0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
5M240ZM100C4N

5M240ZM100C4N

  • 厂商:

    ENPIRION(英特尔)

  • 封装:

    BGA

  • 描述:

    IC CPLD 192MC 7.5NS 100MBGA

  • 数据手册
  • 价格&库存
5M240ZM100C4N 数据手册
3. DC and Switching Characteristics for MAX V Devices May 2011 MV51003-1.2 MV51003-1.2 This chapter covers the electrical and switching characteristics for MAX® V devices. Electrical characteristics include operating conditions and power consumptions. This chapter also describes the timing model and specifications. You must consider the recommended DC and switching conditions described in this chapter to maintain the highest possible performance and reliability of the MAX V devices. This chapter contains the following sections: ■ “Operating Conditions” on page 3–1 ■ “Power Consumption” on page 3–10 ■ “Timing Model and Specifications” on page 3–10 Operating Conditions Table 3–1 through Table 3–15 on page 3–9 list information about absolute maximum ratings, recommended operating conditions, DC electrical characteristics, and other specifications for MAX V devices. Absolute Maximum Ratings Table 3–1 lists the absolute maximum ratings for the MAX V device family. Table 3–1. Absolute Maximum Ratings for MAX V Devices (Note 1), (2) Symbol Parameter Conditions With respect to ground Minimum Maximum Unit –0.5 2.4 V VCCINT Internal supply voltage VCCIO I/O supply voltage — –0.5 4.6 V VI DC input voltage — –0.5 4.6 V IOUT DC output current, per pin — –25 25 mA TSTG Storage temperature No bias –65 150 °C TAMB Ambient temperature Under bias (3) –65 135 °C TJ Junction temperature TQFP and BGA packages under bias — 135 °C Notes to Table 3–1: (1) For more information, refer to the Operating Requirements for Altera Devices Data Sheet. (2) Conditions beyond those listed in Table 3–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device. (3) For more information about “under bias” conditions, refer to Table 3–2. © 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. MAX V Device Handbook May 2011 Subscribe 3–2 Chapter 3: DC and Switching Characteristics for MAX V Devices Operating Conditions Recommended Operating Conditions Table 3–2 lists recommended operating conditions for the MAX V device family. Table 3–2. Recommended Operating Conditions for MAX V Devices Symbol VCCINT (1) VCCIO (1) Parameter Conditions Minimum Maximum Unit MAX V devices 1.71 1.89 V Supply voltage for I/O buffers, 3.3-V operation — 3.00 3.60 V Supply voltage for I/O buffers, 2.5-V operation — 2.375 2.625 V Supply voltage for I/O buffers, 1.8-V operation — 1.71 1.89 V Supply voltage for I/O buffers, 1.5-V operation — 1.425 1.575 V Supply voltage for I/O buffers, 1.2-V operation — 1.14 1.26 V (2), (3), (4) –0.5 4.0 V — 0 VCCIO V 0 85 °C Industrial range –40 100 °C Extended range (5) –40 125 °C 1.8-V supply voltage for internal logic and in-system programming (ISP) VI Input voltage VO Output voltage Commercial range TJ Operating junction temperature Notes to Table 3–2: (1) MAX V device ISP and/or user flash memory (UFM) programming using JTAG or logic array is not guaranteed outside the recommended operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, Altera recommends that you read back the UFM contents and verify it against the intended write data). (2) The minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns. (3) During transitions, the inputs may overshoot to the voltages shown below based on the input duty cycle. The DC case is equivalent to 100% duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX V Devices in Multi-Voltage Systems chapter. Max. Duty Cycle VIN 4.0 V 100% (DC) 4.1 V 90% 4.2 V 50% 4.3 V 30% 4.4 V 17% 4.5 V 10% (4) All pins, including the clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are powered. (5) For the extended temperature range of 100 to 125°C, MAX V UFM programming (erase/write) is only supported using the JTAG interface. UFM programming using the logic array interface is not guaranteed in this range. MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Operating Conditions 3–3 Programming/Erasure Specifications Table 3–3 lists the programming/erasure specifications for the MAX V device family. Table 3–3. Programming/Erasure Specifications for MAX V Devices Parameter Block Erase and reprogram cycles Minimum Typical Maximum Unit UFM — — 1000 (1) Cycles Configuration flash memory (CFM) — — 100 Cycles Note to Table 3–3: (1) This value applies to the commercial grade devices. For the industrial grade devices, the value is 100 cycles. DC Electrical Characteristics Table 3–4 lists DC electrical characteristics for the MAX V device family. Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 1 of 2) Symbol Parameter Conditions Minimum Typical Maximum Unit II Input pin leakage current VI = VCCIO max to 0 V (2) –10 — 10 µA IOZ Tri-stated I/O pin leakage current VO = VCCIO max to 0 V (2) –10 — 10 µA 5M40Z, 5M80Z, 5M160Z, and 5M240Z (Commercial grade) (4), (5) — 25 90 µA 5M240Z (Commercial grade) (6) — 27 96 µA 5M40Z, 5M80Z, 5M160Z, and 5M240Z (Industrial grade) (5), (7) — 25 139 µA 5M240Z (Industrial grade) (6) — 27 152 µA 5M570Z (Commercial grade) (4) — 27 96 µA 5M570Z (Industrial grade) (7) — 27 152 µA ICCSTANDBY VCCINT supply current (standby) (3) VSCHMITT (8) Hysteresis for Schmitt trigger input (9) ICCPOWERUP VCCINT supply current during power-up (10) RPULLUP May 2011 Value of I/O pin pull-up resistor during user mode and ISP Altera Corporation 5M1270Z and 5M2210Z — 2 — mA VCCIO = 3.3 V — 400 — mV VCCIO = 2.5 V — 190 — mV MAX V devices — — 40 mA VCCIO = 3.3 V (11) 5 — 25 k VCCIO = 2.5 V (11) 10 — 40 k VCCIO = 1.8 V (11) 25 — 60 k VCCIO = 1.5 V (11) 45 — 95 k VCCIO = 1.2 V (11) 80 — 130 k MAX V Device Handbook 3–4 Chapter 3: DC and Switching Characteristics for MAX V Devices Operating Conditions Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 2 of 2) Symbol Parameter Conditions Minimum Typical Maximum Unit IPULLUP I/O pin pull-up resistor current when I/O is unprogrammed — — — 300 µA CIO Input capacitance for user I/O pin — — — 8 pF CGCLK Input capacitance for dual-purpose GCLK/user I/O pin — — — 8 pF Notes to Table 3–4: (1) Typical values are for TA = 25°C, VCCINT = 1.8 V and VCCIO = 1.2, 1.5, 1.8, 2.5, or 3.3 V. (2) This value is specified for normal device operation. The value may vary during power-up. This applies to all VCCIO settings (3.3, 2.5, 1.8, 1.5, and 1.2 V). (3) VI = ground, no load, and no toggling inputs. (4) Commercial temperature ranges from 0°C to 85°C with the maximum current at 85°C. (5) Not applicable to the T144 package of the 5M240Z device. (6) Only applicable to the T144 package of the 5M240Z device. (7) Industrial temperature ranges from –40°C to 100°C with the maximum current at 100°C. (8) This value applies to commercial and industrial range devices. For extended temperature range devices, the V SCHMITT typical value is 300 mV for VCCIO = 3.3 V and 120 mV for VCCIO = 2.5 V. (9) The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards. (10) This is a peak current value with a maximum duration of tCONFIG time. (11) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO. MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Operating Conditions 3–5 Output Drive Characteristics Figure 3–1 shows the typical drive strength characteristics of MAX V devices. Figure 3–1. Output Drive Characteristics of MAX V Devices (Note 1) MAX V Output Drive IOH Characteristics (Maximum Drive Strength) MAX V Output Drive IOL Characteristics (Maximum Drive Strength) 60 70 3.3-V VCCIO 3.3-V VCCIO Typical IO Output Current (mA) Typical I O Output Current (mA) 60 50 2.5-V VCCIO 40 30 1.8-V VCCIO 20 1.5-V VCCIO 10 50 40 2.5-V VCCIO 30 1.8-V VCCIO 20 1.5-V VCCIO 10 1.2-V VCCIO (2) 1.2-V VCCIO (2) 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 MAX V Output Drive IOL Characteristics (Minimum Drive Strength) MAX V Output Drive IOH Characteristics (Minimum Drive Strength) 30 35 3.3-V VCCIO Typical IO Output Current (mA) Typical IO Output Current (mA) 3.3-V VCCIO 30 25 2.5-V VCCIO 20 15 1.8-V VCCIO 10 1.5-V VCCIO 5 3.5 Voltage (V) Voltage (V) 0 25 20 2.5-V VCCIO 15 1.8-V VCCIO 10 1.5-V VCCIO 5 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 Voltage (V) 1.5 2.0 2.5 3.0 3.5 Voltage (V) Notes to Figure 3–1: (1) The DC output current per pin is subject to the absolute maximum rating of Table 3–1 on page 3–1. (2) 1.2-V VCCIO is only applicable to the maximum drive strength. I/O Standard Specifications Table 3–5 through Table 3–13 on page 3–8 list the I/O standard specifications for the MAX V device family. Table 3–5. 3.3-V LVTTL Specifications for MAX V Devices Symbol Parameter Conditions Minimum Maximum Unit VCCIO I/O supply voltage — 3.0 3.6 V VIH High-level input voltage — 1.7 4.0 V VIL Low-level input voltage — –0.5 0.8 V VOH High-level output voltage IOH = –4 mA (1) 2.4 — V VOL Low-level output voltage IOL = 4 mA (1) — 0.45 V Note to Table 3–5: (1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter. May 2011 Altera Corporation MAX V Device Handbook 3–6 Chapter 3: DC and Switching Characteristics for MAX V Devices Operating Conditions Table 3–6. 3.3-V LVCMOS Specifications for MAX V Devices Symbol Parameter Conditions Minimum Maximum Unit VCCIO I/O supply voltage — 3.0 3.6 V VIH High-level input voltage — 1.7 4.0 V VIL Low-level input voltage — –0.5 0.8 V VCCIO – 0.2 — V — 0.2 V VOH High-level output voltage VCCIO = 3.0, IOH = –0.1 mA (1) VOL Low-level output voltage VCCIO = 3.0, IOL = 0.1 mA (1) Note to Table 3–6: (1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter. Table 3–7. 2.5-V I/O Specifications for MAX V Devices Symbol Parameter Conditions Minimum Maximum Unit VCCIO I/O supply voltage — 2.375 2.625 V VIH High-level input voltage — 1.7 4.0 V VIL Low-level input voltage — –0.5 0.7 V IOH = –0.1 mA (1) 2.1 — V IOH = –1 mA (1) 2.0 — V IOH = –2 mA (1) 1.7 — V IOL = 0.1 mA (1) — 0.2 V IOL = 1 mA (1) — 0.4 V IOL = 2 mA (1) — 0.7 V High-level output voltage VOH VOL Low-level output voltage Note to Table 3–7: (1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter. Table 3–8. 1.8-V I/O Specifications for MAX V Devices Symbol Parameter Conditions Minimum Maximum Unit VCCIO I/O supply voltage — 1.71 1.89 V VIH High-level input voltage — 0.65 × VCCIO 2.25 (2) V VIL Low-level input voltage — –0.3 0.35 × VCCIO V VOH High-level output voltage IOH = –2 mA (1) VCCIO – 0.45 — V VOL Low-level output voltage IOL = 2 mA (1) — 0.45 V Notes to Table 3–8: (1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter. (2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter in Table 3–2 on page 3–2. MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Operating Conditions 3–7 Table 3–9. 1.5-V I/O Specifications for MAX V Devices Symbol Parameter Conditions Minimum Maximum Unit VCCIO I/O supply voltage — 1.425 1.575 V VIH High-level input voltage — 0.65 × VCCIO VCCIO + 0.3 (2) V VIL Low-level input voltage — –0.3 0.35 × VCCIO V VOH High-level output voltage IOH = –2 mA (1) 0.75 × VCCIO — V VOL Low-level output voltage IOL = 2 mA (1) — 0.25 × VCCIO V Notes to Table 3–9: (1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter. (2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter in Table 3–2 on page 3–2. Table 3–10. 1.2-V I/O Specifications for MAX V Devices Symbol Parameter Conditions Minimum Maximum Unit VCCIO I/O supply voltage — 1.14 1.26 V VIH High-level input voltage — 0.8 × VCCIO VCCIO + 0.3 V VIL Low-level input voltage — –0.3 0.25 × VCCIO V VOH High-level output voltage IOH = –2 mA (1) 0.75 × VCCIO — V VOL Low-level output voltage IOL = 2 mA (1) — 0.25 × VCCIO V Note to Table 3–10: (1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX V Device Architecture chapter. Table 3–11. 3.3-V PCI Specifications for MAX V Devices (Note 1) Symbol Parameter Conditions Minimum Typical Maximum Unit VCCIO I/O supply voltage — 3.0 3.3 3.6 V VIH High-level input voltage — 0.5 × VCCIO — VCCIO + 0.5 V VIL Low-level input voltage — –0.5 — 0.3 × VCCIO V VOH High-level output voltage IOH = –500 µA 0.9 × VCCIO — — V VOL Low-level output voltage IOL = 1.5 mA — — 0.1 × VCCIO V Note to Table 3–11: (1) 3.3-V PCI I/O standard is only supported in Bank 3 of the 5M1270Z and 5M2210Z devices. Table 3–12. LVDS Specifications for MAX V Devices (Note 1) Symbol Parameter Conditions Minimum Typical Maximum Unit VCCIO I/O supply voltage — 2.375 2.5 2.625 V VOD Differential output voltage swing — 247 — 600 mV VOS Output offset voltage — 1.125 1.25 1.375 V Note to Table 3–12: (1) Supports emulated LVDS output using a three-resistor network (LVDS_E_3R). May 2011 Altera Corporation MAX V Device Handbook 3–8 Chapter 3: DC and Switching Characteristics for MAX V Devices Operating Conditions Table 3–13. RSDS Specifications for MAX V Devices (Note 1) Symbol Parameter Conditions Minimum Typical Maximum Unit VCCIO I/O supply voltage — 2.375 2.5 2.625 V VOD Differential output voltage swing — 247 — 600 mV VOS Output offset voltage — 1.125 1.25 1.375 V Note to Table 3–13: (1) Supports emulated RSDS output using a three-resistor network (RSDS_E_3R). Bus Hold Specifications Table 3–14 lists the bus hold specifications for the MAX V device family. Table 3–14. Bus Hold Specifications for MAX V Devices VCCIO Level Parameter Conditions 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V Min Max Min Max Min Max Min Max Min Max Unit Low sustaining current VIN > VIL (maximum) 10 — 20 — 30 — 50 — 70 — µA High sustaining current VIN < VIH (minimum) –10 — –20 — –30 — –50 — –70 — µA Low overdrive current 0 V < VIN < VCCIO — 130 — 160 — 200 — 300 — 500 µA High overdrive current 0 V < VIN < VCCIO — –130 — –160 — –200 — –300 — –500 µA MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Operating Conditions 3–9 Power-Up Timing Table 3–15 lists the power-up timing characteristics for the MAX V device family. Table 3–15. Power-Up Timing for MAX V Devices Symbol Parameter Device 5M40Z 5M80Z 5M160Z 5M240Z (2) tCONFIG The amount of time from when minimum VCCINT is reached until the device enters user mode (1) 5M240Z (3) 5M570Z 5M1270Z (4) 5M1270Z (5) 5M2210Z Temperature Range Min Typ Max Unit Commercial and industrial — — 200 µs Extended — — 300 µs Commercial and industrial — — 200 µs Extended — — 300 µs Commercial and industrial — — 200 µs Extended — — 300 µs Commercial and industrial — — 200 µs Extended — — 300 µs Commercial and industrial — — 300 µs Extended — — 400 µs Commercial and industrial — — 300 µs Extended — — 400 µs Commercial and industrial — — 300 µs Extended — — 400 µs Commercial and industrial — — 450 µs Extended — — 500 µs Commercial and industrial — — 450 µs Extended — — 500 µs Notes to Table 3–15: (1) For more information about power-on reset (POR) trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX V Devices chapter. (2) Not applicable to the T144 package of the 5M240Z device. (3) Only applicable to the T144 package of the 5M240Z device. (4) Not applicable to the F324 package of the 5M1270Z device. (5) Only applicable to the F324 package of the 5M1270Z device. May 2011 Altera Corporation MAX V Device Handbook 3–10 Chapter 3: DC and Switching Characteristics for MAX V Devices Power Consumption Power Consumption You can use the Altera® PowerPlay Early Power Estimator and PowerPlay Power Analyzer to estimate the device power. f For more information about these power analysis tools, refer to the PowerPlay Early Power Estimator for Altera CPLDs User Guide and the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook. Timing Model and Specifications MAX V devices timing can be analyzed with the Altera Quartus® II software, a variety of industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 3–2. MAX V devices have predictable internal delays that allow you to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation. Figure 3–2. Timing Model for MAX V Devices Output and Output Enable Data Delay t R4 tIODR tIOE Data-In/LUT Chain User Flash Memory I/O Pin INPUT Input Routing Delay tDL t LOCAL I/O Input Delay t IN Logic Element LUT Delay t LUT Register Control Delay tC tCOMB t FASTIO tCO tSU tH tPRE tCLR Output Delay t OD t XZ t ZX I/O Pin From Adjacent LE t GLOB Global Input Delay Output Routing Delay t C4 Combinational Path Delay To Adjacent LE Register Delays Data-Out You can derive the timing characteristics of any signal path from the timing model and parameters of a particular device. You can calculate external timing parameters, which represent pin-to-pin timing delays, as the sum of the internal parameters. f For more information, refer to AN629: Understanding Timing in Altera CPLDs. MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–11 Preliminary and Final Timing This section describes the performance, internal, external, and UFM timing specifications. All specifications are representative of the worst-case supply voltage and junction temperature conditions. Timing models can have either preliminary or final status. The Quartus II software issues an informational message during the design compilation if the timing models are preliminary. Table 3–16 lists the status of the MAX V device timing models. Preliminary status means the timing model is subject to change. Initially, timing numbers are created using simulation results, process data, and other known parameters. These tests are used to make the preliminary numbers as close to the actual timing parameters as possible. Final timing numbers are based on actual device operation and testing. These numbers reflect the actual performance of the device under the worst-case voltage and junction temperature conditions. Table 3–16. Timing Model Status for MAX V Devices Device Final 5M40Z v 5M80Z v 5M160Z v 5M240Z v 5M570Z v 5M1270Z v 5M2210Z v Performance Table 3–17 lists the MAX V device performance for some common designs. All performance values were obtained with the Quartus II software compilation of megafunctions. Table 3–17. Device Performance for MAX V Devices (Part 1 of 2) Performance Resources Used Resource Used LE May 2011 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Design Size and Function 5M1270Z/ 5M2210Z Unit Mode LEs UFM Blocks C4 C5, I5 C4 C5, I5 16-bit counter (1) — 16 0 184.1 118.3 247.5 201.1 MHz 64-bit counter (1) — 64 0 83.2 80.5 154.8 125.8 MHz 16-to-1 multiplexer — 11 0 17.4 20.4 8.0 9.3 ns 32-to-1 multiplexer — 24 0 12.5 25.3 9.0 11.4 ns 16-bit XOR function — 5 0 9.0 16.1 6.6 8.2 ns 16-bit decoder with single address line — 5 0 9.2 16.1 6.6 8.2 ns Altera Corporation MAX V Device Handbook 3–12 Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications Table 3–17. Device Performance for MAX V Devices (Part 2 of 2) Performance Resources Used Resource Used UFM 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Design Size and Function 5M1270Z/ 5M2210Z Unit Mode LEs UFM Blocks C4 C5, I5 C4 C5, I5 512 × 16 None 3 1 10.0 10.0 10.0 10.0 MHz 512 × 16 SPI (2) 37 1 9.7 9.7 8.0 8.0 MHz 512 × 8 Parallel (3) 73 1 (4) (4) (4) (4) MHz 512 × 16 I2C (3) 142 1 100 (5) 100 (5) 100 (5) 100 (5) kHz Notes to Table 3–17: (1) This design is a binary loadable up counter. (2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of logic elements (LEs) used. (3) This design is configured for read-only operation. Read and write ability increases the number of LEs used. (4) This design is asynchronous. (5) The I2C megafunction is verified in hardware up to 100-kHz serial clock line rate. Internal Timing Parameters Internal timing parameters are specified on a speed grade basis independent of device density. Table 3–18 through Table 3–25 on page 3–19 list the MAX V device internal timing microparameters for LEs, input/output elements (IOEs), UFM blocks, and MultiTrack interconnects. f For more information about each internal timing microparameters symbol, refer to AN629: Understanding Timing in Altera CPLDs. Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 1 of 2) 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Symbol Parameter C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max tLUT LE combinational look-up table (LUT) delay — 1,215 — 2,247 — 742 — 914 ps tCOMB Combinational path delay — 243 — 309 — 192 — 236 ps tCLR LE register clear delay 401 — 545 — 309 — 381 — ps tPRE LE register preset delay 401 — 545 — 309 — 381 — ps tSU LE register setup time before clock 260 — 321 — 271 — 333 — ps tH LE register hold time after clock 0 — 0 — 0 — 0 — ps tCO LE register clock-to-output delay — 380 — 494 — 305 — 376 ps MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–13 Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 2 of 2) 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Symbol Parameter C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max tCLKHL Minimum clock high or low time 253 — 339 — 216 — 266 — ps tC Register control delay — 1,356 — 1,741 — 1,114 — 1,372 ps Table 3–19. IOE Internal Timing Microparameters for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Symbol Parameter C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max tFASTIO Data output delay from adjacent LE to I/O block — 170 — 428 — 207 — 254 ps tIN I/O input pad and buffer delay — 907 — 986 — 920 — 1,132 ps tGLOB (1) I/O input pad and buffer delay used as global signal pin — 2,261 — 3,322 — 1,974 — 2,430 ps tIOE Internally generated output enable delay — 530 — 1,410 — 374 — 460 ps tDL Input routing delay — 318 — 509 — 291 — 358 ps tOD (2) Output delay buffer and pad delay — 1,319 — 1,543 — 1,383 — 1,702 ps tXZ (3) Output buffer disable delay — 1,045 — 1,276 — 982 — 1,209 ps tZX (4) Output buffer enable delay — 1,160 — 1,353 — 1,303 — 1,604 ps Notes to Table 3–19: (1) Delay numbers for tGLOB differ for each device density and speed grade. The delay numbers for tGLOB, shown in Table 3–19, are based on a 5M240Z device target. (2) For more information about delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–34 on page 3–24 and Table 3–35 on page 3–25. (3) For more information about tXZ delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–22 on page 3–15 and Table 3–23 on page 3–15. (4) For more information about tZX delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–20 on page 3–14 and Table 3–21 on page 3–14. May 2011 Altera Corporation MAX V Device Handbook 3–14 Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications Table 3–20 through Table 3–23 list the adder delays for tZX and tXZ microparameters when using an I/O standard other than 3.3-V LVTTL with 16 mA drive strength. Table 3–20. tZX IOE Microparameter Adders for Fast Slew Rate for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Standard C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max 16 mA — 0 — 0 — 0 — 0 ps 8 mA — 72 — 74 — 101 — 125 ps 8 mA — 0 — 0 — 0 — 0 ps 4 mA — 72 — 74 — 101 — 125 ps 2.5-V LVTTL / LVCMOS 14 mA — 126 — 127 — 155 — 191 ps 7 mA — 196 — 197 — 545 — 671 ps 1.8-V LVTTL / LVCMOS 6 mA — 608 — 610 — 721 — 888 ps 3 mA — 681 — 685 — 2012 — 2477 ps 4 mA — 1162 — 1157 — 1590 — 1957 ps 2 mA — 1245 — 1244 — 3269 — 4024 ps 1.2-V LVCMOS 3 mA — 1889 — 1856 — 2860 — 3520 ps 3.3-V PCI 20 mA — 72 — 74 — –18 — –22 ps LVDS — — 126 — 127 — 155 — 191 ps RSDS — — 126 — 127 — 155 — 191 ps 3.3-V LVTTL 3.3-V LVCMOS 1.5-V LVCMOS Table 3–21. tZX IOE Microparameter Adders for Slow Slew Rate for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Standard C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max 16 mA — 5,951 — 6,063 — 6,012 — 5,743 ps 8 mA — 6,534 — 6,662 — 8,785 — 8,516 ps 8 mA — 5,951 — 6,063 — 6,012 — 5,743 ps 4 mA — 6,534 — 6,662 — 8,785 — 8,516 ps 2.5-V LVTTL / LVCMOS 14 mA — 9,110 — 9,237 — 10,072 — 9,803 ps 7 mA — 9,830 — 9,977 — 12,945 — 12,676 ps 1.8-V LVTTL / LVCMOS 6 mA — 21,800 — 21,787 — 21,185 — 20,916 ps 3 mA — 23,020 — 23,037 — 24,597 — 24,328 ps 4 mA — 39,120 — 39,067 — 34,517 — 34,248 ps 2 mA — 40,670 — 40,617 — 39,717 — 39,448 ps 1.2-V LVCMOS 3 mA — 69,505 — 70,461 — 55,800 — 55,531 ps 3.3-V PCI 20 mA — 6,534 — 6,662 — 35 — 44 ps 3.3-V LVTTL 3.3-V LVCMOS 1.5-V LVCMOS MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–15 Table 3–22. tXZ IOE Microparameter Adders for Fast Slew Rate for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Standard C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max — 0 — 0 — 0 — 0 ps 8 mA — –69 — –69 — –74 — –91 ps 8 mA — 0 — 0 — 0 — 0 ps 4 mA — –69 — –69 — –74 — –91 ps 2.5-V LVTTL / LVCMOS 14 mA — –7 — –10 — –46 — –56 ps 7 mA — –66 — –69 — –82 — –101 ps 1.8-V LVTTL / LVCMOS 6 mA — 45 — 37 — –7 — –8 ps 3 mA — 34 — 25 — 119 — 147 ps 4 mA — 166 — 155 — 339 — 418 ps 3.3-V LVTTL 3.3-V LVCMOS 1.5-V LVCMOS 16 mA 2 mA — 190 — 179 — 464 — 571 ps 1.2-V LVCMOS 3 mA — 300 — 283 — 817 — 1,006 ps 3.3-V PCI 20 mA — –69 — –69 — 80 — 99 ps LVDS — — –7 — –10 — –46 — –56 ps RSDS — — –7 — –10 — –46 — –56 ps Table 3–23. tXZ IOE Microparameter Adders for Slow Slew Rate for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Standard C4 5M1270Z/ 5M2210Z C5, I5 C4 Min Max Min Max Min 16 mA — 171 — 174 — 8 mA — 112 — 116 — 8 mA — 171 — 174 — 4 mA — 112 — 116 2.5-V LVTTL / LVCMOS 14 mA — 213 — 7 mA — 166 1.8-V LVTTL / LVCMOS 6 mA — 3 mA Unit C5, I5 Min Max 73 — –132 ps 758 — 553 ps 73 — –132 ps — 758 — 553 ps 213 — 32 — –173 ps — 166 — 714 — 509 ps 441 — 438 — 96 — –109 ps — 496 — 494 — 963 — 758 ps 4 mA — 765 — 755 — 238 — 33 ps 2 mA — 903 — 897 — 1,319 — 1,114 ps 1.2-V LVCMOS 3 mA — 1,159 — 1,130 — 400 — 195 ps 3.3-V PCI 20 mA — 112 — 116 — 303 — 373 ps 3.3-V LVTTL 3.3-V LVCMOS 1.5-V LVCMOS May 2011 Altera Corporation Max MAX V Device Handbook 3–16 Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 1 The default slew rate setting for MAX V devices in the Quartus II design software is “fast”. Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 1 of 2) 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Symbol Parameter C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max tACLK Address register clock period 100 — 100 — 100 — 100 — ns tASU Address register shift signal setup to address register clock 20 — 20 — 20 — 20 — ns tAH Address register shift signal hold to address register clock 20 — 20 — 20 — 20 — ns tADS Address register data in setup to address register clock 20 — 20 — 20 — 20 — ns tADH Address register data in hold from address register clock 20 — 20 — 20 — 20 — ns tDCLK Data register clock period 100 — 100 — 100 — 100 — ns tDSS Data register shift signal setup to data register clock 60 — 60 — 60 — 60 — ns tDSH Data register shift signal hold from data register clock 20 — 20 — 20 — 20 — ns tDDS Data register data in setup to data register clock 20 — 20 — 20 — 20 — ns tDDH Data register data in hold from data register clock 20 — 20 — 20 — 20 — ns tDP Program signal to data clock hold time 0 — 0 — 0 — 0 — ns tPB Maximum delay between program rising edge to UFM busy signal rising edge — 960 — 960 — 960 — 960 ns tBP Minimum delay allowed from UFM busy signal going low to program signal going low 20 — 20 — 20 — 20 — ns tPPMX Maximum length of busy pulse during a program — 100 — 100 — 100 — 100 µs MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–17 Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 2 of 2) 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Symbol Parameter C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max tAE Minimum erase signal to address clock hold time 0 — 0 — 0 — 0 — ns tEB Maximum delay between the erase rising edge to the UFM busy signal rising edge — 960 — 960 — 960 — 960 ns tBE Minimum delay allowed from the UFM busy signal going low to erase signal going low 20 — 20 — 20 — 20 — ns tEPMX Maximum length of busy pulse during an erase — 500 — 500 — 500 — 500 ms tDCO Delay from data register clock to data register output — 5 — 5 — 5 — 5 ns tOE Delay from OSC_ENA signal reaching UFM to rising clock of OSC leaving the UFM 180 — 180 — 180 — 180 — ns tRA Maximum read access time — 65 — 65 — 65 — 65 ns tOSCS Maximum delay between the OSC_ENA rising edge to the erase/program signal rising edge 250 — 250 — 250 — 250 — ns tOSCH Minimum delay allowed from the erase/program signal going low to OSC_ENA signal going low 250 — 250 — 250 — 250 — ns May 2011 Altera Corporation MAX V Device Handbook 3–18 Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications Figure 3–3 through Figure 3–5 show the read, program, and erase waveforms for UFM block timing parameters listed in Table 3–24. Figure 3–3. UFM Read Waveform ARShft tASU tACLK 9 Address Bits tAH ARClk tADH ARDin DRShft tADS tDSS DRClk tDCLK 16 Data Bits tDSH tDCO DRDin DRDout OSC_ENA Program Erase Busy Figure 3–4. UFM Program Waveform ARShft tASU ARClk 9 Address Bits tACLK tAH tADH ARDin DRShft tADS tDSS 16 Data Bits tDCLK tDSH DRClk DRDin DRDout tDDS tDDH tOSCS tOSCH OSC_ENA Program Erase tPB tBP Busy tPPMX MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–19 Figure 3–5. UFM Erase Waveform ARShft tASU tACLK 9 Address Bits ARClk tAH tADH ARDin tADS DRShft DRClk DRDin DRDout OSC_ENA tOSCS Program tOSCH Erase tEB Busy tBE tEPMX Table 3–25. Routing Delay Internal Timing Microparameters for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Routing C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max tC4 — 860 — 1,973 — 561 — 690 tR4 — 655 — 1,479 — 445 — 548 ps tLOCAL — 1,143 — 2,947 — 731 — 899 ps ps External Timing Parameters External timing parameters are specified by device density and speed grade. All external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the maximum drive strength and fast slew rate. For external I/O timing using standards other than LVTTL or for different drive strengths, use the I/O standard input and output delay adders in Table 3–32 on page 3–23 through Table 3–36 on page 3–25. f For more information about each external timing parameters symbol, refer to AN629: Understanding Timing in Altera CPLDs. May 2011 Altera Corporation MAX V Device Handbook 3–20 Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications Table 3–26 lists the external I/O timing parameters for the 5M40Z, 5M80Z, 5M160Z, and 5M240Z devices. Table 3–26. Global Clock External I/O Timing Parameters for the 5M40Z, 5M80Z, 5M160Z, and 5M240Z Devices (Note 1), (2) C4 Symbol Parameter C5, I5 Condition Unit Min Max Min Max tPD1 Worst case pin-to-pin delay through one LUT 10 pF — 7.9 — 14.0 ns tPD2 Best case pin-to-pin delay through one LUT 10 pF — 5.8 — 8.5 ns tSU Global clock setup time — 2.4 — 4.6 — ns tH Global clock hold time — 0 — 0 — ns tCO Global clock to output delay 10 pF 2.0 6.6 2.0 8.6 ns tCH Global clock high time — 253 — 339 — ps tCL Global clock low time — 253 — 339 — ps tCNT Minimum global clock period for 16-bit counter — 5.4 — 8.4 — ns fCNT Maximum global clock frequency for 16-bit counter — — 184.1 — 118.3 MHz Notes to Table 3–26: (1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency. (2) Not applicable to the T144 package of the 5M240Z device. Table 3–27 lists the external I/O timing parameters for the T144 package of the 5M240Z device. Table 3–27. Global Clock External I/O Timing Parameters for the 5M240Z Device (Note 1), (2) C4 Symbol Parameter C5, I5 Condition Unit Min Max Min Max tPD1 Worst case pin-to-pin delay through one LUT 10 pF — 9.5 — 17.7 ns tPD2 Best case pin-to-pin delay through one LUT 10 pF — 5.7 — 8.5 ns tSU Global clock setup time — 2.2 — 4.4 — ns tH Global clock hold time — 0 — 0 — ns tCO Global clock to output delay 10 pF 2.0 6.7 2.0 8.7 ns tCH Global clock high time — 253 — 339 — ps tCL Global clock low time — 253 — 339 — ps tCNT Minimum global clock period for 16-bit counter — 5.4 — 8.4 — ns fCNT Maximum global clock frequency for 16-bit counter — — 184.1 — 118.3 MHz Notes to Table 3–27: (1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency. (2) Only applicable to the T144 package of the 5M240Z device. MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–21 Table 3–28 lists the external I/O timing parameters for the 5M570Z device. Table 3–28. Global Clock External I/O Timing Parameters for the 5M570Z Device (Note 1) C4 Symbol Parameter C5, I5 Condition Unit Min Max Min Max tPD1 Worst case pin-to-pin delay through one LUT 10 pF — 9.5 — 17.7 ns tPD2 Best case pin-to-pin delay through one LUT 10 pF — 5.7 — 8.5 ns tSU Global clock setup time — 2.2 — 4.4 — ns tH Global clock hold time — 0 — 0 — ns tCO Global clock to output delay 10 pF 2.0 6.7 2.0 8.7 ns tCH Global clock high time — 253 — 339 — ps tCL Global clock low time — 253 — 339 — ps tCNT Minimum global clock period for 16-bit counter — 5.4 — 8.4 — ns fCNT Maximum global clock frequency for 16-bit counter — — 184.1 — 118.3 MHz Note to Table 3–28: (1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency. Table 3–29 lists the external I/O timing parameters for the 5M1270Z device. Table 3–29. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2) C4 Symbol Parameter C5, I5 Condition Unit Min Max Min Max tPD1 Worst case pin-to-pin delay through one LUT 10 pF — 8.1 — 10.0 ns tPD2 Best case pin-to-pin delay through one LUT 10 pF — 4.8 — 5.9 ns tSU Global clock setup time — 1.5 — 1.9 — ns tH Global clock hold time — 0 — 0 — ns tCO Global clock to output delay 10 pF 2.0 5.9 2.0 7.3 ns tCH Global clock high time — 216 — 266 — ps tCL Global clock low time — 216 — 266 — ps tCNT Minimum global clock period for 16-bit counter — 4.0 — 5.0 — ns fCNT Maximum global clock frequency for 16-bit counter — — 247.5 — 201.1 MHz Notes to Table 3–29: (1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency. (2) Not applicable to the F324 package of the 5M1270Z device. May 2011 Altera Corporation MAX V Device Handbook 3–22 Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications Table 3–30 lists the external I/O timing parameters for the F324 package of the 5M1270Z device. Table 3–30. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2) C4 Symbol Parameter C5, I5 Condition Unit Min Max Min Max tPD1 Worst case pin-to-pin delay through one LUT 10 pF — 9.1 — 11.2 ns tPD2 Best case pin-to-pin delay through one LUT 10 pF — 4.8 — 5.9 ns tSU Global clock setup time — 1.5 — 1.9 — ns tH Global clock hold time tCO Global clock to output delay tCH — 0 — 0 — ns 10 pF 2.0 6.0 2.0 7.4 ns Global clock high time — 216 — 266 — ps tCL Global clock low time — 216 — 266 — ps tCNT Minimum global clock period for 16-bit counter — 4.0 — 5.0 — ns fCNT Maximum global clock frequency for 16-bit counter — — 247.5 — 201.1 MHz Notes to Table 3–30: (1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency. (2) Only applicable to the F324 package of the 5M1270Z device. Table 3–31 lists the external I/O timing parameters for the 5M2210Z device. Table 3–31. Global Clock External I/O Timing Parameters for the 5M2210Z Device (Note 1) C4 Symbol Parameter C5, I5 Condition Unit Min Max Min Max — 9.1 — 11.2 tPD1 Worst case pin-to-pin delay through one LUT 10 pF tPD2 Best case pin-to-pin delay through one LUT 10 pF — 4.8 — 5.9 ns tSU Global clock setup time — 1.5 — 1.9 — ns tH Global clock hold time — 0 — 0 — ns tCO Global clock to output delay 10 pF 2.0 6.0 2.0 7.4 ns tCH Global clock high time — 216 — 266 — ps tCL Global clock low time — 216 — 266 — ps tCNT Minimum global clock period for 16-bit counter — 4.0 — 5.0 — ns fCNT Maximum global clock frequency for 16-bit counter — — 247.5 — 201.1 MHz ns Note to Table 3–31: (1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency. MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–23 External Timing I/O Delay Adders The I/O delay timing parameters for the I/O standard input and output adders and the input delays are specified by speed grade, independent of device density. Table 3–32 through Table 3–36 on page 3–25 list the adder delays associated with I/O pins for all packages. If you select an I/O standard other than 3.3-V LVTTL, add the input delay adder to the external tSU timing parameters listed in Table 3–26 on page 3–20 through Table 3–31. If you select an I/O standard other than 3.3-V LVTTL with 16 mA drive strength and fast slew rate, add the output delay adder to the external tCO and tPD listed in Table 3–26 on page 3–20 through Table 3–31. Table 3–32. External Timing Input Delay Adders for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z I/O Standard C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max Without Schmitt Trigger — 0 — 0 — 0 — 0 ps With Schmitt Trigger — 387 — 442 — 480 — 591 ps Without Schmitt Trigger — 0 — 0 — 0 — 0 ps With Schmitt Trigger — 387 — 442 — 480 — 591 ps Without Schmitt Trigger — 42 — 42 — 246 — 303 ps With Schmitt Trigger — 429 — 483 — 787 — 968 ps 1.8-V LVTTL / LVCMOS Without Schmitt Trigger — 378 — 368 — 695 — 855 ps 1.5-V LVCMOS Without Schmitt Trigger — 681 — 658 — 1,334 — 1,642 ps 1.2-V LVCMOS Without Schmitt Trigger — 1,055 — 1,010 — 2,324 — 2,860 ps 3.3-V PCI Without Schmitt Trigger — 0 — 0 — 0 — 0 ps 3.3-V LVTTL 3.3-V LVCMOS 2.5-V LVTTL / LVCMOS Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 1 of 2) 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z I/O Standard 3.3-V LVTTL May 2011 C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max Without Schmitt Trigger — 0 — 0 — 0 — 0 ps With Schmitt Trigger — 387 — 442 — 400 — 493 ps Altera Corporation MAX V Device Handbook 3–24 Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 2 of 2) 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z I/O Standard C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max Without Schmitt Trigger — 0 — 0 — 0 — 0 ps With Schmitt Trigger — 387 — 442 — 400 — 493 ps Without Schmitt Trigger — 242 — 242 — 287 — 353 ps With Schmitt Trigger — 429 — 483 — 550 — 677 ps 1.8-V LVTTL / LVCMOS Without Schmitt Trigger — 378 — 368 — 459 — 565 ps 1.5-V LVCMOS Without Schmitt Trigger — 681 — 658 — 1,111 — 1,368 ps 1.2-V LVCMOS Without Schmitt Trigger — 1,055 — 1,010 — 2,067 — 2,544 ps 3.3-V PCI Without Schmitt Trigger — 0 — 0 — 7 — 9 ps 3.3-V LVCMOS 2.5-V LVTTL / LVCMOS Table 3–34. External Timing Output Delay and tOD Adders for Fast Slew Rate for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z I/O Standard 3.3-V LVTTL 3.3-V LVCMOS 2.5-V LVTTL / LVCMOS 1.8-V LVTTL / LVCMOS 1.5-V LVCMOS C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max 16 mA — 0 — 0 — 0 — 0 ps 8 mA — 39 — 58 — 84 — 104 ps 8 mA — 0 — 0 — 0 — 0 ps 4 mA — 39 — 58 — 84 — 104 ps 14 mA — 122 — 129 — 158 — 195 ps 7 mA — 196 — 188 — 251 — 309 ps 6 mA — 624 — 624 — 738 — 909 ps 3 mA — 686 — 694 — 850 — 1,046 ps 4 mA — 1,188 — 1,184 — 1,376 — 1,694 ps 2 mA — 1,279 — 1,280 — 1,517 — 1,867 ps 1.2-V LVCMOS 3 mA — 1,911 — 1,883 — 2,206 — 2,715 ps 3.3-V PCI 20 mA — 39 — 58 — 4 — 5 ps LVDS — — 122 — 129 — 158 — 195 ps RSDS — — 122 — 129 — 158 — 195 ps MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–25 Table 3–35. External Timing Output Delay and tOD Adders for Slow Slew Rate for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z I/O Standard 3.3-V LVTTL 3.3-V LVCMOS 2.5-V LVTTL / LVCMOS 1.8-V LVTTL / LVCMOS 1.5-V LVCMOS C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max 16 mA — 5,913 — 6,043 — 6,612 — 6,293 ps 8 mA — 6,488 — 6,645 — 7,313 — 6,994 ps 8 mA — 5,913 — 6,043 — 6,612 — 6,293 ps 4 mA — 6,488 — 6,645 — 7,313 — 6,994 ps 14 mA — 9,088 — 9,222 — 10,021 — 9,702 ps 7 mA — 9,808 — 9,962 — 10,881 — 10,562 ps 6 mA — 21,758 — 21,782 — 21,134 — 20,815 ps 3 mA — 23,028 — 23,032 — 22,399 — 22,080 ps 4 mA — 39,068 — 39,032 — 34,499 — 34,180 ps 2 mA — 40,578 — 40,542 — 36,281 — 35,962 ps 1.2-V LVCMOS 3 mA — 69,332 — 70,257 — 55,796 — 55,477 ps 3.3-V PCI 20 mA — 6,488 — 6,645 — 339 — 418 ps Table 3–36. IOE Programmable Delays for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z Parameter C4 5M1270Z/ 5M2210Z C5, I5 C4 Unit C5, I5 Min Max Min Max Min Max Min Max Input Delay from Pin to Internal Cells = 1 — 1,858 — 2,214 — 1,592 — 1,960 ps Input Delay from Pin to Internal Cells = 0 — 569 — 616 — 115 — 142 ps May 2011 Altera Corporation MAX V Device Handbook 3–26 Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications Maximum Input and Output Clock Rates Table 3–37 and Table 3–38 list the maximum input and output clock rates for standard I/O pins in MAX V devices. Table 3–37. Maximum Input Clock Rate for I/Os for MAX V Devices I/O Standard 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z/5M1270Z/ 5M2210Z Unit C4, C5, I5 3.3-V LVTTL 3.3-V LVCMOS 2.5-V LVTTL 2.5-V LVCMOS Without Schmitt Trigger 304 MHz With Schmitt Trigger 304 MHz Without Schmitt Trigger 304 MHz With Schmitt Trigger 304 MHz Without Schmitt Trigger 304 MHz With Schmitt Trigger 304 MHz Without Schmitt Trigger 304 MHz With Schmitt Trigger 304 MHz 1.8-V LVTTL Without Schmitt Trigger 200 MHz 1.8-V LVCMOS Without Schmitt Trigger 200 MHz 1.5-V LVCMOS Without Schmitt Trigger 150 MHz 1.2-V LVCMOS Without Schmitt Trigger 120 MHz 3.3-V PCI Without Schmitt Trigger 304 MHz Table 3–38. Maximum Output Clock Rate for I/Os for MAX V Devices I/O Standard 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z/5M1270Z/ 5M2210Z Unit C4, C5, I5 MAX V Device Handbook 3.3-V LVTTL 304 MHz 3.3-V LVCMOS 304 MHz 2.5-V LVTTL 304 MHz 2.5-V LVCMOS 304 MHz 1.8-V LVTTL 200 MHz 1.8-V LVCMOS 200 MHz 1.5-V LVCMOS 150 MHz 1.2-V LVCMOS 120 MHz 3.3-V PCI 304 MHz LVDS 304 MHz RSDS 200 MHz May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–27 LVDS and RSDS Output Timing Specifications Table 3–39 lists the emulated LVDS output timing specifications for MAX V devices. Table 3–39. Emulated LVDS Output Timing Specifications for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z/5M1270Z/ 5M2210Z Parameter Mode Unit C4, C5, I5 Min Max 10 — 304 Mbps 9 — 304 Mbps 8 — 304 Mbps 7 — 304 Mbps 6 — 304 Mbps 5 — 304 Mbps 4 — 304 Mbps 3 — 304 Mbps 2 — 304 Mbps 1 — 304 Mbps tDUTY — 45 55 % Total jitter (3) — — 0.2 UI tRISE — — 450 ps tFALL — — 450 ps Data rate (1), (2) Notes to Table 3–39: (1) The performance of the LVDS_E_3R transmitter system is limited by the lower of the two—the maximum data rate supported by LVDS_E_3R I/O buffer or 2x (FMAX of the ALTLVDS_TX instance). The actual performance of your LVDS_E_3R transmitter system must be attained through the Quartus II timing analysis of the complete design. (2) For the input clock pin to achieve 304 Mbps, use I/O standard with VCCIO of 2.5 V and above. (3) This specification is based on external clean clock source. May 2011 Altera Corporation MAX V Device Handbook 3–28 Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications Table 3–40 lists the emulated RSDS output timing specifications for MAX V devices. Table 3–40. Emulated RSDS Output Timing Specifications for MAX V Devices 5M40Z/ 5M80Z/ 5M160Z/ 5M240Z/ 5M570Z/5M1270Z/ 5M2210Z Parameter Mode Unit C4, C5, I5 Data rate (1) tDUTY Min Max 10 — 200 Mbps 9 — 200 Mbps 8 — 200 Mbps 7 — 200 Mbps 6 — 200 Mbps 5 — 200 Mbps 4 — 200 Mbps 3 — 200 Mbps 2 — 200 Mbps 1 — 200 Mbps — 45 55 % Total jitter (2) — — 0.2 UI tRISE — — 450 ps tFALL — — 450 ps Notes to Table 3–40: (1) For the input clock pin to achieve 200 Mbps, use I/O standard with VCCIO of 1.8 V and above. (2) This specification is based on external clean clock source. MAX V Device Handbook May 2011 Altera Corporation Chapter 3: DC and Switching Characteristics for MAX V Devices Timing Model and Specifications 3–29 JTAG Timing Specifications Figure 3–6 shows the timing waveform for the JTAG signals for the MAX V device family. Figure 3–6. JTAG Timing Waveform for MAX V Devices TMS TDI tJCP tJCH tJPSU tJCL tJPH TCK tJPZX tJPCO tJPXZ TDO tJSSU Signal to be Captured tJSH tJSZX tJSCO tJSXZ Signal to be Driven Table 3–41 lists the JTAG timing parameters and values for the MAX V device family. Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 1 of 2) Symbol Parameter Min Max Unit TCK clock period for V CCIO1 = 3.3 V 55.5 — ns TCK clock period for V CCIO1 = 2.5 V 62.5 — ns TCK clock period for V CCIO1 = 1.8 V 100 — ns TCK clock period for V CCIO1 = 1.5 V 143 — ns tJCH TCK clock high time 20 — ns tJCL TCK clock low time 20 — ns tJPSU JTAG port setup time (2) 8 — ns tJPH JTAG port hold time 10 — ns tJPCO JTAG port clock to output (2) — 15 ns tJPZX JTAG port high impedance to valid output (2) — 15 ns tJPXZ JTAG port valid output to high impedance (2) — 15 ns tJSSU Capture register setup time 8 — ns tJSH Capture register hold time 10 — ns tJSCO Update register clock to output — 25 ns tJSZX Update register high impedance to valid output — 25 ns tJCP (1) May 2011 Altera Corporation MAX V Device Handbook 3–30 Chapter 3: DC and Switching Characteristics for MAX V Devices Document Revision History Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 2 of 2) Symbol tJSXZ Parameter Min Max Unit — 25 ns Update register valid output to high impedance Notes to Table 3–41: (1) Minimum clock period specified for 10 pF load on the TDO pin. Larger loads on TDO degrades the maximum TCK frequency. (2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS operation, the tJPSU minimum is 6 ns and tJPCO, tJPZX, and tJPXZ are maximum values at 35 ns. Document Revision History Table 3–42 lists the revision history for this chapter. Table 3–42. Document Revision History Date Version Changes May 2011 1.2 Updated Table 3–2, Table 3–15, Table 3–16, and Table 3–33. January 2011 1.1 Updated Table 3–37, Table 3–38, Table 3–39, and Table 3–40. December 2010 1.0 Initial release. MAX V Device Handbook May 2011 Altera Corporation
5M240ZM100C4N 价格&库存

很抱歉,暂时无法提供与“5M240ZM100C4N”相匹配的价格&库存,您可以联系我们找货

免费人工找货