0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX98371EVSYS#

MAX98371EVSYS#

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    MAX98371 - 1-Channel (Mono) Output Class D Audio Amplifier Evaluation Board

  • 数据手册
  • 价格&库存
MAX98371EVSYS# 数据手册
EVALUATION KIT AVAILABLE The MAX98371 is a high-efficiency, mono Class D audio amplifier featuring dynamic headroom tracking (DHT). DHT automatically optimizes the headroom available to the Class D amplifier as the power supply voltage varies, due to sudden transients and declining battery life to maintain a consistent listening experience. A wide 5.5V to 18V supply range allows the device to reach 19W into an 8Ω load. The MAX98371’s flexible digital audio interface (DAI) supports I2S, left-justified, and TDM formats. The digital audio interface accepts 32kHz, 44.1kHz, 48kHz, 88.2kHz, and 96kHz sample rates with 16-/24-/32-bit data supported for all data formats. In TDM mode, the device can support up to 16 channels of audio data. A unique clocking structure eliminates the need for an external MCLK signal that is typically needed for PCM communication. This reduces pin count and simplifies board layout. Active emissions limiting with edge rate control minimizes EMI, and eliminates the need for output filtering found in traditional Class D devices. An 8-bit PVDD supply voltage ADC enables the Dynamic Headroom Tracking circuit. DHT optimizes audio program peak behavior as the supply voltage varies and provides flexible user-defined parameters. Thermal foldback protection ensures robust behavior when the thermal limits of the device are exercised. The circuit can be enabled to automatically reduce the output power above a user specified temperature. This allows for uninterrupted music playback even at high ambient temperatures. Traditional thermal protection is also available in addition to robust overcurrent protection. All MAX98371 control is performed using a standard 2-wire, I2C interface. One of sixteen slave addresses can be selected through two, four-level address pins. The IC is available in a 0.4mm pitch, 30-bump WLP package. It is specified over the extended, -40°C to +85°C temperature range. Applications ●● Tablets ●● Notebook Computers ●● Soundbars 19-7537; Rev 0; 3/15 Benefits and Features ●● Wide Supply Range (5.5V to 18V) ●● Dynamic Headroom Tracking Maintains a Consistent Listening Experience ●● Integrated Thermal Foldback Allows Robust Operation in a WLP Package ●● Remote Output Sensing Allows Up to 20dB THD+N Improvement When Ferrites Are Used ●● Class D Edge Rate Control Enables Filterless Operation ●● 110dB A-Weighted Dynamic Range ●● Output Power at 1% THD+N: • 15.7W into 8Ω, VPVDD = 17V • 13.2W into 4Ω, VPVDD = 12V ●● Output Power at 10% THD+N • 19W into 8Ω, VPVDD = 17V • 15.8W into 4Ω, VPVDD = 12V ●● Speaker Amplifier Efficiency • 91% at 10W into 8Ω, VPVDD = 12V • 81% at 15W into 4Ω, VPVDD = 12V ●● Extensive Click-and-Pop Suppression ●● Space Saving, 30-Bump WLP Package (2.1mm x 2.6mm x 0.6mm, 0.4mm Pitch) Simplified Block Diagram DVDD PVDD MAX98371 THERMAL FOLDBACK DHT I 2C DSP General Description Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking DIGITAL AUDIO INTERFACE MAX98371 D V O L DAC P G A CLASS D Ordering Information appears at end of data sheet. MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Detailed Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 I2C Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Interface Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Configuring the DAI Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Configuring the Digital Audio Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Digital Passband Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Biquad Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Signal Path Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 PVDD ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Digital Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Output Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Dynamic Headroom Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 DHT Ballistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 www.maximintegrated.com Maxim Integrated │  2 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking TABLE OF CONTENTS (continued) Thermal ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Thermal Foldback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 DOUT Operation and Data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Interchip Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Multiamplifier Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Double Data Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Class D Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Ultra-Low EMI Filterless Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 VDVDD and VPVDD UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Click-and-Pop Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Amplifier Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Thermal Shutdown Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Output Sensing When Using Ferrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Clocking Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Early Stop Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Write Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Read Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 I2C Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Layout and Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 WLP Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 www.maximintegrated.com Maxim Integrated │  3 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking LIST OF FIGURES Figure 1. I2S Audio Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 2. Left-Justified Audio Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 3.TDM Audio Interface Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 4. I2C Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 5. I2S Digital Audio Format Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 6. Left-Justified Digital Audio Format Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 7. TDM Digital Audio Format Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 8. Example of Dynamic Headroom Tracking in Mode 1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 9. Example of Dynamic Headroom Tracking in Mode 2 Operation with a High RP . . . . . . . . . . . . . . . . . . . . . 52 Figure 10. Example of Dynamic Headroom Tracking in Mode 2 Operation with a Low RP . . . . . . . . . . . . . . . . . . . . . 53 Figure 11. Example of Dynamic Headroom Tracking in Mode 3a Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Figure 12. Example of Dynamic Headroom Tracking in Mode 3b Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure 13. Example of Dynamic Headroom Tracking in Mode 3b with Limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 14. Dynamic Headroom Tracking Attack functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 15. Thermal Foldback performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 16. DOUT data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 17. Single Data Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 18. Double Data Drive illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 19. Typical Application Circuit with Ferrites Beads Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 20 .THD Performance Improvement Enabled by Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 21. START, STOP, and REPEATED START Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 22. Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 23. Writing One Byte of Data to the MAX98371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 24. n-Bytes of Data to the MAX98371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 25. Reading One Byte of Data from the MAX98371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 26. Reading n-Bytes of Data from the MAX98371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 27. MAX98371+ WLP Ball Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 LIST OF TABLES Table 1. MAX98371 Control Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 2. Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 3. Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 4. Supported Sample Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 5. Supported BCLK Rates in Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 6. Configuration for Digital Audio Interface Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 www.maximintegrated.com Maxim Integrated │  4 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking LIST OF TABLES (CONTINUED) Table 7. Configuration for Digital Audio Interface Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 8. TDM Channel Selection for Mono Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 9. Digital Highpass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 10. Biquad Filter Coefficient Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 11. Signal Path Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 12. PVDD Measurement ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 13. Digital Volume Ramping and Digital Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 14. Digital Gain Settings and Output Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 15. Speaker Gain Minimum Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 16. Dynamic Headroom Tracking Attack Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 17. Dynamic Headroom Tracking Release Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 18. Dynamic Gain Enables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 19. Limiter Threshold Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 20. Manual Limiter Threshold Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 21. Limiter Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 22. Limiter Attack and Release Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 23. Thermal ADC Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 24. Thermal Foldback Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 25. Thermal Foldback Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 26. DHT INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 28. Thermal and DHT Link Enables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 27. THERM INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 29. InterChip Communication Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 30. DOUT Double Data Drive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 31. DOUT DHT Receive Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 32. DOUT Thermal Foldback Receive Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 33. DOUT Thermal Foldback Receive Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 34. Extra BCLK Cycle Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 35. Manual HIZ Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 36. Speaker Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 37. Clock Monitor Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 38. Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 39. Global Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 40. ADDR I2C Address Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 41. Recommended External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 www.maximintegrated.com Maxim Integrated │  5 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Detailed Functional Diagram IRQ INTERRUPT DISPATCHER DVDD UVLO ADDR1 ADDR0 SCL LINEAR REGULATOR MAX98371 I2C CONTROL REGISTERS LPF PVDD VREFC DVDD DECIMATION FILTER PVDD ADC THERMAL FOLDBACK TEMPERATURE MONITOR PVDD UVLO SDA DSP RESET CLOCK MONITOR DYNAMIC HEADROOM TRACKING MDLL DOUT OUTP SNS DIN LRCLK OUTP DIGITAL AUDIO INTERFACE BIQUAD MIXER VOL INTERPOLATION FILTER DAC SPEAKER AMPLIFIER OUTN OUTN SNS BCLK DGND www.maximintegrated.com AGND PGND Maxim Integrated │  6 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Absolute Maximum Ratings PVDD to PGND........................................................-0.3V to 20V OUT_ to PGND..................................... -0.3V to (VPVDD + 0.3V) VREFC to AGND......................................................-0.3V to 2.2V DVDD to DGND.......................................................-0.3V to 2.2V SDA, SCL, ADDR_, IRQ to DGND..........................-0.3V to 2.2V BCLK, LRCLK, DIN, RESET to DGND ...............................-0.3V to (VDVDD + 0.3V) AGND, DGND to PGND .........................................-0.1V to 0.1V Short-Circuit Duration Between OUTP, OUTN and PGND or PVDD.........Continuous Between OUTP and OUTN ...................................Continuous Continuous Power Dissipation (TA = +70°C) for Multilayer Board (derate 27mW/°C above +70°C)......................................1.9W Junction Temperature......................................................... 150°C Operating Temperature Range...............................-40°C to 85°C Storage Temperature Range................................-65°C to 150°C Soldering Temperature (reflow).......................................... 260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 1) Junction-to-Ambient Thermal Resistance (θJA).............. 37°C/W Junction-to-Board Thermal Resistance (θJB)................33.4°C/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (VPVDD = 12V, VDVDD = RESET = 1.8V, VGND = 0V, CPVDD = 1x 220µF, 2x 10µF, 2x 0.1µF, CREFC = 1µF, CDVDD = 1µF, ZSPK = open, AC measurement bandwidth 20Hz to 22kHz, fS = 48kHz, 24-bit data, TA = TMIN to TMAX, unless, otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITION MIN TYP MAX Power Supply Voltage Range VPVDD 5.5 18 VDVDD 1.14 1.98 VREFC Regulator Output VREFC PVDD Under Voltage Lockout PVDD UVLO DVDD Under Voltage Lockout DVDD UVLO Quiescent Current IQ_PVDD Quiescent Current IQ_DVDD 2.0 3.65 4.3 4.75 472kHz 8.4 SPK_SWCLK = 1 330kHz 7 12 10 2.5 Software Shutdown Supply Current ISHDN_SW All DAI pins pulled low, TA = +25°C IPVDD IDVDD 10 Hardware Shutdown Supply Current ISHDN_HW RESET =0V, TA = +25°C IPVDD 5 IDVDD 1 Turn-On Time www.maximintegrated.com tON Volume ramping disabled 10 Volume ramping enabled 30 V V SPK_SWCLK = 0 From SW_EN bit set to full operation  V V 0.75 1.5 UNITS mA mA µA µA ms Maxim Integrated │  7 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Electrical Characteristics (continued) (VPVDD = 12V, VDVDD = VRESET = 1.8V, VGND = 0V, CPVDD = 1x 220µF, 2x 10µF, 2x 0.1µF, CREFC = 1µF, CDVDD = 1µF, ZSPK = open, AC measurement bandwidth 20Hz to 22kHz, fS = 48kHz, 24-bit data, TA = TMIN to TMAX, unless, otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL Turn-Off Time tOFF CONDITION From SW_EN bit cleared to shutdown  MIN TYP Volume ramping disabled 10 Volume ramping enabled 30 MAX UNITS ms DIGITAL FILTER CHARACTERISICS (LRCLK < 50kHz) (Note 5) Passband Cutoff fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff  0.43 x fS -3dB cutoff  0.47 x fS -6.02dB cutoff  0.5 x fS f < fPLP Hz -0.1 fSLP Stopband Attenuation f > fSLP +0.1 dB 0.58 x fS Hz 60 dB DIGITAL FILTER CHARACTERISICS (LRCLK > 50kHz) (Note 5) Passband Cutoff fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff  0.24 x fS -3dB cutoff  0.31 x fS Hz f < fPLP -0.1 f > fSLP 60 dB 80 dB fSLP Stopband Attenuation +0.1 dB 0.417 x fS Hz DIGITAL HIGHPASS FILTER CHARACTERISTICS DC Attenuation (Note 5) DC Blocking Cutoff Frequency (Note 5) Across all sample rates Highpass Cutoff Frequency Across all sample rates DACHPF = 0x1 2 DACHPF = 0x2 50 DACHPF = 0x3 100 DACHPF = 0x4 200 DACHPF = 0x5 400 DACHPF = 0x6 800 Hz Hz SPEAKER AMPLIFIER ELECTRICAL CHARACTERISTICS DIGITAL VOLUME CONTROL Digital Volume (max) DVOL[6:0] = 0x00 0 dB Digital Volume (min) DVOL[6:0] = 0x7E -63 dB 0.5 dB Volume Control Step Size Output Offset Voltage Click-and-Pop Level www.maximintegrated.com VOS TA = +25°C KCP Peak voltage, TA = +25°C, A-weighted, 32 samples per second, digital audio inputs have zero-code input ±1 Into shutdown ±5 mV -66 dBV Out of shutdown -60 Maxim Integrated │  8 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Electrical Characteristics (continued) (VPVDD = 12V, VDVDD = VRESET = 1.8V, VGND = 0V, CPVDD = 1x 220µF, 2x 10µF, 2x 0.1µF, CREFC = 1µF, CDVDD = 1µF, ZSPK = open, AC measurement bandwidth 20Hz to 22kHz, fS = 48kHz, 24-bit data, TA = TMIN to TMAX, unless, otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITION Dynamic Range DR VPVDD = 17V, ZL = 8Ω + 33µH, measured using the EIAJ method, -60dBFS 1kHz output signal, referenced to 1% output power Integrated Output Noise eN ZL = 8Ω + 33µH THD+N ≤ 1%, f = 1kHz Output Power POUT THD+N ≤ 10%, f = 1kHz Efficiency ηSPK f = 1kHz f = 1kHz Total Harmonic Distortion + Noise THD+N f = Up to 6kHz Maximum Frequency Response Deviation Gain Error Maximum Channel-toChannel Phase Error (Note 3) www.maximintegrated.com MIN A-weighted 110 A-weighted 35 Unweighted 72 ZL = 8Ω + 33µH 8.2 ZL = 8Ω + 33µH, VPVDD = 17V 15.7 ZL = 4Ω + 33µH 13.2 ZL = 8Ω + 33µH 10.2 ZL = 8Ω + 33µH, VPVDD = 17V 19 ZL = 4Ω + 33µH 15.8 POUT = 10W, ZL = 8Ω + 33µH 91 POUT = 15W, ZL = 4Ω + 33µH 81 POUT = 4W, ZL = 8Ω + 33µH 0.02 POUT = 8W, ZL = 4Ω + 33µH 0.03 POUT = 4W, ZL = 8Ω + 33µH 0.1 POUT = 8W, ZL = 4Ω + 33µH 0.2 f =1kHz, VO = 2.828VRMS Output phase shift between multiple devices from 20Hz to 20kHz, across all sample rates and DAI operating modes MAX UNITS dB µVRMS W % % Maximum deviation above and below 1kHz reference AVERROR TYP 0.2 -0.5 dB +0.5 1 dB deg Maxim Integrated │  9 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Electrical Characteristics (continued) (VPVDD = 12V, VDVDD = VRESET = 1.8V, VGND = 0V, CPVDD = 1x 220µF, 2x 10µF, 2x 0.1µF, CREFC = 1µF, CDVDD = 1µF, ZSPK = open, AC measurement bandwidth 20Hz to 22kHz, fS = 48kHz, 24-bit data, TA = TMIN to TMAX, unless, otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER PVDD Power Supply Rejection Ratio DVDD Power Supply Rejection Ratio Output Switching Frequency SYMBOL CONDITION PSRR PSRR fS Constant across all sample rates MIN TYP MAX UNITS VPVDD = 5.5V to 18V 85 f = 20Hz to 10kHz, VRIPPLE = 100mVP-P 75 f = 10kHz to 20kHz, VRIPPLE = 100mVP-P 60 f = 1kHz, VRIPPLE = 50mVP-P 100 SPK_SWCLK = 0 472 kHz SPK_SWCLK = 1 330 kHz 0.425 Ω 6.0 A 10 µs Output Stage On-Resistance RON PMOS + NMOS Current Limit ILIM ZL = 8Ω + 33µH or ZL = 4Ω + 33µH 4.5 dB THERMAL FOLDBACK Attack Time Attenuation Slope THRM_SLOPE[1:0] = 0x0 0.5 THRM_SLOPE[1:0] = 0x1 1 THRM_SLOPE[1:0] = 0x2 2 Maximum Attenuation Release Time dB/°C 12 THRM_REL[1:0] = 0x0 3 THRM_REL[1:0] = 0x3 300 dB ms/dB THERMAL SHUTDOWN Trigger Point (Note 3) 140 Hysteresis 150 160 20 °C °C PVDD ADC ELECTRICAL CHARACTERISTICS Resolution Absolute Error ADC Voltage Range ADC Lowpass Filter Cutoff Frequency www.maximintegrated.com 8 Bits 1.2 LSB 5.35 -3dB limit 18.15 0.0875 x fS V Hz Maxim Integrated │  10 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Electrical Characteristics (continued) (VPVDD = 12V, VDVDD = VRESET = 1.8V, VGND = 0V, CPVDD = 1x 220µF, 2x 10µF, 2x 0.1µF, CREFC = 1µF, CDVDD = 1µF, ZSPK = open, AC measurement bandwidth 20Hz to 22kHz, fS = 48kHz, 24-bit data, TA = TMIN to TMAX, unless, otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL ADC Lowpass Filter Stopband Frequency CONDITION MIN MAX 0.167 x fS -40dB limit ADC Programmable Lowpass Filter TYP PVDD_ADC_BW[1:0] = 0x1 2 PVDD_ADC_BW[1:0] = 0x2 20 PVDD_ADC_BW[1:0] = 0x3 200 UNITS Hz Hz DIGITAL I/O CHARACTERISTICS DIN, BCLK, LRCLK, ADDR_, RESET Input Voltage High VIH Input Voltage Low VIL Input Leakage Current Input Capacitance 0.7 x VDVDD IIH, IIL V -1 CIN 0.3 x VDVDD V +1 µA 3 pF INPUT (SDA, SCL) Input Voltage High VIH Input Voltage Low VIL Input Hysteresis Input Capacitance Input Leakage Current OUTPUT (SDA, IRQ) 0.7 x VDVDD V 0.3 x VDVDD V VHYS 200 mV CIN 3 pF IIH, IIL Output Low Voltage VOL Output Current IOL TA = +25°C, input high -1 ISINK = 3mA +1 µA 0.4 V 13 mA DIGITAL AUDIO INTERFACE TIMING CHARACTERISTICS GLOBAL LRCLK Frequency Range fLRCLK All DAI operating modes 32 96 kHz 16 Word Length All DAI operating modes 24 bits 32 BCLK Duty Cycle Maximum BCLK/LRCLK Input Jitter www.maximintegrated.com 45 Maximum jitter with minimal performance degradation 55 RMS jitter below 40kHz 0.5 RMS jitter above 40kHz 0.9 % ns Maxim Integrated │  11 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Electrical Characteristics (continued) (VPVDD = 12V, VDVDD = VRESET = 1.8V, VGND = 0V, CPVDD = 1x 220µF, 2x 10µF, 2x 0.1µF, CREFC = 1µF, CDVDD = 1µF, ZSPK = open, AC measurement bandwidth 20Hz to 22kHz, fS = 48kHz, 24-bit data, TA = TMIN to TMAX, unless, otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER PCM MODE (I2S, SYMBOL CONDITION MIN TYP MAX UNITS 55 % LEFT-JUSTIFIED) LRCLK Duty Cycle 45 LRCLK to BCLK Active Edge Setup Time tSYNCSET 10 ns LRCLK to BCLK Active Edge Hold Time tSYNCHOLD 10 ns DIN to BCLK Active Edge Setup Time tSETUP 10 ns DIN to BCLK Active Edge Hold Time tHOLD 10 ns BCLK Period (Note 3) tBCLK 160 ns 6.25 BCLK Frequency (Note 3) fS x 32 fBCLK MHz fS x 48 fS x 64 TDM MODE LRCLK Pulse Width PWLRCLK DIN Frame Delay after LRCLK Edge Measured in number of BCLK cycles BCLK Period (Note 3) tBCLK BCLK Frequency (Note 3) fBCLK www.maximintegrated.com Measured in number of BCLK cycles 0 511 cycles 2 cycles 20 All TDM operating modes ns 50 MHz Maxim Integrated │  12 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking tBCLK tBCLKH BCLK (INPUT) VIH VIL VIL VIH VIH tBCLKL VIL tSYNCHOLD tSYNCSET VIH LRCLK (INPUT) VIL tSETUP DIN (INPUT) VIL VIH tHOLD RIGHT MSB LEFT MSB Figure 1. I2S Audio Interface Timing Diagram tBCLK tBCLKH BCLK (INPUT) VIH VIL VIL VIH tBCLKL VIL VIH tSYNCHOLD tSYNCSET LRCLK (INPUT) VIH VIL tSETUP DIN (INPUT) LEFT MSB VIL tHOLD VIH RIGHT MSB Figure 2. Left-Justified Audio Interface Timing Diagram tBCLK BCLK (INPUT) VIL tSYNCSET VIH tBCLKH tBCLKL VIH VIL tSYNCHOLD LRCLK (INPUT) VIL VIH tSETUP DIN (INPUT) MSB VIL tHOLD VIH Figure 3.TDM Audio Interface Timing Diagrams www.maximintegrated.com Maxim Integrated │  13 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking I2C Timing Characteristics (VPVDD = 12V, VDVDD = VRESET = 1.8V, VGND = 0V, CPVDD = 1x 220µF, 2x 10µF, 2x 0.1µF, CVREFC = 1µF, CDVDD = 1µF, ZSPK = open, AC measurement bandwidth 20Hz to 22kHz, fS = 48kHz, 24-bit data, TA = TMIN to TMAX, unless, otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER I2C SYMBOL CONDITIONS MIN TYP MAX UNITS 400 kHz TIMING CHARACTERISTICS Serial Clock Frequency fSCL 0 Bus Free Time Between STOP and START Conditions tBUF 1.3 µs Hold Time (Repeated) START Condition tHD,STA 0.6 µs SCL Pulse-Width Low tLOW 1.3 µs SCL Pulse-Width High tHIGH 0.6 µs Setup Time for a Repeated START Condition tSU,STA 0.6 µs Data Hold Time tHD,DAT 0 Data Setup Time tSU,DAT 100 SDA and SCL Receiving Rise Time (Note 4) tR 20 + 0.1CB 300 ns SDA and SCL Receiving Fall Time (Note 4) tF 20 + 0.1CB 300 ns SDA Transmitting Fall Time tF 20 250 ns tSU,STO 0.6 Bus Capacitance CB   400 pF Pulse Width of Suppressed Spike tSP 0 50 ns Setup Time for STOP Condition 900 ns ns µs SDA tSU,STA tSU,DAT tLOW tBUF tHD,STA tHD,DAT tSP tSU,STO SCL tHIGH tHD,STA tR tF START CONDITION REPEATED START CONDITION STOP CONDITION START CONDITION Figure 4. I2C Interface Timing Diagram www.maximintegrated.com Maxim Integrated │  14 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Power Consumption (VPVDD = 12V, VDVDD = VRESET = 1.8V, VGND = 0V, CPVDD = 1x 220µF, 2x 10µF, 2x 0.1µF, CVREFC = 1µF, CDVDD = 1µF, ZSPK = open, AC measurement bandwidth 20Hz to 22kHz, fS = 48kHz, 24-bit data, TA = TMIN to TMAX, unless, otherwise noted. Typical values are at TA = +25°C.) (Note 2) IPVDD (mA) PPVDD (mW) IDVDD (mA) PDVDD (mW) PTOTAL (mW) PCM to SPK 7.0 84.0 1.3 2.3 86.3 PCM to SPK, DHT 7.3 88.0 1.8 3.3 91.3 PCM to SPK, LMTR 7.0 84.0 1.8 3.2 87.2 PCM to SPK, 8.4 100.8 1.3 2.3 103.1 PCM to SPK, DHT 8.8 105.6 1.8 3.3 108.9 PCM to SPK, LMTR 8.5 101.5 1.8 3.2 104.7 PCM to SPK 9.3 157.7 1.3 2.3 160.0 PCM to SPK, DHT 6.6 163.0 1.8 3.3 166.6 PCM to SPK, LMTR 6.0 157.1 1.8 3.2 160.3 CONDITION fSPK = 330kHz fSPK = 472kHz fSPK = 472kHz AND PVDD = 17V Note 2: 100% production tested at TA = +25C. Specifications over temperature limits are guaranteed by design. Typical values are based on 1 sigma characterization data, unless otherwise noted. Note 3: Minimums and/or maximum limits shown are design targets and not 100% production tested. Characterization data is provided to validate device performance. Note 4: CB in pF. Note 5: Digital filter performance is invariant over temperature and production tested at TA = +25C. www.maximintegrated.com Maxim Integrated │  15 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Typical Operating Characteristics (VPVDD = 12V, VDVDD = 1.8V, VGND = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), fBCLK = 3.072MHz, fLRCLK = 48kHz, speaker loads (ZSPK) connected between OUTP and OUTN, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25˚C.) DVDD QUIESCENT CURRENT vs. DVDD VOLTAGE ZSPK = ∞ toc01 1.2 1.0 0.8 0.6 0.4 0.2 0.8 1.0 1.2 1.4 1.6 1.8 fSPK = 472kHz 8 7 fSPK = 330kHz 6 5 4 3 2 1 0 2.0 5 10 DVDD SOFTWARE SHUTDOWN CURRENT vs. DVDD VOLTAGE toc03 ZSPK = ∞ DAI PINS = GND 2.5 2.0 1.5 1.0 0.5 0.0 0.8 1.0 1.2 1.4 1.6 1.8 2.0 DVDD HARDWARE SHUTDOWN CURRENT vs. DVDD VOLTAGE ZSPK = ∞ RST = 0V 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.8 1.3 DVDD VOLTAGE (V) www.maximintegrated.com 20 ZSPK = ∞ toc04 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 5 10 15 20 PVDD VOLTAGE (V) toc05 PVDD HARDWARE SHUTDOWN CURRENT (μA) DVDD HARDWARE SHUTDOWN CURRENT (μA) 0.35 PVDD SOFTWARE SHUTDOWN CURRENT vs. PVDD VOLTAGE 0.8 DVDD VOLTAGE (V) 0.40 15 PVDD SUPPLY VOLTAGE (V) PVDD SOFTWARE SHUTDOWN CURRENT (µA) DVDD SOFTWARE SHUTDOWN CURRENT (μA) DVDD SUPPLY VOLTAGE (V) 3.0 toc02 ZSPK = ∞ 9 1.4 0.0 PVDD QUIESCENT CURRENT vs. PVDD VOLTAGE 10 PVDD QUIESCENT CURRENT (mA) DVDD QUIESCENT CURRENT (mA) 1.6 1.8 0.8 0.7 PVDD HARDWARE SHUTDOWN CURRENT vs. PVDD VOLTAGE toc06 ZSPK = ∞ VRST = 0V 0.6 0.5 0.4 0.3 0.2 0.1 0.0 5 10 15 20 PVDD VOLTAGE (V) Maxim Integrated │  16 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Typical Operating Characteristics (continued) (VPVDD = 12V, VDVDD = 1.8V, VGND = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), fBCLK = 3.072MHz, fLRCLK = 48kHz, speaker loads (ZSPK) connected between OUTP and OUTN, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25˚C.) TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER 0 -20 -20 -50 f=6kHz -60 f=1kHz -70 -80 -30 THD+N RATIO (dB) -40 -40 -50 0.01 0.1 f = 6kHz -60 f = 1kHz -70 -80 f=100Hz -90 f = 100Hz -90 1 -100 0.001 10 0.01 OUTPUT POWER (W) -10 toc09 0 ZSPK = 8Ω + 68µH VPVDD = 17V -10 -20 -30 THD+N RATIO (dB) THD+N RATIO (dB) -20 -40 -50 f = 6kHz -60 f = 1kHz -70 -80 -100 0.001 0.01 0.1 1 10 TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER 0 -20 -40 -50 f = 6kHz -60 f = 1kHz -70 -100 0.001 100 0.01 0.1 1 toc12 0 -20 -50 POUT = 0.1W 10 100 f = 6kHz -60 -70 f = 1kHz f=100Hz 0.01 0.1 TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY 1 10 100 toc13 VPVDD = 12V ZSPK = 8Ω + 68µH -30 -40 -50 -60 POUT = 4W -70 POUT = 1W -90 1000 FREQUENCY (Hz) www.maximintegrated.com -50 -80 POUT = 1W -90 -40 OUTPUT POWER (W) -10 -40 -80 -30 -100 0.001 10 toc11 ZSPK = 4Ω + 33µH VPVDD = 12V -90 VPVDD = 5.5V ZSPK = 8Ω + 68µH -70 100 TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER OUTPUT POWER (W) TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY -60 10 -80 f = 100Hz -90 -30 -100 -10 THD+N RATIO (dB) THD+N RATIO (dB) -20 1 0 -30 OUTPUT POWER (W) -10 toc10 ZSPK = 4Ω + 33µH VPVDD = 5.5V -80 f = 100Hz -90 0.1 OUTPUT POWER (W) THD+N RATIO (dB) 0 TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER toc08 ZSPK = 8Ω + 68µH VPVDD = 12V -10 -30 -100 0.001 TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER 0 ZSPK = 8Ω + 68µH VPVDD = 5.5V -10 THD+N RATIO (dB) toc07 10000 100000 -100 10 100 1000 10000 100000 FREQUENCY (Hz) Maxim Integrated │  17 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Typical Operating Characteristics (continued) (VPVDD = 12V, VDVDD = 1.8V, VGND = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), fBCLK = 3.072MHz, fLRCLK = 48kHz, speaker loads (ZSPK) connected between OUTP and OUTN, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25˚C.) 0 -10 -20 -30 -40 -50 -60 POUT = 4W -80 10 100 10000 100000 -50 -60 POUT = 0.1W -70 10 5.0 16 3.5 14 3.0 THD+N = 10% 2.0 THD+N = 1% 1.5 100 0 100 toc20 1 15 10% THD+N 1% THD+N 5 10 toc21 PVDD SUPPLY VOLTAGE (V) www.maximintegrated.com 20 10000 OUTPUT POWER vs. LOAD RESISTANCE 100000 toc19 VPVDD = 17V THD+N = 10% 10 0.5 0.4 THD+N = 1% 1 10 100 NORMALIZED GAIN vs. FREQUENCY toc22 NORMALIZED TO 1kHz ZSPK = 8Ω + 68µH 0.3 14 12 10 10% THD+N 8 1% THD+N 6 0 1000 LOAD RESISTANCE (Ω) 0.2 0.1 fS = 32kHz 0 fS = 44.1kHz -0.1 fS = 48kHz fS = 96kHz -0.2 -0.3 2 15 100 15 0 100 4 10 10 5 16 5 POUT = 1W 25 ZSPK = 4Ω + 33µH 18 OUTPUT POWER (W) OUTPUT POWER (W) toc18 OUTPUT POWER vs. PVDD SUPPLY VOLTAGE 20 20 0 POUT = 8W -70 LOAD RESISTANCE (Ω) ZSPK = 8Ω + 68µH 10 -60 FREQUENCY (Hz) THD+N = 1% LOAD RESISTANCE (Ω) 25 100000 THD+N = 10% 6 2 OUTPUT POWER vs. PVDD SUPPLY VOLTAGE -50 20 8 0.5 10 10000 10 4 1 1000 12 1.0 0.0 -40 -100 VPVDD = 12V 18 4.0 2.5 -30 -90 OUTPUT POWER vs. LOAD RESISTANCE 20 OUTPUT POWER (W) OUTPUT POWER (W) toc17 toc16 VPVDD = 12V ZSPK = 4Ω + 33µH FREQUENCY (Hz) VPVDD = 5.5V 4.5 TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY -80 POUT = 1W FREQUENCY (Hz) OUTPUT POWER vs. LOAD RESISTANCE -20 -40 -90 1000 -10 -30 -100 0 VPVDD = 5.5V ZSPK = 4Ω + 33µH -80 POUT = 1W -90 -100 toc15 OUTPUT POWER (W) -70 TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY THD+N RATIO (dB) VPVDD = 17V ZSPK = 8Ω + 68µH THD+N RATIO (dB) THD+N RATIO (dB) -20 toc14 NORMALIZED GAIN (dB) 0 -10 TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY -0.4 5 7 9 11 PVDD SUPPLY VOLTAGE (V) 13 -0.5 20 200 2000 20000 FREQUENCY (Hz) Maxim Integrated │  18 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Typical Operating Characteristics (continued) (VPVDD = 12V, VDVDD = 1.8V, VGND = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), fBCLK = 3.072MHz, fLRCLK = 48kHz, speaker loads (ZSPK) connected between OUTP and OUTN, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25˚C.) EFFICIENCY vs. OUTPUT POWER 70 80 EFFICIENCY (%) 50 40 30 20 VPVDD = 12V ZSPK = 4Ω + 33μH 0 100 5 10 40 fSPK = 330kHz 30 fSPK = 472kHz 15 0 0.001 20 0.01 100 fSPK = 330kHz 90 80 fSPK = 472kHz EFFICIENCY (%) 60 50 40 30 10 toc27 5 10 15 fSPK = 330kHz 50 40 30 0.01 100 toc29 fSPK = 330kHz 90 80 90 80 fSPK = 472kHz EFFICIENCY (%) 70 60 50 40 30 0.1 1 10 VPVDD = 12V ZSPK = 8Ω + 68μH 10 0 2 4 6 8 OUTPUT POWER (W) www.maximintegrated.com 10 12 fSPK = 472kHz fSPK = 330kHz 0.01 0.1 1 toc30 1 fSPK = 472kHz 0.5 1.0 70 60 fSPK = 472k fSPK = 330kHz 30 fSPK = 330kHz 0.01 0.1 1 10 100 POWER DISSIPATION vs. OUTPUT POWER toc31 VPVDD = 12V ZSPK = 8Ω + 68μH 0.8 0.6 fSPK = 472kHz 0.4 fSPK = 330kHz 0.2 10 0 0.001 toc28 VPVDD = 17V ZSPK = 8Ω + 68μH 1.5 1.2 VPVDD = 12V ZSPK = 8Ω + 68μH 40 100 OUTPUT POWER (W) EFFICIENCY vs. OUTPUT POWER 50 10 POWER DISSIPATION vs. OUTPUT POWER 0 0.001 100 20 20 1.0 OUTPUT POWER (W) OUTPUT POWER (W) 100 1.5 2 fSPK = 472kHz 60 0 0.001 20 EFFICIENCY vs. OUTPUT POWER 2.0 2.5 POWER DISSIPATION (W) 0 2.5 10 VPVDD = 17V ZSPK = 8Ω + 68μH 10 3.0 OUTPUT POWER (W) VPVDD = 17V ZSPK = 8Ω + 68μH 70 toc25 VPVDD = 12V ZSPK = 4Ω + 33μH 0.0 0.001 100 20 20 EFFICIENCY (%) 1 EFFICIENCY vs. OUTPUT POWER 70 0 0.1 EFFICIENCY vs. OUTPUT POWER toc26 POWER DISSIPATION vs. OUTPUT POWER 0.5 10 OUTPUT POWER (W) 80 EFFICIENCY (%) 50 OUTPUT POWER (W) 90 0 3.5 60 20 10 4.0 VPVDD = 12V ZSPK = 4Ω + 33μH 70 fSPK = 472kHz 60 0 toc24 POWER DISSIPATION (W) 80 EFFICIENCY (%) 90 fSPK = 330kHz EFFICIENCY vs. OUTPUT POWER POWER DISSIPATION (W) 90 toc23 0.01 0.1 1 OUTPUT POWER (W) 10 100 0.0 0.001 0.01 0.1 1 10 100 OUTPUT POWER (W) Maxim Integrated │  19 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Typical Operating Characteristics (continued) (VPVDD = 12V, VDVDD = 1.8V, VGND = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), fBCLK = 3.072MHz, fLRCLK = 48kHz, speaker loads (ZSPK) connected between OUTP and OUTN, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25˚C.) PVDD POWER SUPPLY REJECTION RATIO vs. FREQUENCY toc32 80 80 70 70 60 60 50 40 20 20 10 10 0 0 100 1000 10000 100000 FREQUENCY (Hz) 140 120 5 7 9 11 13 15 17 19 21 VRIPPLE = 100mVP-P fS = 1kHz 0 10 100 1000 10000 100000 FREQUENCY (Hz) SOFTWARE ENABLE TURN-ON RESPONSE VOLUME RAMPING DISABLED toc36 100 PSRR(dB) 60 20 SOFTWARE ENABLE TURN-ON RESPONSE VOLUME RAMPING ENABLED toc35 80 40 PVDD SUPPLY VOLTAGE (V) POWER SUPPLY REJECTION RATIO vs. DVDD SUPPLY VOLTAGE toc34 VRIPPLE = 100mVP-P 100 40 30 DVDD POWER SUPPLY REJECTION RATIO vs. FREQUENCY 120 50 30 10 140 VRIPPLE = 100mVP-P fs = 1kHz 90 PSRR (dB) PSRR (dB) 100 VRIPPLE = 100mVP-P ZSPK = ∞ 90 toc33 PSRR (dB) 100 POWER SUPPLY REJECTION RATIO vs. PVDD SUPPLY VOLTAGE 80 toc37 SCL 1V/div SCL 1V/div SPKOUT 5V/div SPKOUT 5V/div 60 40 20 0 1.0 1.2 1.4 1.6 1.8 2.0 DVDD SUPPLY VOLTAGE (V) SOFTWARE DISABLE TURN OFF RESPONSE VOLUME RAMPING ENABLED 4ms/div www.maximintegrated.com 4ms/div SOFTWARE DISABLE TURN OFF RESPONSE VOLUME RAMPING DISABLED toc38 2ms/div HARDWARE RESET TURN-OFF RESPONSE toc39 toc40 SCL 1V/div SCL 1V/div RST 1V/div SPKOUT 5V/div SPKOUT 5V/div SPKOUT 5V/div 2ms/div 800µs/div Maxim Integrated │  20 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Typical Operating Characteristics (continued) (VPVDD = 12V, VDVDD = 1.8V, VGND = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), fBCLK = 3.072MHz, fLRCLK = 48kHz, speaker loads (ZSPK) connected between OUTP and OUTN, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25˚C.) BCLK REMOVAL TURN-OFF RESPONSE INBAND OUTPUT SPECTRUM 40 toc41 20 SPKOUT 5V/div 0 -20 -20 -60 -80 INBAND OUTPUT SPECTRUM toc44 -120 -120 0 5000 10000 15000 -140 20000 ZSPK = 8Ω + 68µH fS = 32kHz ZSPK = 8Ω + 68µH fS = 44.1kHz 20 -20 -20 -60 -80 AMPLITUDE (dBV) 0 -20 -40 -40 -60 -80 -100 -120 -120 -140 20000 FREQUENCY (Hz) toc47 10000 15000 INBAND OUTPUT SPECTRUM 40 ZSPK = 8Ω + 68µH fS = 44.1kHz 20 5000 20000 toc48 20 -80 AMPLITUDE (dBV) -20 AMPLITUDE (dBV) 0 -20 -60 -40 -60 -80 -80 -100 -120 -120 -120 -140 -140 FREQUENCY (Hz) www.maximintegrated.com 20000 0 5000 10000 FREQUENCY (Hz) 15000 20000 toc49 -60 -100 15000 20000 -40 -100 10000 15000 ZSPK = 8Ω + 68µH fS = 48kHz 20 -20 -40 10000 INBAND OUTPUT SPECTRUM 40 ZSPK = 8Ω + 68µH fS = 48kHz 0 5000 5000 FREQUENCY (Hz) 0 0 0 FREQUENCY (Hz) INBAND OUTPUT SPECTRUM 40 -140 0 toc46 ZSPK = 8Ω + 68µH fS = 44.1kHz -80 -120 15000 20000 -60 -100 10000 15000 -40 -100 5000 10000 20 0 0 5000 INBAND OUTPUT SPECTRUM 40 toc45 0 -140 0 FREQUENCY (Hz) INBAND OUTPUT SPECTRUM 40 AMPLITUDE (dBV) AMPLITUDE (dBV) -80 FREQUENCY (Hz) 20 AMPLITUDE (dBV) -60 -100 2ms/div 40 -40 -100 -140 toc43 ZSPK = 8Ω + 68µH fS = 32kHz 20 0 -40 INBAND OUTPUT SPECTRUM 40 AMPLITUDE (dBV) LRCLK 1V/div AMPLITUDE (dBV) BCLK 2V/div toc42 ZSPK = 8Ω + 68µH fS = 32kHz -140 0 5000 10000 15000 20000 FREQUENCY (Hz) Maxim Integrated │  21 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Typical Operating Characteristics (continued) (VPVDD = 12V, VDVDD = 1.8V, VGND = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), fBCLK = 3.072MHz, fLRCLK = 48kHz, speaker loads (ZSPK) connected between OUTP and OUTN, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25˚C.) INBAND OUTPUT SPECTRUM 40 20 INBAND OUTPUT SPECTRUM 40 toc51 20 -20 -20 -60 -80 AMPLITUDE (dBV) 0 -20 -40 -60 -80 -40 -60 -80 -100 -100 -100 -120 -120 -120 -140 -140 0 5000 10000 15000 20000 0 5000 FREQUENCY (Hz) toc53 AMPLITUDE (dBV) 0 -20 -40 -60 -80 -120 15000 -140 20000 0 5000 FREQUENCY (Hz) 0 -20 -40 -60 -80 -80 -120 -120 FREQUENCY (Hz) www.maximintegrated.com 15000 20000 toc56 -60 -100 10000 20000 -40 -100 5000 15000 ZSPK = 8Ω + 68µH fS = 96kHz 20 -20 0 10000 INBAND OUTPUT SPECTRUM 40 AMPLITUDE (dBV) AMPLITUDE (dBV) toc55 ZSPK = 8Ω + 68µH fS = 96kHz 0 -140 toc54 FREQUENCY (Hz) INBAND OUTPUT SPECTRUM 20 20000 -80 -120 10000 15000 -60 -100 5000 10000 -40 -100 40 5000 ZSPK = 8Ω + 68µH fS = 96kHz 20 -20 0 0 INBAND OUTPUT SPECTRUM 40 0 -140 -140 20000 FREQUENCY (Hz) ZSPK = 8Ω + 68µH fS = 88.2kHz 20 AMPLITUDE (dBV) 15000 FREQUENCY (Hz) INBAND OUTPUT SPECTRUM 40 10000 toc52 ZSPK = 8Ω + 68µH fS = 88.2kHz 20 0 -40 INBAND OUTPUT SPECTRUM 40 ZSPK = 8Ω + 68µH fS = 88.2kHz 0 AMPLITUDE (dBV) AMPLITUDE (dBV) toc50 ZSPK = 8Ω + 68µH fS = 48kHz -140 0 5000 10000 15000 20000 FREQUENCY (Hz) Maxim Integrated │  22 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Pin Configuration TOP VIEW (BUMP SIDE DOWN) 1 2 3 4 5 A OUTNSNS PVDD PVDD DVDD ADDR1 SCL B OUTN OUTN PGND DGND ADDR0 SDA PGND PGND PGND AGND DOUT LRCLK D OUTP OUTP PGND AGND IRQ DIN E OUTPSNS PVDD PVDD VREFC RESET 6 + C DIGITAL www.maximintegrated.com ANALOG BCLK HIGH POWER Maxim Integrated │  23 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Pin Description BUMP NAME SUPPLY RAIL A1 OUTNSNS PVDD A2, A3 E2, E3 PVDD — Speaker Amplifier Power Supply. Bypass each bump pair to PGND with a 10µF and a 0.1µF, and a single 220µF per device. A4 DVDD — Digital Core, Digital Audio Interface, and I2C Control Power Supply. Bypass to DGND with a 1µF. A5 ADDR1 DVDD Four-Level I2C Slave Address Select Input. See the Slave Address Selection section for additional information (Table 40). A6 SCL DVDD I2C Control Clock Input B1, B2 OUTN PVDD Negative Speaker Amplifier Output B3,C1–C3, D3 PGND — Speaker Amplifier Ground B4 DGND — Digital Ground B5 ADDR0 DVDD Four-Level I2C Slave Address Select Input. See the Slave Address Selection section for additional information (Table 40). B6 SDA DVDD I2C Control Data Input/Output C4, D4 AGND — C5 DOUT DVDD Bidirectional ICC Link Data C6 LRCLK DVDD DAI Left/Right Clock Input. LRCLK is the audio sample rate clock and determines whether audio data is routed to the left or right channel. In TDM mode, LRCLK is a frame sync pulse with programmable width. D1, D2 OUTP PVDD Positive Speaker Amplifier Output D5 IRQ DVDD Hardware Interrupt Output. IRQ can be programmed to pull low when individual bits in the flag registers change value. Connect a 10kΩ pullup resistor for full output swing. D6 DIN DVDD DAI Audio Data Input E1 OUTPSNS PVDD Positive Speaker Amplifier Output Sense. If not used, connect to OUTP. E4 VREFC PVDD Internal Regulator Decoupling Point. Bypass to AGND with a 1µF. E5 RESET DVDD Active-Low Hardware Reset. Drive low to place the device into low power reset mode and reset the device registers to their power-on-reset (POR) states. E6 BCLK DVDD DAI Bit Clock Input www.maximintegrated.com FUNCTION Negative Speaker Amplifier Output Sense. If not used, connect to OUTN. Analog Ground Maxim Integrated │  24 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Detailed Description The DAI supports I2S, left-justified, and TDM formatted data at the following sample rates: 32kHz, 44.1kHz, 48kHz, 88.2kHz, and 96kHz. Audio bit depths of 16, 24, and 32 bits are supported for input data. The DAI operates from BCLK to allow the device to function without MCLK. The MAX98371 can operate over a wide range of supply voltage (PVDD), and has extensive on-board digital signal processing to enable dynamic headroom tracking (DHT). This feature automatically adjusts the output signal to fit into the available supply voltage range. The DHT can be completely bypassed for operation with fixed, regulated supply voltages. Thermal foldback allows the device to smoothly attenuate the audio output in an effort to prevent destructive thermal behavior. Above a set threshold, the gain of the replay path reduces at a (user programmable) dB/°C rate to a 12dB maximum attenuation. Thermal monitoring capabilities alert the host when die temperature has triggered the thermal foldback circuit, or is approaching the maximum operating temperature. If maximum die temperature is exceeded, the device shuts down to protect itself. Shortcircuit protection ensures that accidental shorts or highcurrent events do not cause damage to the IC. The MAX98371 is a high-efficiency mono Class D audio amplifier that features thermal foldback protection and ADCs for sensing battery supply voltage and onboard temperature. Active emissions limiting edge rate and overshoot control circuitry, together with Class D modulation minimize the electromagnetic interference (EMI) traditionally associated with Class D amplifiers. In systems that use less than 18 inches of speaker cable, an output filter is unnecessary to meet standard EMI limits. Two ADCs monitor PVDD supply voltage and die temperature. The PVDD supply voltage value can be read using the I2C interface. The temperature ADC can be read back through I2C, however, accurate readings only occur after the die temperature exceeds +100°C. Device status is communicated to the host through a hardware interrupt (IRQ) and status registers accessible through the I2C interface. The MAX98371 is fully programmable through the I2C interface. ADDR0, ADDR1 connections select one of sixteen I2C slave addresses. Shutdown mode is directly controlled through the I2C interface, or a hardware shutdown can be asserted through the RESET pin. Table 1. MAX98371 Control Register Map REGISTER DESCRIPTION ADDR NAME REGISTER CONTENTS R/W BIT 7 BIT 6 R — — BIT 5 BIT 4 BIT 3 — WRN_ BIT2 BIT1 — SHDN_ BIT 0 POR STATE — 0x00 INTERRUPTS 0x01 0x02 0x03 0x04 0x05 INTERRUPT STATUS 0 INTERRUPT STATUS 1 INTERRUPT STATE 0 INTERRUPT STATE 1 INTERRUPT FLAG 0 www.maximintegrated.com R R R R/W — — — — THRMFB_ STATUS ICCOVC_ LMTRACT_ STATUS STATUS — THRM STATUS INVAL SLOT_ STATUS DHTACT_ STATUS STATUS SPK PVDD PVDD CURNT_ OVFL_ UVLO_ STATUS STATUS STATUS THRM THRM THRMFB_ THRMFB_ THRM THRM END_ BGN_ WRN_END WRN_BGN STATE STATE _STATE _STATE ICCOVC_ LMTRACT_ STATE STATE — THRM THRMFB_ END_ FLAG INVAL SLOT_ STATE DHTACT_ STATE SHDN_END SHDN_BGN _STATE 0x00 0x00 _STATE SPK PVDD PVDD CURNT_ OVFL_ UVLO_ STATE STATE STATE THRMFB_ THRM THRM THRM THRM BGN_ WRN_END_ WRN_BGN SHDN_ SHDN_ FLAG FLAG _FLAG 0x00 0x00 END_ FLAG BGN_ FLAG Maxim Integrated │  25 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 1. MAX98371 Control Register Map (continued) REGISTER DESCRIPTION ADDR 0x06 0x07 0x08 0x09 0x0A NAME INTERRUPT FLAG 1 INTERRUPT ENABLES 0 INTERRUPT ENABLES 1 INTERRUPT CLEARS 0 INTERRUPT CLEARS 1 REGISTER CONTENTS R/W BIT 7 R/W — R/W — R/W — W BIT 5 ICCOVC_ LMTRACT_ FLAG FLAG INVAL SLOT_ FLAG BIT 3 BIT2 DHTACT_ FLAG 0x11 0x14 0x15 0x16 0x18 0x19 PCM CLOCK SETUP PCM SAMPLE RATE SETUP PCM MODE CONFIG PCM RX ENABLES A PCM RX ENABLES B MONOMIX CHANNEL SOURCE MONOMIX CHANNEL SOURCE SPK PVDD CURNT_ OVFL_ FLAG FLAG BIT 0 PVDD UVLO_ FLAG THRMFB_ THRM THRM THRM THRM BGN_ WRN_ WRN_ SHDN_ SHDN_ EN EN END_ EN BGN_ EN END_ EN BGN_ EN ICCOVC_ LMTRACT_ INVAL EN EN SLOT_ EN DHTACT_ EN CURNT_ THRMFB_ THRMFB_ END_CLR BGN_ CLR ICCOVC_ LMTRACT_ INVAL DHTACT_ CLR CLR SLOT_ CLR CLR SPK EN PVDD PVDD OVFL_ EN UVLO_ EN THRM THRM THRM THRM WRN_ WRN_ SHDN_ SHDN_ END_ CLR BGN_ CLR END_ CLR BGN_ CLR SPK CURNT_ CLR PCM CONFIGURATION 0x10 BIT1 END_ — — BIT 4 THRMFB_ — — W BIT 6 PVDD PVDD OVFL_CLR UVLO_ CLR POR STATE 0x00 0x00 0x00 0x00 0x00 R/W — — — — BSEL[3:0] 0x06 R/W — — — — SPK_SR[3:0] 0x08 R/W CHANSZ[1:0] R/W R/W FORMAT[2:0] BCLEDGE CHANSEL — RX_ RX_ RX_ RX_ RX_ RX_ RX_ RX_ CH7_EN CH6_EN CH5_EN CH4_EN CH3_EN CH2_EN CH1_EN CH0_EN RX_ RX_ RX_ RX_ RX_ RX_ RX_ RX_ CH15_EN CH14_EN CH13_EN CH12_EN CH11_EN CH10_EN CH9_EN CH8_EN R/W DMONOMIX_CH1_SOURCE[3:0] R/W — — — DMONOMIX_CH0_SOURCE[3:0] — — — DMONOMIX_CFG[1:0] 0x80 0x00 0x00 0x00 0x00 DIGITAL FILTER PARAMETERS 0x1C DIGITAL FILTER 0x1D 0x1E DAC BQ B0 R/W 0x20 DAC BQ B1 R/W R/W 0x22 R/W 0x23 0x24 R/W R/W R/W 0x1F 0x21 R/W DAC BQ B2 0x25 www.maximintegrated.com R/W R/W PVDD_FILT PVDD_FILT _TO_LMTR _TO_DHT PVDD_ADC_BW[1:0] — DACHPF[2:0] 0x00 DAC_BQ_B0[23:16] 0x00 DAC_BQ_B0[15:8] 0x00 DAC_BQ_B0[7:0] 0x00 0x00 DAC_BQ_B1[23:16] DAC_BQ_B1[15:8] DAC_BQ_B1[7:0] DAC_BQ_B2[23:16] DAC_BQ_B2[15:8] DAC_BQ_B2[7:0] 0x00 0x00 0x00 0x00 0x00 Maxim Integrated │  26 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 1. MAX98371 Control Register Map (continued) REGISTER DESCRIPTION ADDR NAME 0x26 0x27 DAC BQ A0 DAC BQ A1 BIT 5 DIGITAL VOLUME CONTROL PATH GAIN BIT 3 BIT2 BIT1 BIT 0 0x00 DAC_BQ_A1[23:16] 0x00 DAC_BQ_A1[15:8] 0x00 DAC_BQ_A1[7:0] DVOL_ R/W 0x00 0x00 DAC_BQ_A0[7:0] DVOL[6:0] RAMP_BYP POR STATE 0x00 DAC_BQ_A0[15:8] R/W R/W BIT 4 DAC_BQ_A0[23:16] R/W R/W 0x2B 0x2E R/W BIT 6 R/W 0x29 0x2D BIT 7 R/W 0x28 0x2A REGISTER CONTENTS R/W 0x00 DPGA_CLIP[3:0] SPK_GAIN_MAX[3:0] 0x0B SPK_GAIN_MIN[3:0] DHT_VROT_PNT[3:0] 0x00 DYNAMIC GAIN PARAMETERS 0x31 DHT ROTATION POINT R/W 0x32 DHT ATTACK R/W — — — DHT_ATK_STEP[1:0] DHT_ATK_RATE[2:0] 0x18 0x33 DHT RELEASE R/W — — — DHT_REL_STEP[1:0] DHT_REL_RATE[2:0] 0x00 0x34 0x36 0x37 PVDD ADC MEASUREMENT THERMAL FOLDBACK THERMAL ADC MEASUREMENT R R/W PVDD_ADC[7:0] THRM_HOLD[1:0] — — 0x00 THRM_REL[1:0] THRM_SLOPE[1:0] 0x00 R — — THRM_ADC_MEAS[5:0] 0x00 R/W — — THRM_MIN_TEMP[5:0] 0x00 R/W — — — — — RXDHT_ RXDHT_ RXDHT_ RXDHT_ RXDHT_ RXDHT_ RXDHT_ RXDHT_ CH7_EN CH6_EN CH5_EN CH4_EN CH3_EN CH2_EN CH1_EN CH0_EN THERMAL 0x38 FOLDBACK MIN TEMP THERMAL 0x39 FOLDBACK LOW THRM_FILT_SEL[2:0] 0x00 PASS FILTER 0x3A 0x3B 0x3C 0x3D 0x3E PCM2 RXDHT ENABLES A PCM2 RXDHT ENABLES B PCM2 RXTHM ENABLES A PCM2 RXTHM ENABLES B PCM2 TX/ ENABLES A www.maximintegrated.com R/W R/W R/W R/W R/W RXDHT_ RXDHT_ RXDHT_ RXDHT_ RXDHT_ RXDHT_ RXDHT_ RXDHT_ CH15_EN CH14_EN CH13_EN CH12_EN CH11_EN CH10_EN CH9_EN CH8_EN RXTHM_ RXTHM_ RXTHM_ RXTHM_ RXTHM_ RXTHM_ RXTHM_ RXTHM_ CH7_EN CH6_EN CH5_EN CH4_EN CH3_EN CH2_EN CH1_EN CH0_EN RXTHM_ RXTHM_ RXTHM_ RXTHM_ RXTHM_ RXTHM_ RXTHM_ RXTHM_ CH15_EN CH14_EN CH13_EN CH12_EN CH11_EN CH10_EN CH9_EN CH8_EN TX_ TX_ TX_ TX_ TX_ TX_ TX_ TX_ CH7_EN CH6_EN CH5_EN CH4_EN CH3_EN CH2_EN CH1_EN CH0_EN 0x00 0x00 0x00 0x00 0x00 Maxim Integrated │  27 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 1. MAX98371 Control Register Map (continued) REGISTER DESCRIPTION ADDR NAME PCM2 TX 0x3F 0x40 0x41 ENABLES A PCM2 DATA ORDER SELECT PCM2 HiZ MANUAL MODE PCM2 TX HiZ 0x42 ENABLES A PCM2 TX HiZ 0x43 ENABLES B R/W REGISTER CONTENTS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT2 BIT1 BIT 0 POR STATE TX_ TX_ TX_ TX_ TX_ TX_ TX_ TX_ CH15_EN CH14_EN CH13_EN CH12_EN CH11_EN CH10_EN CH9_EN CH8_EN R/W — — — — — — — 0x00 R/W — — — — — EXTRA_ — 0x00 R/W DRIVE_ MODE 0x00 TX_ — HIZ R/W R/W TX_ TX_ TX_ TX_ TX_ TX_ TX_ TX_ CH7_HIZ CH6_HIZ CH5_HIZ CH4_HIZ CH3_HIZ CH2_HIZ CH1_HIZ CH0_HIZ 0x00 TX_ TX_ TX_ TX_ TX_ TX_ TX_ TX_ CH15_HIZ CH14_HIZ CH13_HIZ CH12_HIZ CH11_HIZ CH10_HIZ CH9_HIZ CH8_HIZ — — — SPK_EDGE[1:0] — SPK_EN 0x00 DHT_EN 0x00 0x00 ENABLES 0x4A 0x4B 0x4C SPEAKER ENABLE DYNAMIC GAIN R/W SPK_ SWCLK R/W — — — — — PVADC_EN LMTR_EN R/W — — — — — — — RESTART BEHAVIOR R/W — — — — CMON_ OVC_ ENA SEL ENABLES THERMAL FOLDBACK ENABLE CMON_ 0x4D AUTO_ RESTART TSHDN_ AUTO_ 0x00 RESTART DHT_ LINK_EN — — EN 0x00 — — RST 0x00 R/W — — — — — — 0x50 GLOBAL ENABLE R/W — — — — — 0x51 SOFTWARE RESET W — — — — — R/W — — R/W — — — R/W — — — R/W — AND RELEASE 0x00 THM_ ICC LINK ENABLE 0x55 FB_EN LINK_EN 0x4E LIMITER ATTACK THERM_ LMTR_REL_RATE[2:0] LMTR_ATK_RATE[2:0] 0x00 0x00 LIMITER 0x58 THRESHOLD — — — LMTR_TH_SEL[1:0] 0x00 SELECT 0x59 0x5C 0xFF LIMITER MANUAL THRESHOLD ICC PAD CONTROL REV ID www.maximintegrated.com R ICC_OC_ ENA LMTR_THC[4:0] ICC_ ICC_ DOUTEN_ DOUT_ EXTFF EXTFF REVID[7:0] 0x00 ICC_PAD_CTRL[3:0] 0x00 0x43 Maxim Integrated │  28 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Interrupts Flag The MAX98371 supports programmable interrupts for sending feedback to the host about events that have occurred on-chip. Table 2 lists the available interrupt sources. Interrupts are output on IRQ, an active low opendrain output. Status Each interrupt source has one bit to indicate the real-time STATUS of the source. This bit is read-only. State Each interrupt source has a STATE bit that is set whenever a rising edge occurs on the associated STATUS bit regardless of the state of the associated ENABLE bit. This bit is read-only. Each interrupt source has a FLAG bit to indicate that a rising edge has occurred on the associated STATUS bit and the associated ENABLE bit is set. This bit is read-only. Enable Each interrupt source has an ENABLE bit to indicate that the associated FLAG bit is set whenever the STATE bit is set. This bit is read/write. Clear Each interrupt has a CLEAR bit that clears the associated STATE and FLAG bits when a 1 is written. Writing a 0 has no effect. This bit is write-only. Table 2. Interrupt Sources NAME Overtemperature Begin Event Overtemperature End Event Thermal Warning Begin Event Thermal Warning End Event Speaker Current Event Invalid Slot Event Thermal Foldback Event Thermal Foldback End Event VPVDD Overflow Event PVDD UVLO Event DHT Active Event Limiter Active Event ICC Overcurrent Event www.maximintegrated.com DESCRIPTION Indicates when the die overtemperature threshold has been exceeded. Indicates when the die overtemperature threshold is no longer exceeded including 20°C of hysteresis. Indicates when the thermal warning threshold has been exceeded. Indicates that the die temperature was previously above the thermal warning threshold and has now dropped below the threshold. Indicates when the speaker amplifier current limit has been exceeded. Indicates that a slot has been selected that is not available due to one or more of the following reasons: The (number of bits per channel) x (channels per frame) does not allow for the selected slot (I2S mode only). The number of BCLK cycles per frame does not allow for the selected slot (TDM mode only). Indicates that the Thermal Foldback Limiter is operating in the attack or release phase. Indicates that the die temperature was previously above the thermal threshold and has now dropped below the threshold. Indicates that the VPVDD supply voltage has reached the VPVDD ADC’s maximum input level. Indicates that PVDD has dropped below the minimum allowed voltage. Indicates that the DHT circuit is applying compression to the signal. Indicates that the limiter circuit is applying a hard limit (infinite compression) to the signal. Indicates that an overcurrent event is in progress on DOUT. Maxim Integrated │  29 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers Interrupt Status0 Interrupt Status bits reflect real-time fault conditions. If the fault condition is less than 3-4 LRCLK cycles, the Live Status bit holds high for 3–4 LRCLK cycles. ADDRESS 0x01 BIT NAME 7 0 Unused: Readback is 0. 6 0 Unused: Readback is 0. 5 THERMFB_STATUS 4 0 3 THERMWRN_STATUS 2 0 1 THERMSHDN_STATUS 0 0 www.maximintegrated.com DESCRIPTION Die Thermal Foldback Status 0: The die temperature is below the thermal warning threshold. 1: The die temperature is above the thermal warning threshold and the signal is being dynamically attenuated. Unused: Readback is 0. Die Overtemperature Warning Status 0: The die temperature is below the thermal warning threshold. 1: The die temperature is above the thermal warning threshold. Unused: Readback is 0. Die Overtemperature Status 0: The die temperature is below the maximum die temperature. 1: The die temperature exceeds the maximum die temperature. Unused: Readback is 0. Maxim Integrated │  30 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers (continued) Interrupt Status1 Interrupt Status bits reflect real-time fault conditions. If the fault condition is less than 3–4 LRCLK cycles, the Live Status bit holds high for 3–4 LRCLK cycles. ADDRESS BIT NAME 7 0 6 ICCOVC_STATUS 5 LMTRACT_STATUS DESCRIPTION Unused: Readback is 0. ICC Overcurrent Status 0: No overcurrent event on the DOUT is in progress. 1: Overcurrent event on the DOUT is in progress. Limiter Active Status 0: Limiter is not active. 1: Limiter is active. Invalid Slot Status 0: Slot is valid. 1: Slot is invalid, one or more possible error conditions apply: a. The (number of bits per channel) x (channels per frame) does not allow for the selected slot (I2S mode only) b. The number of BCLK cycles per frame does not allow for the selected slot (TDM mode only). 4 INVALSLOT_STATUS 3 DHTACT_STATUS 2 SPKCURNT_STATUS Speaker Overcurrent Status 0: Speaker current is below the current limit. 1: Speaker current is above the current limit. PVDDOVFL_STATUS PVDD Supply Voltage Monitor Overflow Status 0: The PVDD supply voltage is below the PVDD ADC’s maximum input level. 1: The PVDD supply voltage has exceeded the PVDD ADC’s maximum input level PVDDUVLO_STATUS PVDD Supply Voltage Undervoltage Status 0: The PVDD supply voltage is above the PVDD UVLO level. 1: The PVDD supply voltage is below the PVDD UVLO threshold, and the speaker outputs are disabled. 0x02 1 0 www.maximintegrated.com DHT Active Status 0: Dynamic headroom tracking is not attacking or releasing. 1: Dynamic headroom tracking is active and is attacking or releasing. Maxim Integrated │  31 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers (continued) Interrupt State 0 ADDRESS BIT NAME 7 0 Unused: Readback is 0. 6 0 Unused: Readback is 0. 5 4 0x03 3 2 1 0 www.maximintegrated.com DESCRIPTION THERMFB_END_STATE Die Thermal Foldback State End Event 0: No falling edge on thermal foldback status is detected. 1: A falling edge on thermal foldback status is detected. Note: Write a 1 to THERMFB_END_CLR to reset THERMFB_BGN_STATE Die Thermal Foldback State End Event 0: No rising edge on thermal foldback status is detected. 1: A rising edge on thermal foldback status is detected. Note: Write a 1 to THERMFB_BGN_CLR to reset. THERMWRN_END_STATE Thermal Warning Status End Event 0: No falling edge on THERMWRN_STATUS is detected. 1: A falling edge on THERMWRN_STATUS is detected. Note: Write a 1 to THERMWRN_END_CLR to reset. THERMWRN_BGN_STATE Thermal Warning Status Begin Event 0: No rising edge on THERMWRN_ STATUS is detected. 1: A rising edge on THERMWRN_STATUS is detected. Note: Write a 1 to THERMWRN_BGN_CLR to reset. THERMSHDN_END_STATE Thermal Shutdown End Event 0: No falling edge on THERMSHDN_STATUS is detected. 1: A falling edge on THERMSHDN_STATUS is detected. Note: Write a 1 to THERMSHDN_END_CLR to reset. THERMSHDN_BGN_STATE Thermal Shutdown Begin Event 0: No rising edge on THERMSHDN_STATUS is detected. 1: A rising edge on THERMSHDN_STATUS is detected. Note: Write a 1 to THERMSHDN_BGN_CLR to reset. Maxim Integrated │  32 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers (continued) Interrupt State 1 ADDRESS BIT NAME 7 0 6 5 4 0x04 3 2 1 0 www.maximintegrated.com ICCOVC_STATE LMTRACT_STATE INVALSLOT_STATE DHTACT_STATE SPKCURNT_STATE PVDDOVFL_STATE PVDDUVLO_STATE DESCRIPTION Unused: Readback is 0. ICC Overcurrent Event 0: No rising edge on ICCOVC_STATUS is detected. 1: A rising edge on ICCOVC_STATUS is detected. Note: Write a 1 to ICCOVC_CLR to reset. Limiter Active Event 0: No rising edge on LMTRACT_STATUS is detected. 1: A rising edge on LMTRACT_STATUS is detected. Note: Write a 1 to LMTRACT_CLR to reset. Invalid Slot Event 0: No rising edge on INVALSLOT_STATUS is detected. 1: A rising edge on INVALSLOT_STATUS is detected. Note: Write a 1 to INVALSLOT_CLR to reset. DHT Active Event 0: No rising edge on DHTACT_STATUS is detected. 1: A rising edge on DHTACT_STATUS is detected. Note: Write a 1 to DHTACT_STATUS to reset. Speaker Overcurrent Event 0: No rising edge on SPKCURNT_STATUS is detected. 1: A rising edge on SPKCURNT_STATUS is detected. Note: Write a 1 to SPKCURNT_CLR to reset. PVDD ADC Overflow Event 0: No rising edge on PVDDOVFL_STATUS is detected. 1: A rising edge on PVDDOVFL_STATUS is detected. Note: Write a 1 to PVDDOVFL_CLR to reset. PVDD Supply Voltage Undervoltage Lockout Event 0: No rising edge on PVDDUVLO_STATUS is detected. 1: A rising edge on PVDDUVLO_STATUS is detected. Note: Write a 1 to PVDDOVFL_CLR to reset. Maxim Integrated │  33 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers (continued) Interrupt Flag 0 ADDRESS 0x05 BIT NAME 7 0 Unused: Readback is 0. 6 0 Unused: Readback is 0. 5 THERMFB_END_FLAG Die Thermal Foldback End Flag 0: No thermal foldback end interrupt is generated. 1: Thermal foldback end interrupt is generated. 4 THERMFB_BGN_FLAG Die Thermal Foldback Begin Flag 0: No thermal foldback begin interrupt is generated. 1: Thermal foldback begin interrupt is generated. 3 THERMWRN_END_FLAG Thermal Warning End Flag 0: No thermal warning end is interrupt generated. 1: Thermal warning end interrupt is generated. 2 THERMWRN_BGN_FLAG Thermal Warning Begin Flag 0: No thermal warning begin interrupt is generated. 1: Thermal warning begin interrupt is generated. 1 THERMSHDN_END_FLAG Thermal Shutdown End Flag 0: No thermal shutdown end interrupt is generated. 1: Thermal shutdown end interrupt is generated. 0 THERMSHDN_BGN_FLAG Thermal Shutdown Begin Flag 0: No thermal shutdown begin interrupt is generated. 1: Thermal shutdown begin interrupt is generated. www.maximintegrated.com DESCRIPTION Maxim Integrated │  34 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers (continued) Interrupt Flag 1 ADDRESS 0x06 BIT NAME 7 0 6 ICCOVC_FLAG 5 LMTRACT_FLAG 4 INVALSLOT_FLAG 3 DHTACT_FLAG 2 SPKCURNT_FLAG Speaker Overcurrent Flag 0: No speaker overcurrent interrupt is generated. 1: Speaker overcurrent interrupt is generated. 1 PVDDOVFL_FLAG PVDD ADC Overflow Flag 0: No PVDD ADC overflow interrupt is generated. 1: PVDD ADC overflow interrupt is generated. 0 PVDDUVLO_FLAG PVDD Supply Voltage Undervoltage Lockout Flag 0: No PVDD UVLO Interrupt is generated. 1: PVDD UVLO Interrupt is generated. www.maximintegrated.com DESCRIPTION Unused: Readback is 0. ICC Overcurrent Flag 0: No ICC overcurrent interrupt is generated. 1: ICC overcurrent interrupt is generated. Limiter Active Flag 0: No limiter active interrupt is generated. 1: Limiter active interrupt is generated. Invalid Slot Flag 0: No invalid slot interrupt is generated. 1: Invalid slot interrupt is generated. DHT Active Flag 0: No Dynamic Headroom Tracking active slot interrupt is generated. 1: Dynamic Headroom Tracking active slot interrupt is generated. Maxim Integrated │  35 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers (continued) Interrupt Enable 0 ADDRESS BIT NAME 7 0 Unused: Readback is 0. 6 0 Unused: Readback is 0. 5 4 0x07 3 2 1 0 www.maximintegrated.com DESCRIPTION THERMFB_END_EN Die Thermal Foldback End Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when THERMFB_END_FLAG transitions from 0 to 1. THERMFB_BGN_EN Die Thermal Foldback Begin Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when THERMFB_END_FLAG transitions from 0 to 1. THERMWRN_END_ EN Thermal Warning End Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when THERMWRN_END_FLAG transitions from 0 to 1. THERMWRN_BGN_ EN Thermal Warning Begin Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when THERMWRN_BGN_FLAG transitions from 0 to 1. THERMSHDN_END_ EN Thermal Shutdown End Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when THERMSHDN_END_FLAG transitions from 0 to 1. THERMSHDN_BGN_ EN Thermal Shutdown Begin Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when THERMSHDN_BGN_FLAG transitions from 0 to 1. Maxim Integrated │  36 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers (continued) Interrupt Enable 1 ADDRESS BIT NAME 7 0 6 5 4 0x08 3 2 1 0 www.maximintegrated.com ICCOVC_EN DESCRIPTION Unused: Readback is 0. ICC Overcurrent Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when ICCOVC_FLAG transitions from 0 to 1. LMTRACT_EN Limiter Active Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when LMTRACT_FLAG transitions from 0 to 1. INVALSLOT_EN Invalid Slot Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt enabled. IRQ is pulled low when INVALSLOT_FLAG transitions from 0 to 1. DHTACT_EN DHT Active Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when DHTACT_FLAG transitions from 0 to 1. SPKCURNT_EN Speaker Overcurrent Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when SPKCURNT_FLAG transitions from 0 to 1. PVDDOVFL_EN PVDD ADC Overflow Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when PVDDOVFL_FLAG transitions from 0 to 1. PVDDUVLO_EN PVDD Supply Voltage Undervoltage Lockout Interrupt Enable 0: Interrupt is disabled (default). 1: Interrupt is enabled. IRQ is pulled low when PVDDUVLO_FLAG transitions from 0 to 1. Maxim Integrated │  37 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers (continued) Interrupt Clear 0 ADDRESS BIT NAME 7 0 Unused: Readback is 0. 6 0 Unused: Readback is 0. 5 THERMFB_END_CLR Die Thermal Foldback End Interrupt Clear 0: No effect. 1: Clears the THERMFB_END_STATE and THERMFB_END_FLAG. 4 THERMFB_BGN_CLR Die Thermal Foldback Begin Interrupt Clear 0: No effect. 1: Clears the THERMFB_BGN_STATE and THERMFB_BGN_FLAG. 3 THERMWRN_END_CLR Thermal Warning End Interrupt Clear 0: No effect. 1: Clears the THERMWRN_END_STATE and THERMWRN_END_FLAG. THERMWRN_BGN_CLR Thermal Warning Begin Interrupt Clear 0: No effect. 1: Clears the THERMWRN_BGN_STATE and THERMWRN_BGN_FLAG. THERMSHDN_END_CLR Thermal Shutdown End Interrupt Clear 0: No effect. 1: Clears the THERMSHDN_END_STATE and THERMSHDN_END_FLAG. THERMSHDN_BGN_CLR Thermal Shutdown Begin Interrupt Clear 0: No effect. 1: Clears the THERMSHDN_BGN_STATE and THERMSHDN_BGN_FLAG. 0x09 2 1 0 www.maximintegrated.com DESCRIPTION Maxim Integrated │  38 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 3. Interrupt Registers (continued) Interrupt Clear 1 ADDRESS 0x0A BIT NAME 7 0 6 ICCOVC_CLR 5 LMTRACT_CLR 4 INVALSLOT_CLR 3 DHTACT_CLR 2 SPKCURNT_CLR Speaker Overcurrent Interrupt Clear 0: No effect. 1: Clears the SPKCURNT_STATE and SPKCURNT_FLAG. 1 PVDDOVFL_CLR PVDD ADC Overflow Interrupt Clear 0: No effect. 1: Clears the PVDDOVFL_STATE and PVDDOVFL_FLAG. 0 PVDDUVLO_CLR PVDD Supply Voltage Undervoltage Lockout Interrupt Clear 0: No effect. 1: Clears the PVDDUVLO_STATE and PVDDUVLO_FLAG. www.maximintegrated.com DESCRIPTION Unused: Readback is 0. ICC Overcurrent Clear 0: No effect. 1: Clears the ICCOVC_STATE and ICCOVC_FLAG. Limiter Active Interrupt Clear 0: No effect. 1: Clears the LMTRACT_STATE and LMTRACT_FLAG. Invalid Slot Interrupt Clear 0: No effect. 1: Clears the INVALSLOT_STATE and INVALSLOT_FLAG. DHT Active Interrupt Clear 0: No effect. 1: Clears the DHTACT_STATE and DHTACT_FLAG. Maxim Integrated │  39 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Digital Audio Interface Operating in slave mode only, the MAX98371 eliminates the need for the external MCLK signal that is typically used in I2S applications by generating MCLK internally. This reduces EMI and improves the RF immunity of the IC. Table 5 lists the supported BCLK frequencies when operating in this mode. The digital audio interface (DAI) is highly flexible, supporting common sample rates (Table 4) with 16/24/ 32-bit depth for I2S/left-justified data as well as up to 16 slots in a time division multiplexed (TDM) format. Table 4. Supported Sample Rates ADDRESS BIT NAME 3 2 0x11 SPK_SR[3:0] 1 0 DESCRIPTION Speaker Path Sample Rate Select 0000–0101: Reserved 0110: 32kHz 0111: 44.1kHz 1000: 48kHz 1001: Reserved 1010: 88.2kHz 1011: 96kHz 1100–1111: Reserved Table 5. Supported BCLK Rates in Slave Mode ADDRESS BIT NAME 3 2 0x10 1 0 www.maximintegrated.com BSEL[3:0] DESCRIPTION Selects the Number of BCLKs/LRCLK 0000: Not supported 0001: Not supported 0010: 32 BCLKs 0011: 48 BCLKs 0100: 64 BCLKs 0101: 96 BCLKs 0110: 128 BCLKs 0111: 192 BCLKs 1000: 256 BCLKs 1001: 384 BCLKs 1010: 512 BCLKs 1011–1111: Not supported Maxim Integrated │  40 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Interface Format TDM mode (Figure 7) uses a frame sync pulse instead of a 50% duty cycle frame clock. The frame sync pulse (applied to the LRCLK pin) is equal to one BCLK period as a minimum, although the interface operates with longer periods; the rising edge of LRCLK is used to indicate the start of a new frame. The falling edge can occur at any time as long as it does not violate the setup time requirements of the LRCLK rising edge. In TDM, latch the MSB of the first audio word on the first or second active BCLK edge after an LRCLK rising edge. The MAX98371 supports standard I2S, left-justified, and TDM data formats. I2S and Left-Justified formats support two audio channels of 16, 24 or 32-bit depth. TDM supports up to 16 audio channels of 16-, 24-, or 32-bit depth. The IC supports slave operation only, and the LRCLK and BCLK pins operate as inputs. I2S (Figure 5) and left-justified (Figure 6) modes configure the LRCLK signal to transition before each channel. With the default I2S settings LRCLK low indicates left channel while LRCLK high indicates the right channel. The MSB of the audio word is latched on the second active BCLK edge after an LRCLK transition. In left-justified mode, the MSB of the audio word is latched on the first active BCLK edge after an LRCLK transition. Configuring the DAI Format Specify the format by configuring the LRCLK invert, BCLK active edge, data delay, and TDM mode configuration bits (Table 6). Table 6. Configuration for Digital Audio Interface Format ADDRESS BIT 7 6 NAME CHANSZ[1:0] Configures Channel Word Length 00: 8 bits 10: 24 bits 01: 16 bits 11: 32 bits FORMAT[2:0] PCM Format Select 000: I2S mode 001: Left-justified 010: Right-justified 011: TDM mode 1 100: TDM mode 2 101–111: Reserved 5 4 DESCRIPTION 3 0x14 BCLEDGE Active BCLK Edge Select 0: Data captured and valid on rising edge of BCLK 1: Data captured and valid on the falling edge of BCLK 1 CHANSEL Non-TDM LRCLK Starting Edge 0: Falling LRCLK indicates the start of a stereo pair. Channel 0 when LRCLK is low, Channel 1 when LRCLK is high. 1: Rising LRCLK indicates the start of a stereo pair. Channel 0 when LRCLK is high, Channel 1 when LRCLK is low. 0 0 2 www.maximintegrated.com 0 Maxim Integrated │  41 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Configuring the Digital Audio Input Route mono data directly to the speaker amplifier. If the input is stereo, input the right channel to the device and mix with the left channel if desired. Sum left and right channels with the amplitude divided by 2 to reduce the DAC input and avoid saturation. Stereo summing and L or R choices are limited to 2 adjacent slots on the TDM bus. The DAI may be configured to accept a mono PCM input, placed from anywhere from slots 1 to 16 of digital audio in TDM mode. In I2S and left-justified modes, two channels are available. Table 7. Configuration for Digital Audio Interface Format ADDRESS BIT NAME 7 RX_CH7_EN Receive Channel Enable 0: Receive channel 7 is disabled. 1: Receive channel 7 is enabled. 6 RX_CH6_EN Receive Channel Enable 0: Receive channel 6 is disabled. 1: Receive channel 6 is enabled. 5 RX_CH5_EN Receive Channel Enable 0: Receive channel 5 is disabled. 1: Receive channel 5 is enabled. 4 RX_CH4_EN Receive Channel Enable 0: Receive channel 4 is disabled. 1: Receive channel 4 is enabled. 3 RX_CH3_EN Receive Channel Enable 0: Receive channel 3 is disabled. 1: Receive channel 3 is enabled. 2 RX_CH2_EN Receive Channel Enable 0: Receive channel 2 is disabled. 1: Receive channel 2 is enabled. 1 RX_CH1_EN Receive Channel Enable 0: Receive channel 1 is disabled. 1: Receive channel 1 is enabled. 0 RX_CH0_EN Receive Channel Enable 0: Receive channel 0 is disabled. 1: Receive channel 0 is enabled. 0x15 www.maximintegrated.com DESCRIPTION Maxim Integrated │  42 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 7. Configuration for Digital Audio Interface Format (continued) ADDRESS BIT NAME 7 RX_CH15_EN Receive Channel Enable 0: Receive channel 15 is disabled. 1: Receive channel 15 is enabled. 6 RX_CH14_EN Receive Channel Enable 0: Receive channel 14 is disabled. 1: Receive channel 14 is enabled. 5 RX_CH13_EN Receive Channel Enable 0: Receive channel 13 is disabled. 1: Receive channel 13 is enabled. 4 RX_CH12_EN Receive Channel Enable 0: Receive channel 12 is disabled. 1: Receive channel 12 is enabled. 3 RX_CH11_EN Receive Channel Enable 0: Receive channel 11 is disabled. 1: Receive channel 11 is enabled. 2 RX_CH10_EN Receive Channel Enable 0: Receive channel 10 is disabled. 1: Receive channel 10 is enabled. 1 RX_CH9_EN Receive Channel Enable 0: Receive channel 9 is disabled. 1: Receive channel 9 is enabled. 0 RX_CH8_EN Receive Channel Enable 0: Receive channel 8 is disabled. 1: Receive channel 8 is enabled. 0x16 www.maximintegrated.com DESCRIPTION Maxim Integrated │  43 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 8. TDM Channel Selection for Mono Replay ADDRESS BIT NAME DMONOMIX_CH1_SOURCE[3:0] Digital Monomix Source Selection 0000: Channel 1 gets PCM RX channel 0. 0001: Channel 1 gets PCM RX channel 1. 0010: Channel 1 gets PCM RX channel 2. 0011: Channel 1 gets PCM RX channel 3. … 1111: Channel 1 gets PCM RX channel 15. DMONOMIX_CH0_SOURCE[3:0] Digital Monomix Source Selection 0000: Channel 0 gets PCM RX channel 0. 0001: Channel 0 gets PCM RX channel 1. 0010: Channel 0 gets PCM RX channel 2. 0011: Channel 0 gets PCM RX channel 3. … 1111: Channel 0 gets PCM RX channel 15. 7 6 5 0x18 4 3 2 1 0 1 0x19 DESCRIPTION DMONOMIX_CFG[1:0] 0 Monomix Configuration 00: Output of Monomix is channel 0. 01: Output of Monomix is channel 1. 10: Output of Monomix is (channel 0 + channel 1)/2. 11: Reserved Figure 5. I2S Digital Audio Format Examples www.maximintegrated.com Maxim Integrated │  44 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking LEFT-JUSTIFIED MODE (STANDARD) DOUT CH1 CH0 LRCLK D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 BCLK DIN D7 D6 D5 D4 D3 D2 D1 D0 LEFT-JUSTIFIED MODE (BCLK INVERTED) CH0 LRCLK DOUT CH1 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 BCLK DIN Figure 6. Left-Justified Digital Audio Format Examples www.maximintegrated.com Maxim Integrated │  45 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking TDM MODE 1, 16 32-BIT CHANNELS LATCHED ON FALLING EDGE OF BCLK, PCM_BCLEDGE = 1, PCM_FORMAT = 011 LRCLK DOUT HIZ D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 HIZ BCLK DIN TDM MODE 1, 16 32-BIT CHANNELS LATCHED ON RISING EDGE OF BCLK, PCM_BCLEDGE = 0, PCM_FORMAT = 011 LRCLK DOUT HIZ D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 HIZ BCLK DIN TDM MODE 2, 16 32-BIT CHANNELS LATCHED ON FALLING EDGE OF BCLK, PCM_BCLEDGE = 1, PCM_FORMAT = 100 LRCLK DOUT HIZ D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 HIZ BCLK DIN TDM MODE 2, 16 32-BIT CHANNELS LATCHED ON FALLING EDGE OF BCLK, PCM_BCLEDGE = 0, PCM_FORMAT = 100 LRCLK DOUT HIZ D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 D31 D30 D1 D0 HIZ BCLK DIN Figure 7. TDM Digital Audio Format Examples www.maximintegrated.com Maxim Integrated │  46 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Digital Passband Filtering through the biquad filter coefficients by setting the DACHPF[2:0] bits to 111. See the Biquad Filter section. The MAX98371 features an optional highpass filter with selectable corner frequency (50Hz, 100Hz, 200Hz, 400Hz, and 800Hz), or a DC blocking filter with a cutoff frequency of 2Hz (80dB attenuation). The MAX98371 supports 5 sample rates: 32kHz, 44.1kHz, 48kHz, 88.2kHz or 96KHz. For 32kHz, 44.1kHz and 48kHz, a linear phase, halfband filter effectively defines the response. For 96kHz operation, a different filter characteristic is employed with a smooth roll off above 20kHz. Set the digital highpass filter corner frequency though the DACHPF bits in control register 0x1C (Table 9). Create user-programmed filtering The MAX98371 also features a configurable PVDD ADC filter. This cutoff frequency of this filter can be adjusted by setting the PVDD_ADC_BW bits in register 0x1C. These filtered PVDD ADC measurements can be fed to the DHT or limiter. Filtered or unfiltered PVDD ADC readings can be sent to the DHT and limiter. To send filtered data to the limiter or DHT, set the PVDD_FILT_TO_LMTR or PVDD_ FILT_TO_DHT bits, respectively. See Table 9. Table 9. Digital Highpass Filter ADDRESS BIT NAME 7 PVDD_FILT_TO_LMTR 6 PVDD_FILT_TO_DHT 0: Unfiltered PVDD ADC measurements are sent to DHT. 1: Lowpass filtered PVDD ADC measurements are sent to DHT. PVDD_ADC_BW[1:0] PVDD ADC Lowpass Filter Selection 00: Pass through, filter off 01: 2Hz cutoff 10: 20Hz cutoff 11: 200Hz cutoff 5 4 0x1C 3 0 2 1 0 www.maximintegrated.com DACHPF[2:0] DESCRIPTION 0: Unfiltered PVDD ADC measurements are sent to the limiter. 1: Lowpass filtered PVDD ADC measurements are sent to limiter. 0 Digital Highpass Filter 000: Pass through, filter off 001: DC blocker is enabled. 010: 50Hz HPF is enabled. 011: 100Hz HPF is enabled. 100: 200Hz HPF is enabled. 101: 400Hz HPF is enabled. 110: 800Hz HPF is enabled. 111: User programmable using DAC_BQ_B[0–2] and DAC_BQ_A[1–2] registers Maxim Integrated │  47 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Biquad Filter The digital biquad coefficients are uninitialized at powerup, and if the filter is going to be used, the coefficients must be programmed before the device and biquad filter are enabled. The transfer function is: The digital biquad filter has five user-programmable coefficients (B0, B1, B2, A1, and A2), and each individual coefficient is 3 bytes (24 bits) long (A0 is fixed at 1). They occupy 15 consecutive registers (Table 10) and each set of three registers (per coefficient) must be programmed consecutively for the settings to take effect. The coeffi­ cients are stored using a two’s complement format where the first 4 bits are the integer portion and the last 20 bits are the decimal portion that results in an approximate +8 to -8 range for each coefficient. H(z) = B 0 + B 1 * Z -1 + B 2 * Z -2 1 + A 1 * Z -1 + A 2 * Z -2 Signal Path Delay Delay through the signal path is minimized by use of efficient signal processing and hardware DSP. Delay is affected by the configuration of various blocks and filters in the signal path. Typical delay, listed in number of audio samples, is shown in Table 11. Table 10. Biquad Filter Coefficient Registers REG REG NAME 0x1D Biquad Coefficient B0 0x1E 0x1F 0x20 Biquad Coefficient B1 0x21 0x22 0x23 Biquad Coefficient B2 0x24 0x25 0x26 Biquad Coefficient A1 0x27 0x28 0x29 Biquad Coefficient A2 0x2A 0x2B R/W BIT NAME VALUE R/W B0[23:16] 0x00 R/W B0[15:8] 0x00 R/W B0[7:0] 0x00 R/W B1[23:16] 0x00 R/W B1[15:8] 0x00 R/W B1[7:0] 0x00 R/W B2[23:16] 0x00 R/W B2[15:8] 0x00 R/W B2[7:0] 0x00 R/W A1[23:16] 0x00 R/W A1[15:8] 0x00 R/W A1[7:0] 0x00 R/W A2[23:16] 0x00 R/W A2[15:8] 0x00 R/W A2[7:0] 0x00 Table 11. Signal Path Delay SAMPLE RATE DELAY (SAMPLES) 32k 19 44.1k 19 48k 18 88.2k 15 96k 14 www.maximintegrated.com Maxim Integrated │  48 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking PVDD ADC The PVDD ADC readback is real time and is dependant on the PVDD_ADC_BW register setting in register 0x1C. The PVDD ADC has an effective 8kHz sample rate, 8-bit resolution and full scale input of 18V. The bandwidth of the output is user programmable to reject both high frequency and audio band noise from the supply, and to tradeoff reaction time to follow the supply accurately. The PVDD_ADC values are used to by the DHT and Limiter circuits. These values can be read back over I2C through the PVDD_ADC Register located at 0x34. See Table 12. Digital Volume Control A user-controlled digital volume control with an attenuation range of 0dB to -63dB in 0.5dB steps, as well as a mute setting is available. Volume ramping is available and configurable with through the DVOL_RAMP_BYP bit in the digital volume control register. See Table 13. Table 12. PVDD Measurement ADC ADDRESS BIT NAME DESCRIPTION 7 6 5 0x34 4 3 PVDD_ADC[7:0] 2 1 0: 5.35V 1: 5.40V 2: 5.45V 3: 5.50V … 253: 18.05V 254: 18.10V 255: 18.15V 0 Table 13. Digital Volume Ramping and Digital Volume ADDRESS BIT NAME 7 DVOL_RAMP_BYP 6 0x2D 5 4 3 2 1 0 www.maximintegrated.com DVOL[6:0] DESCRIPTION Digital Volume Ramp Bypass 0: Ramping is enabled at startup, shutdown and all volume changes. 1: All volume ramping is disabled. Digital Volume Control 0: 0dB 1: -0.5dB 2: -1.0dB 3: -1.5dB … 125: -62.5dB 126: -63.0dB 127: Digital mute Maxim Integrated │  49 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Output Voltage Scaling The DPGA and SPK_GAIN_MAX register settings are shown in Table 14. The MAX98371 operates over a large supply voltage range. As a result, the part must be configured to scale the output signals across possible PVDD supply range. SPK_GAIN_MAX applies gain after the DAC to achieve this voltage scaling. Digital gain can be applied before the DAC by using the DPGA_CLIP register. In conjunction with the SPK_GAIN_MAX setting, the overall full-scale behavior of the device is set. Gain through the signal path is referenced to the full-scale output of the DAC, which is 2.1dBV. The MAX98371 output level can be calculated based on the digital input signal level and selected amplifier gain. Output signal level (dBV) = input signal level (dBFS) + 2.1dBV + SPK_GAIN_MAX (dB) where 0dBFS is referenced to 0dBV. Table 14. Digital Gain Settings and Output Voltage Scaling ADDRESS BIT NAME 7 6 5 DPGA_CLIP[3:0] 4 3 0x2E 2 SPK_GAIN_MAX[3:0] 1 0 www.maximintegrated.com DESCRIPTION Digital Gain Settings (dB) 0000: 0 0110: 3.0 0001: 0.5 0111: 3.5 0010: 1.0 1000: 4.0 0011: 1.5 1001: 5.0 0100: 2.0 1010: 6.0 0101: 2.5 1011–1111: 0 Speaker No-Load Output Voltage Maximum Sets the output voltage level (VP) of 0dBFS. 0000: 5.37 (9.5dB) Guaranteed no clipping 0001: 6.03 (10.5dB) Best near 5.5V (min) operating 0010: 6.77 (11.5dB) 0011: 7.59 (12.5dB) 0100: 8.52 (13.5dB) 2-cell Li-ion operation 0101: 9.56 (14.5dB) 0110: 10.72 (15.5dB) 0111: 12.03 (16.5dB) 12V nominal 1000: 13.5 (17.5dB) 3-cell Li-ion operation 1001: 15.15 (18.5dB) 1010: 16.99 (19.5dB) Optimum for 16.5V PVDD operation 1011: 19.07 (20.5dB) 1100–1111: Reserved Maxim Integrated │  50 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Dynamic Headroom Tracking A key element in tracking available headroom is the PVDD ADC. The output of the ADC feeds the DHT circuitry with the necessary inputs to calculate the amount of compression (if any) applied to signal peaks. Filtering can be applied to the PVDD ADC readings used by the DHT by using the PVDD_FILT_TO_DHT bit (Table 9). The dynamic headroom tracking function relies heavily on two parameters to be effective. The first is the SPK_GAIN_MAX setting explained in the Output Voltage Scaling section. This sets the maximum no-load peak output voltage (VMPO) that the Class D amplifier reproduces when fed with a full-scale (0dBFS) signal. The second parameter is the rotation point (RP). The rotation point sets the level in dBFS above which compression is applied to the output signal, if the PVDD voltage level drops below VMPO. DHT uses a parameter called SPK_GAIN_MIN to control the maximum compression ratio. This parameter can enable the addition of a second inflection point on the transfer function. PVDD > VMPO VMPO VEXP_RP OUTPUT VOLTAGE LEVEL (VP) The MAX98371 features dynamic headroom tracking (DHT) to preserve consistent dynamic range in the presence of a varying supply. DHT maintains consistent volume and listening levels up to a predefined point, below full scale. DHT maintains the headroom of the amplifier at signal peaks that occur above this level (referred to as the rotation point or RP) up to full scale to ensure consistent, smooth compression of these signals in the presence of supply variations. ROTATION POINT (RP) SET BY USER INPUT SIGNAL LEVEL (dBFS) -6 0 Figure 8. Example of Dynamic Headroom Tracking in Mode 1 Operation MODE 1: PVDD voltage is greater than maximum peak output voltage. If VPVDD is greater than VMPO then there is no action taken by the DHT block. There is sufficient headroom for the amplifier to linearly represent any signal up to and including 0dBFS; the signal transfer function is unaffected. The behavior of DHT has 3 modes, depending on the measured value of VPVDD by the PVDD ADC: www.maximintegrated.com Maxim Integrated │  51 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking MODE 2: VPVDD is less than VMPO, and greater than the output voltage as set by the Rotation Point register setting (VEXP_RP). For example, if the RP is set for -6dBFS, then the peak voltage on the output (VEXP_RP) would be VMPO/2). If this is the case, the transfer function for signals below the RP is reproduced exactly as in Mode 1. Any signals between RP and 0dBFS are now subject to an audio compression function, acting in the DSP block of the MAX98371. This acts with appropriate attenuation for peaks over the RP in magnitude with programmable attack and release times. See the DHT Ballistics section. Figure 9 and Figure 10 show the effect on the transfer function. VMPO DECREASING PVDD MAX98371 SPK_GAIN_MAX PVDD < VMPO PEAK OUTPUT SCALED TO FIT AVAILABLE PVDD OUTPUT VOLTAGE LEVEL (VP) VEXP_RP RP SET BY USER COMPRESSION RATIO IS SCALED TO FIT TRANSFER FUNCTION AUTOMATICALLY BETWEEN ROTATION POINT AND THEORETICAL PEAK OUTPUT VOLTAGE (AS DETERMINED BY PVDD ADC BLOCK) INPUT SIGNAL LEVEL (dBFS) -6 0 INPUT (dBFS) Figure 9. Example of Dynamic Headroom Tracking in Mode 2 Operation with a High RP www.maximintegrated.com Maxim Integrated │  52 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking OUTPUT VOLTAGE LEVEL (VP) VMPO DECREASING PVDD MAX98371 SPK_GAIN_MAX PVDD < VMPO PEAK OUTPUT SCALED TO FIT AVAILABLE PVDD SPK_GAIN_MIN COMPRESSION RATIO IS SCALED TO FIT TRANSFER FUNCTION AUTOMATICALLY BETWEEN ROTATION POINT AND THEORETICAL PEAK OUTPUT VOLTAGE (AS DETERMINED BY PVDD ADC BLOCK) RP SET BY USER VEXP_RP -30 INPUT SIGNAL LEVEL (dBFS) 0 Figure 10. Example of Dynamic Headroom Tracking in Mode 2 Operation with a Low RP www.maximintegrated.com Maxim Integrated │  53 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking The compression ratios in Mode 2 are effectively defined by the combination of: PVDD, RP, SPK_GAIN_MAX, and SPK_GAIN_MIN settings. The ballistics of the compressor (in both Mode 2 and Mode 3) are set by the parameters in Table 16 and Table 17. Table 15. Speaker Gain Minimum Voltage ADDRESS BIT NAME SPK_GAIN_MIN[3:0] Speaker Gain Min (VP): 0000: 5.37 (9.5dB) 0001: 6.03 (10.5dB) 0010: 6.77 (11.5dB) 0011: 7.59 (12.5dB) 0100: 8.52 (13.5dB) 0101: 9.56 (14.5dB) 0110: 10.72 (15.5dB) DHT_VROT_PNT[3:0] DHT Rotation Point (dBFS) 0000: -0.5 1000: -10 0001: -1 1001: -12 0010: -2 1010: -15 0011: -3 1011: -18 0100: -4 1100: -20 0101: -5 1101: -22 0110: -6 1110: -25 0111: -8 1111: -30 7 6 5 4 0x31 3 2 1 0 www.maximintegrated.com DESCRIPTION 0111: 12.03 (16.5dB) 1000: 13.5 (17.5dB) 1001: 15.15 (18.5dB) 1010: 16.99 (19.5dB) 1011: 18.0 (20.0dB) 1100–1111: Reserved Maxim Integrated │  54 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking MODE 3a: PVDD voltage is less than the rotation points maximum output voltage, VEXP_RP. When the rotation point is set to a high value (for example -6dBFS) this mode applies. If VPVDD is less than VEXP_RP, then hard limiting is applied to peaks and the effective RP is now set by the need to fit peak signals into the available PVDD range. The MAX98371 automatically determines a new RP based on the PVDD ADC. Normally, RP is set so that this mode is never used, and the VEXP_RP as set by the RP and SPK_GAIN_MAX combination should reflect the lowest PVDD value expected. In this Mode the SPK_GAIN_MAX PVDD < VEXP_RP WHEN PVDD < VEXP_RP A NEW ROTATION POINT IS AUTOMATICALLY DETERMINED AND INFINITE COMPRESSION IS APPLIED. RP SET BY USER OUTPUT VOLTAGE LEVEL (VP) VEXP_RP DECREASING PVDD VMPO INPUT SIGNAL LEVEL (dBFS) -6 0 Figure 11. Example of Dynamic Headroom Tracking in Mode 3a Operation www.maximintegrated.com Maxim Integrated │  55 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking SPK_GAIN_MIN parameter is set to be well below the VEXP_RP. MIN, the output signal starts to clip. This clipping can be eliminated if the limiter is enabled in addition to the DHT. MODE 3b: PVDD voltage is less than the speaker gain minimum output voltage. When the Rotation Point is set to a low value (for example -30dBFS), this mode applies. If VPVDD is less than SPK_GAIN_MIN, the DHT cannot compress the signal any further. So the compression ratio stays fixed, and as PVDD decreases below SPK_GAIN_ Figure 10 and Figure 12 show an additional parameter, SPK_GAIN_MIN, on the transfer function plots. This parameter is useful when a lower RP is selected. SPK_GAIN_MIN provides a means to create a maximum compression ratio. When the input signal reaches the maximum output voltage that PVDD can provide, the OUTPUT VOLTAGE LEVEL (VP) SPK_GAIN_MIN DECREASING PVDD SPK_GAIN_MAX VMPO PVDD < SPK_GAIN_MIN CLIPPING COMPRESSION RP SET BY USER VEXP_RP -30 INPUT SIGNAL LEVEL (dBFS) 0 Figure 12. Example of Dynamic Headroom Tracking in Mode 3b Operation www.maximintegrated.com Maxim Integrated │  56 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking output signal starts to clip (Figure 12). This behavior may not be desirable, but the clipping can be eliminated by enabling the limiter. See Figure 13. The transfer function shown in Figure 13 is typically preferable to the transfer function shown in Figure 12. When DHT and the limiter are used together, it allows for creation of a second inflection point on the transfer SPK_GAIN_MAX DECREASING PVDD OUTPUT VOLTAGE LEVEL (VP) VMPO SPK_GAIN_MIN PVDD < SPK_GAIN_MIN LIMITING COMPRESSION THE PERFORMANCE SHOWN IN THIS FIGURE IS THE RESULT OF THE DHT AND THE LIMITER WORKING IN CONCERT RP SET BY USER VEXP_RP -30 INPUT SIGNAL LEVEL (dBFS) 0 Figure 13. Example of Dynamic Headroom Tracking in Mode 3b with Limiter. www.maximintegrated.com Maxim Integrated │  57 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking function. This second inflection point reduces the transition from compression to limiting and minimizes the audible impact of signal manipulation by the DHT. full attack time has completed there should be no clipping. Hard clipping can also be prevented by using the limiter. See the Limiter section. DHT Ballistics Observing the output waveform, the amount of attenuation applied increases up to when VIN(dBFS) = PVDD (dBFS). Once VIN(dBFS) is greater than PVDD(dBFS) the amount of attenuation observed in the output waveform appears to decrease. This is a result of the output clipping against the PVDD voltage level. The DHT still takes the same amount of time to apply the compression as though it had the headroom to reproduce the signal. When an input signal exceeds the rotation point, DHT will apply attenuation to the signal over some amount of time (this is configurable by through the DHT_ATK_RATE register 0x32). The instant that the large signal is input to the MAX98371, the output tries to reproduce that signal without any attenuation from the DHT. Over time, the DHT applies compression to ensure that the signal can fit within the available PVDD voltage. If a large enough input signal is applied there can be hard clipping on the output for a short time. See Figure 14. However, after the The amount of compression applied by DHT depends on a few parameters: SPK_GAIN_MAX, PVDD, input signal amplitude, and the rotation point. SPK_GAIN_MAX VMPO OUTPUT VOLTAGE LEVEL (VP) -3 dB VPVDD = 8.4V ATTACK THE ATTACK ARROW DEMOSTRATES THE TRANSISTION FROM AN UNATTENUATED SIGNAL TO THE COMPRESSED SIGNAL THAT OCCURS OVER THE TOTAL ATTACK TIME. RP SET BY USER VEXP_RP -10 INPUT SIGNAL LEVEL (dBFS) -3 0 INPUT (dBFS) Figure 14. Dynamic Headroom Tracking Attack Functionality www.maximintegrated.com Maxim Integrated │  58 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking To establish where PVDD is relative to speaker gain max, use Equation 1: Equation 1:  PVDD(V)  PVDD(dBFS) = 20log    VMPO  where VPVDD is the voltage readback from the PVDD ADC, and VMPO is the maximum peak output voltage. See Table 14. For example, if VPVDD = 12V and VMPO = 12V then PVDD(dBFS) = 0dBFS. It should be noted that 0dBFS is the maximum value for PVDD(dBFS). If solving Equation 1 returns a value greater than 0 then 0dBFS should be used for further calculations. This is important as DHT only ever applies attenuation and never positive gain. If VPVDD = 8.4V and SPK_GAIN_MAX = 12V, then solving Equation 1 gives -3.098dBFS. This is PVDD’s level relative to SPK_GAIN_MAX in dB. To find the expected compressed output voltage, use Equation 2: Equation 2:  -PVDD(dBFS)  ATTENUATION(dB) = PVDD(dBFS) + Input(dBFS) ×    VRP (dBFS)  when PVDD(dBFS) = 0, PVDD and the fraction term dropout that gives attenuation equals zero. This makes sense because when PVDD(dBFS) = 0, there is sufficient headroom to playback any signal input into the MAX98371 and no compression is applied. A non-trivial case might be If VPVDD = 8.4V, VMPO = 12V, rotation point = -10dBFS and the input signal level is -5dBFS. Next, solve Equation 2 with these values:  -PVDD(dBFS)  = PVDD(dBFS) + Input(dBFS) ×    VRP (dBFS)   3.098dBFS  = -3.098dBFS + -5dBFS ×    -10dBFS  = -1.54dBFS For this example, the total amount of compression applied by DHT 1.54dB. DHT attack rate and DHT attack step can be configured to apply the 1.54dB of attenuation of over a programmable amount of time. As a rule of thumb, attack times (product of attack rate, attack step, and number of steps) faster than 600µs are not achievable. This is independent of sample rate. Input data is rectified, filtered, and converted to the log domain. The DSP compares the input data with filtered data from the PVDD ADC, then compression is applied within the DSP. The compressed data must be converted back to linear scale and then output. The large number of complex computations required in the DSP requires a fixed 600µs to complete the compression algorithm. As a result, attack times faster than 600µs are not possible. See Table 16. Continuing the same example when the input signal size decreases below the rotation point, DHT releases the 1.54dB of attenuation it applied to the signal. The release time for DHT is configurable through Register 0x33. See Table 17. Limiter The MAX98371 features a programmable limiter that is used to compress large near full-scale signals. The input signal level where the attenuation is applied varies based on how the Limiter Threshold Select register is set. Table 16. Dynamic Headroom Tracking Attack Settings ADDRESS BIT NAME DHT_ATK_STEP[1:0] DHT Attack Step Size 00: 0.25dB 01: 0.5 dB 10: 1.0dB 11: 2.0dB (default) DHT_ATK_RATE[2:0] DHT Compressor Attack Rate All attack times in µs/step 000: 17.5 (default) 001: 35 010: 70 011: 140 100: 280 101: 560 110: 1120 111: 2240 4 3 0x32 2 1 0 www.maximintegrated.com DESCRIPTION Maxim Integrated │  59 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 17. Dynamic Headroom Tracking Release Settings ADDRESS BIT NAME DHT_REL_STEP[1:0] DHT_REL_RATE[2:0] DHT Compressor Release Rate All release times in ms/step 000: 45 (default) 001: 225 010: 450 011: 1150 100: 2250 101: 3100 110: 4500 111: 6750 4 3 0x33 2 1 DESCRIPTION DHT Release Step Size 00: 0.25dB 01: 0.5dB 10: 1.0dB 11: 2.0dB (default) 0 Table 18. Dynamic Gain Enables ADDRESS 0x4B BIT NAME 2 PVADC_EN 1 LMTR_EN 0 DHT_EN DESCRIPTION 0: PVDD ADC is disabled. 1: PVDD ADC is enabled. 0: Limiter is disabled. 1: Limiter is enabled. 0: Dynamic headroom tracking is disabled. 1: Dynamic headroom tracking is enabled. Table 19. Limiter Threshold Select ADDRESS BIT NAME 1 0x58 0 www.maximintegrated.com LMTR_TH_SEL[1:0] DESCRIPTION Limiter Threshold Select 00: User-programmable threshold (contents of register 0x59). 01: Threshold is set by SPK_GAIN_MAX. 10–11: Threshold is set by PVDD level. Maxim Integrated │  60 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 20. Manual Limiter Threshold Settings ADDRESS BIT NAME 4 3 0x59 2 1 0 LMTR_THC[4:0] DESCRIPTION Manual Limiter Threshold Setting (Input Referred) 00000: 0dBFS 00001: -1dBFS 00010: -2dBFS 00011: -3dBFS … 11101: -29dBFS 11110: -30dBFS 11111: -31dBFS When LMTR_TH_SEL is set to 00, the limiter threshold is user configurable through register LMTR_THC. See Table 20. Table 21. Limiter Threshold SPK_GAIN_MAX SETTING LMTR_THRESHOLD (dB) When LMTR_TH_SEL is set to 01, the threshold is determined by SPK_GAIN_MAX. Table 21 provides the threshold values. 0x0B 0 0x0A -1 0x09 -2 When LMTR_TH_SEL is set to 10 or 11, the part looks at the PVDD ADC and the SPK_GAIN_MAX setting and determines the maximum output swing that the part can deliver without clipping. Input signals that require more voltage than is available on PVDD are limited to prevent clipping. Filtering can be applied to the PVDD ADC readings used by the limiter with the PVDD_FILT_TO_LMTR bit (Table 9). 0x08 -3 The limiter attack and release rates are measured in absolute time and are independent of sample rate. The limiter has its own set of configurable ballistics (Table 22). Thermal ADC The MAX98371 features a die temperature monitoring ADC. This 6-bit ADC with a 100kHz sample rate reports the die temperature from +100°C to +163°C. THRM_ MIN_TEMP sets the temperature at which the thermal foldback circuit initially activates. The measurements from the thermal ADC can be filtered before they are used by the thermal foldback circuit, or the values can pass directly without being filtered. THRM_FILT_SEL controls the filter selection. www.maximintegrated.com … … 0x01 -10 0x00 -11 Thermal Protection The MAX98371 continuously monitors die temperature to ensure that the temperature does not exceed the maximum of +150°C (typ). The device can warn the host if die temperature is approaching the limit and shuts down if the limit is exceeded. As the overtemperature limit varies from part to part, the thermal warning thresholds are defined as percentages of the overtemperature limit. Once the device shuts down, it resets all register values except those related to thermal warning and overtemperature interrupt handling. The interrupt registers are maintained to ensure that host is alerted of the overtemperature event. Other registers can become corrupted by the overtemperature event and are reset to prevent unwanted behavior. Once the die temperature drops below +140°C (typ), the device alerts the host through an interrupt, indicating that it is safe to reprogram the device and resume audio playback. Maxim Integrated │  61 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 22. Limiter Attack and Release Settings ADDRESS BIT NAME LMTR_REL_RATE[2:0] Limiter Release Time Total time required for limiter to fully release 000: 15ms 001: 40ms 010: 70ms 011: 160ms 100: 300ms 101: 450ms 110: 600ms 111: 850ms LMTR_ATK_RATE[2:0] Limiter Attack Time Total time required for limiter to fully attack 000 - 100: 160µs 101: 320µs 110: 640µs 111: 1280µs 5 4 0x55 3 2 1 DESCRIPTION 0 Table 23. Thermal ADC Measurements ADDRESS BIT NAME 5 4 0x37 3 2 THRM_ADC_MEAS[7:0] 1 0 5 4 0x38 3 2 THRM_MIN_TEMP[6:0] 1 0 2 0x39 1 0 Thermal Foldback THRM_FILT_SEL[2:0] DESCRIPTION 0: 100°C 1: 101°C … 62: 162°C 63: 163°C 0: 100°C 1: 101°C … 20: 120°C (default) … 39: 139°C 40-63: 140°C 000: THRM ADC LPF filter on fC = 0.55kHz 001: THRM ADC LPF filter on fC = 2.15kHz 010: THRM ADC LPF filter on fC = 4.55kHz 011: Bypass filter (default) 100: THRM ADC peak detect filter on fC = 0.55kHz 101: THRM ADC peak detect filter on fC = 2.15kHz 110: THRM ADC peak detect filter on fC = 4.55kHz 111: Bypass filter To allow a smoother audio response to high temperature events the MAX97805B features a thermal foldback loop. As the die temperature rises above a threshold of set by www.maximintegrated.com THRM_MIN_TEMP register (+120°C by default), the audio path is subjected to increasing attenuation, up to a maximum of -12dB. See Table 23. Maxim Integrated │  62 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking The thermal foldback feature can be turned on through the THRM_FB_EN bit, default is off (Table 25). The release rate of the attenuation and the slope of the effect can be set by the user (Table 24), the attack time is fixed at 10µs/dB. the DIN pin. The DOUT pin only drives out during the slot assigned to the amplifier by TX_CH#_EN bit. At all other times, the pin is an input (to allow other devices to drive the DOUT signal). Regardless of whether the thermal foldback feature is enabled, the thermal warning bit in the interrupt registers assert and generate an interrupt through the Interrupt Mask register when the +125°C (typ) temperature threshold is crossed. DOUT Operation and Data format The MAX98371 features a bidirectional DOUT pin to provide feedback data to the applications processor and other MAX98371s. The data output from DOUT shares the status of amplifier DHT and thermal foldback adjustments. The data format used to frame the data carried on DOUT is the same as the data format of the input data on THERMAL FOLDBACK ATTENUTATION vs. TEMERATURE 2 THERMAL FOLDBACK ATTENUATION(dB) THRM_HOLD controls how long the temperature must stay on one side of the hysteresis threshold. THRM_REL controls the release rate of the attenuation applied by the thermal foldback circuit. THRM_SLOPE controls the amount of attenuation per °C. See Table 24. 0 -2 THERM_SLOPE = 00 -4 -6 -8 -10 -12 -14 THERM_SLOPE = 01 THERM_SLOPE =10 100 110 120 130 140 150 TEMPERATURE (°C) Figure 15. Thermal Foldback Performance Table 24. Thermal Foldback Settings ADDRESS BIT NAME 7 THRM_HOLD[1:0] 6 0x36 DESCRIPTION Thermal Foldback Hold Settings 00: 0ms 01: 20ms 10: 40ms 11: 80ms (default) 5 0 — 4 0 — THRM_REL[1:0] Thermal Foldback Release Times 00: 3ms/dB 01: 10ms/dB 10: 100ms/dB 11: 300ms/dB THRM_SLOPE[1:0] Thermal Foldback Slope Settings 00: 0.5dB/°C 01: 1.0dB/°C 10: 2.0dB/°C 11: Reserved 3 2 1 0 Table 25. Thermal Foldback Enable ADDRESS 0x4C BIT 0 www.maximintegrated.com NAME THRM_FB_EN DESCRIPTION Thermal Foldback Enable 0: Thermal foldback disabled 1: Thermal foldback enabled Maxim Integrated │  63 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking The data output on the DOUT pin is structured as shown in Figure 16. The THRM_LINK_EN and DHT_LINK_EN are intended to be used as the global enables of receive data function of the ICC. It should also be noted that for the ICC to function properly ICC_OC_ENA bit in register 0x5C must be set to 1 so that the overcurrent protection on DOUT is enabled. Where DHT_INFO[7:0] contains the DHT attenuation (in dB) and THERM_INFO [5:0] contains the attenuation thermal foldback attenuation broadcast out to other amplifiers on the same bus. It is decoded as shown in Figure 16. Table 26. DHT Information Table 27. THERM Information VALUE DECODE (dB) VALUE DECODE (°C) 0 -95.625 0 No thermal adjustment needed 1 -95.25 1 +1 2 -94.875 2 +2 … 0.375 (steps) … 1 (steps) 253 -0.750 61 +61 254 -0.375 62 +62 0 63 +63 255 Note: XX are padding bits and zeros that make up the remaining bits in the rest of the frame.  SLOT 1 SLOT 2 DHT_INFO[7:0] SLOT 3 THERM_INFO[5:0] SLOT 4 XX Figure 16. DOUT Data Structure Table 28. Thermal and DHT Link Enables ADDRESS BIT NAME 1 THRM_LINK_EN 0 DHT_LINK_EN 0x4E www.maximintegrated.com DESCRIPTION 0: Disable THRM link. 1: Enable THRM link. 0: Disable DHT link. 1: Enable DHT link. Maxim Integrated │  64 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Interchip Communication enable to listen to both slots 0 and 2, so both amplifiers would have RX_DHT_CH0_EN and RX_DHT_CH2_EN enabled. While this configuration groups the amplifier in the same DHT group, there is another set of grouping registers for thermal foldback. These registers can be configured identically or differently to accommodate the desired behavior. To configure the second group, set amplifier 2 to broadcast on slot 1 through TX_CH1_EN and set amplifier 4 to broadcast on slot 3 through TX_CH3_EN. Then configure both amplifiers to enable RX enable to listen to both slots 1 and 3, so both amps would have RX_DHT_ CH1_EN and RX_DHT_CH3_EN enabled. The MAX98371 features an interchip communication (ICC) bus that facilitates synchronized gain adjustments between groups of MAX98371 amplifiers. Multiamplifier Grouping By setting registers 0x3A through register 0x3F, it is possible to group MAX98371 amplifiers so that any gain adjustments due to DHT and/or thermal foldback are synchronized. Each amplifier is configured by a register setting to monitor DOUT during certain slots. The slots selected define to which group each amplifier belongs. Therefore, each amplifier in a group must have the same settings for RX enables. Each individual amplifier must also have only one TX_CH# enable set as well as the corresponding RX_CH# enable. For example, if we have four amplifiers and we want two groups, then one configuration may be that amplifiers 1 and 3 would belong to one group and amplifiers 2 and 4 belong to another. Assign amplifier 1 to broadcast on Slot 0 through the TX_CH0_EN bit enable and amplifier 3 to broadcast on slot 2 through the TX_CH2_EN bit. We would then configure both amplifiers to enable RX By definition, the minimum size of a group is two amplifiers, so the maximum number of groups that is supported is eight. A group can contain as many as 16 amplifiers, but then only one group is supported. It is a requirement of the host processor to ensure that the RX register bits are set to the same values across all amplifiers intended to be used in a group. Devices in the same DHT group must also be configured with the same DHT parameters (SPK_GAIN_MAX, RP, and Ballistics) to achieve a balanced response across the group. The same is true of the THERM group. Table 29. Interchip Communication Configuration ADDRESS 0x5C BIT NAME 6 ICC_OC_ENA 5 ICC_DOUTEN_EXTFF 0: Disable faster drive enable of the DOUT. 1: Enable faster drive enable of the DOUT for the ICC with BCLK rate greater than 12.288MHz. 4 ICC_DOUT_EXTFF 0: Disable faster drive of the DOUT. 1: Enable faster drive of the DOUT for the ICC with BCLK rate greater than 12.288MHz. ICC_PAD_CTRL[3:0] DOUT Drive Strength Control 0000: 1 (default) 0001 and 0010: 7/8 0011 and 0100: 3/4 0101 and 0110: 5/8 0111 and 1000: 1/2 1001 and 1010: 3/8 1011 and 1100: 1/4 1101: 1/8 1110: 1/8 with Miller slew rate reduction (improves EMI) 1111: off 3 2 1 0 www.maximintegrated.com DESCRIPTION 0: Disable overcurrent protection on DOUT. 1: Enable overcurrent protection on DOUT. Maxim Integrated │  65 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Double Data Drive In this way, the DOUT data transfer rate is effectively half of the BCLK speed. This is accomplished by setting DRIVE_MODE = 1. If the shared DOUT trace has a high capacitance that needs to be driven at high speed then the double-data drive feature can be used. This gives a longer drive time for each device. This has implications for the supported slot lengths. When double-data drive is enabled, only 32-bit slot lengths are permitted. When the BCLK is less than or equal to 25MHz, DOUT can be clocked with standard clocking: data changes on the falling edge and is valid on the rising edge of each BCLK (Table 30). Additional MAX98371 devices correctly interpret the double-data drive format (if enabled). Any other attached hardware, such as an applications processor, which is expecting standard timing, needs to ensure that it omits away the information captured on the nonvalid rising edge each time and reconstruct the samples accordingly. When the BCLK is greater than 25MHz, DOUT should be clocked using a double-data drive method: data changes on the falling edge and is valid on the second rising edge. Table 30. DOUT Double Data Drive Mode ADDRESS BIT NAME DESCRIPTION 0x40 3 DRIVE_MODE 0: Single data drive (default) 1: Double data drive 31 30 29 28 27 26 25 24 23 22 21 20 19 18 DHT [7] DHT [6] DHT [5] DHT [4] DHT [3] DHT [2] DHT [1] DHT [0] THM [5] THM [4] THM [3] THM [2] THM [1] THM [0] DRIVE DATA ON FALLING EDGE 17 THREE-STATE DATA AT END OF SLOT RECEIVE DATA ON RISING EDGE Figure 17. Single Data Drive 31 30 DHT [7] 29 28 DHT [6] 27 26 DHT [5] 25 24 DHT [4] tDRIVE Figure 18. Double Data Drive illustration www.maximintegrated.com Maxim Integrated │  66 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 31. DOUT DHT Receive Channel Configuration ADDRESS BIT NAME DESCRIPTION 7 RXDHT_CH7_EN 0: DHT receive channel 7 is disabled. 1: DHT receive channel 7 is enabled. 6 RXDHT_CH6_EN 0: DHT receive channel 6 is disabled. 1: DHT receive channel 6 is enabled. 5 RXDHT_CH5_EN 0: DHT receive channel 5 is disabled. 1: DHT receive channel 5 is enabled. 4 RXDHT_CH4_EN 0: DHT receive channel 4 is disabled. 1: DHT receive channel 4 is enabled. 3 RXDHT_CH3_EN 0: DHT receive channel 3 is disabled. 1: DHT receive channel 3 is enabled. 2 RXDHT_CH2_EN 0: DHT receive channel 2 is disabled. 1: DHT receive channel 2 is enabled. 1 RXDHT_CH1_EN 0: DHT receive channel 1 is disabled. 1: DHT receive channel 1 is enabled. 0 RXDHT_CH0_EN 0: DHT receive channel 0 is disabled. 1: DHT receive channel 0 is enabled. 7 RXDHT_CH15_EN 0: DHT receive channel 15 is disabled. 1: DHT receive channel 15 is enabled. 6 RXDHT_CH14_EN 0: DHT receive channel 14 is disabled. 1: DHT receive channel 14 is enabled. 5 RXDHT_CH13_EN 0: DHT receive channel 13 is disabled. 1: DHT receive channel 13 is enabled. 4 RXDHT_CH12_EN 0: DHT receive channel 12 is disabled. 1: DHT receive channel 12 is enabled. 3 RXDHT_CH11_EN 0: DHT receive channel 11 is disabled. 1: DHT receive channel 11 is enabled. 2 RXDHT_CH10_EN 0: DHT receive channel 10 is disabled. 1: DHT receive channel 10 is enabled. 1 RXDHT_CH9_EN 0: DHT receive channel 9 is disabled. 1: DHT receive channel 9 is enabled. 0 RXDHT_CH8_EN 0: DHT receive channel 8 is disabled. 1: DHT receive channel 8 is enabled. 0x3A 0x3B www.maximintegrated.com Maxim Integrated │  67 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 32. DOUT Thermal Foldback Receive Channel Configuration ADDRESS BIT NAME 7 RXTHM_CH7_EN 0: THRM FB receive channel 7 is disabled. 1: THRM FB receive channel 7 is enabled. 6 RXTHM_CH6_EN 0: THRM FB receive channel 6 is disabled. 1: THRM FB receive channel 6 is enabled. 5 RXTHM_CH5_EN 0: THRM FB receive channel 5 is disabled. 1: THRM FB receive channel 5 is enabled. 4 RXTHM_CH4_EN 0: THRM FB receive channel 4 is disabled. 1: THRM FB receive channel 4 is enabled. 3 RXTHM_CH3_EN 0: THRM FB receive channel 3 is disabled. 1: THRM FB receive channel 3 is enabled. 2 RXTHM_CH2_EN 0: THRM FB receive channel 2 is disabled. 1: THRM FB receive channel 2 is enabled. 1 RXTHM_CH1_EN 0: THRM FB receive channel 1 is disabled. 1: THRM FB receive channel 1 is enabled. 0 RXTHM_CH0_EN 0: THRM FB receive channel 0 is disabled. 1: THRM FB receive channel 0 is enabled. 7 RXTHM_CH15_EN 0: THRM FB receive channel 15 is disabled. 1: THRM FB receive channel 15 is enabled. 6 RXTHM_CH14_EN 0: THRM FB receive channel 14 is disabled. 1: THRM FB receive channel 14 is enabled. 5 RXTHM_CH13_EN 0: THRM FB receive channel 13 is disabled. 1: THRM FB receive channel 13 is enabled. 4 RXTHM_CH12_EN 0: THRM FB receive channel 12 is disabled. 1: THRM FB receive channel 12 is enabled. 3 RXTHM_CH11_EN 0: THRM FB receive channel 11 is disabled. 1: THRM FB receive channel 11 is enabled. 2 RXTHM_CH10_EN 0: THRM FB receive channel 10 is disabled. 1: THRM FB receive channel 10 is enabled. 1 RXTHM_CH9_EN 0: THRM FB receive channel 9 is disabled. 1: THRM FB receive channel 9 is enabled. 0 RXTHM_CH8_EN 0: THRM FB receive channel 8 is disabled. 1: THRM FB receive channel 8 is enabled. 0x3C 0x3D www.maximintegrated.com DESCRIPTION Maxim Integrated │  68 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 33. DOUT Thermal Foldback Receive Channel Configuration ADDRESS BIT NAME 7 TX_CH7_EN 0: Transmit channel 7 is disabled. 1: Transmit channel 7 is enabled. 6 TX_CH6_EN 0: Transmit channel 6 is disabled. 1: Transmit channel 6 is enabled. 5 TX_CH5_EN 0: Transmit channel 5 is disabled. 1: Transmit channel 5 is enabled. 4 TX_CH4_EN 0: Transmit channel 4 is disabled. 1: Transmit channel 4 is enabled. 3 TX_CH3_EN 0: Transmit channel 3 is disabled. 1: Transmit channel 3 is enabled. 2 TX_CH2_EN 0: Transmit channel 2 is disabled. 1: Transmit channel 2 is enabled. 1 TX_CH1_EN 0: Transmit channel 1 is disabled. 1: Transmit channel 1 is enabled. 0 TX_CH0_EN 0: Transmit channel 0 is disabled. 1: Transmit channel 0 is enabled. 7 TX_CH15_EN 0: Transmit channel 15 is disabled. 1: Transmit channel 15 is enabled. 6 TX_CH14_EN 0: Transmit channel 14 is disabled. 1: Transmit channel 14 is enabled. 5 TX_CH13_EN 0: Transmit channel 13 is disabled. 1: Transmit channel 13 is enabled. 4 TX_CH12_EN 0: Transmit channel 12 is disabled. 1: Transmit channel 12 is enabled. 3 TX_CH11_EN 0: Transmit channel 11 is disabled. 1: Transmit channel 11 is enabled. 2 TX_CH10_EN 0: Transmit channel 10 is disabled. 1: Transmit channel 10 is enabled. 1 TX_CH9_EN 0: Transmit channel 9 is disabled. 1: Transmit channel 9 is enabled. 0 TX_CH8_EN 0: Transmit channel 8 is disabled. 1: Transmit channel 8 is enabled. 0x3E 0x3F www.maximintegrated.com DESCRIPTION Maxim Integrated │  69 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 34. Extra BCLK Cycle Configuration ADDRESS 0x41 BIT 1 NAME TX_EXTRA_HIZ DESCRIPTION 0: Extra BCLK cycles are driven to zero. 1: Extra BCLK cycles are driven to high impedance. Table 35. Manual HIZ Mode Configuration ADDRESS BIT NAME DESCRIPTION 7 TX_CH7_HIZ 0: Transmit Channel 7 outputs data/zeros. 1: Transmit Channel 7 outputs high impedance. 6 TX_CH6_HIZ 0: Transmit Channel 6 outputs data/zeros. 1: Transmit Channel 6 outputs high impedance. 5 TX_CH5_HIZ 0: Transmit Channel 5 outputs data/zeros. 1: Transmit Channel 5 outputs high impedance. 4 TX_CH4_HIZ 0: Transmit Channel 4 outputs data/zeros. 1: Transmit Channel 4 is enabled. 3 TX_CH3_HIZ 0: Transmit Channel 3 outputs data/zeros. 1: Transmit Channel 3 outputs high impedance. 2 TX_CH2_HIZ 0: Transmit Channel 2 outputs data/zeros. 1: Transmit Channel 2 outputs high impedance. 1 TX_CH1_HIZ 0: Transmit Channel 1 outputs data/zeros. 1: Transmit Channel 1 outputs high impedance. 0 TX_CH0_HIZ 0: Transmit Channel 0 outputs data/zeros. 1: Transmit Channel 0 outputs high impedance. 7 TX_CH15_HIZ 0: Transmit Channel 15 outputs data/zeros. 1: Transmit Channel 15 outputs high impedance. 6 TX_CH14_HIZ 0: Transmit Channel 14 outputs data/zeros. 1: Transmit Channel 14 outputs high impedance. 5 TX_CH13_HIZ 0: Transmit Channel 13 outputs data/zeros. 1: Transmit Channel 13 outputs high impedance. 4 TX_CH12_HIZ 0: Transmit Channel 12 outputs data/zeros. 1: Transmit Channel 12 outputs high impedance. 3 TX_CH11_HIZ 0: Transmit Channel 11 outputs data/zeros. 1: Transmit Channel 11 outputs high impedance. 2 TX_CH10_HIZ 0: Transmit Channel 10 outputs data/zeros. 1: Transmit Channel 10 outputs high impedance. 1 TX_CH9_HIZ 0: Transmit Channel 9 outputs data/zeros. 1: Transmit Channel 9 outputs high impedance. 0 TX_CH8_HIZ 0: Transmit Channel 8 outputs data/zeros. 1: Transmit Channel 8 outputs high impedance. 0x42 0x43 www.maximintegrated.com Maxim Integrated │  70 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 36. Speaker Configuration ADDRESS 0x4A BIT NAME DESCRIPTION Class D output Switching Frequency Select 0: Speaker switching frequency is set to 472kHz. 1: Speaker switching frequency is set to 330kHz. 7 SPK_SWCLK 6 — — 5 — — 4 — — 3 SPK_EDGE[1:0] 2 1 — 0 SPK_EN Programmable Speaker Edge Rate Control 00: Nominal edge rate 01: +15% faster edge rate 10: -40% slower edge rate 11: -20% slower edge rate — Speaker amplifier Enable 0: Speaker amplifier is disabled (default). 1: Enable Class D Output Stage VDVDD and VPVDD UVLO The default Class D output switching frequency is 472kHz for the best THD performance. To trade off THD performance for higher efficiency the output switching frequency can be set to 330kHz by setting SPK_SWCLK to 1. If the voltage PVDD drops below the PVDD-UVLO threshold, the audio output is muted to prevent the PVDD supply from being used by the amplifier. If the voltage on PVDD later exceeds the VPVDD-UVLO threshold, the device can be commanded to unmute through the I2C command. The MAX98371 Class D output stage with active emissions limiting provides optimum suppression and control of output switching harmonics that most directly contribute to EMI and radiated emissions. Programmable speaker edge rate control is available to help tweak EMI performance. As the edge rate increases, the efficiency goes up slightly, and as the edge rate slows the efficiency goes down. Set the speaker edge rate with bits SPK_EDGE bits in register 0x4A. To achieve the lower power consumption, the output switching of the Class D amplifier the part can be disabled through the SPK_EN bit. See Table 36 for the speaker configuration. Ultra-Low EMI Filterless Output Stage Traditional Class D amplifiers require the use of external LC filters, or shielding, to meet electromagnetic-interference (EMI) regulation standards. The active emissions limiting edge-rate control circuitry reduce EMI emissions so that with 18in of speaker cable the MAX98371 passes the EN55022B standard without the need for external filtering components. www.maximintegrated.com The MAX98371 monitors both DVDD and PVDD for low voltage conditions that would prevent the speaker amplifier from operating normally. If the voltage on DVDD drops below the DVDD-UVLO threshold (VDVDD-UVLO), the device is placed in hardware shutdown. All the I2C internal registers reset to their default values. The device can be commanded to leave this state through the I2C command if the voltage on DVDD later exceeds the VDVDD-UVLO threshold. Click-and-Pop Suppression The MAX98371 speaker amplifier features Maxim’s comprehensive click-and-pop suppression. During power-up and power-down, the click-and-pop suppression circuitry reduces any audible transient sources internal to the device. At startup, the PGA gain is automatically ramped from mute to the desired setting at a rate of 200µs/dB. Similarly, the gain is ramped down to mute at shutdown at the same rate. For faster startup and shutdown, disable gain ramping. During normal operation, any requested gain changes are ramped from the old value to the new value at a value determined by the ballistics within the volume control block. Maxim Integrated │  71 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Amplifier Current Limit The MAX98371 features current limit protection that protects the device against shorts. If the output current of the speaker amplifier exceeds the current limit (6A typ) the IC disables the outputs for approximately 100µs. After 100ms, the outputs are reenabled. If the fault condition still exists, the IC continues to disable and re-enable the outputs until the fault condition is removed. Set OVC_SEL low to disable this behavior. See Table 37. The current limit protects against both high-current and short-circuit events. MAX98371 OUTP SNS OUTP FB SPEAKER AMPLIFIER OUTN FB Thermal Shutdown Recovery When the temperate of the die exceeds +150°C, the part enters thermal shutdown. However, the MAX98371 features a configurable thermal shutdown autorecovery mode. When the die temperate has decreased by 30°C from the thermal shutdown event, the MAX98371 attempts to resume the previous operating state. Set TSHDN_AUTO_RESTART high to enable autorecovery mode. See Table 37. OUTN SNS Figure 19. Typical Application Circuit with Ferrite Beads Used Output Sensing When Using Ferrites However, in many applications, there might not be a need to filter the output with a ferrite bead. Clocking Architecture The MAX98371 includes a flexible clocking architecture and operation with no MCLK input. 0 -10 -20 THD+N RATIO (dB) The MAX98371 features two remote sensing pins OUTN_ SNS and OUTP_SNS. Remotely sensing the voltage at the load provides a THD+N advantage over sensing at the DUT output when ferrite beads are used. See Figure 20. The remote sense lines connect the output signal at the load to the inverting terminal of the internal error amplifier of the Class D. See Figure 19. Ferrites are highly nonlinear so sensing at the load versus at the output pins ensures that any signal degradation caused by the filtering components is appropriately compensated. TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER ZL = 8Ω + 33µH VPVDD = 17V fS = 48kHz -30 -40 SENSE AT OUTPUT -50 -60 -70 -80 SENSE AT LOAD -90 -100 0.001 0.01 0.1 1 10 100 OUTPUT POWER (W) Figure 20. THD Performance Improvement Enabled by Remote Sensing A configurable internal clock monitor circuit monitors the internal clock source (BCLK) and automatically places the device in software shutdown if the clock source is removed. Set CMON_ENA high to enable the clock monitor. This prevents unwanted signals from being applied to the speaker during a fault condition. When CMON_AUTO_RESTART is high the device automatically returns to normal operation when the clock source is subsequently reapplied. See Table 37. www.maximintegrated.com Maxim Integrated │  72 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Reset Software Reset The MAX98371 features an active-low hardware reset. When the voltage-on reset is pulled low, the part enters global shutdown. To reenable the part the reset pin must be pulled high and a global enable I2C command must be issued. Hardware Reset When the reset pin is pulled low, the device is in its lowest power-down state and communication over I2C is not possible. After exiting reset mode, all registers are set to their default POR values. Write 1 to bit 0 of register 0x51 to trigger a software reset. Software reset is used to return most registers to their default (POR) states. Biquad equalizer coefficients are not reset. The software reset register is a write only register. As a result, a read of this register always returns 0x00. Writing logic-high to RST triggers a software register reset, while writing a logic-low to RST has no effect. Also if PVDD is removed while DVDD is still applied the device goes into software shutdown mode where all blocks are disabled except I2C control block. Also, if DVDD is removed while PVDD is still applied, the device goes into a hardware shutdown mode and communication through I2C is not possible. Table 37. Clock Monitor Configuration ADDRESS BIT NAME 3 CMON_AUTO_RESTART 2 CMON_ENA 1 OVC_SEL 0 TSDHN_AUTO_RESTART 0x4D DESCRIPTION 0: Device does not restart after a clock monitor event. 1: Device restarts automatically when BCLK is restarted. 0: Clock monitor is disabled (default). 1: Clock monitor is enabled. 0: Current limit recovery is in manual mode. 1: Current limit recovery is in autorecovery mode. 0: Thermal protection recovery is in manual mode. 1: Thermal protection recovery is in autorecovery mode. Table 38. Reset Register ADDRESS BIT NAME 0x51 0 RST DESCRIPTION Reset 0: No action is taken. 1: Reset. All registers return to their POR (default) values. Table 39. Global Enable Register ADDRESS 0x50 BIT 0 www.maximintegrated.com NAME EN DESCRIPTION Global Enable: 0: Disabled 1: Enabled Maxim Integrated │  73 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking I2C Serial Interface Bit Transfer The MAX98371 features an I2C 2-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and SCL facilitate communication between the IC and the master at clock rates up to 400kHz. Figure 21 shows the 2-wire interface timing diagram. The master generates SCL and initiates data transfer on the bus. The master device writes data to the IC by transmitting the proper slave address followed by the register address and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted to the IC is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the IC transmits the proper slave address followed by a series of nine SCL pulses. The IC transmits data on SDA in sync with the mastergenerated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START (S) or REPEATED START (Sr) condition, a not acknowledge, and a STOP (P) condition. SDA operates as both an input and an open-drain output. A pullup resistor, typically greater than 500Ω, is required on SDA. SCL operates only as an input. A pullup resistor, typically greater than 500Ω, is required on SCL if there are multiple masters on the bus, or if the single master has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the IC from high voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus signals. S One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals. See the START and STOP Conditions section. START and STOP Conditions SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 21). A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition. Early Stop Conditions The IC recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition. Slave Address The slave address is defined as the seven most significant bits (MSBs) followed by the read/write bit. For the IC the seven most significant bits are programmable through the ADDR1 and ADDR0 bumps. Setting the read/write bit to 1 configures the IC for read mode. Setting the read/ write bit to 0 configures the IC for write mode. The slave address is the first byte of information sent to the IC after the START condition. Sr P SCL SDA Figure 21. START, STOP, and REPEATED START Conditions www.maximintegrated.com Maxim Integrated │  74 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Acknowledge An acknowledge is sent by the master after each read byte to allow data transfer to continue. A not-acknowledge is sent when the master reads the final byte of data from the IC, followed by a STOP condition. The acknowledge bit (ACK) is a clocked 9th bit that the IC uses to handshake receipt each byte of data when in write mode (Figure 22). The IC pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master reattempts communication. The master pulls down SDA during the 9th clock cycle to acknowledge receipt of data when the IC is in read mode. Write Data Format A write to the IC includes transmission of a START condition, the slave address with the R/W bit set to 0, one byte of data to configure the internal register address pointer, one or more bytes of data, and a STOP condition. Figure 23 illustrates the proper frame format for writing one byte of data to the IC. Figure 24 illustrates the frame format for writing n-bytes of data to the IC. CLOCK PULSE FOR ACKNOWLEDGMENT START CONDITION SCL 1 2 8 9 NOT ACKNOWLEDGE SDA ACKNOWLEDGE Figure 22. Acknowledge ACKNOWLEDGE FROM SLAVE B7 SLAVE ADDRESS S O B6 B5 B4 B3 B2 B1 B0 ACKNOWLEDGE FROM SLAVE ACKNOWLEDGE FROM SLAVE A A REGISTER ADDRESS DATA BYTE A P 1 BYTE R/W AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER Figure 23. Writing One Byte of Data to the MAX98371 ACKNOWLEDGE FROM SLAVE ACKNOWLEDGE FROM SLAVE S SLAVE ADDRESS O A REGISTER ADDRESS R/W A ACKNOWLEDGE FROM SLAVE ACKNOWLEDGE FROM SLAVE B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0 DATA BYTE 1 1 BYTE A DATA BYTE n A P 1 BYTE AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER Figure 24. n-Bytes of Data to the MAX98371 www.maximintegrated.com Maxim Integrated │  75 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking The slave address with the R/W bit set to 0 indicates that the master intends to write data to the IC. The IC acknowledges receipt of the address byte during the master-generated 9th SCL pulse. The first byte transmitted from the IC is the content of register 0x00. Transmitted data is valid on the rising edge of SCL. The address pointer autoincrements after each read data byte. This autoincrement feature allows all registers to be read sequentially within one continuous frame. A STOP condition can be issued after any number of read data bytes. If a STOP condition is issued followed by another read operation, the first data byte to be read is from register 0x00. The second byte transmitted from the master configures the IC’s internal register address pointer. The pointer tells the IC where to write the next byte of data. An acknowledge pulse is sent by the IC upon receipt of the address pointer data. The third byte sent to the IC contains the data that is written to the chosen register. An acknowledge pulse from the IC signals receipt of the data byte. The address pointer autoincrements to the next register address after each received data byte. This autoincrement feature allows a master to write to sequential registers within one continuous frame. The master signals the end of transmission by issuing a STOP condition. Read Data Format Send the slave address with the R/W bit set to 1 to initiate a read operation. The IC acknowledges receipt of its slave address by pulling SDA low during the 9th SCL clock pulse. A START command followed by a read command resets the address pointer to register 0x00. ACKNOWLEDGE FROM SLAVE S ACKNOWLEDGE FROM SLAVE O SLAVE ADDRESS A The master acknowledges receipt of each read byte during the acknowledge clock pulse. The master must acknowledge all correctly received bytes except the last byte. The final byte must be followed by a not acknowledge from the master and then a STOP condition. Figure 25 illustrates the frame format for reading one byte from the IC. Figure 26 illustrates the frame format for reading multiple bytes from the IC. ACKNOWLEDGE FROM SLAVE A Sr REGISTER ADDRESS The address pointer can be preset to a specific register before a read command is issued. The master presets the address pointer by first sending the IC’s slave address with the R/W bit set to 0 followed by the register address. A REPEATED START condition is then sent followed by the slave address with the R/W bit set to 1. The IC then transmits the contents of the specified register. The address pointer autoincrements after transmitting the first byte. A R/W REPEATED START R/W 1 SLAVE ADDRESS NOT ACKNOWLEDGE FROM MASTER DATA BYTE A P 1 BYTE AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER Figure 25. Reading One Byte of Data from the MAX98371 ACKNOWLEDGE FROM SLAVE S SLAVE ADDRESS R/W O ACKNOWLEDGE FROM SLAVE A REGISTER ADDRESS ACKNOWLEDGE FROM SLAVE A Sr REPEATED START SLAVE ADDRESS 1 R/W A DATA BYTE A 1 BYTE AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER Figure 26. Reading n-Bytes of Data from the MAX98371 www.maximintegrated.com Maxim Integrated │  76 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking I2C Slave Addresses must be kept short and should have minimum trace length and loop area to ensure optimumal performance. The addresses effectively allow unique audio endpoint destinations in systems that use multiples of the device. The IC uses hardware select slave addresses determined by the configuration of ADDR0, ADDR1 as shown in Table 40. See the I2C Serial Interface section for a complete interface description. Use wide, low-resistance output, supply and ground traces. As load impedance decreases, the current drawn from the device outputs increase. At higher current, the resistance of the output traces decreases the power delivered to the load. For example, if 2W is delivered from the speaker output to a 4Ω load through a 100mΩ trace, 49mW is consumed in the trace. If power is delivered through a 10mΩ trace, only 5mW is consumed in the trace. Wide output, supply, and ground traces also improve the power dissipation of the device. The MAX98371 is configured using the I2C control bus. Applications Information Layout and Grounding Proper layout and grounding are essential for optimum performance. Use at least 4 PCB layers, and add thermal vias to the ground/power plane close to the MAX98371 to ensure good thermal performance and high-end output power. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal. Ground the power signals and the analog signals of the IC separately at the system ground plane, to prevent switching interference from corrupting sensitive analog signals. Place the recommended supply decoupling capacitors as close as possible to the IC. The PVDD to PGND connection The MAX98371 is inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on the top and bottom PCB planes. It is generally advisable to follow the layout of the MAX98371 evaluation kit as closely as is practical in the application. Thermal and performance measurements shown in this data sheet were measured with a 6 layer board with 2 signal layers and 4 ground layers. As a result, the EV kit performance is likely better than what can be achieved with a JEDEC standard board. Table 40. ADDR I2C Address Select ADDR1 ADDR0 I2C WRITE ADDRESS SELECT ADDR1 connected to DVDD ADDR0 connected to DGND 0x62 ADDR1 connected to DGND ADDR0 connected to DGND 0x64 ADDR1 connected to SDA ADDR0 connected to DGND 0x66 ADDR1 connected to SCL ADDR0 connected to DGND 0x68 ADDR1 connected to DVDD ADDR0 connected to SDA 0x6A ADDR1 connected to DGND ADDR0 connected to SDA 0x6C ADDR1 connected to SDA ADDR0 connected to SDA 0x6E ADDR1 connected to SCL ADDR0 connected to SDA 0x70 ADDR1 connected to DVDD ADDR0 connected to DVDD 0x72 ADDR1 connected to DGND ADDR0 connected to DVDD 0x74 ADDR1 connected to SDA ADDR0 connected to DVDD 0x76 ADDR1 connected to SCL ADDR0 connected to DVDD 0x78 ADDR1 connected to DVDD ADDR0 connected to SCL 0x7A ADDR1 connected to DGND ADDR0 connected to SCL 0x7C ADDR1 connected to SDA ADDR0 connected to SCL 0x7E ADDR1 connected to SCL ADDR0 connected to SCL 0x80 www.maximintegrated.com Maxim Integrated │  77 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Table 41. Recommended External Components BUMP VALUE (µF) SIZE VOLTAGE RATING (V) DIELECTRIC PVDD 10 0603 50 X5R PVDD 10 0603 50 X5R PVDD 0.1 0402 25 X5R PVDD 0.1 0402 25 X5R PVDD 220 — 35 Alum-Elec VREFC 1 0201 6.3 X5R DVDD 1 0201 6.3 X5R IRQ 10 0201 — — WLP Applications Information For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note 1891: Wafer-Level Packaging (WLP) and Its Applications. See Figure 27 for the recommended PCB footprint of the MAX98371. MAX98731 UBM 0.26mm 0.31mm PCB PAD 0.21mm PRINTED CIRCUIT BOARD Figure 27. MAX98371+ WLP Ball Dimensions www.maximintegrated.com Maxim Integrated │  78 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Typical Application Circuit 1.14V TO 1.98V 1μF 10kΩ 10kΩ 5.5V TO 18V 1μF 10μF 220μF 10μF 0.1μF 0.1μF 10kΩ DVDD VREFC PVDD SDA SCL CONTROL INTERFACE OUTP SNS IRQ ADDR1 SEE THE APPLICATIONS INFORMATION SECTION OUTP ADDR2 MAX98371 RESET OUTN BCLK LRCLK DIGITAL AUDIO INTERFACE OUTN SNS DIN DOUT AGND DGND Ordering Information PART Package Information TEMP RANGE PIN-PACKAGE MAX98371EWV+T -40°C to +85°C 30 WLP MAX98371EWV+ -40°C to +85°C 30 WLP +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. www.maximintegrated.com PGND For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 30 WLP W302E2+1 21-0016 Refer to Application Note 1891 Maxim Integrated │  79 MAX98371 Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking Revision History REVISION NUMBER REVISION DATE 0 3/15 DESCRIPTION Initial release PAGES CHANGED — For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2015 Maxim Integrated Products, Inc. │  80
MAX98371EVSYS# 价格&库存

很抱歉,暂时无法提供与“MAX98371EVSYS#”相匹配的价格&库存,您可以联系我们找货

免费人工找货