19-4940; Rev 0; 9/09
MAX9247/MAX9248 Evaluation Kit
The MAX9247/MAX9248 evaluation kit (EV kit) provides a proven design to evaluate the MAX9247 27-bit,
2.5MHz to 42MHz DC-balanced LVDS serializer and the
MAX9248 27-bit, 2.5MHz to 42MHz DC-balanced LVDS
deserializer. The MAX9247 serializes 27 bits of parallel
input data, 18 bits of video, and 9 bits of control to a
serial data stream. The MAX9248 deserializes the LVDS
serial input, which converts to 18 bits of parallel video
data and 9 bits of parallel control data.
The EV kit PCB has a MAX9247ECM+ or MAX9247GCM+
and a MAX9248ECM+ or MAX9248GCM+ installed.
Features
S 27-Bit Parallel Interface
S Rosenberger Connector (Cable Included)
S Independent Evaluation of the MAX9247/MAX9248
Serializer/Deserializer (SerDes)
S Proven PCB Layout
S Fully Assembled and Tested
Ordering Information
PART
TYPE
MAX9247EVKIT+
or
MAX9248EVKIT+
EV Kit
+Denotes lead(Pb)-free and RoHS compliant.
Component List
DESIGNATION
QTY
DESCRIPTION
DESIGNATION
QTY
C1–C15,
C27–C41
0
Not installed, ceramic capacitors
(0603)
P1, P2
2
C16–C20, C48,
C58–C61
10
10FF Q10%, 16V X5R ceramic
capacitors (0805)
Murata GRM21BR61C106K
LVDS connectors, waterblue
(with EMI/EMC washer)
Rosenberger D4S20D-40ML5-Z
P3, P4
2
SMA vertical-mount connectors
R1, R2, R3, R6,
R7, R9, R10,
R11, R13, R15,
R16, R20–R48
0
Not installed, resistors (0603)
R4, R14
2
82.5I Q5% resistors (0603)
R5, R12
2
130I Q5% resistors (0603)
R8, R19
2
49.9I Q1% resistors (0603)
R17, R18
2
1kI Q1% resistors (0603)
U1
1
27-bit deserializer (48 LQFP)
Maxim MAX9248ECM+ or
Maxim MAX9248GCM+
U2
1
27-bit serializer (48 LQFP)
Maxim MAX9247ECM+ or
Maxim MAX9247GCM+
—
1
Cable assembly (2m)
MD Elektronik PT1482
—
16
Shunts
—
1
PCB: MAX9247/9248
EVALUATION KIT+
C21, C25, C42,
C44, C46, C51,
C54, C57, C62,
C64
10
C22, C23, C24,
C26, C43, C45,
C47, C49, C50,
C52, C53, C55,
C56, C63, C65
15
0.001FF Q10%, 50V X7R ceramic
capacitors (0603)
Murata GRM188R71H102K
0.1FF Q10%, 16V X7R ceramic
capacitors (0603)
Murata GCM188R71C104K
JU1–JU5
5
4-pin headers
JU6, JU7, JU8
3
3-pin headers
JU9–JU21
13
2-pin headers
H1, H2
2
2 x 20 shrouded-plug connectors
(0.100in centers)
7
2 x 10 shrouded-plug connectors
(0.100in centers)
H3–H9
DESCRIPTION
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
Evaluates: MAX9247/MAX9248
General Description
Evaluates: MAX9247/MAX9248
MAX9247/MAX9248 Evaluation Kit
Component Suppliers
SUPPLIER
PHONE
MD Elektronik GmbH
011-49-86-38-604-0
Murata Electronics North America, Inc.
770-436-1300
Rosenberger Hochfrequenztechnik GmbH
011-49-86 84-18-0
WEBSITE
www.md-elektronik-gmbh.de
www.murata-northamerica.com
www.rosenberger.de
Note: Indicate that you are using the MAX9247 and the MAX9248 when contacting these component suppliers.
Quick Start
Required Equipment
• MAX9247/MAX9248 EV kit (cable included)
• Two 3.3V DC power supplies
• Digital data generator (e.g., HP/Agilent 16522A)
• T
wo low-phase-noise clock generators (e.g., HP/
Agilent 8133A)
• L
ogic analyzer or data-acquisition system (e.g., HP/
Agilent 16500C)
• H
igh-performance oscilloscope (e.g., HP/Agilent
DSO80304B; see the Pseudo-Random Bit Sequence
(PRBS) Mode section)
Procedure
The MAX9247/MAX9248 EV kit is fully assembled and
tested. Follow the steps below to verify board operation.
Caution: Do not turn on the power supplies or signal
sources until all connections are completed.
1) V
erify that all jumpers (JU1–JU21) are in their default
positions, as shown in Table 1.
2) C
onnect the first 3.3V power supply across the
DVCC1 and GND1 pads of the EV kit.
4) Connect the GND1 and GND2 pads together.
5) C
onnect the Rosenberger cable from the P1 to the P2
connector of the EV kit.
6) C
onnect the data generator to the H6–H9 connectors
and set to generate 27-bit parallel data at LVCMOS/
LVTTL levels. See Table 2 for input bit locations.
7) C
onnect the first clock generator to the P4 SMA connector and set its output frequency between 2.5MHz
and 42MHz (see Table 3 for PCLK_IN location).
8) C
onnect the second clock generator to the P3 SMA
connector and set to within Q2% of the MAX9247 serializer PCLK_IN frequency (see Table 3 for REFCLK
location).
9) C
onnect the logic analyzer or data-acquisition system
to connectors H1 and H2, as shown in Table 4.
10) Turn on the power supplies.
11) Enable the clock generators.
12) Enable the data generator.
13) E
nable the logic analyzer or data-acquisition system
and begin sampling data.
3) C
onnect the second 3.3V power supply across the
DVCC2 and GND2 pads of the EV kit.
Table 1. MAX9247/MAX9248 EV Kit Jumper Descriptions (JU1−JU21)
JUMPER
JU1
FUNCTION
SHUNT
POSITION
MAX9248 falling latch
edge
1-2*
Connects the R/F pin of the MAX9248 to GND2 for falling output latch
edge
MAX9248 latch edge
1-3
Connects the R/F pin of the MAX9248 to header H4-9
MAX9248 rising latch
edge
1-4
Connects the R/F pin of the MAX9248 to DVCC2 for rising output latch
edge
DESCRIPTION
2 _______________________________________________________________________________________
MAX9247/MAX9248 Evaluation Kit
JUMPER
JU2
JU3
JU4
JU5
JU6
JU7
FUNCTION
SHUNT
POSITION
MAX9248 LVTLL/
LVCMOS range input
1-2*
Connects the RNG1 pin of the MAX9248 to GND2 for logic 0 (see the
MAX9248 IC data sheet to determine the frequency range)
MAX9248 LVTLL/
LVCMOS range input
1-3
Connects the RNG1 pin of the MAX9248 to header H4-7
MAX9248 LVTLL/
LVCMOS range input
1-4
Connects the RNG1 of the MAX9248 to DVCC2 for logic 1 (see the
MAX9248 IC data sheet to determine the frequency range)
MAX9248 LVTLL/
LVCMOS range input
1-2*
Connects the RNG0 pin of the MAX9248 to GND2 for logic 0 (see the
MAX9248 IC data sheet to determine frequency range)
MAX9248 LVTLL/
LVCMOS range input
1-3
Connects the RNG0 pin of the MAX9248 to header H4-5
MAX9248 LVTLL/
LVCMOS range input
1-4
Connects RNG0 pin of the MAX9248 to DVCC2 for logic 1 (see the
MAX9248 IC data sheet to determine the frequency range)
MAX9248
power-down
1-2
Pulls the PWRDWN pin of the MAX9248 to low for shutdown
MAX9248
power-down
1-3
Connects the PWRDWN pin of the MAX9248 to header H4-3
MAX9248
power-down
1-4*
Pulls the PWRDWN pin of the MAX9248 high for full functionality
MAX9248 spread
spectrum
1-2
Connects the SS pin of the MAX9248 to GND2 for data and clock output
spread ±2% relative to REFCLK
MAX9248 spread
spectrum
1-3
Connects the SS pin of the MAX9248 to header H4-1
MAX9248 spread
spectrum
1-4*
Connects the SS pin of the MAX9248 to DVCC2 for data and clock output
spread ±4% relative to REFCLK
MAX9247 hardwired
inputs
1-2*
Connects even pins of headers H5–H9 to DVCC2
MAX9247 hardwired
inputs
2-3
Connects even pins of headers H5–H9 to GND2
MAX9247
preemphasis
or MOD1
1-2*
Connects the PRE pin of the MAX9247 to DVCC2 for enabling preemphasis
MAX9247
preemphasis
or MOD1
2-3
Connects the PRE pin of the MAX9247 to GND2 for disabling preemphasis
or used for PRBS mode
DESCRIPTION
_______________________________________________________________________________________ 3
Evaluates: MAX9247/MAX9248
Table 1. MAX9247/MAX9248 EV Kit Jumper Descriptions (JU1−JU21) (continued)
Evaluates: MAX9247/MAX9248
MAX9247/MAX9248 Evaluation Kit
Table 1. MAX9247/MAX9248 EV Kit Jumper Descriptions (JU1−JU21) (continued)
JUMPER
JU8
FUNCTION
SHUNT
POSITION
MAX9247
MOD0
1-2*
Connects the I.C. pin (24) of the MAX9247 to DVCC
MAX9247
MOD0
2-3
Connects the I.C. pin (24) of the MAX9247 to GND2 for enabling PRBS
mode
DESCRIPTION
JU9
MAX9247 IN+
Open*
Used for probing IN+
JU10
MAX9247 IN-
Open*
Used for probing IN-
JU11
MAX9247 REFCLK
Open*
Used for probing REFCLK
JU12
MAX9248 OUT-
Open*
Used for probing OUT-
JU13
MAX9248 OUT+
Open*
Used for probing OUT+
MAX9247
LVTLL/LVCMOS range
input
1-2*
Connects the RNG1 pin of the MAX9247 to DVCC1 for logic 1 (see the
MAX9247 IC data sheet to determine the frequency range)
MAX9247
LVTLL/LVCMOS range
input
Open
Internally connects the RNG1 pin of the MAX9247 to ground when left
unconnected
MAX9247
LVTLL/LVCMOS range
input
1-2*
Connects the RNG0 pin of the MAX9247 to DVCC1 for logic 1 (see the
MAX9247 IC data sheet to determine the frequency range)
MAX9247
LVTLL/LVCMOS range
input
Open
Internally connects the RNG0 pin of the MAX9247 to ground when left
unconnected
Board-supply
connectivity
1-2*
Board-supply
connectivity
Open
Board-supply
connectivity
1-2*
Board-supply
connectivity
Open
Disconnects DVCC2 from LVCC2. The 2-pin header can be utilized for
supply current measurements.
Board-supply
connectivity
1-2*
Connects DVCC2 to OVCC. This shunt reduces the number of supplies
required to operate the EV kit.
Board-supply
connectivity
Open
Board-supply
connectivity
1-2*
Board-supply
connectivity
Open
Board-supply
connectivity
1-2*
Board-supply
connectivity
Open
JU14
JU15
JU16
JU17
JU18
JU19
JU20
Connects DVCC2 to PVCC2. This shunt reduces the number of supplies
required to operate the EV kit.
Disconnects DVCC2 from PVCC2. The 2-pin header can be utilized for
supply current measurements.
Connects DVCC2 to LVCC2. This shunt reduces the number of supplies
required to operate the EV kit.
Disconnects DVCC2 from OVCC. The 2-pin header can be utilized for supply current measurements.
Connects DVCC1 to IVCC. This shunt reduces the number of supplies
required to operate the EV kit.
Disconnects DVCC1 from IVCC. The 2-pin header can be utilized for supply current measurements.
Connects DVCC1 to PVCC1. This shunt reduces the number of supplies
required to operate the EV kit.
Disconnects DVCC1 from PVCC1. The 2-pin header can be utilized for
supply current measurements.
4 _______________________________________________________________________________________
MAX9247/MAX9248 Evaluation Kit
JUMPER
JU21
FUNCTION
SHUNT
POSITION
Board-supply
connectivity
1-2*
Board-supply
connectivity
Open
DESCRIPTION
Connects DVCC1 to LVCC1. This shunt reduces the number of supplies
required to operate the EV kit.
Disconnects DVCC1 from LVCC1. The 2-pin header can be utilized for
supply current measurements.
*Default position.
Table 2. Video and Control Data Inputs
INPUT SIGNALS
DESIGNATION
DESCRIPTION
RGB_IN0
H9-1
Input video bit 0
RGB_IN1
H9-3
Input video bit 1
RGB_IN2
H9-5
Input video bit 2
RGB_IN3
H9-7
Input video bit 3
RGB_IN4
H9-9
Input video bit 4
RGB_IN5
H9-11
Input video bit 5
RGB_IN6
H9-13
Input video bit 6
RGB_IN7
H8-1
Input video bit 7
RGB_IN8
H8-3
Input video bit 8
RGB_IN9
H8-5
Input video bit 9
RGB_IN10
H8-7
Input video bit 10
RGB_IN11
H8-9
Input video bit 11
RGB_IN12
H8-11
Input video bit 12
RGB_IN13
H8-13
Input video bit 13
RGB_IN14
H7-1
Input video bit 14
RGB_IN15
H7-3
Input video bit 15
RGB_IN16
H7-5
Input video bit 16
RGB_IN17
H7-7
Input video bit 17
CNTL_IN0
H7-9
Input control bit 0
CNTL_IN1
H7-11
Input control bit 1
CNTL_IN2
H7-13
Input control bit 2
CNTL_IN3
H6-1
Input control bit 3
CNTL_IN4
H6-3
Input control bit 4
CNTL_IN5
H6-5
Input control bit 5
CNTL_IN6
H6-7
Input control bit 6
CNTL_IN7
H6-9
Input control bit 7
CNTL_IN8
H6-11
Input control bit 8
Table 3. Input/Output Clock Locations
SIGNAL
DESIGNATION
PCLK_IN
H5-5 or P4
REFCLK
H3-5 or P3
Detailed Description of Hardware
The MAX9247/MAX9248 EV kit provides a proven design
to evaluate the MAX9247 27-bit, 2.5MHz to 42MHz
DC-balanced LVDS serializer and the MAX9248 27-bit,
2.5MHz to 42MHz DC-balanced LVDS deserializer. The
MAX9247 serializes 27 bits of parallel input data, 18 bits
of video, and 9 bits of control to a serial data stream.
The MAX9248 deserializes the LVDS serial input, which
converts to 18 bits of parallel video data and 9 bits of
parallel control data.
Input Signals
The MAX9247 accepts 27-bit parallel data, 18 video data
bits, and 9 control data bits. The 27-bit pattern is supplied to the EV kit by connecting a data generator to the
four 20-pin headers (H6–H9), or by connecting selected
pins of H6–H9 to high/low LVCMOS/LVTTL states. See
Table 2 for input bit locations designated on H6–H9.
Data-Enable Input (DE_IN)
The MAX9247 DE_IN pin is accessible through header
H6-13. Driving the pin high selects RGB_IN[17:0] to be
latched. Driving the pin low selects CNTL_IN[8:0] to be
latched.
Input and Output Clocks
The MAX9247 parallel input clock (PCLK_IN) is accessible through H5-5 or SMA connector P4 (see Table 3).
Apply a clock frequency to the access points, which
latches data and control inputs and provides the PLL
clock.
The MAX9248 reference clock (REFCLK) input is accessible through H3-5 or SMA connector P3 (see Table 3).
Apply a reference clock to the access point that is within
Q2% of the MAX9247 serializer PCLK_IN frequency.
Output Signals
The MAX9248 outputs 27-bit parallel data, 18 video data
bits, and 9 control data bits at LVCMOS/LVTTL levels on
the 40-pin headers (H1 and H2). To sample the 27-bit
_______________________________________________________________________________________ 5
Evaluates: MAX9247/MAX9248
Table 1. MAX9247/MAX9248 EV Kit Jumper Descriptions (JU1−JU21) (continued)
Evaluates: MAX9247/MAX9248
MAX9247/MAX9248 Evaluation Kit
pattern, connect a logic analyzer or data-acquisition system to H1 and H2. See Table 4 for the output bit locations
on the H1 and H2 headers.
Data-Enable Output (DE_OUT)
The MAX9248 DE_OUT pin is accessible through header
H2-21. A high output indicates that RGB_OUT[17:0] are
active and a low output indicates that CNTL_OUT[8:0]
are active.
Rising and Falling Input Latch Edge (R/F)
The MAX9248 has a selectable rising or falling output
latch edge through logic setting on the R/F pin. Drive
Table 4. Video and Control Data Outputs
OUTPUT
SIGNALS
DESIGNATION
DESCRIPTION
CNTL_OUT0
H2-3
Output control bit 0
CNTL_OUT1
H2-5
Output control bit 1
CNTL_OUT2
H2-7
Output control bit 2
CNTL_OUT3
H2-9
Output control bit 3
CNTL_OUT4
H2-11
Output control bit 4
CNTL_OUT5
H2-13
Output control bit 5
CNTL_OUT6
H2-15
Output control bit 6
CNTL_OUT7
H2-17
Output control bit 7
CNTL_OUT8
H2-19
Output control bit 8
RGB_OUT0
H2-27
Output video bit 0
RGB_OUT1
H2-29
Output video bit 1
RGB_OUT2
H2-31
Output video bit 2
RGB_OUT3
H1-3
Output video bit 3
RGB_OUT4
H1-5
Output video bit 4
RGB_OUT5
H1-7
Output video bit 5
RGB_OUT6
H1-9
Output video bit 6
RGB_OUT7
H1-11
Output video bit 7
RGB_OUT8
H1-13
Output video bit 8
RGB_OUT9
H1-15
Output video bit 9
RGB_OUT10
H1-17
Output video bit 10
RGB_OUT11
H1-19
Output video bit 11
RGB_OUT12
H1-21
Output video bit 12
RGB_OUT13
H1-23
Output video bit 13
RGB_OUT14
H1-25
Output video bit 14
RGB_OUT15
H1-27
Output video bit 15
RGB_OUT16
H1-29
Output video bit 16
RGB_OUT17
H1-31
Output video bit 17
the R/F pin low by placing a shunt in the 1-2 position of
jumper JU1 (see Table 1). Drive the R/F pin high by placing a shunt in the 1-4 position of JU1.
Frequency Range Setting (RNG1 and RNG0)
The parallel clock frequency range for the MAX9247 can
be configured through jumpers JU14 and JU15. Place a
shunt on JU14 and JU15 to drive RNG1 and RNG0 high,
or leave JU14 and JU15 unconnected to drive RNG1 and
RNG0 low. Refer to the MAX9247 IC data sheet for actual
frequency settings.
The operating frequency range for the MAX9248 can
be configured through jumpers JU2 and JU3. Place a
shunt in the 1-4 position of JU2 and JU3 to drive RNG1
and RNG0 high, or place a shunt in the 1-2 position of
JU2 and JU3 to drive RNG1 and RNG0 low. Refer to the
MAX9248 IC data sheet for actual frequency settings.
Power-Down (PWRDWN)
The power-down mode in the MAX9247 and MAX9248
puts the outputs in high impedance, stops the PLL, and
reduces supply current to 50FA or less.
The MAX9247 PWRDWN pin is accessible through
header H6-15. Drive the pin high for normal operation
of the MAX9247 or drive the pin low to power down the
MAX9247.
The MAX9248 PWRDWN pin is accessible through
jumper JU4 (see Table 1). Drive the pin high by placing
a shunt in the 1-4 position of JU4 for normal operation.
Drive the pin low by placing a shunt in the 1-2 position of
JU4 to power down the MAX9248.
Spread-Spectrum Frequency (SS)
The MAX9248 can set the frequency spread to ±4% or
±2% by moving the shunt of jumper JU5 to the appropriate position (see Table 1).
Pseudo-Random Bit Sequence (PRBS) Mode
The MAX9247/MAX9248 EV kit offers the user an internal
test mode to quickly check full functionality and verify
the quality of the SerDes link. This mode is called the
pseudo-random bit sequence, or PRBS mode.
The MAX9247 features an on-chip PRBS generator that
can be utilized to generate a pseudo-random bit stream
to evaluate the quality and performance by comparing
the output of the serializer (prior to the link/cable) with the
input of the deserializer (after the link/cable).
6 _______________________________________________________________________________________
MAX9247/MAX9248 Evaluation Kit
To monitor the SerDes signal integrity, connect one
channel of the digital oscilloscope with differential probe
capabilities to OUT+ and OUT- signal lines from jumpers
JU12 and JU13 (MAX9247). Repeat the same test for
the deserializer (MAX9248) on signal lines IN+ and IN-,
accessible through jumpers JU9 and JU10.
Power Supplies
The MAX9247 is powered by connecting PVCC1, LVCC1,
IVCC, and DVCC1 to a DC power supply at 3.0V to 3.6V.
The MAX9247 can be configured to reduce wiring to the
supply and ground pads by placing shunts on jumpers
JU19, JU20, and JU21. The MAX9248 is powered by
applying 3.0V to 3.6V to the PVCC2, LVCC2, OVCC,
and DVCC2 pads. The MAX9248 can be configured to
reduce wiring to the supply and ground pads by placing
shunts on jumpers JU16, JU17, and JU18.
_______________________________________________________________________________________ 7
Evaluates: MAX9247/MAX9248
To activate this feature, the MAX9247 must first enter
power-down mode by driving H6-15 low. Place a shunt
in the 2-3 position of JU7 and JU8. Activate the internal
PRBS mode by applying a negative DC voltage (-1.0V to
-3.0V) to the VNEG pad.
5
5
6
6
7
7
8
8
P1
1
1
2
2
3
3
4
4
H4-7
H4-9
H4-11
H4-13
H4-15
H4-17
H4-19
H4-8
H4-10
H4-12
H4-14
H4-16
H4-18
H4-20
H3-1
H3-3
H3-5
H3-7
H3-9
H3-11
H3-13
H3-15
H3-17
H3-19
H3-4
H3-6
H3-8
H3-10
H3-12
H3-14
H3-16
H3-18
H3-20
PVCC2
P3
REF
R13
OPEN
C19
10µF
JU10
H3-2
H3
C24
0.1µF
JU9
H4-5
H4-6
C23
0.1µF
H4-3
H4-4
H4
C18
10µF
H4-1
C17
10µF
VTEST
H4-2
DVCC2
C16
10µF
JU17
LVCC2
JU18
OVCC
JU11
REFCLK
R4
82.5Ω
R5
130Ω
C20
10µF
R8
49.9Ω
1%
R14
82.5Ω
R12
130Ω
3
3
3
3
3
2
4
2
4
2
4
2
4
2
4
R3
OPEN
R6
OPEN
1
JU5
1
JU4
1
JU3
1
JU2
1
JU1
R9
OPEN
R2
OPEN
R1
OPEN
C3
OPEN
C45
0.1µF
C43
0.1µF
C44
0.001µF
C42
0.001µF
R/F
RNG1
VCCLVDS
IN+
INLVDSGND
PLLGND
VCCPLL
RNG0
GND
VCC
REFCLK
C47
0.1µF
R11
OPEN
R10
OPEN
R7
OPEN
1
2
3
4
5
6
7
8
9
10
11
12
C2
OPEN
C46
0.001µF
C1
OPEN
C4
OPEN
C5
OPEN
C6
OPEN
MAX9248
U1
C34
OPEN
C27
OPEN
C35
OPEN
C28
OPEN
C8
OPEN
C36
OPEN
36
35
34
33
32
31
30
29
28
27
26
25
C21
0.001µF
RGB_OUT7
RGB_OUT6
RGB_OUT5
RGB_OUT4
RGB_OUT3
RGB_OUT2
RGB_OUT1
RGB_OUT0
PCLK_OUT
LOCK
VCCO
VCCOGND
C7
OPEN
48
47
46
45
44
43
42
41
40
39
38
37
RGB_OUT17
RGB_OUT16
RGB_OUT15
RGB_OUT14
RGB_OUT13
RGB_OUT12
RGB_OUT11
RGB_OUT10
RGB_OUT9
RGB_OUT8
VCCO
VCCOGND
PWRDWN
SS
CNTL_OUT0
CNTL_OUT1
CNTL_OUT2
CNTL_OUT3
CNTL_OUT4
CNTL_OUT5
CNTL_OUT6
CNTL_OUT7
CNTL_OUT8
DE_OUT
13
14
15
16
17
18
19
20
21
22
23
24
JU16
C29
OPEN
C37
OPEN
C22
0.1µF
C9
OPEN
C30
OPEN
C10
OPEN
C38
OPEN
C11
OPEN
C31
OPEN
C25
0.001µF
C12
OPEN
C39
OPEN
C13
OPEN
C32
OPEN
C26
0.1µF
C40
OPEN
C14
OPEN
C33
OPEN
C15
OPEN
C41
OPEN
H1-2
H1-1
H2-12
H2-10
H2-8
H2-6
H2-4
H2-2
H2-7
H2-5
H2-3
H2-1
H2-14
H2-9
H2-16
H2-13
H2-11
H2-18
H2-22
H2-19
H2-15
H2-24
H2-20
H2-21
H2-17
H2-26
H2-23
H2-28
H2-25
H2-30
H2-32
H2-31
H2-27
H2-34
H2-33
H2-29
H2-36
H2-35
H2-38
H1-4
H1-3
H2-40
H1-6
H1-5
H2-37
H1-8
H1-7
H2-39
H1-12
H1-9
H1-14
H1-10
H1-11
H1-16
H1-24
H1-23
H1-13
H1-26
H1-25
H1-18
H1-28
H1-27
H1-15
H1-30
H1-29
H1-17
H1-32
H1-31
H1-22
H1-34
H1-33
H1-20
H1-36
H1-35
H1-19
H1-38
H1-37
H1-21
H1-40
H1-39
H2
H1
Evaluates: MAX9247/MAX9248
MAX9247/MAX9248 Evaluation Kit
Figure 1a. MAX9247/MAX9248 EV Kit Schematic (Sheet 1 of 2)
8 _______________________________________________________________________________________
GND2
_______________________________________________________________________________________ 9
Figure 1b. MAX9247/MAX9248 EV Kit Schematic (Sheet 2 of 2)
R19
49.9Ω
1%
R40
OPEN
R37
OPEN
R35
OPEN
R33
OPEN
R31
OPEN
R28
OPEN
R26
OPEN
R24
OPEN
R22
OPEN
R48
OPEN
R46
OPEN
R44
OPEN
R36
OPEN
R20
OPEN
P4
PCLK
R42
OPEN
R41
OPEN
R39
OPEN
R36
OPEN
R34
OPEN
R32
OPEN
R30
OPEN
R27
OPEN
R25
OPEN
R23
OPEN
R21
OPEN
R47
OPEN
R45
OPEN
R43
OPEN
R29
OPEN
H5
H5-8
H5-7
H5-10
H5-9
H5-12
H5-11
H5-14
H5-13
H5-16
H5-15
H5-18
H5-17
H5-20
H5-19
H5-2
H5-1
H5-4
H5-3
H5-6
H5-5
H6
H6-8
H6-7
H6-10
H6-9
H6-12
H6-11
H6-14
H6-13
H6-16
H6-15
H6-18
H6-17
H6-20
H6-19
H6-2
H6-1
H6-4
H6-3
H6-6
H6-5
H7
H7-8
H7-7
H7-10
H7-9
H7-12
H7-11
H7-14
H7-13
H7-16
H7-15
H7-18
H7-17
H7-20
H7-19
H7-2
H7-1
H7-4
H7-3
H7-6
H7-5
C50
0.1µF
Evaluates: MAX9247/MAX9248
H8
C51
0.001µF
C56
0.1µF
H8-8
H8-7
H8-10
H8-9
H8-12
H8-11
H8-14
H8-13
H8-16
H8-15
H8-18
H8-17
H8-20
H8-19
12
9
11
8
7
6
5
4
3
2
10
C57
0.001µF
H8-2
H8-1
H8-4
H8-3
H8-6
H8-5
1
CNTL_IN1
CNTL_IN0
RGB_IN17
RGB_IN16
RGB_IN15
RGB_IN14
RGB_IN13
RGB_IN12
RGB_IN11
VCCIN
RGB_IN10
GND
RGB_IN5
CNTL_IN4
RGB_IN6
CNTL_IN3
RGB_IN7
CNTL_IN2
RGB_IN8
VCC
RGB_IN9
GND
RGB_IN4
U2
MAX9247
CNTL_IN5
CNTL_IN6
RGB_IN3
RGB_IN0
DE_IN
RGB_IN1
CNTL_IN8
RGB_IN2
CNTL_IN7
GND
I.C.
VCC
PCLK_IN
H9
13
14
15
16
17
18
19
20
21
22
23
24
48
H9-19
47
H9-20
H9-17
46
H9-18
H9-15
45
H9-16
H9-13
44
H9-14
H9-11
43
H9-12
H9-9
42
H9-10
H9-7
41
H9-8
H9-5
40
H9-6
H9-3
39
H9-4
H9-1
38
H9-2
37
PRE
VCCPLL
PLLGND
PWRDWN
CMF
LVDSGND
OUT-
OUT+
LVDSGND
RNG1
RNG0
25
26
27
28
29
30
31
32
33
35
36
34
C62
0.001µF
JU6
VCCLVDS
3
1
2
C53
0.1µF
C58
10µF
IVCC
JU14
IVCC
JU15
R17
1kΩ
1%
C48
10µF
C63
0.1µF
R18
1kΩ
1%
GND1
IVCC
DVCC1
JU19
3
1
2
3
1
2
JU7
C54
0.001µF
C60
10µF
C64
0.001µF
JU8
C59
10µF
JU21
JU20
LVCC1
PVCC1
C55
0.1µF
C65
0.1µF
C61
10µF
VNEG
JU12
JU13
C52
0.1µF
C49
0.1µF
R16
OPEN
R15
OPEN
4
4
3
3
2
2
1
1
P2
8
8
7
7
6
6
5
5
MAX9247/MAX9248 Evaluation Kit
Evaluates: MAX9247/MAX9248
MAX9247/MAX9248 Evaluation Kit
Figure 2. MAX9247/MAX9248 EV Kit Component Placement Guide—Component Side
Figure 3. MAX9247/MAX9248 EV Kit PCB Layout—Component Side
10
�������������������������������������������������������������������������������������
MAX9247/MAX9248 Evaluation Kit
Figure 5. MAX9247/MAX9248 EV Kit PCB Layout—Inner Layer 3
______________________________________________________________________________________ 11
Evaluates: MAX9247/MAX9248
Figure 4. MAX9247/MAX9248 EV Kit PCB Layout—Inner Layer 2
Evaluates: MAX9247/MAX9248
MAX9247/MAX9248 Evaluation Kit
Figure 6. MAX9247/MAX9248 EV Kit PCB Layout—Solder Side
Figure 7. MAX9247/MAX9248 EV Kit Component Placement Guide—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
12
© 2009
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.