0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAXCAMOV10640#

MAXCAMOV10640#

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    MAX9271BASEDCAMERAWITHOV1064

  • 数据手册
  • 价格&库存
MAXCAMOV10640# 数据手册
Freescale Semiconductor Data Sheet: Technical Data Document Number: MMA8450Q Rev. 9.1, 04/2012 An Energy Efficient Solution by Freescale 3-Axis, 8-bit/12-bit MMA8450Q Digital Accelerometer The MMA8450Q is a smart low-power, three-axis, capacitive micromachined accelerometer featuring 12 bits of resolution. This accelerometer is packed with embedded functions with flexible user programmable options, configurable to two interrupt pins. Embedded interrupt functions allow for overall power savings relieving the host processor from continuously polling data. The MMA8450Q’s Embedded FIFO buffer can be configured to log up to 32 samples of X,Y and Z-axis 12-bit (or 8-bit for faster download) data. The FIFO enables a more efficient analysis of gestures and user programmable algorithms, ensuring no loss of data on a shared I2C bus, and enables system level power saving (up to 96% of the total power consumption savings) by allowing the applications processor to sleep while data is logged. There is access to both low pass filtered data as well as high pass filtered data, which minimizes the data analysis required for jolt detection and faster transitions. The MMA8450Q has user selectable full scales of ±2g/±4g/±8g. The device can be configured to generate inertial wakeup interrupt signals from any combination of the configurable embedded functions allowing the MMA8450Q to monitor events and remain in a low power mode during periods of inactivity. 16 PIN QFN 3 mm x 3 mm x 1 mm CASE 2077-02 NC NC VDD Top View 16 15 14 1 13 NC BYP 2 12 GND NC 3 11 INT1 SCL 4 10 GND GND 5 9 INT2 7 8 EN 6 SA0 VDDIO SDA Features • 1.71V to 1.89V supply voltage • ±2g/±4g/±8g dynamically selectable full-scale • Output Data Rate (ODR) from 400 Hz to 1.563 Hz • 375 μg/√Hz noise at normal mode ODR = 400 Hz • 12-bit digital output • I2C digital output interface (operates up to 400 kHz Fast Mode) • Programmable two interrupt pins for eight interrupt sources • Embedded four channels of motion detection – Freefall or motion detection: 2 channels – Pulse Detection: 1 channel – Transient (Jolt) Detection: 1 channel • Orientation (Portrait/Landscape) detection with hysteresis compensation • Automatic ODR change for auto-wake and return-to-sleep • 32 sample FIFO • Self-Test • 10,000g high shock survivability • RoHS compliant Top and Bottom View Pin Connections Typical Applications • Static orientation detection (portrait/landscape, up/down, left/right, back/front position identification) • Real-time orientation detection (virtual reality and gaming 3D user position feedback) • Real-time activity analysis (pedometer step counting, freefall drop detection for HDD, dead-reckoning GPS backup) • Motion detection for portable product power saving (auto-sleep and auto-wake for cell phone, PDA, GPS, gaming) • Shock and vibration monitoring (mechatronic compensation, shipping and warranty usage logging) • User interface (menu scrolling by orientation change, tap detection for button replacement ORDERING INFORMATION Part Number Temperature Range Package Description MMA8450QT -40°C to +85°C QFN-16 Tray MMA8450QR1 -40°C to +85°C QFN-16 Tape and Reel © 2010-2012 Freescale Semiconductor, Inc. All rights reserved. Shipping Contents 1 2 3 4 5 6 Block Diagram and Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Soldering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Mechanical and Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 I2C Interface Characteristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Zero-g Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Self-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.1 Device Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.2 8-bit or 12-bit Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.3 Internal FIFO Data Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.4 Low Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.5 Auto-Wake/Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.6 Freefall and Motion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.7 Transient Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.8 Orientation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.9 Interrupt Register Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.10 Serial I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1 Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.2 32 Sample FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.3 Portrait/ Landscape Embedded Function Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.4 Freefall & Motion Detection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.5 Transient Detection Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.6 Tap Detection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.7 Auto-Sleep Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.8 User Offset Correction Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Related Documentation The MMA8450Q device features and operations are described in a variety of reference manuals, user guides, and application notes. To find the most-current versions of these documents: 1. Go to the Freescale homepage at: http://www.freescale.com/ 2. 3. In the Keyword search box at the top of the page, enter the device number MMA8450Q. In the Refine Your Result pane on the left, click on the Documentation link. MMA8450Q 2 Sensors Freescale Semiconductor, Inc. 1 Block Diagram and Pin Description 1.1 Block Diagram VDD VSS Internal OSC X-axis Transducer Clock GEN Embedded DSP Functions 12-bit ADC C to V Converter Y-axis Transducer SDA I2 C SCL Z-axis Transducer 32 Data Point Configurable FIFO Buffer with Watermark Freefall and Motion Detection (2 channels) Transient Detection (i.e., fast motion, jolt) Enhanced Orientation with Hysteresis and Z-lockout Shake Detection through Motion Threshold Tap and Double Tap Detection Auto-Wake/Auto-Sleep Configurable with debounce counter and multiple motion interrupts for control Normal Mode Active Mode SLEEP Mode Auto-Wake Low Power Mode (Reduced Sampling Rate) Auto-Sleep Figure 1. Block Diagram 1.2 Pin Description Z X 1 Y (TOP VIEW) DIRECTION OF THE DETECTABLE ACCELERATIONS 13 1 9 5 (BOTTOM VIEW) Figure 2. Direction of the Detectable Accelerations MMA8450Q Sensors Freescale Semiconductor, Inc. 3 Figure 3 shows the device configuration in the 6 different orientation modes. These orientations are defined as the following: PU = Portrait Up, LR = Landscape Right, PD = Portrait Down, LL = Landscape Left, Back and Front. There are several registers to configure the orientation detection and are described in detail in the register setting section. Top View PU Pin 1 Earth Gravity Side View LL LR Xout @ 0g Yout @ -1g Zout @ 0g BACK Xout @ 0g Yout @ 0g Zout @ -1g PD Xout @ -1g Yout @ 0g Zout @ 0g Xout @ 1g Yout @ 0g Zout @ 0g FRONT Xout @ 0g Yout @ 0g Zout @ 1g Xout @ 0g Yout @ 1g Zout @ 0g Figure 3. Landscape/Portrait Orientation 1.8V 4.7μF 1.8V 0.1μF 4.7kΩ NC 4 SCL 5 GND VDD 3 NC NC MMA8450Q EN 4.7kΩ SCL 2 14 SA0 1.8V VDD 15 SDA SDA 1 NC 16 6 7 8 GND 13 GND 12 INT1 11 GND 10 INT2 9 INT1 INT2 EN SA0 Figure 4. Application Diagram MMA8450Q 4 Sensors Freescale Semiconductor, Inc. Table 1. Pin Description Pin # Pin Name 1 VDD 2 Description Pin Status Power Supply (1.8 V only) Input NC/GND Connect to Ground or Non Connection Input 3 NC/GND Connect to Ground or Non Connection 4 SCL I2C Serial Clock 5 GND Connect to Ground SDA I2 7 SA0 I2C Least Significant Bit of the Device Address (0: $1C 1: $1D) 8 EN 6 C Serial Data Device Enable (1: I2C Bus Enabled; 0: Shutdown Mode) Input Open Drain Input Open Drain Input Input 9 INT2 Inertial Interrupt 2 10 GND Connect to Ground Output 11 INT1 Inertial Interrupt 1 12 GND Connect to Ground Input 13 GND Connect to Ground Input 14 VDD Power Supply (1.8 V only) Input 15 NC Internally not connected Input 16 NC Internally not connected Input Input Output When using MMA8450Q in applications, it is recommended that pin 1 and pin 14 (the VDD pins) be tied together. Power supply decoupling capacitors (100 nF ceramic plus 4.7 µF bulk, or a single 4.7 µF ceramic) should be placed as near as possible to the pins 1 and 5 of the device. The SDA and SCL I2C connections are open drain and therefore require a pullup resistor as shown in Figure 4 Note: The above application diagram presents the recommended configuration for the MMA8450Q. For information on future products of this product family please review Freescale application note, AN3923, Design Checklist and Board Mounting Guidelines of the MMA8450Q.This application note details the small modifications between the MMA8450Q and the next generation products. 1.3 Soldering Information The QFN package is compliant with the RoHS standard. Please refer to AN4077. MMA8450Q Sensors Freescale Semiconductor, Inc. 5 2 Mechanical and Electrical Specifications 2.1 Mechanical Characteristics Table 2. Mechanical Characteristics @ VDD = 1.8 V, T = 25°C unless otherwise noted. Parameter Test Conditions Full Scale Measurement Range FS[1:0] set to 01 Min Typ Max ±1.8 ±2 ±2.2 ±3.6 ±4 ±4.4 FS[1:0] set to 11 ±7.2 ±8 ±8.8 FS[1:0] set to 01 0.878 0.976 1.074 1.758 1.953 2.148 3.515 3.906 4.296 FS[1:0] set to 10 Sensitivity FS[1:0] set to 10 Symbol FS So FS[1:0] set to 11 Sensitivity Change vs. Temperature(1) FS[1:0] set to 01 Typical Zero-g Level Offset (2) FS[1:0] set to 01 FS[1:0] set to 10 Unit g mg/digit TCSo ±0.05 %/°C 0g-Off ±40 mg 0g-OffBM ±50 mg TCOff ±0.5 mg/°C FS[1:0] set to 11 Typical Zero-g Offset Post Board Mount (2), (3) FS[1:0] set to 01 FS[1:0] set to 10 FS[1:0] set to 11 Typical Zero-g Offset Change vs. Temperature Non Linearity Best Fit Straight Line (2) FS[1:0] set to 01 FS[1:0] set to 10 (4) Self-test Output Change ±0.25 NL ±0.5 FS[1:0] set to 11 ±1 FS[1:0] set to 01, X-axis -195 FS[1:0] set to 01, Y-axis Vst -195 FS[1:0] set to 01, Z-axis Output Noise Operating Temperature Range 1. 2. 3. 4. Normal Mode ODR = 400 Hz % FS LSB +945 Noise Top μg/√Hz 375 -40 +85 °C Before board mount. See appendix for distribution graphs. Post board mount offset specification are based on an 8 layer PCB. Self-test in one direction only. These are approximate values and can change by ±100 counts. MMA8450Q 6 Sensors Freescale Semiconductor, Inc. 2.2 Electrical Characteristics Table 3. Electrical Characteristics @ VDD = 1.8 V, T = 25°C unless otherwise noted.(1) Parameter Test Conditions Supply Voltage Low Power Mode $39 CTRL_REG2: MOD[0]=1 Symbol Min Typ Max Unit VDD 1.71 1.8 1.89 V EN = 1, ODR = 1.563 Hz 27 EN = 1, ODR = 12.5 Hz 27 EN = 1, ODR = 50 Hz EN = 1, ODR = 100 Hz Normal Mode $39 CTRL_REG2: MOD[0]=0 27 IddLP EN = 1, ODR = 200 Hz 72 EN = 1, ODR = 400 Hz 120 EN = 1, ODR = 1.563 Hz 42 EN = 1, ODR = 12.5 Hz 42 EN = 1, ODR = 50 Hz EN = 1, ODR = 100 Hz Current Consumption in Shutdown Mode Supply Current Drain in Standby Mode μA 42 42 Idd μA 72 EN = 1, ODR = 200 Hz 132 EN = 1, ODR = 400 Hz 225 EN = 0 IddSdn 280° Z > 100° and Z < 260° 01 Z < 75° or Z > 285° Z > 105° and Z < 255° 10 Z < 70° or Z > 290° Z > 110° and Z < 250° 11 Z < 65° or Z > 295° Z > 115° and Z < 245° 0x1D - 0x1F: PL_P_L_THS_REG1, 2, 3 Portrait-to-Landscape Threshold Registers The following registers represent the Portrait-to-Landscape trip threshold registers. These registers are used to set the trip angle for the image transition from the Portrait orientation to the Landscape orientation. The angle can be selected from Table 28 and the corresponding values for that angle should be written into the three PL_P_L_THS Registers. 0x1D PL_P_L_THS_REG1 Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P_L_THS[7] P_L_THS[6] P_L_THS[5] P_L_THS[4] P_L_THS[3] P_L_THS[2] P_L_THS[1] P_L_THS[0] Table 25. PL_P_L_THS_REG1 Description P_L_THS Portrait-to-Landscape Threshold Register 1. Default value: 30° → 0001_1010. 0x1E PL_P_L_THS_REG2 Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P_L_THS[7] P_L_THS[6] P_L_THS[5] P_L_THS[4] P_L_THS[3] P_L_THS[2] P_L_THS[1] P_L_THS[0] Table 26. PL_P_L_THS_REG2 Description P_L_THS Portrait-to-Landscape Threshold Register 2. Default value: 30° → 0010_0010. 0x1F PL_P_L_THS_REG3 Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P_L_THS[7] P_L_THS[6] P_L_THS[5] P_L_THS[4] P_L_THS[3] P_L_THS[2] P_L_THS[1] P_L_THS[0] MMA8450Q 28 Sensors Freescale Semiconductor, Inc. Table 27. PL_P_L_THS_REG3 Description P_L_THS Portrait-to-Landscape Threshold Register 3. Default value: 30°→ 1101_0100. Table 28. Portrait-to-Landscape Trip Angle Thresholds Lookup Table Portrait-to-Landscape Trip Angle PL_P_L_THS_REG1 PL_P_L_THS_REG2 PL_P_L_THS_REG3 15 0x17 0x75 0x77 20 0x18 0x14 0x23 25 0x18 0xF3 0x59 30 0x1A 0x32 0xD5 35 0x1B 0x92 0x77 40 0x1D 0x92 0x33 45 0x20 0x00 0x00 50 0x23 0x31 0xD9 55 0x27 0x71 0xB9 60 0x2D 0x41 0xA2 0x20 - 0x22 PL_L_P_THS_REG1, 2, 3 Landscape-to-Portrait Threshold Registers The following registers represent the Landscape-to-Portrait trip threshold registers. These registers are used to set the trip angle for the image transition from the Landscape orientation to the Portrait orientation. The angle can be selected from Table 32 and the corresponding values for that angle should be written into the three PL_L_P_THS Registers. 0x20 PL_L_P_THS_REG1 Register (Read/Write) Bit 7 L_P_THS[7] Bit 6 L_P_THS[6] Bit 5 L_P_THS[5] Bit 4 L_P_THS[4] Bit 3 L_P_THS[3] Bit 2 L_P_THS[2] Bit 1 L_P_THS[1] Bit 0 L_P_THS[0] Table 29. PL_L_P_THS_REG1 Description L_P_THS Landscape-to-Portrait Threshold Register 1. Default value: 60° → 0010_1101. 0x21 PL_L_P_THS_REG2 Register (Read/Write) Bit 7 L_P_THS[7] Bit 6 L_P_THS[6] Bit 5 L_P_THS[5] Bit 4 L_P_THS[4] Bit 3 L_P_THS[3] Bit 2 L_P_THS[2] Bit 1 L_P_THS[1] Bit 0 L_P_THS[0] Bit 1 L_P_THS[1] Bit 0 L_P_THS[0] Table 30. PL_L_P_THS_REG2 Description L_P_THS Landscape-to-Portrait Threshold Register 2. Default value: 60° → 0100_0001. 0x22 PL_L_P_THS_REG3 Register (Read/Write) Bit 7 L_P_THS[7] Bit 6 L_P_THS[6] Bit 5 L_P_THS[5] Bit 4 L_P_THS[4] Bit 3 L_P_THS[3] Bit 2 L_P_THS[2] Table 31. PL_L_P_THS_REG3 Description L_P_THS Landscape-to-Portrait Threshold Register 3. Default value: 60° → 1010_0010. MMA8450Q Sensors Freescale Semiconductor, Inc. 29 Table 32. Landscape-to-Portrait Trip Angle Thresholds Lookup Table Landscape-to-Portrait Trip Angle PL_L_P_THS_REG1 PL_L_P_THS_REG2 PL_L_P_THS_REG3 30 0x1A 0x22 0xD4 35 0x1B 0x92 0x77 40 0x1D 0x92 0x33 45 0x20 0x00 0x00 50 0x23 0x31 0xD9 55 0x27 0x71 0xB9 60 0x2D 0x41 0xA2 65 0x35 0x91 0x8F 70 0x42 0x31 0x81 75 0x57 0x71 0x77 6.4 Freefall & Motion Detection Registers For details on how to configure the device for Freefall and/or Motion detection and for sample code, refer to application note AN3917. Note: There are two Freefall and Motion Detection Functions. The registers from 0x27 - 0x2A have the same descriptions as registers 0x23 - 0x26. 0x23: FF_MT_CFG_1 Freefall and Motion Configuration Register 1 0x23 FF_MT_CFG_1 Register (Read/Write) Bit 7 ELE Bit 6 OAE Bit 5 ZHEFE Bit 4 ZLEFE Bit 3 YHEFE Bit 2 YLEFE Bit 1 XHEFE Bit 0 XLEFE Table 33. FF_MT_CFG_1 Description ELE OAE ZHEFE ZLEFE YHEFE YLEFE XHEFE XLEFE Event Latch Enable: Event flag is latched into FF_MT_SRC_1 register. Reading of the FF_MT_SRC_1 register clears the EA event flag. Default value: 0. 0: Event flag latch disabled; 1: Event flag latch enabled Logical Or/And combination of events flags. Default value: 0. 0: Logical AND combination of events flags; 1: Logical OR combination of events flags Event flag enable on Z High event. Default value: 0. 0: Event detection disabled; 1: Event detection enabled Event flag enable on Z Low event. Default value: 0. 0: Event detection disabled; 1: Event detection enabled Event flag enable on Y High event. Default value: 0. 0: Event detection disabled; 1: Event detection enabled Event flag enable on Y Low event. Default value: 0. 0: Event detection disabled; 1: Event detection enabled Event flag enable on X High event. Default value: 0. 0: Event detection disabled; 1: Event detection enabled Event flag enable on X Low event. Default value: 0. 0: Event detection disabled; 1: Event detection enabled OAE bit allows the selection between Motion (logical OR combination of X, Y, Z-axis event flags) and Freefall (logical AND combination of X, Y, Z-axis event flags) detection. ELE denotes whether the enabled event flag will be latched in the FF_MT_SRC_1 register or the event flag status in the FF_MT_SRC_1 will indicate the real-time status of the event. If ELE bit is set to a logic 1, then the event active “EA” flag is cleared by reading the FF_MT_SRC_1 source register. ZHEFE, YHEFE, XHEFE enables the detection of a high g event when the measured acceleration data on X, Y, or Z-axis is higher than the threshold set in FF_MT_THS_1 register. ZLEFE, YLEFE, XLEFE enables the detection of a low g event when the measured acceleration data on X, Y, or Z-axis is lower than the threshold set in FF_MT_THS_1 register. FF_MT_THS_1 is the threshold register used by the Freefall/Motion function to detect Freefall or Motion events. The unsigned 7-bit FF_MT_THS_1 threshold register holds the threshold for the low g event detection where the magnitude of the X and Y and Z acceleration values are lower than the threshold value. Conversely the FF_MT_THS_1 also holds the threshold for the high g event detection where the magnitude of the X, or Y, or Z-axis acceleration values is higher than the threshold value. MMA8450Q 30 Sensors Freescale Semiconductor, Inc. 0x24 FF_MT_SRC_1 Register 0x24: FF_MT_SRC_ Freefall and Motion Source Register (0x24) (Read Only) Bit 7 — Bit 6 EA Bit 5 ZHE Bit 4 ZLE Bit 3 YHE Bit 2 YLE Bit 1 XHE Bit 0 XLE Table 34. FF_MT_SRC_1 Description EA Event Active Flag. Default value: 0. 0: No event flag has been asserted; 1: one or more event flags have been asserted. ZHE Z High Event Flag. Default value: 0. 0: No Z High event detected, 1: Z High event has been detected ZLE Z Low Event Flag. Default value: 0. 0: No Z Low event detected, 1: Z Low event has been detected YHE Y High Event Flag. Default value: 0. 0: No Y High event detected, 1: Y High event has been detected YLE Y Low Event Flag. Default value: 0. 0: No Y Low event detected, 1: Y Low event has been detected XHE X High Event Flag. Default value: 0. 0: No X High event detected, 1: X High event has been detected XLE X Low Event Flag. Default value: 0. 0: No X Low event detected, 1: X Low event has been detected This register keeps track of the acceleration event which is triggering (or has triggered, in case of ELE bit in FF_MT_CFG_1 register being set to 1) the event flag. In particular EA is set to a logic 1 when the logical combination of acceleration events flags specified in FF_MT_CFG_1 register is true. This bit is used in combination with the values in INT_EN_FF_MT_1 and INT_CFG_FF_MT_1 register to generate the Freefall/Motion interrupts. An X,Y, or Z high or an X,Y, and Z high event is true when the acceleration value of the X or Y or Z axes is higher than the preset threshold value defined in the FF_MT_THS_1 register. Conversely X,Y, or Z high or an X,Y, and Z low event is true when the acceleration value of the X and Y and Z axes are lower than the preset threshold value defined in the FF_MT_THS_1 register. When the ELE bit is set, only the EA bit is latched. The other bits are not latched. To see the events that have been detected, the register must be read immediately. The EA bit will remain high until the source register is read. 0x25: FF_MT_THS_1 Freefall and Motion Threshold 1 Register 0x25 FF_MT_THS_1 Register (Read/Write) Bit 7 DBCNTM Bit 6 THS6 Bit 5 THS5 Bit 4 THS4 Bit 3 THS3 Bit 2 THS2 Bit 1 THS1 Bit 0 THS0 Table 35. FF_MT_THS_1 Description DBCNTM Debounce counter mode selection. Default value: 0. 0: increments or decrements debounce, 1: increments or clears counter. THS[6:0] Freefall /Motion Threshold: Default value: 000 0000 The minimum threshold resolution is dependent on the selected acceleration g range and the threshold register has a range of 0 to 127. Therefore: • If the selected acceleration g range is 8g mode (FS = 11), the minimum threshold resolution is 0.063g/LSB. The maximum value is 8g. • If the selected acceleration g range is 4g mode (FS = 10), the minimum threshold resolution is 0.0315g/LSB. The maximum value is 4g. • If the selected acceleration g range is 2g mode (FS = 01), the minimum threshold resolution is 0.01575g/LSB. The maximum value is 2g. When DBCNTM bit is a logic ‘1’, the debounce counter is cleared to 0 whenever the event of interest is no longer true (Figure 12 part b) while if the DBCNTM bit is set a logic ‘0’ the debounce counter is decremented by 1 whenever the event of interest is no longer true (Figure 12 part c) until the debounce counter reaches 0 or the event of interest becomes active. Decrementing of the debounce counter acts as a median filter enabling the system to filter out irregular spurious events which might impede the detection of the event. MMA8450Q Sensors Freescale Semiconductor, Inc. 31 Low g Event on all 3-axis (Freefall) Count Threshold (a) FF_MT Counter Value EA FF Low g Event on all 3-axis (Freefall) DBCNTM = 1 Count Threshold FF_MT Counter Value (b) EA FF Low g Event on all 3-axis (Freefall) DBCNTM = 0 Count Threshold FF_MT Counter Value (c) EA FF Figure 12. DBCNTM Bit Function 0x26: FF_MT_COUNT_1 Freefall Motion Count 1 Register This register sets the number of debounce sample counts for the event trigger. 0x26 FF_MT_COUNT_1 Register (Read/Write) Bit 7 D7 Bit 6 D6 Bit 5 D5 Bit 4 D4 Bit 3 D3 Bit 2 D2 Bit 1 D1 Bit 0 D0 Table 36. FF_MT_COUNT_1 Description D[7-0] Count value. Default value: 0000_0000. D7 - D0 define the number of debounce sample counts for the event trigger. When the debounce counter exceeds the FF_MT_COUNT_1 value, a Freefall/Motion event flag is set. The time step used for the debounce sample count depends on the ODR chosen (Table 37). Table 37. FF_MT_COUNT_1 and FF_MT_COUNT_2 Relationship with the ODR Output Data Rate (Hz) Step Duration Range 400 2.5 ms 2.5 ms – 0.63s 200 5 ms 5 ms – 1.275s 100 10 ms 10 ms – 2.55s 50 20 ms 20 ms – 5.1s 12.5 80 ms 80 ms – 20.4s 1.56 640 ms 640 ms – 163s An ODR of 100 Hz and a FF_MT_COUNT_1 value of 15 would result in a debounce response time of 150 ms. MMA8450Q 32 Sensors Freescale Semiconductor, Inc. 0x27: FF_MT_CFG_2 Freefall and Motion Configuration 2 Register These registers all have the same descriptions as above for Registers 0x23 - 0x26. 0x27 FF_MT_CFG_2 Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ELE OAE ZHEFE ZLEFE YHEFE YLEFE XHEFE XLEFE 0x28: FF_MT_SRC_2 Freefall and Motion Source 2 Register 0x28 FF_MT_SRC_2 Register (Read Only) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — EA ZHE ZLE YHE YLE XHE XLE 0x29: FF_MT_THS_2 Freefall and Motion Threshold 2 Register 0x29 FF_MT_THS_2 Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DBCNTM THS6 THS5 THS4 THS3 THS2 THS1 THS0 0x2A: FF_MT_COUNT_2 Freefall and Motion Debounce 2 Register 0x2A FF_MT_COUNT_2 Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D7 D6 D5 D4 D3 D2 D1 D0 6.5 Transient Detection Registers For more information on the uses of the transient function and sample code, refer to application note AN3918. 0x2B: TRANSIENT_CFG Transient Configuration Register The transient detection mechanism can be configured to raise an interrupt when the magnitude of the high pass filtered data is greater than a user definable threshold. The TRANSIENT_CFG register is used to enable the transient interrupt generation mechanism for each of the 3 axes (X, Y, Z) of acceleration. 0x2B TRANSIENT_ CFG Register (Read/Write) Bit 7 — Bit 6 — Bit 5 — Bit 4 — Bit 3 ELE Bit 2 ZTEFE Bit 1 YTEFE Bit 0 XTEFE Table 38. TRANSIENT_ CFG Description ELE Transient event flag is latched into the TRANSIENT_SRC register. Reading of the TRANSIENT_SRC register clears the event flag. Default value: 0. 0: event flag latch disabled; 1: Event flag latch enabled ZTEFE Event flag enable on Z-axis. Default value: 0. 0: Event detection disabled; 1: Event detection Enabled YTEFE Event flag enable on Y-axis. Default value: 0. 0: Event detection disabled; 1: Event detection Enabled XTEFE Event flag enable on X-axis. Default value: 0. 0: Event detection disabled; 1: Event detection Enabled 0x2C: TRANSIENT_SRC Transient Source Register The transient source register is read to determine the source of an interrupt. When the ELE bit is set in Register0x2B the “EA” event Active bit in the source register is latched. The other bits in the source register are not latched. The source register must be read immediately following the interrupt to determine the axes the event occurred on. The interrupt for the transient event is cleared by reading the status register. 0x2C TRANSIENT_SRC Register (Read Only) Bit 7 — Bit 6 — Bit 5 — Bit 4 — Bit 3 EA Bit 2 ZTRANSE Bit 1 YTRANSE Bit 0 XTRANSE MMA8450Q Sensors Freescale Semiconductor, Inc. 33 Table 39. TRANSIENT_SRC Description Event Active Flag. Default value: 0. 0: No event flag asserted; 1: one or more event flag has been asserted. EA ZTRANSE Z transient event. Default value: 0. 0: No Z event detected, 1: Z event detected YTRANSE Y transient event. Default value: 0. 0: No Y event detected, 1: Y event detected XTRANSE X transient event. Default value: 0. 0: No X event detected, 1: X event detected 0x2D: TRANSIENT_THS Transient Threshold Register The TRANSIENT_THS register sets the threshold limit for the high pass filtered acceleration. The value in the TRANSIENT_THS register corresponds to a g value which is compared against the values of OUT_X_DELTA, OUT_Y_DELTA, and OUT_Z_DELTA. If the acceleration exceeds the threshold limit an event flag is raised and an interrupt is generated if interrupts are enabled. 0x2D TRANSIENT_THS Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DBCNTM THS6 THS5 THS4 THS3 THS2 THS1 THS0 Table 40. TRANSIENT_THS Description DBCNTM Debounce counter mode selection. Default value: 0. 0: increments or decrements debounce; 1: increments or clears counter THS[6:0] Transient Threshold: Default value: 000_0000 The minimum threshold resolution is dependent on the selected acceleration g range and the threshold register has a range of 0 to 127. Therefore: • If the selected acceleration g range is 8g mode (FS = 11), the minimum threshold resolution is 0.063g/LSB. The maximum is 8g. • If the selected acceleration g range is 4g mode (FS = 10), the minimum threshold resolution is 0.0315g/LSB. The maximum is 4g. • If the selected acceleration g range is 2g mode (FS = 01), the minimum threshold resolution is 0.01575g/LSB. The maximum is 2g. • The DBCNTM bit behaves in the same manner described previously for the Motion/Freefall 1. 0x2E: TRANSIENT_COUNT Transient Debounce Register The TRANSIENT_COUNT sets the minimum number of debounce counts continuously matching the condition where the unsigned value of OUT_X_DELTA or OUT_Y_DELTA or OUT_Z_DELTA register is greater than the user specified value of TRANSIENT_THS. 0x2E TRANSIENT_COUNT Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D7 D6 D5 D4 D3 D2 D1 D0 Table 41. TRANSIENT_COUNT Description D[7-0] Count value. Default value: 0000_0000. The time step for the Transient detection debounce counter is set by the value of the system ODR. Table 42. TRANSIENT_COUNT Relationship with the ODR Output Data Rate (Hz) Step Duration Range 400 2.5 ms 2.5 ms – 0.637s 200 5 ms 5 ms – 1.275s 100 10 ms 10 ms – 2.55s 50 20 ms 20 ms – 5.1s 12.5 80 ms 80 ms – 20.4s 1.56 640 ms 640 ms – 163s An ODR of 100 Hz and a TRANSIENT_COUNT value of 15 would result in a debounce response time of 150 ms. MMA8450Q 34 Sensors Freescale Semiconductor, Inc. 6.6 Tap Detection Registers For more details of how to configure the tap detection and sample code please refer to Freescale application note, AN3919. The tap detection registers are referred to as “Pulse”. 0x2F: PULSE_CFG Pulse Configuration Register This register configures the event flag for the tap detection for enabling/disabling the detection of a single and double pulse on each of the axes. 0x2F PULSE_CFG Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DPA ELE ZDPEFE ZSPEFE YDPEFE YSPEFE XDPEFE XSPEFE Table 43. PULSE_CFG Description DPA Double Pulse Abort. 0: Double Pulse detection is not aborted if the start of a pulse is detected during the time period specified by the PULSE_LTCY register. 1: Setting the DPA bit momentarily suspends the double tap detection if the start of a pulse is detected during the time period specified by the PULSE_LTCY register and the pulse ends before the end of the time period specified by the PULSE_LTCY register. ELE Pulse event flags are latched into the PULSE_SRC register. Reading of the PULSE_SRC register clears the event flag. Default value: 0. 0: Event flag latch disabled; 1: Event flag latch enabled ZDPEFE Event flag enable on double pulse event on Z-axis. Default value: 0. 0: Event detection disabled; 1: Event detection enabled ZSPEFE Event flag enable on single pulse event on Z-axis. Default value: 0. 0: Event detection disabled; 1: Event detection enabled YDPEFE Event flag enable on double pulse event on Y-axis. Default value: 0. 0: Event detection disabled; 1: Event detection enabled YSPEFE Event flag enable on single pulse event on Y-axis. Default value: 0. 0: Event detection disabled; 1: Event detection enabled XDPEFE Event flag enable on double pulse event on X-axis. Default value: 0. 0: Event detection disabled; 1: Event detection enabled XSPEFE Event flag enable on single pulse event on X-axis. Default value: 0. 0: Event detection disabled; 1: Event detection enabled 0x30: PULSE_SRC Pulse Source Register This register indicates a double or single pulse event has occurred. The corresponding axis and event must be enabled in Register 0x2F for the event to be seen in the source register. The interrupt for the pulse event is cleared by reading the status register. 0x30 PULSE_SRC Register (Read Only) Bit 7 — Bit 6 EA Bit 5 ZDPE Bit 4 ZSPE Bit 3 YDPE Bit 2 YSPE Bit 1 XDPE Bit 0 XSPE Table 44. TPULSE_SRC Description EA Event Active Flag. Default value: 0 0: no event flag has been asserted; 1: one or more events have been asserted ZDPE Double pulse on Z-axis event. Default value: 0. 0: no event detected; 1: Double Z event detected ZSPE Single pulse on Z-axis event. Default value: 0. 0: no event detected; 1: Single Z event detected YDPE Double pulse on Y-axis event. Default value: 0. 0: no event detected; 1: Double Y event detected YSPE Single pulse on Y-axis event. Default value: 0. 0: no event detected; 1: Single Y event detected XDPE Double pulse on X-axis event. Default value: 0. 0: no event detected; 1: Double X event detected XSPE Single pulse on X-axis event. Default value: 0. 0: no event detected; 1: Single X event detected MMA8450Q Sensors Freescale Semiconductor, Inc. 35 0x31 - 0x33: PULSE_THSX, Y, Z Pulse Threshold for X, Y & Z Registers The pulse threshold can be set separately for the X, Y and Z axes. The threshold values range from 0 to 31 counts with steps of 0.258g/LSB at a fixed 8g acceleration range, thus the minimum resolution is always fixed at 0.258g/LSB irrespective of the selected g range. The PULSE_THSX, PULSE_THSY and PULSE_THSZ registers define the threshold which is used by the system to start the pulse detection procedure. The threshold value is expressed over 5-bits as an unsigned number. 0x31 PULSE_THSX Register (Read/Write) Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 THSX4 Bit 3 THSX3 Bit 2 THSX2 Bit 1 THSX1 Bit 0 THSX0 Bit 2 THSY2 Bit 1 THSY1 Bit 0 THSY0 Table 45. PULSE_THSX Description THSX4, THSX0 Pulse Threshold on X-axis. Default value: 0_0000. 0x32 PULSE_THSY Register (Read/Write) Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 THSY4 Bit 3 THSY3 Table 46. PULSE_THSY Description THSY4, THSY0 Pulse Threshold on Y-axis. Default value: 0_0000. 0x33 PULSE_THSZ Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 THSZ4 THSZ3 THSZ2 THSZ1 THSZ0 Table 47. PULSE_THSZ Description THSZ4, THSZ0 Pulse Threshold on Z-axis. Default value: 0_0000. 0x34: PULSE_TMLT Pulse Time Window 1 Register 0x34 PULSE_TMLT Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Tmlt7 Tmlt6 Tmlt5 Tmlt4 Tmlt3 Tmlt2 Tmlt1 Tmlt0 The bits Tmlt7 through Tmlt0 define the maximum time interval that can elapse between the start of the acceleration on the selected axis exceeding the specified threshold and the end when the acceleration on the selected axis must go below the specified threshold to be considered a valid pulse. The minimum time step for the pulse time limit is defined in Table 48. Maximum time for a given ODR is the minimum time step at the given power mode multiplied by 255. The time steps available are dependent on whether the device is in Normal Power mode or in Low Power mode. Notice in the table below that the time step is twice as long in Low Power mode. Table 48. Time Step for PULSE Time Limit at ODR and Power Mode Output Data Rate (Hz) Step at Normal Mode Step at Low Power Mode 400 0.625 ms 1.25 ms 200 1.25 ms 2.5 ms 100 2.5 ms 5.0 ms 50 5 ms 10 ms 12.5 5 ms 10 ms 1.56 5 ms 10 ms Therefore an ODR setting of 400 Hz with normal power mode would result in a maximum pulse time limit of (0.625 ms * 255) ≥ 159 ms. MMA8450Q 36 Sensors Freescale Semiconductor, Inc. 0x35: PULSE_LTCY Pulse Latency Timer Register 0x35 PULSE_LTCY Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Ltcy7 Ltcy6 Ltcy5 Ltcy4 Ltcy3 Ltcy2 Ltcy1 Ltcy0 The bits Ltcy7 through Ltcy0 define the time interval that starts after the first pulse detection. During this time interval, all pulses are ignored. Note: This timer must be set for single pulse and for double pulse. The minimum time step for the pulse latency is defined in Table 49. The maximum time is the time step at the ODR and Power Mode multiplied by 255. Notice that the time step is twice the duration if the device is operating in Low Power mode, as shown below. Table 49. Time Step for PULSE Latency at ODR and Power Mode Output Data Rate (Hz) Step at Normal Mode Step at Low Power Mode 400 1.25 ms 2.5 ms 200 2.5 ms 5.0 ms 100 5.0 ms 20 ms 50 10 ms 20 ms 12.5 10 ms 20 ms 1.56 10 ms 20 ms 0x36: PULSE_WIND Second Pulse Time Window Register 0x36 PULSE_WIND Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Wind7 Wind6 Wind5 Wind4 Wind3 Wind2 Wind1 Wind0 The bits Wind7 through Wind0 define the maximum interval of time that can elapse after the end of the latency interval in which the start of the second pulse event must be detected provided the device has been configured for double pulse detection. The detected second pulse width must be shorter than the time limit constraints specified by the PULSE_TMLT register, but the end of the double pulse need not finish within the time specified by the PULSE_WIND register. The minimum time step for the pulse window is defined in Table 50. The maximum time is the time step at the ODR and Power Mode multiplied by 255. Table 50. Time Step for PULSE Detection Window at ODR and Power Mode 6.7 Output Data Rate (Hz) Step at Normal Mode Step at Low Power Mode 400 1.25 ms 2.5 ms 200 2.5 ms 5.0 ms 100 5.0 ms 20 ms 50 10 ms 20 ms 12.5 10 ms 20 ms 1.56 10 ms 20 ms Auto-Sleep Registers For additional information on how to configure the device for the Auto-Sleep/Wake feature, refer to AN3921. 0x37: ASLP_COUNT Auto-Sleep Inactivity Timer Register The ASLP_COUNT register sets the minimum time period of inactivity required to change current ODR value from the value specified in the DR[2:0] to ASLP_RATE (Reg 0x38) value provided the SLPE bit is set to a logic ‘1’ in the CTRL_REG2 register. 0x37 ASLP_COUNT Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D7 D6 D5 D4 D3 D2 D1 D0 Table 51. ASLP_COUNT Description D[7-0] Duration value. Default value: 0000 0000 MMA8450Q Sensors Freescale Semiconductor, Inc. 37 D7-D0 defines the minimum duration time to change current ODR value from DR to ASLP_RATE. Time step and maximum value depend on the ODR chosen (see Table 52). Table 52. ASLP_COUNT Relationship with ODR Output Data Rate (ODR) Duration Step 400 0 to 81s 320 ms 200 0 to 81s 320 ms 100 0 to 81s 320 ms 50 0 to 81s 320 ms 12.5 0 to 81s 320 ms 1.56 0 to 162s 640 ms In order to wake the device, the desired function or functions must be enabled and set to “Wake From Sleep”. All enabled functions will still function in sleep mode at the sleep ODR. Only the functions that have been selected for “Wake From Sleep” will wake the device. MMA8450Q has 6 functions that can be used to keep the sensor from falling asleep namely, Transient, Orientation, Tap, Motion/FF1 and Motion/FF2 and the FIFO. One or more of these functions can be enabled. In order to wake the device, functions are provided namely, Transient, Orientation, Tap, and the two Motion/Freefall. Note that the FIFO does not wake the device. The Auto-Wake/Sleep interrupt does not affect the wake/sleep, nor does the data ready interrupt. The FIFO gate (bit 7) in Register 0x3A, when set, will hold the last data in the FIFO before transitioning to a different ODR. After the buffer is flushed, it will accept new sample data at the current ODR. See Register 0x3A for the wake from sleep bits. If the Auto-Sleep bit is disabled, then the device can only toggle between Standby and Wake Mode by writing to the FS0 and FS1 bits in Register 0x38 CTRL_REG1. If Auto-Sleep interrupt is enabled, transitioning from Active mode to Auto-Sleep mode and vice versa generates an interrupt. 0x38: CTRL_REG1 System Control 1 Register 0x38 CTRL_REG1 Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ASLP_RATE1 ASLP_RATE0 0 DR2 DR1 DR0 FS1 FS0 Table 53. CTRL_REG1 Description ASLP_RATE [1:0] This register configures the Auto-Wake sample frequency when the device is in Sleep Mode. See Table 54 for more information. DR[2:0] Data rate selection. Default value: 000 FS[1:0] Full Scale selection. Default value: 00 (00: Standby mode; 01: active mode ±2g; 10: active mode ±4g; 11: active mode ±8g) Table 54. Sleep Mode Poll Rate Description ASLP_RATE1 ASLP_RATE0 Frequency (Hz) 0 0 50 0 1 25 1 0 12.5 1 1 1.56 It is important to note that when the device is in Auto-Sleep mode, the system ODR and the data rate for all the system functional blocks are overwritten by the data rate set by the ASLP_RATE field in Register 0x38. DR[2:0] bits select the output data rate (ODR) for acceleration samples. The default value is 000 for a data rate of 400 Hz. Table 55. System Output Data Rate Selection DR2 DR1 DR0 Output Data Rate (ODR) Time Between Data Samples 0 0 0 400 Hz 2.5 ms 0 0 1 200 Hz 5 ms MMA8450Q 38 Sensors Freescale Semiconductor, Inc. Table 55. System Output Data Rate Selection 0 1 0 100 Hz 10 ms 0 1 1 50 Hz 20 ms 1 0 0 12.5 Hz 80 ms 1 0 1 1.563 Hz 640 ms FS[1:0] bits select between standby mode and active mode. The default value is 00 for standby mode. Table 56. Full Scale Selection FS1 FS0 Mode g Range 0 0 Standby — 0 1 Active ±2g 1 0 Active ±4g 1 1 Active ±8g 0x39: CTRL_REG2 System Control 2 Register 0x39 CTRL_REG2 Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ST BOOT 0 0 0 0 SLPE MODS Table 57. CTRL_REG2 Description ST BOOT Self-Test Enable. Default value: 0. 0: Self-Test disabled; 1: Self-Test enabled Reboot device content (Software Reset). Default value: 0. 0: device reboot disabled; 1: device reboot enabled. SLPE(1) Auto-Sleep enable. Default value: 0. 0: Auto-Sleep is not enabled; 1: Auto-Sleep is enabled. MODS Low power mode / Normal mode selection. Default value: 0. 0: normal mode; 1: low power mode. 1. When SLPE = 1, the transitioning between sleep mode and wake mode results in a FIFO flush and a reset of internal functional block counters. All functional block status information are preserve except otherwise stated. See Table 58 for more information about the FIFO_GATE bit in CTRL_REG3 register. ST bit activates the Self-Test function. When ST is set to one, an output change will occur to the device outputs (refer to Table 2 and Table 3) thus allowing host application to check the functionality of the entire signal chain. BOOT bit is used to activate the software reset. The Boot mechanism can be enabled in STANDBY and ACTIVE mode. When the Boot bit is enabled the Boot mechanism resets all functional block registers and loads the respective internal registers with default NVM values. The system will automatically transition to standby mode if not already in standby mode before the software reset (re-BOOT process) can occur. Note: The I2C communication system is reset to avoid accidental corrupted data access. 0x3A: CTRL_REG3 Interrupt Control Register 0x3A CTRL_REG3 Register (Read/Write) Bit 7 Bit 6 Bit 5 FIFO_GATE WAKE_TRANS WAKE_LNDPRT Bit 4 Bit 3 Bit 2 WAKE_PULSE WAKE_FF_MT_1 WAKE_FF_MT_2 Bit 1 Bit 0 IPOL PP_OD MMA8450Q Sensors Freescale Semiconductor, Inc. 39 Table 58. CTRL_REG3 Description 0: FIFO gate is bypassed. FIFO is flushed upon the system mode transitioning from wake-to-sleep mode or from sleep-towake mode. 1: The FIFO input buffer is blocked when transitioning from “wake-to-sleep” mode or from “sleep-to-wake” mode until the FIFO is flushed. Although the system transitions from “wake-to-sleep” or from “sleep-to-wake” the contents of the FIFO buffer are preserved, new data samples are ignored until the FIFO is emptied by the host application. If the FIFO_GATE bit is set to logic 1 and the FIFO buffer is not emptied before the arrival of the next sample, then the FGERR bit in the SYS_MOD register (0x14) will be asserted. The FGERR bit remains asserted as long as the FIFO buffer remains un-emptied. Emptying the FIFO buffer clears the FGERR bit in the SYS_MOD register. FIFO_GATE WAKE_TRANS WAKE_LNDPRT WAKE_PULSE 0: Transient function is bypassed in sleep mode 1: Transient function interrupt can wake up system 0: Orientation function is bypassed in sleep mode 1: Orientation function interrupt can wake up system 0: Pulse function is bypassed in sleep mode 1: Pulse function interrupt can wake up system WAKE_FF_MT_1 0: Freefall/Motion1 function is bypassed in sleep mode 1: Freefall/Motion1 function interrupt can wake up WAKE_FF_MT_2 0: Freefall/Motion2 function is bypassed in sleep mode 1: Freefall/Motion2 function interrupt can wake up system IPOL Interrupt polarity active high, or active low. Default value 0. 0: active low; 1: active high PP_OD Push-pull/Open Drain selection on interrupt pad. Default value 0. 0: push-pull; 1: open drain IPOL bit selects the polarity of the interrupt signal. When IPOL is ‘0’ any interrupt event will signalled with a logical 0. PP_OD bit configures the interrupt pin to Push-Pull or in Open Drain mode. The open drain configuration can be used for connecting multiple interrupt signals on the same interrupt line. 0x3B: CTRL_REG4 Register (Read/Write) 0x3B CTRL_REG4 Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 INT_EN_ASLP INT_EN_FIFO INT_EN_TRANS INT_EN_LNDPRT INT_EN_PULSE INT_EN_FF_MT_1 INT_EN_FF_MT_2 INT_EN_DRDY Table 59. interrupt Enable Register Description Interrupt Enable Description INT_EN_ASLP Interrupt Enable. Default value: 0. 0: Auto-Sleep/Wake interrupt disabled; 1: Auto-Sleep/Wake interrupt enabled. INT_EN_FIFO Interrupt Enable. Default value: 0. 0: FIFO interrupt disabled; 1: FIFO interrupt enabled. INT_EN_TRANS INT_EN_LNDPRT Interrupt Enable. Default value: 0. 0: Transient interrupt disabled; 1: Transient interrupt enabled. Interrupt Enable. Default value: 0. 0: Orientation (Landscape/Portrait) interrupt disabled. 1: Orientation (Landscape/Portrait) interrupt enabled. INT_EN_PULSE Interrupt Enable. Default value: 0. 0: Pulse Detection interrupt disabled; 1: Pulse Detection interrupt enabled INT_EN_FF_MT_1 Interrupt Enable. Default value: 0. 0: Freefall/Motion1 interrupt disabled; 1: Freefall/Motion1 interrupt enabled INT_EN_FF_MT_2 Interrupt Enable. Default value: 0. 0: Freefall/Motion2 interrupt disabled; 1: Freefall/Motion2 interrupt enabled INT_EN_DRDY Interrupt Enable. Default value: 0. 0: Data Ready interrupt disabled; 1: Data Ready interrupt enabled MMA8450Q 40 Sensors Freescale Semiconductor, Inc. The corresponding functional block interrupt enable bit allows the functional block to route its event detection flags to the system’s interrupt controller. The interrupt controller routes the enabled functional block interrupt to the INT1 or INT2 pin. 0x3C: CTRL_REG5 Interrupt Configuration Register 0x3C CTRL_REG5 Register (Read/Write) Bit 7 Bit 6 INT_CFG_ASLP INT_CFG_FIFO Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 INT_CFG_TRANS INT_CFG_LNDPRT INT_CFG_PULSE INT_CFG_FF_MT_1INT_CFG_FF_MT_2 INT_CFG_DRDY Table 60. Interrupt Configuration Register Description Interrupt Configuration INT_CFG_ASLP INT_CFG_FIFO INT_CFG_TRANS INT_CFG_LNDPRT INT_CFG_PULSE INT_CFG_FF_MT_1 INT_CFG_FF_MT_2 INT_CFG_DRDY Description INT1/INT2 Configuration. Default value: 0. 0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin INT1/INT2 Configuration. Default value: 0. 0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin INT1/INT2 Configuration. Default value: 0. 0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin INT1/INT2 Configuration. Default value: 0. 0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin INT1/INT2 Configuration. Default value: 0. 0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin INT1/INT2 Configuration. Default value: 0. 0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin INT1/INT2 Configuration. Default value: 0. 0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin INT1/INT2 Configuration. Default value: 0. 0: Interrupt is routed to INT2 pin; 1: Interrupt is routed to INT1 pin The system’s interrupt controller shown in Figure 10 uses the corresponding bit field in the CTRL_REG5 register to determine the routing table for the INT1 and INT2 interrupt pins. If the bit value is logic ‘0’ the functional block’s interrupt is routed to INT2, and if the bit value is logic ‘1’ then the interrupt is routed to INT1. One or more functions can assert an interrupt pin; therefore a host application responding to an interrupt should read the INT_SOURCE (0x15) register to determine the appropriate sources of the interrupt. 6.8 User Offset Correction Registers For more information on how to calibrate the 0g Offset refer to AN3916 Offset Calibration Using the MMA8450Q. The 2’s complement offset correction registers values are used to realign the Zero-g position of the X, Y, and Z-axis after device board mount. The resolution of the offset registers is 3.906 mg per LSB. The 2’s complement 8-bit value would result in an offset compensation range ±0.5g. 0x3D: OFF_X Offset Correction X Register 0x3D OFF_X Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D7 D6 D5 D4 D3 D2 D1 D0 Table 61. OFF_X Description D7-D0 X -axis offset trim LSB value. Default value: 0000_0000. 0x3E: OFF_Y Offset Correction Y Register 0x3E OFF_Y Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D7 D6 D5 D4 D3 D2 D1 D0 Table 62. OFF_Y Description D7-D0 Y-axis offset trim LSB value. Default value: 0000_0000. 0x3F: OFF_Z Offset Correction Z Register 0x3F OFF_Z Register (Read/Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 D7 D6 D5 D4 D3 D2 D1 D0 Table 63. OFF_Z Description D7-D0 Z-axis offset trim LSB value. Default value: 0000_0000. MMA8450Q Sensors Freescale Semiconductor, Inc. 41 Appendix A Table 64. MMA8450Q Register Map Reg Name Definition Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 00 STATUS Data Status R ZYXOW ZOW YOW XOW ZYXDR ZDR YDR XDR 01 OUT_X_MSB 8-bit X Data R XD11 XD10 XD9 XD8 XD7 XD6 XD5 XD4 02 OUT_Y_MSB 8-bit Y Data R YD11 YD10 YD9 YD8 YD7 YD6 YD5 YD4 03 OUT_Z_MSB 8-bit Z Data R ZD11 ZD10 ZD9 ZD8 ZD7 ZD6 ZD5 ZD4 04 STATUS Data Status R ZYXOW ZOW YOW XOW ZYXDR ZDR YDR XDR 05 OUT_X_LSB 12-bit X Data R 0 0 0 0 XD3 XD2 XD1 XD0 06 OUT_X_MSB 12-bit X Data R XD11 XD10 XD9 XD8 XD7 XD6 XD5 XD4 07 OUT_Y_LSB 12-bit Y Data R 0 0 0 0 YD3 YD2 YD1 YD0 08 OUT_Y_MSB 12-bit Y Data R YD11 YD10 YD9 YD8 YD7 YD6 YD5 YD4 09 OUT_Z_LSB 12-bit Z Data R 0 0 0 0 ZD3 ZD2 ZD1 ZD0 0A OUT_Z_MSB 12-bit Z Data R ZD11 ZD10 ZD9 ZD8 ZD7 ZD6 ZD5 ZD4 0B STATUS Data Status R ZYXOW ZOW YOW XOW ZYXDR ZDR YDR XDR 0C OUT_X_DELTA 8-bit Transient X Data R XD7 XD6 XD5 XD4 XD3 XD2 XD1 XD0 0D OUT_Y_DELTA 8-bit Transient Y Data R YD7 YD6 YD5 YD4 YD3 YD2 YD1 YD0 0E OUT_Z_DELTA 8-bit Transient Z Data R ZD7 ZD6 ZD5 ZD4 ZD3 ZD2 ZD1 ZD0 0F WHO_AM_I ID Register R — — — — — — — — 10 F_STATUS FIFO Status R F_OVF F_WMRK_FLAG F_CNT5 F_CNT4 F_CNT3 F_CNT2 F_CNT1 F_CNT0 11 F_8DATA 8-bit FIFO Data R XD11 XD10 XD9 XD8 XD7 XD6 XD5 XD4 12 F_12DATA 12-bit FIFO Data R 0 0 0 0 XD3 XD2 XD1 XD0 13 F_SETUP FIFO Setup R/W F_MODE1 F_MODE0 F_WMRK5 F_WMRK4 F_WMRK3 F_WMRK2 F_WMRK1 F_WMRK0 14 SYSMOD System Mode R PERR FGERR 0 0 0 0 SYSMOD1 SYSMOD0 15 INT_SOURCE Interrupt Status R SRC_ASLP SRC_FIFO SRC_TRANS SRC_LNDPRT SRC_PULSE SRC_FF_MT_1 SRC_FF_MT_2 SRC_DRDY 16 XYZ_DATA_CFG Data Config. R/W FDE 0 0 0 — ZDEFE YDEFE XDEFE 17 HP_FILTER_CUTOFF HP Filter Setting R/W 0 0 0 0 0 0 SEL1 SEL0 18 PL_STATUS PL Status R NEWLP LO - LAPO[2] LAPO[1] LAPO[0] BAFRO[1] BAFRO[0] 19 PL_PRE_STATUS Previous PL Status R - LO - LAPO[2] LAPO[1] LAPO[0] BAFRO[1] BAFRO[0] 1A PL_CFG PL Configuration R/W DBCNTM PL_EN - - - GOFF[2] GOFF[1] GOFF[0] 1B PL_COUNT PL Debounce R/W DBNCE[7] DBNCE[6] DBNCE[5] DBNCE[4] DBNCE[3] DBNCE [2] DBNCE [1] DBNCE [0] 1C PL_BF_ZCOMP PL Back/Front and Z Compensation R/W BKFR[1] BKFR[0] - - - ZLOCK[2] ZLOCK[1] ZLOCK[0] 1D PL_P_L_THS_REG1 Portrait-to-Landscape Threshold Setting 1 R/W P_L_THS[7] P_L_THS[6] P_L_THS[5] P_L_THS[4] P_L_THS[3] P_L_THS[2] P_L_THS[1] P_L_THS[0] 1E PL_P_L_THS_REG2 Portrait-to-Landscape Threshold Setting 2 R/W P_L_THS[7] P_L_THS[6] P_L_THS[5] P_L_THS[4] P_L_THS[3] P_L_THS[2] P_L_THS[1] P_L_THS[0] 1F PL_P_L_THS_REG3 Portrait-to-Landscape Threshold Setting 3 R/W P_L_THS[7] P_L_THS[6] P_L_THS[5] P_L_THS[4] P_L_THS[3] P_L_THS[2] P_L_THS[1] P_L_THS[0] 20 PL_L_P_THS_REG1 Landscape-to-Portrait Threshold Setting 1 R/W L_P_THS[7] L_P_THS[6] L_P_THS[5] L_P_THS[4] L_P_THS[3] L_P_THS[2] L_P_THS[1] L_P_THS[0] 21 PL_L_P_THS_REG2 Landscape-to-Portrait Threshold Setting21 R/W L_P_THS[7] L_P_THS[6] L_P_THS[5] L_P_THS[4] L_P_THS[3] L_P_THS[2] L_P_THS[1] L_P_THS[0] 22 PL_L_P_THS_REG3 Landscape-to-Portrait Threshold Setting 3 R/W L_P_THS[7] L_P_THS[6] L_P_THS[5] L_P_THS[4] L_P_THS[3] L_P_THS[2] L_P_THS[1] L_P_THS[0] 23 FF_MT_CFG_1 FF/Motion Config. 1 R/W ELE OAE ZHEFE ZLEFE YHEFE YLEFE XHEFE XLEFE 24 FF_MT_SRC_1 FF/Motion Source 1 R — EA ZHE ZLE YHE YLE XHE XLE 25 FF_MT_THS_1 FF/Motion Threshold 1 R/W DBCNTM THS6 THS5 THS4 THS3 THS2 THS1 THS0 26 FF_MT_COUNT_1 FF/Motion Debounce 1 R/W D7 D6 D5 D4 D3 D2 D1 D0 27 FF_MT_CFG_2 FF/Motion Config. 2 R/W ELE OAE ZHEFE ZLEFE YHEFE YLEFE XHEFE XLEFE 28 FF_MT_SRC_2 FF/Motion Source 2 R — EA ZHE ZLE YHE YLE XHE XLE MMA8450Q 42 Sensors Freescale Semiconductor, Inc. Table 64. MMA8450Q Register Map 29 FF_MT_THS_2 FF/Motion Threshold 2 R/W DBCNTM THS6 THS5 THS4 THS3 THS2 THS1 THS0 2A FF_MT_COUNT_2 FF/Motion Debounce 2 R/W D7 D6 D5 D4 D3 D2 D1 D0 2B TRANSIENT_CFG Transient Config. R/W — — — — ELE ZTEFE YTEFE XTEFE 2C TRANSIENT_SRC Transient Source R — — — — EA ZTRANSE YTRANSE XTRANSE 2D TRANSIENT_THS Transient Threshold R/W DBCNTM THS6 THS5 THS4 THS3 THS2 THS1 THS0 2E TRANSIENT_COUNT Transient Debounce R/W D7 D6 D5 D4 D3 D2 D1 D0 2F PULSE_CFG Pulse Config. R/W DPA ELE ZDPEFE ZSPEFE YDPEFE YSPEFE XDPEFE XSPEFE 30 PULSE_SRC Pulse Source R — EA ZDPE ZSPE YDPE YSPE XDPE XSPE 31 PULSE_THSX Pulse X Threshold R/W 0 0 0 THSX4 THSX3 THSX2 THSX1 THSX0 32 PULSE_THSY Pulse Y Threshold R/W 0 0 0 THSY4 THSY3 THSY2 THSY1 THSY0 33 PULSE_THSZ Pulse Z Threshold R/W 0 0 0 THSZ4 THSZ3 THSZ2 THSZ1 THSZ0 34 PULSE_TMLT Pulse First Timer R/W Tmlt7 Tmlt6 Tmlt5 Tmlt4 Tmlt3 Tmlt2 Tmlt1 Tmlt0 35 PULSE_LTCY Pulse Latency R/W Ltcy7 Ltcy6 Ltcy5 Ltcy4 Ltcy3 Ltcy2 Ltcy1 Ltcy0 36 PULSE_WIND Pulse 2nd Window R/W Wind7 Wind6 Wind5 Wind4 Wind3 Wind2 Wind1 Wind0 37 ASLP_COUNT Auto-Sleep Counter R/W D7 D6 D5 D4 D3 D2 D1 D0 38 CTRL_REG1 Control Reg 1 R/W ASLP_RATE1 ASLP_RATE0 0 DR2 DR1 DR0 FS1 FS0 39 CTRL_REG2 Control Reg 2 R/W ST RST 0 0 0 0 SLPE MODS 3A CTRL_REG3 Control Reg3 R/W (Wake Interrupts from Sleep) FIFO_GATE WAKE_TRANS WAKE_LNDPRT WAKE_PULSE WAKE_FF_MT_1 WAKE_FF_MT_2 IPOL PP_OD 3B CTRL_REG4 Control Reg4 R/W (Interrupt Enable Map) INT_EN_ASLP INT_EN_FIFO INT_EN_TRANS INT_EN_LNDPRT INT_EN_PULSE INT_EN_FF_MT_1 INT_EN_FF_MT_2 INT_EN_DRDY 3C CTRL_REG5 Control reg5 R/W (Interrupt Configuration) INT_CFG_ASLP INT_CFG_FIFO INT_CFG_TRANS INT_CFG_LNDPRT INT_CFG_PULSE 3D OFF_X X 8-bit offset D7 D6 D5 D4 D3 D2 D1 D0 3E OFF_Y Y 8-bit offset D7 D6 D5 D4 D3 D2 D1 D0 3F OFF_Z Z 8-bit offset D7 D6 D5 D4 D3 D2 D1 D0 INT_CFG_FF_MT_1 INT_CFG_FF_MT_2 INT_CFG_DRDY MMA8450Q Sensors Freescale Semiconductor, Inc. 43 Table 65. Accelerometer Output Data 12-bit Data Range ±2g Range ±4g Range ±8g 0111 1111 1111 1.999g +3.998g +7.996g 0111 1111 1110 1.998g +3.996g +7.992g — — — — 0000 0000 0001 0.001g +0.002g +0.004g 0000 0000 0000 0.000g 0.000g 0.000g 1111 1111 1111 -0.001g -0.002g -0.004g — — — — 1000 0000 0001 -1.999g -3.998g -7.996g 1000 0000 0000 -2.000g -4.000g -8.000g 8- bit Data Range ±2g Range ±4g Range ±8g 0111 1111 1.984g +3.968g +7.936g 0111 1110 1.968g +3.936g +7.872g — — — — 0000 0001 +0.016g +0.032g +0.064g 0000 0000 0.000g 0.000g 0.000g 1111 1111 -0.016g -0.032g -0.064g — — — — 1000 0001 -1.984g -3.968g -7.936g 1000 0000 -2.000g -4.000g -8.000g MMA8450Q 44 Sensors Freescale Semiconductor, Inc. Appendix B Figure 13. Distribution of Pre Board Mounted Devices Tested in Sockets (1 count = 3.9 mg) MMA8450Q Sensors Freescale Semiconductor, Inc. 45 Figure 14. Distribution of Post Board Mounted Devices (1 count = 3.9 mg) MMA8450Q 46 Sensors Freescale Semiconductor, Inc. Figure 15. 2g/4g/8g X-axis TCS (%/°C) MMA8450Q Sensors Freescale Semiconductor, Inc. 47 Figure 16. 2g/4g/8g Y-axis TCS (%/°C) MMA8450Q 48 Sensors Freescale Semiconductor, Inc. Figure 17. 2g/4g/8g Z-axis TCS (%/°C) MMA8450Q Sensors Freescale Semiconductor, Inc. 49 Figure 18. 2g/4g/8g X-axis TCO (mg/°C) MMA8450Q 50 Sensors Freescale Semiconductor, Inc. Figure 19. 2g/4g/8g Y-axis TCO (mg/°C) MMA8450Q Sensors Freescale Semiconductor, Inc. 51 Figure 20. 2g/4g/8g Z-axis TCO (mg/°C) MMA8450Q 52 Sensors Freescale Semiconductor, Inc. PACKAGE DIMENSIONS CASE 2077-02 ISSUE A 16-LEAD QFN MMA8450Q Sensors Freescale Semiconductor, Inc. 53 PACKAGE DIMENSIONS CASE 2077-02 ISSUE A 16-LEAD QFN MMA8450Q 54 Sensors Freescale Semiconductor, Inc. PACKAGE DIMENSIONS CASE 2077-02 ISSUE A 16-LEAD QFN MMA8450Q Sensors Freescale Semiconductor, Inc. 55 Revision History Revision Number Revision Date 9 02/01/2012 • Corrected Pin Diagram: Pin 8, callout from NC to EN. 9.1 04/13/2012 • Page 39, Corrected register name from 0x3C: CTRL_REG5 register to 0x3B: CTRL_REG4. • Updated case outline drawing from 2077-01, Issue 0 to 2077-02, Issue A. Description of Changes MMA8450Q 56 Sensors Freescale Semiconductor, Inc. How to Reach Us: Information in this document is provided solely to enable system and software Home Page: www.freescale.com implementers to use Freescale products. There are no express or implied copyright Web Support: http://www.freescale.com/support information in this document. licenses granted hereunder to design or fabricate any integrated circuits based on the Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm. Freescale, the Freescale logo, and the Energy Efficient Solutions logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Xtrinsic is a trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2012 Freescale Semiconductor, Inc. All rights reserved. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http:/www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. MMA8450Q Rev. 9.1 04/2012
MAXCAMOV10640# 价格&库存

很抱歉,暂时无法提供与“MAXCAMOV10640#”相匹配的价格&库存,您可以联系我们找货

免费人工找货