQ,SKIP BUCK0EN[0] = 1, TURBO[0] = 0, FPWMEN[0] = 0, VOUT = 0.9V, no load, no switching, includes current through SNS+ and SNS- internal dividers 275 550 μA Turbo Skip Mode Quiescent Supply Current IQ,TURBOSKIP BUCK0EN[0] = 1, TURBO[0] = 1, FPWMEN[0] = 0, VOUT = 0.9V, no load, no switching, includes current through SNS+ and SNS- internal dividers 475 900 μA VPP Input Current IVPP VPP = VCC, TA = +25°C 0.03 1 μA VIO Input Voltage Range VIO Skip Mode Quiescent Supply Curernt VIO Static Supply Current IVIO,STATIC VPP = VCC, TA = -40°C to +85°C μA 0.1 1.65 μA 1.8 4.8 V fSCL = fSDA = 0Hz, SCL and SDA pulled high, EN = GND, BUCK0EN[0] = 0, ENPD_EN[0] = 0 0.2 1 μA VIO Dynamic Supply Current IVIO,DYN fSCL = fSDA = 1MHz 10 μA VCC Dynamic Supply Current ICC fSCL = fSDA = 1MHz 30 μA VDD_DIG AND VDD_ANA Supplies VDD_DIG Output Voltage VDD_DIG 1.575 V VDD_ANA Output Voltage VDD_ANA 1.575 V 200 μs VDD_ANA and VDD_DIG Enable Time tCE VDD_ANA and VDD_DIG ready time from VCC rising edge GPIO/I/O Logic Pins EN Pulldown Resistance RPD,EN 200 EN, DVS Input Logic High Threshold VIH,ENVIH,DVS 0.7 x VIO EN, DVS Input Logic Low Threshold VIL,ENVIL,DVS 400 800 kΩ V 0.3 x VIO EN, DVS, IRQ Logic Input Leakage Current ILK,ENILK,DVSILK, VIO = 1.8V, TA = +25°C IRQ VIO = 1.8V, TA = -40°C to +85°C -1 POK Threshold Falling VOUT = 0.9V 607.5 675 741.5 mV POK Threshold Rising VOUT = 0.9V 648 720 792 mV POK Threshold Hysteresis VOUT = 0.9V 39 46 52 mV 0.2 0.4 V IRQ Output Voltage Low www.analog.com VOL,IRQ ISINK = 10mA +1 V 0.1 μA Analog Devices │  6 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Electrical Characteristics (continued) (VIN = 3.7V, VIO = 1.8V, VOUT = 0.9V, CVDD_ANA = 1μF, CVDD_DIG = 1μF, CVCC = 1μF, TA = -40°C to +85°C, typical values at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Thermal Monitors Thermal Alarm 1 TJ120 TJ rising, 5°C hysteresis +120 °C Thermal Alarm 2 TJ140 TJ rising, 5°C hysteresis +140 °C TJSHDN TJ rising, 15°C hysteresis +165 °C Thermal Shutdown Temperature Electrical Characteristics—Quad Phase Core Buck Regulator (VIN = 3.7V, VIO = 1.8V, VOUT = 0.9V, CVDD_ANA = 1μF, CVDD_DIG = 1μF, CVCC = 1μF, TA = -40°C to +85°C, typical values at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 1.3 V +10 mV mV Output Voltage Output Voltage Range VOUT Output Voltage Range End-Point Error 8-bit resolution, 5mV/LSB 0.25 VOUT = 0.25V and 1.3V, IOUT = 0mA, FPWMEN[0] = 1, TA = +25°C -10 IOUT = 0mA, FPWMEN[0] = 1, TA = +25°C -2.5 +2.5 IOUT = 0mA, TURBO[0] = 0, FPWMEN[0] = 1, TA = -5°C to +85°C -5 +5 IOUT = 0mA, TURBO[0] = 0, FPWMEN[0] = 1, TA = -40°C to +85°C -13 ±1 DC Output Voltage Accuracy Initial Output Voltage Accuracy Output Voltage Accuracy, FPWM Mode mV ±1.75 +10 Output Voltage Accuracy, Turbo Skip Mode IOUT = 0mA, TURBO[0] = 1,FPWMEN[0] = 0, excludes output voltage ripple ±2.5 mV Output Voltage Accuracy, Skip Mode IOUT = 0mA, TURBO[0] = 0, FPWMEN[0] = 0, excludes output voltage ripple ±2.5 mV Load Regulation FPWMEN[0] = 1, IOUT = 0 to 16A 0.1 mV/A Line Regulation VIN = 2.5V to 4.8V, IOUT = 0mA, FPWMEN[0] = 1 -0.3 +0.3 mV/V Switch Ratings Maximum Output Current Per phase, RMS rating 4000 PMOS Current Limit ILIMP Per phase 4.750 5.275 5.800 A NMOS Valley Current Limit IVALLEY Per phase 3.819 4.244 4.669 A ILIMN Per phase -1800 -1500 -1200 mA Zero-Crossing Current Threshold IZX DC tested +50 +115 +170 mA Zero-Crossing Comparator Propagation Delay tPD_ZX NMOS Negative Current Limit Switching Frequency www.analog.com IOUT,MAX fSW mA 20 FPWM mode, no load, TA = +25°C 1.9 2.0 ns 2.1 MHz Analog Devices │  7 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Electrical Characteristics—Quad Phase Core Buck Regulator (continued) (VIN = 3.7V, VIO = 1.8V, VOUT = 0.9V, CVDD_ANA = 1μF, CVDD_DIG = 1μF, CVCC = 1μF, TA = -40°C to +85°C, typical values at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER LX_ Leakage Current SYMBOL ILKG_LX CONDITIONS MIN VLX_ = 0V or 4.8V, TA = +25°C TYP MAX 0.1 1 VLX_ = 0V or 4.8V, TA = -40°C to +85°C (Note 1) 1 UNITS μA Main Switch On-Resistance RDSON_MS ILX_ = 190mA 65 mΩ Synchronous Rectifier On-Resistance RDSON_SR ILX_ = -190mA 16 mΩ BUCK0EN[0] = 0, BUCK0ADEN[0] = 1, resistance from LX_ to PG_, per phase 100 140 4.5 5 5.5 BUCK0SSR[1:0] = 0b01, WARMSTART[0] = 1 9 10 11 BUCK0SSR[1:0] = 0b10, WARMSTART[0] = 1 18 20 22 Active Discharge LX_ Active Discharge Resistance RLX_AD Ω Ramp Rates BUCK0SSR[1:0] = 0b00, WARMSTART[0] = 1 Startup Ramp Rate BUCK0SSR[1:0] = 0b11, WARMSTART[0] = 1 Cold Startup Ramp Rate WARMSTART[0] = 0 DVS Ramp Rate 36 40 44 1.125 1.25 1.375 BUCK0RSR[1:0] = 0b00 4.5 5 5.5 BUCK0RSR[1:0] = 0b01 9 10 11 BUCK0RSR[1:0] = 0b10 18 20 22 BUCK0RSR[1:0] = 0b11 36 40 44 mV/μs mV/μs mV/μs DVS Ramp Delay Measured from DVS rising edge to first LX pulse 1.5 Startup Ramp Delay Measured from EN rising edge to first LX pulse 50 200 μs μs SNS+ and SNS- Feedback Inputs SNS+ Input Impedance RIN,SNS+ 75 120 160 kΩ SNS- Input Impedance RIN,SNS- 75 120 160 kΩ I2C Electrical Characteristics VIN = 3.7V, VIO = 1.8V, VOUT = 0.9V, CVDD_ANA = 1μF, CVDD_DIG = 1μF, CVCC = 1μF, TA = -40ºC to +85ºC, typical values are at TA = +25ºC, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS SDA and SCL I/O Stage SCL, SDA Input High Voltage VIH VIO = 1.8V SCL, SDA Input Low Voltage VIL VIO = 1.8V SCL, SDA Input Hysteresis www.analog.com VHYS 0.7 x VIO V 0.3 x VIO 0.05 x VIO V V Analog Devices │  8 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors I2C Electrical Characteristics (continued) VIN = 3.7V, VIO = 1.8V, VOUT = 0.9V, CVDD_ANA = 1μF, CVDD_DIG = 1μF, CVCC = 1μF, TA = -40ºC to +85ºC, typical values are at TA = +25ºC, unless otherwise noted.) (Note 1) PARAMETER SCL, SDA Input Leakage Current SDA Output Low Voltage SYMBOL II VOL SCL, SDA Pin Capacitance CI Output Fall Time from VIH to VIL (Note 1) tOF CONDITIONS VIO = 3.6V, VSCL = VSDA = 0V and 3.6V MIN TYP -10 Sinking 20mA MAX UNITS +10 μA 0.4 V 10 pF 120 ns 1000 kHz I2C-COMPATIBLE INTERFACE TIMING (STANDARD, FAST, AND FAST MODE PLUS) (Note 2) Clock Frequency Hold Time (REPEATED) START Condition fSCL 0 tHD;STA 0.26 μs SCL Low Period tLOW 0.5 μs SCL High Period tHIGH 0.26 μs Setup Time REPEATED START Condition tSU_STA 0.26 μs Data Hold Time tHD_DAT 0 μs Data Setup Time tSU_DAT 50 ns Setup Time for STOP Condition tSU_STO 0.26 μs Bus Free Time Between STOP and START Condition tBUF 0.5 μs Pulse Width of Suppressed Spikes tSP Maximum pulse width of spikes that must be suppressed by the input filter 50 ns I2C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, CB = 100pF) (Note 2) Clock Frequency fSCL 3.4 MHz Setup Time REPEATED START Condition tSU_STA 160 ns Hold Time (REPEATED) START Condition tHD_STA 160 ns tLOW 160 ns SCL High Period tHIGH 60 ns Data Setup Time tSU_DAT 10 ns Data Hold Time tHD_DAT 0 70 ns SCL Rise Time trCL TA = +25°C 10 40 ns Rise Time of SCL Signal after REPEATED START Condition and after Acknowledge Bit trCL1 TA = +25°C 10 80 ns SCL Fall Time tfCL TA = +25°C 10 40 ns SDA Rise Time trDA TA = +25°C 10 80 ns SCL Low Period www.analog.com Analog Devices │  9 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors I2C Electrical Characteristics (continued) VIN = 3.7V, VIO = 1.8V, VOUT = 0.9V, CVDD_ANA = 1μF, CVDD_DIG = 1μF, CVCC = 1μF, TA = -40ºC to +85ºC, typical values are at TA = +25ºC, unless otherwise noted.) (Note 1) PARAMETER SDA Fall Time Setup Time for STOP Condition SYMBOL tfDA CONDITIONS TA = +25°C tSU_STO Bus Capacitance CB Pulse Width of Suppressed Spikes tSP MIN TYP 10 MAX UNITS 80 ns 160 ns 100 Maximum pulse width of spikes that must be suppressed by the input filter 10 pF ns I2C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, CB = 400pF) (Note 2) Clock Frequency fSCL 1.7 MHz Setup Time REPEATED START Condition tSU_STA 160 ns Hold Time (REPEATED) START Condition tHD_STA 160 ns tLOW 320 ns SCL High Period tHIGH 120 ns Data Setup Time tSU_DAT 10 ns Data Hold Time tHD_DAT 0 150 ns SCL Rise Time tRCL TA = +25°C 20 80 ns Rise Time of SCL Signal after REPEATED START Condition and after Acknowledge Bit tRCL1 TA = +25°C 20 80 ns SCL Fall Time tFCL TA = +25°C 20 80 ns SDA Rise Time tRDA TA = +25°C 20 160 ns SDA Fall Time tFDA TA = +25°C 20 160 ns SCL Low Period Setup Time for STOP Condition Bus Capacitance Pulse Width of Suppressed Spikes tSU_STO 160 ns CB tSP 400 Maximum pulse width of spikes that must be suppressed by the input filter 10 pF ns Note 1: Limits are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed through correlation using statistical quality control methods. Note 2: Guaranteed by design. Not production tested. www.analog.com Analog Devices │  10 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Typical Operating Characteristics (Figure 12, VIN = 3.7V, VOUT = 0.9V, VIO = 1.8V, L = TOKO DFE201210U-R24M ,TA = +25°C, unless otherwise noted.) EFFICIENCY vs. LOAD 100 100 3.7VIN 0.9VOUT 90 80 50 40 30 SKIP TURBO FPWM 10 80 0 0.001 85 80 75 70 0.01 0.1 1 60 10 DFE201210U TURBO DFE201610E TURBO 0 5 LOAD CURRENT (A) toc04 50 40 30 10 10 0 15 toc05 100 VIN = 3.7V 3.5A LOAD 90 80 80 80 70 70 70 60 50 40 30 20 2.5 3 3.5 4 4.5 50 40 30 0 5 0.25 0.5 0.75 QUIESCENT SUPPLY CURRENT toc07 1 NO LOAD BIAS ON IQ (µA) 1 0.1 0.01 VIN (V) www.analog.com 30 SKIP TURBO FPWM 0.25 0.5 0.75 5 1 1.25 OUTPUT ACCURACY vs. SETTING toc09 VIN = 3.7V NO LOAD 4 2 0 -2 -4 -6 VIO = 0V 4 toc06 6 SKIP 0.1 3 EFFICIENCY vs. VOUT 40 8 BIAS OFF TURBO 5 50 10 toc08 10 1 4.5 60 0 1.25 100 10 4 VOUT (V) SHUTDOWNSUPPLY CURRENT 1000 NO LOAD 2 3.5 VOUT (V) FPWM 0.01 3 VIN = 3.7V 100mA LOAD 10 VIN (V) 100 2.5 20 SKIP TURBO FPWM 10 OUTPUT ERROR (mV) 0 60 20 SKIP TURBO FPWM VOUT = 0.9V 100mA LOAD 90 EFFICIENCY (%) 90 10 SKIP TURBO FPWM VOUT = 0.9V 3.5A LOAD VIN (V) EFFICIENCY vs. VOUT 100 EFFICIENCY (%) EFFICIENCY (%) 60 LOAD CURRENT (A) EFFICIENCY vs. VIN 100 70 20 65 toc03 90 EFFICIENCY (%) 60 EFFICIENCY vs. VIN 100 90 70 20 IQ (mA) toc02 3.7VIN 0.9VOUT 95 EFFICIENCY (%) EFFICIENCY (%) toc01 EFFICIENCY vs. LOAD vs. INDUCTOR SIZE 2 3 -8 4 VIN (V) 5 -10 SKIP TURBO FPWM 0.0 0.5 1.0 1.5 EXPECTED OUTPUT (V) Analog Devices │  11 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Typical Operating Characteristics (continued) (Figure 12, VIN = 3.7V, VOUT = 0.9V, VIO = 1.8V, L = TOKO DFE201210U-R24M ,TA = +25°C, unless otherwise noted.) 10 toc10 OUTPUT ACCURACY vs. DC LOAD toc11 10 VOUT = 0.9V NO LOAD 8 4 4 0 -2 -4 -6 -8 -10 2 0 -2 -4 -6 SKIP TURBO FPWM 2.5 OUTPUT ERROR (mV) 6 4 3.0 3.5 4.0 4.5 -10 5.0 0 -4 SKIP TURBO FPWM 4 8 12 16 -10 -50 TURBO/SKIP 100 toc14 VLXA 5V/div VLXB 5V/div VLXC 5V/div VLXD 5V/div 5mV/div 20mA VOUT 50 TURBO/SKIP, 300mA LOAD 5mV/div 5mA VOUT LIGHT-LOADPHASE SPREADING toc13 0mA 0 TEMPERATURE (°C) IOUT (A) OUTPUT VOLTAGERIPPLE 5mV/div 100mA VOUT 5mV/div 500mA VOUT 5mV/div 20µs/div FPWMPHASE MATCHING VLXA 1µs/div LOAD TRANSIENT toc15 VLXB 5V/div VLXC 5V/div VLXD 5V/div toc16 0.2A TO 9.2A LOAD STEP 400A/µs FPWM 5V/div 200ns/div www.analog.com 0 -2 -8 VIN (V) VOUT 2 -6 SKIP TURBO FPWM -8 toc12 VIN = 3.7V VOUT = 0.9V 100mA LOAD 8 6 2 OUTPUT ACCURACY vs. TEMPERATURE 10 VIN = 3.7V VOUT = 0.9V 6 OUTPUT ERROR (mV) OUTPUT ERROR (mV) 8 OUTPUT ACCURACY vs. VIN VGATE (IOUT) 5V/div VOUT 50mV/div 10µs/div Analog Devices │  12 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Typical Operating Characteristics (continued) (Figure 12, VIN = 3.7V, VOUT = 0.9V, VIO = 1.8V, L = TOKO DFE201210U-R24M ,TA = +25°C, unless otherwise noted.) LOAD TRANSIENT LOAD TRANSIENT toc17 0.2A TO 9.2A LOAD STEP 400A/µs TURBO VGATE (IOUT) 5V/div VOUT 50mV/div VGATE (IOUT) 5V/div VOUT 50mV/div 10µs/div 10µs/div LOAD TRANSIENT LOAD TRANSIENT toc19 0.2A TO 2.2A LOAD STEP 400A/µs FPWM 5V/div VOUT 50mV/div VGATE (IOUT) 5V/div VOUT 50mV/div 10µs/div 10µs/div LOAD TRANSIENT toc21 0.2A TO 2.2A LOAD STEP 400A/µs SKIP VGATE (IOUT) www.analog.com FPWM 50mV/div 10µs/div toc22 1.6A TO 16A LOAD STEP 400A/µs 5V/div VOUT toc20 0.2A TO 2.2A LOAD STEP 400A/µs TURBO VGATE (IOUT ) LOAD TRANSIENT toc18 0.2A TO 9.2A LOAD STEP 400A/µs SKIP VGATE (IOUT) 5V/div VOUT 50mV/div 10µs/div Analog Devices │  13 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Typical Operating Characteristics (continued) (Figure 12, VIN = 3.7V, VOUT = 0.9V, VIO = 1.8V, L = TOKO DFE201210U-R24M ,TA = +25°C, unless otherwise noted.) LOAD TRANSIENT LOAD TRANSIENT toc23 1.6A TO 16A LOAD STEP 400A/µs TURBO VGATE (IOUT) 5V/div VOUT 50mV/div VGATE (IOUT) 5V/div VOUT 50mV/div 10µs/div LOAD TRANSIENT 10µs/div LOAD TRANSIENT toc25 0A TO 9A LOAD STEP 400A/µs TURBO 5V/div VOUT 50mV/div VGATE (IOUT) 5V/div VOUT 50mV/div 10µs/div 10µs/div LINE TRANSIENT FPWMMODE toc27 2A TO 4A LOAD STEP 400A/µs FPWM VGATE (IOUT) VIN 3.8V toc28 200mV/div 3.3V 5V/div VOUT 50mV/div 10µs/div www.analog.com toc26 0A TO 9A LOAD STEP 400A/µs SKIP VGATE (IOUT) LOAD TRANSIENT toc24 1.6A TO 16A LOAD STEP 400A/µs SKIP VOUT 10mV/div 200µs/div Analog Devices │  14 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Typical Operating Characteristics (continued) (Figure 12, VIN = 3.7V, VOUT = 0.9V, VIO = 1.8V, L = TOKO DFE201210U-R24M ,TA = +25°C, unless otherwise noted.) LINE TRANSIENT TURBO MODE VIN LINE TRANSIENT SKIP MODE toc29 3.8V 200mV/div VIN toc30 3.8V 3.3V 200mV/div 3.3V VOUT 10mV/div VOUT 10mV/div 200µs/div 200µs/div REGULATORSOFT-START RATES WARM RATES ONLY REGULATORSOFT-START RATES toc31 toc32 5V/div EN 20mV/µs 10mV/µs 40mV/µs 200mV/div 5V/div 20mV/µs EN 200mV/div 40mV/µs 5mV/µs 5mV/µs 1.25mV/µs (COLD) VOUT VOUT 100µs/div 10mV/µs 40µs/div REGULATORSHUTDOWN ACTIVE DISCHARGE ENABLED REGULATORENABLE vs. BIAS STATUS toc33 5V/div EN 200mV/div EN toc34 5V/div VOUT BIASEN = 1 BIASEN = 0 VOUT 200mV/div 10µs/div www.analog.com 4ms/div Analog Devices │  15 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Typical Operating Characteristics (continued) (Figure 12, VIN = 3.7V, VOUT = 0.9V, VIO = 1.8V, L = TOKO DFE201210U-R24M ,TA = +25°C, unless otherwise noted.) REGULATORSHUTDOWN ACTIVE DISCHARGE DISABLED EN DVS TRANSITION, RISING toc35 toc36 5V/div 5V/div VOUT DVS 20mV/µs 100mV/div 40mV/µs 5mV/µs VOUT 10mV/µs 200mV/div 4s/div 10µs/div DVS TRANSITION, FALLING toc37 DVS 5V/div -5mV/µs VOUT -40mV/µs -10mV/µs 100mV/div -20mV/µs 10µs/div www.analog.com Analog Devices │  16 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Pin Configuration TOP VIEW (BUMP SIDE DOWN) MAX77874 1 2 3 4 5 PGA PGA LXA INAC INAC B SCL PGA LXA INAC C SDA VPP D AGND3 AGND E AGND4 F PGB A 6 7 8 LXC PGC PGC INAC LXC PGC IRQ SNS- SNS+ EN DVS VCC VIO AGND AGND AGND1 AGND2 AGND PGB LXB INBD INBD LXD PGD PGB LXB INBD INBD LXD PGD + VDD_ DIG VDD_ ANA PGD 48 WLP (2.22mm x 2.92mm) Pin Description PIN NAME A1, A2, B2 PGA Power GND A3, B3 LXA Inductor Connection. Pulled to PG with 100Ω when EN is low and BUCK0ADEN = 1. A4, A5, B4, B5 INAC Power Input to Power FETs and Gate Drivers A6, B6 LXC Inductor Connection. Pulled to PG with 100Ω when EN is low and BUCK0ADEN = 1. A7, A8, B7 PGC Power GND www.analog.com FUNCTION REF SUPPLY TYPE GND GND IN Power Power IN Power GND GND Analog Devices │  17 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Pin Description PIN NAME FUNCTION REF SUPPLY B1 SCL Serial Clock Input. SCL accepts a clock frequency of up to 3.4MHz. VDD TYPE Logic Input Open-Drain Logic Output B8 IRQ Open-Drain Interrupt Output. High impedance when EN = 0. C1 SDA Serial Data Input/Output for I2C 3.0 Interface C2 VDD_DIG Digital VDD Power C3 VPP Power Pin for OTP Programming. Connect to VDD_DIG. Power C4 SNS- Negative Differential Voltage Sense Input. SNS- connects to GND at the point-of-load. GND Voltage Sense C5 SNS+ Positive Differential Voltage Sense Input. Connect SNS+ to the output at the point-of-load. VCC Voltage Sense C6 EN EN Logic Input. Drive high to enable the buck regulator output. Drive low to disable the buck regulator output. VDD Logic Input C7 DVS DVS Logic Input. Drive high to set the target output voltage to the contents of the VOUT_DVS register. Drive low to set the target output voltage to the contents of the VOUT register. VDD Logic Input C8 VCC Powers the Battery Level Circuitry of the MAX77874 IN Power D1 AGND3 For Internal Use Only. Must be tied to AGND. D2, D4, D5, D8 AGND Analog GND. Pin D2 is internally connected to AGND, and can be left unconnected or tied to AGND3/AGND4. VDD Logic Input/ Output GND GND D3 VIO D6 AGND1 For Internal Use Only. Must be tied to AGND. GND D7 AGND2 For Internal Use Only. Must be tied to AGND. GND E1 AGND4 For Internal Use Only. Must be tied to AGND. GND E2, F1, F2 PGB Power GND E3, F3 LXB Inductor Connection. Pulled to PG with 100Ω when EN is low and BUCK0ADEN = 1. E4, E5, F4, F5 INBD Power Input to Power FETs and Gate Drivers E6, F6 LXD Inductor Connection. Pulled to PG with 100Ω when EN is low and BUCK0ADEN = 1. E7, F7, F8 PGD Power GND E8 VDD_ANA Analog VDD www.analog.com Power for SCL, SDA Pins. Bringing VIO to GND resets the registers. GND Power GND GND IN Power Power IN Power GND GND Power Analog Devices │  18 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Block Diagram and Simplified Schematic VCC INA C VPP VDD_DIG VDD_ANA PHASE A DRIVER INTERNAL REGULATORS LXA VIN 2.7V TO 4.8V LA PGA INBD VIO 1.65V TO 4.8V PHASE B DRIVER LXB VIN 2.7V TO 4.8V LB PGB VOUT 0.25V TO 1.3V SDA REGISTERS, BIAS SNS+ CONTROLLER SCL SERIAL INTERFACE, I/O STAGE, ABITRATOR, FLOOR/CEILING REGISTERS CLOAD RLOAD SNSINAC VIN 2.7V TO 4.8V IRQ PHASE C DRIVER EN LXC LC PGC TEMP SENSOR AGND INBD VIN 2.7V TO 4.8V RSR[1:0] FSR[1:0] SSR[1:0] RAMP CONTROL WARMSTART PHASE D DRIVER LXD LD PGD OSC www.analog.com Analog Devices │  19 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Detailed Description—Quad Phase Core Buck Regulator The MAX77874 is a highly efficient, small step-down converter that operates on an input voltage range of 2.7V to 4.8V and can output up to 16A of current. An integrated I2C interface allows for configuration of output voltage, dynamic voltage scaling (DVS), interrupts, and control mode. Control Scheme The quad phase core buck regulator uses Maxim's proprietary Quick-PWM™ quick-response, constant-on-time PWM control scheme. This control scheme handles wide input/output voltage ratios (low duty-cycle applications) with ease and provides immediate response to load transients while maintaining a nearly constant switching frequency. Additionally, the scheme exhibits excellent stability with very high loop-bandwidth for minimal droop/ soar and rapid recovery during load transients. Skip, Turbo Skip, and Forced PWM When enabled, the quad phase core buck operates in either skip, turbo skip, or forced PWM (FPWM) mode. Program the operating mode using the FPWMEN and TURBO_SKIP bits in the BUCK0CNFG0 register. Skip mode provides the lowest supply current and highest efficiency at light loads, but has more VOUT droop during load transients than the other modes. Turbo skip mode combines superior transient response (same as FPWM mode) with light load efficiency and supply current nearly as low as skip mode. For this reason, turbo skip mode is the default setting. Forced PWM mode provides near constant switching frequency for noise-sensitive applications, but has higher supply current and lower efficiency at light loads. FPWM has similar transient response to turbo skip mode. See the Typical Operating Characteristics section for efficiency, supply current, and load transient response for each operating mode. The skip and turbo skip modes transition automatically between PWM operation at heavy load and rotational phase spreading at light loads to maintain high efficiency and low output ripple across all loads. Rotational Phase Spreading At light loads, proprietary rotational phase spreading switches all four phases in a rotational sequence with extended time at zero current between switching pulses. Compared to phase shedding techniques that disable some phases entirely, rotational phase spreading transitions across varying loads more smoothly with less output ripple and fewer glitches since phases do not get added or dropped. See the output ripple scope waveforms in the Typical Operating Characteristics section. To maintain efficiency, the phases are spread further and further apart as loads decrease, with each phase entering a low quiescent current mode when its current is zero and its synchronous rectifier is off. Enhanced Transient Response In skip and turbo skip modes, the converter is capable of activating all four phases simultaneously to respond to a load transient. However, in skip mode, the response is not as fast as in turbo skip mode in order to achieve a lower quiescent current. This enhanced transient response (ETR) circuit is not needed in FPWM mode due to the high-loop bandwidth of the controller. Enable and Soft-Start VIN and VIO must both be valid to enable the quad phase core buck regulator. See the Electrical Characteristics table for the valid voltage ranges. When both voltages are valid, enable the core buck regulator by using the dedicated EN logic input pin or by using the BUCK0EN bit in the BUCK0CNFG0 register. These two control mechanisms are a logic OR function, so setting either the pin or the logic bit to logic 1 enables the regulator. Once enabled, there is a short delay (see the Startup Ramp Delay in Electrical Characteristics table) before the quad phase core buck regulator soft-starts with a linear voltage ramp at the output to control in-rush current and output voltage overshoot. There are a total of five softstart ramp rates controlled through registers. The default setting is for cold startup, with a slow ramp of 1.25mV/ μs for MAX77874B, or warm startup, with a fast ramp of 40mV/μs for MAX77874C. To enable warm startup ramp rates, set the WARMSTART bit in the BUCK0CNFG1 register to logic 1. Then select the desired warm startup ramp rate using the BUCK0SSR[1:0] bits in the BUCK0CNFG1 register. The default setting for warm startup ramp rate is 5mV/μs for MAX77874B or 40mV/μs for MAX77874C. The other settings are 10mV/μs and 20mV/μs. Set the desired ramp rate prior to enabling the regulator. Disable and Active Discharge When both control mechanisms (BUCK0EN and the EN pin) are logic 0, the buck regulator is off and the output is high impedance. The quad phase core buck regulator contains on-chip resistors for optional active discharge when disabled. To enable active discharge, set the BUCK0ADEN bit in the BUCK0CNFG0 register to logic 1. When active discharge is enabled and the regulator is disabled, four internal 100Ω resistors are internally connected from LX_ to PG_ (one resistor per phase for an effective discharge resistance of Quick-PWM is a trademark of Maxim Integrated Product, Inc. www.analog.com Analog Devices │  20 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors 25Ω). When the buck is enabled, the discharge resistors are automatically disconnected regardless the state of the BUCK0ADEN bit. Therefore, if active discharge is always desired, the bit can be left enabled (logic 1) without causing additional loading when the buck is enabled. Full Shutdown By default, when the buck regulator is disabled, its bias circuits are also disabled to save supply current. When enabling the buck regulator, the bias is automatically enabled and disabled. If faster startup is desired, the bias circuits can be pre-enabled by setting the BIASEN bit in the BUCK0CNFG0 register to logic 1. This comes at the expense of higher supply current when the buck is disabled. Even when the regulator and the bias are disabled, toplevel circuits in the MAX77874 are still alive. The I2C is active and registers can still be read from and written to. Setting VIO = 0V turns off the top-level circuits and results in the lowest possible shutdown current at VIN. Additionally, when VIO = 0V, all registers are reset to their default values. See the Typical Operating Characteristics for a graph of supply current in each operating mode, as well as a scope photo of the faster startup. Output Voltage Selection The output voltage is I2C programmable from 0.25V to 1.3V in 5mV steps using the I2C_SD0_VOUT[7:0] bits in the I2C_SD0_VOUT configuration register. The default setting is trimmed to 0x82 = 0.900V for MAX77874B or 0x6E = 0.800V for MAX77874C. Consult the factory if a different default setting is required. This setting is programmable with the quad phase core buck enabled or disabled. Dynamic Voltage Scaling (DVS) The quad phase core buck includes DVS functionality. The DVS output voltage is I2C programmable from 0.25V to 1.3V in 5mV steps using the VBUCKDVS[7:0] bits in the VBUCKDVS configuration register. The default setting is trimmed to 0x82 = 0.900V for the MAX77874B or 0x6E = 0.800V for the MAX77874C. Consult the factory if a different default setting is required. The setting is programmable with the quad phase core buck enabled or disabled. DVS Functionality The purpose of the DVS function is to allow the buck output voltage to quickly change from one output voltage to another. An I2C write of a register can take several microseconds to a few milliseconds to complete depending upon the I2C speed. The I2C_SD0_VOUT[7:0] register controls the buck output voltage when the DVS pin is low. When the DVS pin is high, the buck output voltage is controlled by the VBUCKDVS[7:0] register. See Figure 1. When the I2C_SD0_VOUT register is set at a higher voltage than the VBUCKDVS register and the DVS pin transitions from low to high, then the buck output voltage falls to the voltage set by the VBUCKDVS register at a slew rate specified by the BUCK0FSR[1:0] bits in the BUCK0CNFG1 register (when the FSREN bit in the BUCK0CNFG0 register is 1). When the DVS pin transitions back from high to low, then the buck output voltage rises to the value specified by the I2C_SD0_VOUT register at a slew rate specified by the BUCK0RSR[1:0] bits in the BUCK0CNFG1 register. When changing the buck output voltage without utilizing the DVS pin, i.e., I2C writing to I2C_SD0_VOUT register when DVS pin is low or I2C writing to VBUCKDVS register when DVS pin is high, the output voltage falling and rising slew rates are also controlled by the same bits BUCK0FSR[1:0] and BUCK0RSR[1:0], respectively. VOLTAGE SPE CIFIED BY I2C_SD0_VOUT REGISTE R BUCK OUTPUT VOLTAGE FALL S LEW RATE SPECIFIED BY BUCK0FSR VOLTAGE SPE CIFIED BY VBUCKDVS REGISTER RISE SLEW RATE SPECIFIED BY BUCK0RSR DVS PIN Figure 1. DVS Functionality www.analog.com Analog Devices │  21 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors DVS and Current Limit Any time the buck performs a DVS slew to change to a higher output voltage, extra current is required to charge the output capacitors. If the device is operating at maximum output current (16A), there may not be enough headroom to safely perform a DVS operation. Applications that expect a large load current coming and need to change the output voltage to respond to it should perform the DVS before the load step hits to prevent possible overcurrent damage to the inductors. Internal current limits in the buck protect the internal switches and synchronous rectifiers from damage. Reading Output Voltage Register When reading I2C_SD0_VOUT[7:0] bits in the I2C_ SD0_VOUT configuration register (0x21), the response from the MAX77874 depends on the state of the DVS pin. When the DVS pin is low, the MAX77874 responds with the value stored in the I2C_SD0_VOUT[7:0] bits. When the DVS pin is high, however, the MAX77874 responds with the value stored in VBUCKDVS[7:0] bits in the VBUCKDVS configuration register (0x24), and if that value is greater than 0xD2, the response value is clamped to 0xD2. In other words, reading I2C_SD0_VOUT[7:0] bits returns the output voltage setting at the moment with respect to the DVS pin state. On the other hand, the DVS pin state does not affect writing to I2C_SD0_VOUT[7:0] bits. The value written to I2C_SD0_VOUT[7:0] bits takes effect immediately when the DVS pin is low. When the DVS pin is high, the written value takes effect after the DVS pin pulls low. Interrupt Events The device has interrupt capability to monitor the status of the buck converter through the IRQ pin, which is an active-low, open-drain output that is typically routed to the processor to allow for quick notification of interrupt events. A pullup resistor is required for this pin. Power OK The buck regulator contains an internal, active-low POK signal that triggers an interrupt on the IRQ pin if the output voltage becomes invalid. This signal must be unmasked with POK_INTM to assert IRQ. Note that POK is not blanked during DVS slewing or startup. Thermal Warnings Two junction temperature thermal warnings, Thermal Alarm 1 and Thermal Alarm 2, trigger an interrupt if the junction temperature rises above their thresholds (TJ120 and TJ140, respectively). These alarms must be www.analog.com unmasked with TJ120C_INTM and TJ140C_INTM to assert IRQ. Monitor these interrupt events to protect the device from overheating under heavy load conditions. Thermal Shutdown If the junction temperature of the device exceeds +165°C, the device shuts down to reduce the temperature. Once the temperature falls approximately 15°C, the device tries to enable with soft-start. This try-retry process continues indefinitely. Internal Compensation Regulation loop compensation is on-chip and not user adjustable. The compensation is uniquely trimmed for inductance value and feedback type (remote or local). Although a given compensation can still function when used with the incorrect inductor or feedback type, the optimum transient response and loop stability are achieved when the trim option matches the inductor and feedback type. Trim Options The quad phase core buck regulator is factory trimmed using one-time programmable (OTP) registers. Optional versions can be trimmed for current limit, default output voltage settings, inductance value, switching frequency, and local versus remote feedback. See the Ordering Information at the end of this data sheet. Consult the factory for optional versions. Detailed Description—I2C General Description The MAX77874 features a revision 3.0 I2C-compatible, 2-wire serial interface consisting of a bidirectional serial data line (SDA) and a serial clock line (SCL). The MAX77874 acts as a slave-only device, and relies on the master to generate a clock signal. SCL clock rates from 0Hz to 3.4MHz are supported.I2C is an open-drain bus, and therefore, SDA and SCL require pullups.Figure 3 shows the functional diagram for the I2C-based communications controller. For additional information on I2C, refer the I2C bus specification and user manual that is available from NXP (UM10204). Features ● I2C Revision 3 Compatible Serial Communications Channel ● 0Hz to 100kHz (standard mode) ● 0Hz to 400kHz (fast mode) ● 0Hz to 1MHz (fast mode plus) ● 0Hz to 3.4MHz (high-speed mode) ● Does Not Utilize I2C Clock Stretching Analog Devices │  22 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors COMMUNICATIONS CONTROLLER VIO SCL INTERFACE DECODERS SHIFT REGISTERS BUFFERS COM SDA GND PERIPHERAL 0 PERIPHERAL 1 PERIPHERAL 2 PERIPHERAL N-1 PERIPHERAL N Figure 2. I2C Simplified Block Diagram SDA SCL MASTER TRANSMITTER/ RECEIVER SLAVE RECEIVER SLAVE TRANSMITTER SLAVE TRANSMITTER/ RECEIVER MASTER TRANSMITTER/ RECEIVER Figure 3. I2​C System Configuration I2C System Configuration The I2C bus is a multimaster bus. The maximum number of devices that can attach to the bus is only limited by bus capacitance. A device on the I2C bus that sends data to the bus in called a transmitter. A device that receives data from the bus is called a receiver. The device that initiates a data transfer and generates the SCL clock signals to control the data transfer is a master. Any device that is being www.analog.com addressed by the master is considered a slave. The MAX77874 I2C-compatible interface operates as a slave on the I2C bus with transmit and receive capabilities. I2C Interface Power The MAX77874’s I2C interface derives its power from VIO. VIO accepts voltages from 1.65V to 4.8V (VIO). Cycling VIO resets the I2C registers. See External Components and Figure 12 for bypass capacitor considerations. Analog Devices │  23 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors I2C Data Transfer One data bit is transferred during each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high are control signals. See the I2C Start and Stop Conditions section. Each transmit sequence is framed by a START (S) condition and a STOP (P) condition. Each data packet is nine bits long: eight bits of data followed by the acknowledge bit. Data is transferred with the MSB first. I2C Start and Stop Conditions When the serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-to low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA, while SCL is high. See Figure 4. A START condition from the master signals the beginning of a transmission to the MAX77874. The master terminates transmission by issuing a not-acknowledge followed by a STOP condition (see the I2C Acknowledge Bit section for information on not-acknowledge). The STOP condition frees the bus. To issue a series of commands to the slave, the master can issue repeated start (Sr) commands instead of a STOP command to maintain control of the bus. In general, a repeated start command is functionally equivalent to a regular start command. S When a STOP condition or incorrect address is detected, the MAX77874 internally disconnects SCL from the serial interface until the next START condition, minimizing digital noise and feedthrough. I2C Acknowledge Bit Both the I2C bus master and the MAX77874 (slave) generate acknowledge bits when receiving data. The acknowledge bit is the last bit of each nine bit data packet. To generate an acknowledge (A), the receiving device must pull SDA low before the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the high period of the clock pulse. See Figure 5. To generate a not-acknowledge (nA), the receiving device allows SDA to be pulled high before the rising edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse. Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time. The MAX77874 issues an ACK for all register addresses in the possible address space even if the particular register does not exist. Sr P SDA tSU;STA tSU;STO SCL tHD;STA tHD;STA Figure 4. I2C ​ Start and Stop Conditions NOT ACKNOWLEDGE (NA) S ACKNOWLEDGE (A) SDA tSU;DAT SCL 1 2 8 tHD;DAT 9 Figure 5. Acknowledge Bit www.analog.com Analog Devices │  24 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors S 1 SDA 1 0 0 0 0 R/W 1 A ACKNOWLEDGE 1 SCL 2 3 4 5 6 7 8 9 Figure 6. Example I2C Slave Address Table 1. I2C Slave Address Options ADDRESS 7-BIT SLAVE ADDRESS 8-BIT WRITE ADDRESS 8-BIT READ ADDRESS Main Address 0x61, 0b 110 0001 0xC2, 0b 1100 0010 0xC3, 0b 1100 0011 Other Addresses* 0x62, 0b 110 0010 0x63, 0b 110 0011 0x64, 0b 110 0100 0xC4, 0b 1100 0100 0xC6, 0b 1100 0110 0xC8, 0b 1100 1000 0xC5, 0b 1100 0101 0xC7, 0b 1100 0111 0xC9, 0b 1100 1001 0x69, 0b 110 1001 0x6A, 0b 110 1010 0x6B, 0b 110 1011 0x6C, 0b 110 1100 0xD2, 0b 1101 0010 0xD4, 0b 1101 0100 Test Mode** 0xD6, 0b 1101 0110 0xD8, 0b 1101 1000 *These addresses are acknowledged, but are for internal use only. Do not use any other I2C devices with same bus. 0xD3, 0b 1101 0011 0xD5, 0b 1101 0101 0xD7, 0b 1101 0111 0xD9, 0b 1101 1001 these addresses on the **When test mode is unlocked, additional addresses are acknowledged. Test mode details are confidential. If possible, leave the test mode address unallocated to allow for the rare event that debugging needs to be performed in cooperation with Maxim. I2C Slave Address The I2C controller implements 7-bit slave addressing. An I2C bus master initiates communication with the slave by issuing a START condition followed by the slave address. See Figure 6. The OTP address is factory programmable for one of two options. See Table 1. All slave addresses not mentioned in the Table 1 are not acknowledged. I2C Clock Stretching In general, the clock signal generation for the I2C bus is the responsibility of the master device. The I2C specification allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down the clock line is typically called clock stretching. The MAX77874 does not use any form of clock stretching to hold down the clock line. www.analog.com I2C General Call Address The MAX77874 does not implement the I2C specifications general call address. If the MAX77874 sees the general call address (0b0000_0000), it does not issue an acknowledge. I2C Device ID The MAX77874 does not support the I2C device ID feature. I2C Communication Speed The MAX77874 is compatible with all 4 communication speed ranges as defined by the Revision 3 I2C specification: ● 0Hz to 100kHz (standard mode) ● 0Hz to 400kHz (fast mode) ● 0Hz to 1MHz (fast mode) ● 0Hz to 3.4MHz (high-speed mode) Analog Devices │  25 MAX77874 16A High-Performance Quad-Phase Buck Regulator for Multicore CPU and GPU Processors Operating in standard mode, fast mode, and fast mode plus does not require any special protocols. The main consideration when changing the bus speed through this range is the combination of the bus capacitance and pullup resistors. Higher time constants created by the bus capacitance and pullup resistance (C x R) slow the bus operation. Therefore, when increasing bus speeds, the pullup resistance must be decreased to maintain a reasonable time constant. Refer to the Pullup Resistor Sizing section of the I2C revision 3.0 specification (UM10204) for detailed guidance on the pullup resistor selection. In general for bus capacitances of 200pF, a 100kHz bus needs 5.6kΩ pullup resistors, a 400kHz bus needs about a 1.5kΩ pullup resistors, and a 1MHz bus needs 680Ω pullup resistors. Note that when the open-drain bus is low, the pullup resistor is dissipating power, lower value pullup resistors dissipate more power (V2/R). At power-up and after each stop condition, the MAX77874 inputs filters are set for standard mode, fast mode, or fast mode plus (i.e., 0Hz to 1MHz). To switch the input filters for high-speed mode, use the high-speed master code protocols that are described in the I2C Communication Protocols section. I2C Communication Protocols The MAX77874 supports both writing and reading from its registers. Writing to a Single Register Figure 7 shows the protocol for the I2C master device to write one byte of data to the MAX77874. This protocol is the same as the SMBus specification’s write byte protocol. The write byte protocol is as follows: 1) The master sends a start command (S). 2) The master sends the 7-bit slave address followed by a write bit (R/W = 0). 3) The addressed slave asserts an acknowledge (A) by pulling SDA low. 4) The master sends an 8-bit register pointer. 5) The slave acknowledges the register pointer. 6) The master sends a data byte. 7) The slave updates with the new data 8) The slave acknowledges or not acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register and the data becomes active. 9) The master sends a stop condition (P) or a repeated start condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing an Sr leaves the bus input filters in their current state. Operating in high-speed mode requires some special considerations. For a full list of considerations, see the I2C Specification section. The major considerations with respect to the MAX77874: ● The I2C bus master use current source pullups to shorten the signal rise. ● The I2C slave must use a different set of input filters on its SDA and SCL lines to accommodate for the higher bus. ● The communication protocols need to utilize the highspeed master code. LEGEND MASTER TO SLAVE SLAVE TO MASTER 1 7 1 1 8 1 8 S SLAVE ADDRESS 0 A REGISTER POINTER A DATA R/nW SDA B1 B0 A 1 1 A OR NA P OR SR* NUMBER OF BITS THE DATA IS LOADED INTO THE TARGET REGISTER AND BECOMES ACTIVE DURING THIS RISING EDGE. ACKNOWLEDGE SCL 7 8 9 *P FORCES THE BUS FILTERS TO SWITCH TO THEIR
MAX77874BEWM+T 价格&库存

很抱歉,暂时无法提供与“MAX77874BEWM+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货