0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EBD21RD4ADNA-E

EBD21RD4ADNA-E

  • 厂商:

    ELPIDA

  • 封装:

  • 描述:

    EBD21RD4ADNA-E - 2GB Registered DDR SDRAM DIMM (256M words X72 bits, 2 Ranks) - Elpida Memory

  • 数据手册
  • 价格&库存
EBD21RD4ADNA-E 数据手册
DATA SHEET 2GB Registered DDR SDRAM DIMM EBD21RD4ADNA-E (256M words × 72 bits, 2 Ranks) Description The EBD21RD4ADNA is a 256M words × 72 bits, 2 ranks Double Data Rate (DDR) SDRAM Module, mounting 36 pieces of DDR SDRAM sealed in TCP package. Read and write operations are performed at the cross points of the CK and the /CK. This highspeed data transfer is realized by the 2-bit prefetchpipelined architecture. Data strobe (DQS) both for read and write are available for high speed and reliable data bus design. By setting extended mode register, the on-chip Delay Locked Loop (DLL) can be set enable or disable. This module provides high density mounting without utilizing surface mount technology. Decoupling capacitors are mounted beside each TCP on the module board. Note: Do not push the cover or drop the modules in order to avoid mechanical defects, which may result in electrical defects. Features • 184-pin socket type dual in line memory module (DIMM)  PCB height: 30.48mm  Lead pitch: 1.27mm  Lead-free • 2.5V power supply • Data rate: 333Mbps/266Mbps (max.) • 2.5 V (SSTL_2 compatible) I/O • Double Data Rate architecture; two data transfers per clock cycle • Bi-directional, data strobe (DQS) is transmitted /received with data, to be used in capturing data at the receiver • Data inputs and outputs are synchronized with DQS • 4 internal banks for concurrent operation (Components) • DQS is edge aligned with data for READs; center aligned with data for WRITEs • Differential clock inputs (CK and /CK) • DLL aligns DQ and DQS transitions with CK transitions • Commands entered on each positive CK edge; data referenced to both edges of DQS • Auto precharge option for each burst access • Programmable burst length: 2, 4, 8 • Programmable /CAS latency (CL): 2, 2.5 • Refresh cycles: (8192 refresh cycles /64ms)  7.8µs maximum average periodic refresh interval • 2 variations of refresh  Auto refresh  Self refresh • 1 piece of PLL clock driver, 1 piece of register driver and 1 piece of serial EEPROM (2k bits EEPROM) for Presence Detect (PD) Document No. E0606E10 (Ver. 1.0) Date Published October 2004 (K) Japan URL: http://www.elpida.com Elpida Memory,Inc. 2004 EBD21RD4ADNA-E Ordering Information Part number EBD21RD4ADNA-6B-E EBD21RD4ADNA-7A-E EBD21RD4ADNA-7B-E Data rate Mbps (max.) 333 266 266 Component JEDEC speed bin* (CL-tRCD-tRP) DDR333B (2.5-3-3) DDR266A (2-3-3) DDR266B (2.5-3-3) 1 Package 184-pin DIMM (lead-free) Contact pad Gold Mounted devices 512M bits DDR 2 SDRAM TCP* Notes: 1. Module /CAS latency = component CL + 1 2. Please refer to 512Mb DDR TSOP product datasheet (E0501E) for electrical characteristics. Pin Configurations Front side 1 pin 52 pin 53 pin 92 pin 93 pin Back side 144 pin 145 pin 184 pin Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Pin name VREF DQ0 VSS DQ1 DQS0 DQ2 VDD DQ3 NC /RESET VSS DQ8 DQ9 DQS1 VDD NC NC VSS DQ10 DQ11 CKE0 VDD DQ16 DQ17 DQS2 VSS A9 DQ18 Pin No. 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 Pin name DQS8 A0 CB2 VSS CB3 BA1 DQ32 VDD DQ33 DQS4 DQ34 VSS BA0 DQ35 DQ40 VDD /WE DQ41 /CAS VSS DQS5 DQ42 DQ43 VDD NC DQ48 DQ49 VSS Pin No. 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 Pin name VSS DQ4 DQ5 VDD DM0/DQS9 DQ6 DQ7 VSS NC NC NC VDD DQ12 DQ13 DM1/DQS10 VDD DQ14 DQ15 CKE1 VDD NC DQ20 A12 VSS DQ21 A11 DM2/DQS11 VDD Pin No. 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 Pin name VSS DM8/DQS17 A10 CB6 VDD CB7 VSS DQ36 DQ37 VDD DM4/DQS13 DQ38 DQ39 VSS DQ44 /RAS DQ45 VDD /CS0 /CS1 DM5/DQS14 VSS DQ46 DQ47 NC VDD DQ52 DQ53 Data Sheet E0606E10 (Ver. 1.0) 2 EBD21RD4ADNA-E Pin No. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Pin name A7 VDD DQ19 A5 DQ24 VSS DQ25 DQS3 A4 VDD DQ26 DQ27 A2 VSS A1 CB0 CB1 VDD Pin No. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 Pin name NC NC VDD DQS6 DQ50 DQ51 VSS VDDID DQ56 DQ57 VDD DQS7 DQ58 DQ59 VSS NC SDA SCL Pin No. 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 Pin name DQ22 A8 DQ23 VSS A6 DQ28 DQ29 VDD DM3/DQS12 A3 DQ30 VSS DQ31 CB4 CB5 VDD CK0 /CK0 Pin No. 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 Pin name NC VDD DM6/DQS15 DQ54 DQ55 VDD NC DQ60 DQ61 VSS DM7/DQS16 DQ62 DQ63 VDD SA0 SA1 SA2 VDDSPD Data Sheet E0606E10 (Ver. 1.0) 3 EBD21RD4ADNA-E Pin Description Pin name A0 to A12 BA0, BA1 DQ0 to DQ63 CB0 to CB7 /RAS /CAS /WE /CS0, /CS1 CKE0, CKE1 CK0 /CK0 DQS0 to DQS8 DM0 to DM8/DQS9 to DQS17 SCL SDA SA0 to SA2 VDD VDDSPD VREF VSS VDDID /RESET NC Function Address input Row address Column address Data input/output Check bit (Data input/output) Row address strobe command Column address strobe command Write enable Chip select Clock enable Clock input Differential clock input Input and output data strobe Input and output data strobe Clock input for serial PD Data input/output for serial PD Serial address input Power for internal circuit Power for serial EEPROM Input reference voltage Ground VDD identification flag Reset pin (forces register inputs low) No connection A0 to A12 A0 to A9, A11, A12 Bank select address Data Sheet E0606E10 (Ver. 1.0) 4 EBD21RD4ADNA-E Serial PD Matrix*1 Byte No. 0 1 2 3 4 5 6 7 8 9 Function described Number of bytes utilized by module manufacturer Total number of bytes in serial PD device Memory type Number of row address Number of column address Number of DIMM ranks Module data width Module data width continuation DDR SDRAM cycle time, CL = X -6B -7A, -7B 10 SDRAM access from clock (tAC) -6B -7A, -7B 11 12 13 14 15 16 17 18 19 20 21 22 23 DIMM configuration type Refresh rate/type Primary SDRAM width Error checking SDRAM width SDRAM device attributes: Minimum clock delay back-to-back column access SDRAM device attributes: Burst length supported SDRAM device attributes: Number of banks on SDRAM device SDRAM device attributes: /CAS latency SDRAM device attributes: /CS latency SDRAM device attributes: /WE latency SDRAM module attributes SDRAM device attributes: General Bit7 1 0 0 0 0 0 0 0 Bit6 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 Bit5 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 Bit4 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 Bit3 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 Bit2 0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 0 Bit1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 Bit0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 Hex value 80H 08H 07H 0DH 0CH 02H 48H 00H 04H 60H 75H 70H 75H 02H 82H 04H 04H 01H 0EH 04H 0CH 01H 02H 26H C0H 75H A0H 70H 75H 00H 00H 0.70ns* 0.75ns* 3 Comments 128 256 byte SDRAM DDR 13 12 2 72 bits 0 (+) SSTL 2.5V CL = 2.5* 3 Voltage interface level of this assembly 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0.70ns* 0.75ns* ECC 3 3 7.8 µs Self refresh ×4 ×4 1 CLK 2, 4, 8 4 2, 2.5 0 1 Registered ± 0.2V CL = 2* 3 Minimum clock cycle time at CLX - 0.5 0 -6B, -7A -7B 1 Maximum data access time (tAC) from clock at CLX - 0.5 0 -6B -7A, -7B 0 0 Minimum clock cycle time at CLX - 1 24 3 25 26 Maximum data access time (tAC) from 0 clock at CLX - 1 Data Sheet E0606E10 (Ver. 1.0) 5 EBD21RD4ADNA-E Byte No. 27 Function described Minimum row precharge time (tRP) -6B -7A, -7B 28 Minimum row active to row active delay (tRRD) -6B -7A, -7B 29 Minimum /RAS to /CAS delay (tRCD) -6B -7A, -7B 30 Minimum active to precharge time (tRAS) -6B -7A, -7B 31 32 Module rank density Address and command setup time before clock (tIS) -6B -7A, -7B 33 Bit7 0 0 0 0 0 0 0 0 0 0 1 Bit6 1 1 0 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 Bit5 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 Bit4 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 Bit3 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 Bit2 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 Bit1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 Bit0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 Hex value 48H 50H 30H 3CH 48H 50H 2AH 2DH 01H 75H 90H 75H 90H 45H 50H 45H 50H 00H 3CH 41H 48H 4BH 30H 2DH 32H 55H 75H 00H 00H Comments 18ns 20ns 12ns 15ns 18ns 20ns 42ns 45ns 2 ranks 1GB 0.75ns* 0.9ns* 3 3 Address and command hold time after clock (tIH) 0 -6B -7A, -7B 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Data input setup time before clock (tDS) -6B -7A, -7B Data input hold time after clock (tDH) -6B -7A, -7B Superset information Active command period (tRC) -6B -7A, -7B Auto refresh to active/ Auto refresh command cycle (tRFC) -6B -7A, -7B SDRAM tCK cycle max. (tCK max.) Dout to DQS skew -6B -7A, -7B Data hold skew (tQHS) -6B -7A, -7B Superset information SPD revision 0.75ns* 0.9ns* 3 3 34 0.45ns* 0.5ns* 3 3 35 0.45ns* 0.5ns* 3 3 36 to 40 41 Future use 60ns* 65ns* 72ns* 75ns* 12ns* 3 3 42 3 3 3 43 44 450ps* 500ps* 550ps* 750ps* 3 3 45 3 3 46 to 61 62 Future use Initial Data Sheet E0606E10 (Ver. 1.0) 6 EBD21RD4ADNA-E Byte No. 63 Function described Checksum for bytes 0 to 62 -6B -7A -7B Bit7 1 1 1 0 0 1 0 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 × × * 2 Bit6 1 0 0 1 1 1 0 × 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 × × Bit5 0 0 1 1 1 1 0 × 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 × × Bit4 1 0 1 1 1 1 0 × 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 × × Bit3 0 1 0 1 1 1 0 × 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 × × Bit2 1 0 1 1 1 1 0 × 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 × × Bit1 0 1 1 1 1 1 0 × 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 × × Bit0 0 1 0 1 1 0 0 × 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 × × Hex value D4H 8BH B6H 7FH 7FH FEH 00H ×× 45H 42H 44H 32H 31H 52H 44H 34H 41H 44H 4EH 41H 2DH 36H 37H 41H 42H 2DH 45H 20H 30H 20H ×× ×× Comments 212 139 182 64 65 66 67 to 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Manufacturer’s JEDEC ID code Manufacturer’s JEDEC ID code Manufacturer’s JEDEC ID code Manufacturer’s JEDEC ID code Manufacturing location Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number -6B -7A, -7B Module part number -7A -6B, -7B Module part number Module part number Module part number Revision code Revision code Manufacturing date Manufacturing date Module serial number Manufacturer specific data Elpida Memory * (ASCII-8bit code) E B D 2 1 R D 4 A D N A — 6 7 A B — E (Space) Initial (Space) Year code (HEX) Week code (HEX) 2 87 88 89 90 91 92 93 94 95 to 98 99 to 127 Notes: 1. All serial PD data are not protected. 0: Serial data, “driven Low”, 1: Serial data, “driven High“. 2. Bytes 95 through 98 are assembly serial number. 3. These specifications are defined based on component specification, not module. Data Sheet E0606E10 (Ver. 1.0) 7 EBD21RD4ADNA-E Block Diagram VSS /RCS1 /RCS0 RS DM0/DQS9 RS DQS0 4 RS RS DQS DQ /CS DM DQS DQ /CS DM DQ4 to DQ7 4 RS RS DQS DQ /CS DM DQS DQ /CS DM DQ0 to DQ3 DQS1 D0 /CS DM D18 /CS DM D9 /CS DM D27 /CS DM DM1/DQS10 4 RS RS DQS DQS 4 RS RS DQS DQS DQ8 to DQ11 DQS2 DQ D1 /CS DM DQ D19 /CS DM DQ12 to DQ15 DM2/DQS11 DQ D10 /CS DM DQ D28 /CS DM 4 RS RS DQS DQS 4 RS RS DQS DQS DQ16 to DQ19 DQS3 DQ D2 DQ D20 DQ20 to DQ23 DM3/DQS12 DQ D11 DQ D29 4 RS RS DQS /CS DM DQS /CS DM DQ28 to DQ31 4 RS RS DQS /CS DM DQS /CS DM DQ24 to DQ27 DQS4 DQ D3 /CS DM DQ D21 /CS DM DQ D12 /CS DM DQ D30 /CS DM DM4/DQS13 4 RS RS DQS DQS 4 RS RS DQS DQS DQ32 to DQ35 DQS5 DQ D4 /CS DM DQ D22 /CS DM DQ36 to DQ39 DM5/DQS14 DQ D13 /CS DM DQ D31 /CS DM 4 RS RS DQS DQS 4 RS RS DQS DQS DQ40 to DQ43 DQS6 DQ D5 /CS DM DQ D23 /CS DM DQ44 to DQ47 DM6/DQS15 DQ D14 /CS DM DQ D32 /CS DM 4 RS RS DQS DQS 4 RS RS DQS DQS DQ48 to DQ51 DQS7 DQ D6 /CS DM DQ D24 /CS DM DQ52 to DQ55 DM7/DQS16 DQ D15 /CS DM DQ D33 /CS DM 4 RS RS DQS DQS 4 RS RS DQS DQS DQ56 to DQ59 DQS8 DQ D7 /CS DM DQ D25 /CS DM DQ60 to DQ63 DM8/DQS17 DQ D16 /CS DM DQ D34 /CS DM 4 RS DQS DQS 4 RS DQS DQS CB0 to CB3 RS RS RS RS RS RS RS RS RS DQ D8 DQ D26 CB4 to CB7 DQ D17 DQ D35 /CS0 /CS1 BA0 to BA1 A0 to A12 /RAS /CAS CKE0 CKE1 /WE /RCS0 -> /CS: SDRAMs D0 to D17 R E G I S T E R /RCS1 -> /CS: SDRAMs D18 to D35 RBA0 to RBA1 -> BA0 to BA1: SDRAMs D0 to D35 RA0 to RA12 -> A0 to A12: SDRAMs D0 to D35 /RRAS -> /RAS: SDRAMs D0 to D35 /RCAS -> /CAS: SDRAMs D0 to D35 RCKE0 -> CKE: SDRAMs D0 to D17 RCKE1 -> CKE: SDRAMs D18 to D35 /RWE -> /WE: SDRAMs D0 to D35 /RESET * D0 to D35: 512M bits DDR SDRAM TCP U0: 2k bits EEPROM RS: 22Ω (DQ, DQS) PLL: CDCV857 Register: SSTV32852 Serial PD SCL SCL SDA SDA U0 A0 A1 A2 PCK /PCK VDD VREF D0 to D35 D0 to D35 D0 to D35 VSS VDDID open SA0 SA1 SA2 Notes: 1. The SDA pull-up resistor is required due to the open-drain/open-collector output. 2. The SCL pull-up resistor is recommended because of the normal SCL line inacitve "high" state. CK0, /CK0 PLL* Note: Wire per Clock loading table/Wiring diagrams. Data Sheet E0606E10 (Ver. 1.0) 8 EBD21RD4ADNA-E Differential Clock Net Wiring (CK0, /CK0) 0ns (nominal) SDRAM stack 120Ω PLL OUT1 CK0 120Ω IN SDRAM stack /CK0 240Ω 120Ω C Feedback OUT'N' Register Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl be set to 0 ns (nominal). 2. Input, output and feedback clock lines are terminated from line to line as shown, and not from line to ground. 3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired in a similar manner. 4. Termination resistors for feedback path clocks are located after the pins of the PLL. Data Sheet E0606E10 (Ver. 1.0) 9 EBD21RD4ADNA-E Electrical Specifications • All voltages are referenced to VSS (GND). Absolute Maximum Ratings Parameter Voltage on any pin relative to VSS Supply voltage relative to VSS Short circuit output current Power dissipation Operating ambient temperature Storage temperature Symbol VT VDD IOS PT TA Tstg Value –1.0 to +3.6 –1.0 to +3.6 50 18 0 to +70 –55 to +125 Unit V V mA W °C °C 1 Note Note:1. DDR SDRAM component specification Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. DC Operating Conditions (TA = 0 to +70°C) (DDR SDRAM Component Specification) Parameter Supply voltage Symbol VDD,VDDQ VSS Input reference voltage Termination voltage Input high voltage Input low voltage Input voltage level, CK and /CK inputs Input differential cross point voltage, CK and /CK inputs Input differential voltage, CK and /CK inputs VREF VTT VIH (DC) VIL (DC) VIN (DC) VIX (DC) VID (DC) min. 2.3 0 0.49 × VDDQ VREF – 0.04 VREF + 0.15 –0.3 –0.3 0.5 × VDDQ − 0.2V 0.36 typ. 2.5 0 0.50 × VDDQ VREF — — — 0.5 × VDDQ — max. 2.7 0 0.51 × VDDQ VREF + 0.04 VDDQ + 0.3 VREF – 0.15 VDDQ + 0.3 Unit V V V V V V V 2 3 4 Notes 1 0.5 × VDDQ + 0.2V V VDDQ + 0.6 V 5, 6 Notes: 1. 2. 3. 4. 5. 6. VDDQ must be lower than or equal to VDD. VIH is allowed to exceed VDD up to 3.6V for the period shorter than or equal to 5ns. VIL is allowed to outreach below VSS down to –1.0V for the period shorter than or equal to 5ns. VIN (DC) specifies the allowable DC execution of each differential input. VID (DC) specifies the input differential voltage required for switching. VIH (CK) min assumed over VREF + 0.18V, VIL (CK) max assumed under VREF – 0.18V if measurement. Data Sheet E0606E10 (Ver. 1.0) 10 EBD21RD4ADNA-E DC Characteristics 1 (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V) Parameter Operating current (ACTV-PRE) Operating current (ACTV-READ-PRE) Symbol IDD0 IDD1 Grade -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B -6B -7A, -7B max. 4160 3700 4880 4330 395 385 1370 1180 1010 1000 1010 1000 2630 2260 5600 4870 5600 4870 7220 6670 430 420 10280 8650 Unit mA mA mA mA mA mA mA mA mA mA mA mA Test condition CKE ≥ VIH, tRC = tRC (min.) CKE ≥ VIH, BL = 4, CL = 3.5, tRC = tRC (min.) CKE ≤ VIL CKE ≥ VIH, /CS ≥ VIH DQ, DQS, DM = VREF CKE ≥ VIH, /CS ≥ VIH DQ, DQS, DM = VREF CKE ≤ VIL CKE ≥ VIH, /CS ≥ VIH tRAS = tRAS (max.) CKE ≥ VIH, BL = 2, CL = 3.5 CKE ≥ VIH, BL = 2, CL = 3.5 tRFC = tRFC (min.), Input ≤ VIL or ≥ VIH Input ≥ VDD – 0.2 V Input ≤ 0.2 V BL = 4 Notes 1, 2, 9 1, 2, 5 4 4, 5 4, 10 3 3, 5, 6 1, 2, 5, 6 1, 2, 5, 6 Idle power down standby current IDD2P Floating idle Standby current Quiet idle Standby current Active power down standby current Active standby current Operating current (Burst read operation) Operating current (Burst write operation) Auto refresh current Self refresh current Operating current (4 banks interleaving) IDD2F IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5 IDD6 IDD7A 1, 5, 6, 7 Notes. 1. These IDD data are measured under condition that DQ pins are not connected. 2. One bank operation. 3. One bank active. 4. All banks idle. 5. Command/Address transition once per one cycle. 6. DQ, DM, DQS transition twice per one cycle. 7. 4 banks active. Only one bank is running at tRC = tRC (min.) 8. The IDD data on this table are measured with regard to tCK = tCK (min.) in general. 9. Command/Address transition once per one every two clock cycles. 10. Command/Address stable at ≥ VIH or ≤ VIL. Data Sheet E0606E10 (Ver. 1.0) 11 EBD21RD4ADNA-E DC Characteristics 2 (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V) (DDR SDRAM Component Specification) Parameter Input leakage current Output leakage current Output high current Output low current Symbol ILI ILO IOH IOL min. –2 –5 –15.2 15.2 max. 2 5 — — Unit µA µA mA mA Test condition VDD ≥ VIN ≥ VSS VDDQ ≥ VOUT ≥ VSS VOUT = 1.95V VOUT = 0.35V Note Pin Capacitance (TA = 25°C, VDD, VDDQ = 2.5V ± 0.2V) Parameter Input capacitance Input capacitance Data and DQS input/output capacitance Symbol CI1 CI2 CO Pins Address, /RAS, /CAS, /WE, /CS, CKE CK, /CK DQ, DQS, CB, DM max. 20 20 20 Unit pF pF pF Notes 1, 3 1, 3 1, 2, 3 Notes: 1. These parameters are measured on conditions: f = 100MHz, VOUT = VDDQ/2, ∆VOUT = 0.2V. 2. Dout circuits are disabled. 3. This parameter is sampled and not 100% tested. AC Characteristics (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V) (DDR SDRAM Component Specification) -6B Parameter Clock cycle time (CL = 2) (CL = 2.5) CK high-level width CK low-level width CK half period Symbol tCK tCK tCH tCL tHP min. 7.5 6 0.45 0.45 min (tCH, tCL) –0.7 max. 12 12 0.55 0.55 — 0.7 0.6 0.45 -7A min. 7.5 7.5 0.45 0.45 min (tCH, tCL) –0.75 –0.75 — max 12 12 0.55 0.55 — 0.75 0.75 0.5 -7B min. 10 7.5 0.45 0.45 min (tCH, tCL) –0.75 –0.75 — max. 12 12 0.55 0.55 — 0.75 0.75 0.5 Unit Notes ns ns tCK tCK tCK ns ns ns ns ns ns ns tCK tCK ns ns ns ns tCK 8 8 7 5, 11 6, 11 2, 11 2, 11 3 10 DQ output access time from CK, /CK tAC DQS output access time from CK, /CK DQS to DQ skew tDQSCK –0.6 tDQSQ — DQ/DQS output hold time from DQS tQH Data hold skew factor Data-out high-impedance time from CK, /CK Data-out low-impedance time from CK, /CK Read preamble Read postamble DQ and DM input setup time DQ and DM input hold time DQ and DM input pulse width Write preamble setup time Write preamble tQHS tHZ tLZ tRPRE tRPST tDS tDH tDIPW tHP – tQHS — — –0.7 –0.7 0.9 0.4 0.45 0.45 1.75 0.55 0.7 0.7 1.1 0.6 — — — — — tHP – tQHS — — –0.75 –0.75 0.9 0.4 0.5 0.5 1.75 0 0.25 0.75 0.75 0.75 1.1 0.6 — — — — — tHP – tQHS — — –0.75 –0.75 0.9 0.4 0.5 0.5 1.75 0 0.25 0.75 0.75 0.75 1.1 0.6 — — — — — tWPRES 0 tWPRE 0.25 Data Sheet E0606E10 (Ver. 1.0) 12 EBD21RD4ADNA-E -6B Parameter Write postamble Symbol tWPST min. 0.4 0.75 0.2 0.2 0.35 0.35 0.75 0.75 2.2 2 42 60 72 18 18 tRCD min. 12 15 (tWR/tCK)+ (tRP/tCK) 1 — — 7.8 — — — — 120000 — — — — — — — max. 0.6 1.25 — — — -7A min. 0.4 0.75 0.2 0.2 0.35 0.35 0.9 0.9 2.2 2 45 65 75 20 20 tRCD min. 15 15 max 0.6 1.25 — — — — — — — — 120000 — — — — — — — -7B min. 0.4 0.75 0.2 0.2 0.35 0.35 0.9 0.9 2.2 2 45 65 75 20 20 tRCD min. 15 15 max. 0.6 1.25 — — — — — — — — 120000 — — — — — — — Unit Notes tCK tCK tCK tCK tCK tCK ns ns ns tCK ns ns ns ns ns ns ns ns tCK tCK µs 13 8 8 7 9 Write command to first DQS latching tDQSS transition DQS falling edge to CK setup time DQS falling edge hold time from CK DQS input high pulse width DQS input low pulse width tDSS tDSH tDQSH tDQSL Address and control input setup time tIS Address and control input hold time Mode register set command cycle time Active to Active/Auto refresh command period Auto refresh to Active/Auto refresh command period Active to Read/Write delay tIH Address and control input pulse width tIPW tMRD Active to Precharge command period tRAS tRC tRFC tRCD Precharge to active command period tRP Active to Autoprecharge delay Active to active command period Write recovery time Auto precharge write recovery and precharge time Internal write to Read command delay Average periodic refresh interval tRAP tRRD tWR tDAL tWTR tREF (tWR/tCK)+ — (tRP/tCK) 1 — — 7.8 (tWR/tCK)+ — (tRP/tCK) 1 — — 7.8 Notes: 1. All the AC parameters listed in this data sheet is component specifications. For AC testing conditions, refer to the corresponding component data sheet. 2. This parameter defines the signal transition delay from the cross point of CK and /CK. The signal transition is defined to occur when the signal level crossing VTT. 3. The timing reference level is VTT. 4. Output valid window is defined to be the period between two successive transition of data out or DQS (read) signals. The signal transition is defined to occur when the signal level crossing VTT. 5. tHZ is defined as DOUT transition delay from Low-Z to High-Z at the end of read burst operation. The timing reference is cross point of CK and /CK. This parameter is not referred to a specific DOUT voltage level, but specify when the device output stops driving. 6. tLZ is defined as DOUT transition delay from High-Z to Low-Z at the beginning of read operation. This parameter is not referred to a specific DOUT voltage level, but specify when the device output begins driving. 7. Input valid windows is defined to be the period between two successive transition of data input or DQS (write) signals. The signal transition is defined to occur when the signal level crossing VREF. 8. The timing reference level is VREF. 9. The transition from Low-Z to High-Z is defined to occur when the device output stops driving. A specific reference voltage to judge this transition is not given. 10. tCK (max.) is determined by the lock range of the DLL. Beyond this lock range, the DLL operation is not assured. 11. tCK = tCK (min.) when these parameters are measured. Otherwise, absolute minimum values of these values are 10% of tCK. Data Sheet E0606E10 (Ver. 1.0) 13 EBD21RD4ADNA-E 12. VDD is assumed to be 2.5V ± 0.2V. VDD power supply variation per cycle expected to be less than 0.4V/400 cycle. 13. tDAL = (tWR/tCK)+(tRP/tCK) For each of the terms above, if not already an integer, round to the next highest integer. Example: For –7A Speed at CL = 2.5, tCK = 7.5ns, tWR = 15ns and tRP= 20ns, tDAL = (15ns/7.5ns) + (20ns/7.5ns) = (2) + (3) tDAL = 5 clocks Timing Parameter Measured in Clock Cycle for Registered DIMM Number of clock cycle tCK Parameter Symbol 6ns min. 4 + BL/2 BL/2 2 + BL/2 — 3 — 3.5 — 3 + BL/2 — 3.5 2 2 2 12 200 1 1 max. — — — — — — 3.5 — — — 3.5 — — — — — 1 — 7.5ns min. 3 + BL/2 BL/2 2 + BL/2 2 3 3 3.5 2 + BL/2 3 + BL/2 3 3.5 2 1 2 10 200 1 1 max. — — — — — 3 3.5 — — 3 3.5 — — — — — 1 — Unit tCK tCK tCK tCK tCK tCK tCK tCK tCK tCK tCK tCK tCK tCK tCK tCK tCK tCK Write to pre-charge command delay (same bank) tWPD Read to pre-charge command delay (same bank) tRPD Write to read command delay (to input all data) Burst stop command to write command delay (CL = 3) (CL = 3.5) Burst stop command to DQ High-Z (CL = 3) (CL = 3.5) Read command to write command delay (to output all data) (CL = 3) (CL = 3.5) Pre-charge command to High-Z (CL = 3) (CL = 3.5) Write command to data in latency Write recovery Register set command to active or register set command Self refresh exit to non-read command Self refresh exit to read command Power down entry Power down exit to command input tWRD tBSTW tBSTW tBSTZ tBSTZ tRWD tRWD tHZP tHZP tWCD tWR tMRD tSNR tSRD tPDEN tPDEX Data Sheet E0606E10 (Ver. 1.0) 14 EBD21RD4ADNA-E Pin Functions CK, /CK (input pin) The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS and the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK. /CS (input pin) When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal operations (bank active, burst operations, etc.) are held. /RAS, /CAS, and /WE (input pins) These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels. See "Command operation". A0 to A12 (input pins) Row address (AX0 to AX12) is determined by the A0 to the A12 level at the cross point of the CK rising edge and the VREF level in a bank active command cycle. Column address (AY0 to AY9, AY11, AY12) is loaded via theA0 to the A9, the A11 and the A12 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This column address becomes the starting address of a burst operation. A10 (AP) (input pin) A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled. BA0, BA1 (input pin) BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See Bank Select Signal Table) [Bank Select Signal Table] BA0 Bank 0 Bank 1 Bank 2 Bank 3 L H L H BA1 L L H H Remark: H: VIH. L: VIL. CKE (input pin) CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the CKE is driven low and exited when it resumes to high. The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold time tIH. DQ, CB (input and output pins) Data are input to and output from these pins. DQS (input and output pin) DQS provide the read data strobes (as output) and the write data strobes (as input). Data Sheet E0606E10 (Ver. 1.0) 15 EBD21RD4ADNA-E VDD (power supply pins) 2.5V is applied. (VDD is for the internal circuit.) VDDSPD (power supply pin) 2.5V is applied (For serial EEPROM). VSS (power supply pin) Ground is connected. /RESET (input pin) LVCMOS reset input. When /RESET is low, all registers are reset and all outputs are low. Detailed Operation Part and Timing Waveforms Refer to the EDD5104ADTA-E, EDD5108ADTA-E, EDD5116ADTA-E datasheet (E0501E). DM pins of component device fixed to VSS level on the module board. DIMM /CAS latency = component CL + 1 for registered type. Data Sheet E0606E10 (Ver. 1.0) 16 EBD21RD4ADNA-E Physical Outline Unit: mm 133.35 ± 0.15 128.95 4.80 (64.48) (DATUM -A-) 2.30 Component area (Front) 1 B 64.77 49.53 A 92 1.27 ± 0.10 2 – φ 2.50 ± 0.10 10.00 93 184 4.00 min Component area (Back) 4.00 ± 0.10 R 2.00 3.00 min Detail A 2.50 ± 0.20 Detail B 1.27 typ 6.62 0.20 ± 0.15 (DATUM -A-) 2.175 R 0.90 6.35 3.80 1.00 ± 0.05 1.80 ± 0.10 Note: Tolerance on all dimensions ± 0.13 unless otherwise specified. ECA-TS2-0058-01 Data Sheet E0606E10 (Ver. 1.0) 17 30.48 ± 0.15 17.80 EBD21RD4ADNA-E CAUTION FOR HANDLING MEMORY MODULES When handling or inserting memory modules, be sure not to touch any components on the modules, such as the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these components to prevent damaging them. In particular, do not push module cover or drop the modules in order to protect from mechanical defects, which would be electrical defects. When re-packing memory modules, be sure the modules are not touching each other. Modules in contact with other modules may cause excessive mechanical stress, which may damage the modules. MDE0202 N OTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR MOS DEVICES Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it, when once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. MOS devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. MOS devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor MOS devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES No connection for CMOS devices input pins can be a cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. The unused pins must be handled in accordance with the related specifications. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Power-on does not necessarily define initial status of MOS devices. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the MOS devices with reset function have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. MOS devices are not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for MOS devices having reset function. CME0107 Data Sheet E0606E10 (Ver. 1.0) 18 EBD21RD4ADNA-E The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc. Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. [Product applications] Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, users are instructed to contact Elpida Memory's sales office before using the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury. [Product usage] Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product. [Usage environment] This product is not designed to be resistant to electromagnetic waves or radiation. This product must be used in a non-condensing environment. If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations. If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations. M01E0107 Data Sheet E0606E10 (Ver. 1.0) 19
EBD21RD4ADNA-E 价格&库存

很抱歉,暂时无法提供与“EBD21RD4ADNA-E”相匹配的价格&库存,您可以联系我们找货

免费人工找货