0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A80960CF40

A80960CF40

  • 厂商:

    ENPIRION(英特尔)

  • 封装:

    PGA168

  • 描述:

    32-BIT, 40MHZ, MOS, CPGA168

  • 数据手册
  • 价格&库存
A80960CF40 数据手册
80960CF-40, -33, -25 32-Bit High-Performance Superscalar Embedded Microprocessor Datasheet Product Features ■ ■ ■ ■ Socket and Object Code Compatible with 80960CA Two Instructions/Clock Sustained Execution Four 71 Mbytes/s DMA Channels with Data Chaining Demultiplexed 32-Bit Burst Bus with Pipelining ■ ■ ■ ■ ■ ■ 32-Bit Parallel Architecture — Two Instructions/clock Execution — Load/Store Architecture — Sixteen 32-Bit Global Registers — Sixteen 32-Bit Local Registers — Manipulates 64-Bit Bit Fields — 11 Addressing Modes — Full Parallel Fault Model — Supervisor Protection Model Fast Procedure Call/Return Model — Full Procedure Call in 4 Clocks On-Chip Register Cache — Caches Registers on Call/Ret — Minimum of 6 Frames Provided — Up to 15 Programmable Frames On-Chip Instruction Cache — 4 Kbyte Two-Way Set Associative — 128-Bit Path to Instruction Sequencer — Cache-Lock Modes — Cache-Off Mode High Bandwidth On-Chip Data RAM — 1 Kbyte On-Chip Data RAM — Sustains 128 bits per Clock Access Selectable Big or Little Endian Byte Ordering ■ ■ ■ ■ Four On-Chip DMA Channels — 71 Mbytes/s Fly-by Transfers — 40 Mbytes/s Two-Cycle Transfers — Data Chaining — Data Packing/Unpacking — Programmable Priority Method 32-Bit Demultiplexed Burst Bus — 128-Bit Internal Data Paths to and from Registers — Burst Bus for DRAM Interfacing — Address Pipelining Option — Fully Programmable Wait States — Supports 8-, 16- or 32-Bit Bus Widths — Supports Unaligned Accesses — Supervisor Protection Pin High-Speed Interrupt Controller — Up to 248 External Interrupts — 32 Fully Programmable Priorities — Multi-mode 8-Bit Interrupt Port — Four Internal DMA Interrupts — Separate, Non-maskable Interrupt Pin — Context Switch in 625 ns Typical On-Chip Data Cache — 1 Kbyte Direct-Mapped, Write Through — 128 bits per Clock Access on Cache Hit Order Number: 272886-002 September 2002 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The 80960CF-40, -33, -25 32-Bit High-Performance Superscalar Embedded Microprocessor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com. Copyright © Intel Corporation, 2002 AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. 2 Datasheet Contents Contents 1.0 Purpose .......................................................................................................................................... 7 2.0 80960CF Processor Overview ...................................................................................................... 7 2.1 2.2 2.3 2.4 2.5 3.0 The 80960C-Series Core ...................................................................................................... 8 Pipelined, Burst Bus ............................................................................................................. 9 Instruction Set Summary ...................................................................................................... 9 Flexible DMA Controller ........................................................................................................9 Priority Interrupt Controller.................................................................................................... 9 Package Information ...................................................................................................................10 3.1 3.2 3.3 3.4 3.5 3.6 4.0 Package Introduction ..........................................................................................................10 Pin Descriptions ..................................................................................................................11 80960CF Mechanical Data .................................................................................................16 3.3.1 80960CF PGA Pinout ............................................................................................16 3.3.2 80960CF PQFP Pinout (80960CF-33 and -25 Only) .............................................20 Package Thermal Specifications ........................................................................................22 Stepping Register Information ............................................................................................24 Sources for Accessories .....................................................................................................25 Electrical Specifications .............................................................................................................26 4.1 4.2 4.3 4.4 4.5 Absolute Maximum Ratings ................................................................................................26 Operating Conditions ..........................................................................................................26 Recommended Connections ..............................................................................................27 D.C. Specifications .............................................................................................................27 A.C. Specifications..............................................................................................................29 4.5.1 A.C. Test Conditions ..............................................................................................35 4.5.2 A.C. Timing Waveforms .........................................................................................36 4.5.3 Derating Curves .....................................................................................................40 5.0 Reset, Backoff and Hold Acknowledge .....................................................................................41 6.0 Bus Waveforms ...........................................................................................................................43 Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 80960CF Processor-Block Diagram ............................................................................................. 7 80960CF PGA Pinout—View from Top (Pins Facing Down) ......................................................16 80960CF PGA Pinout—View from Bottom (Pins Facing Up) .....................................................17 80960CF PQFP Pinout—Top View (80960CF-33 and -25 Only) ...............................................22 Measuring 80960CF PGA and PQFP Case Temperature..........................................................23 Register g0 .................................................................................................................................25 A.C. Test Load............................................................................................................................35 Input and Output Clocks Waveform............................................................................................36 CLKIN Waveform........................................................................................................................36 Output Delay and Float Waveform .............................................................................................37 Input Setup and Hold Waveform.................................................................................................37 NMI, XINT7:0 Input Setup and Hold Waveform..........................................................................38 Hold Acknowledge Timings ........................................................................................................38 Datasheet 3 Contents 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Bus Backoff (BOFF) Timings ...................................................................................................... 39 Relative Timings Waveforms ...................................................................................................... 39 Output Delay or Hold vs. Load Capacitance .............................................................................. 40 Rise and Fall Time Derating at Highest Operating Temperature and Minimum VCC ................ 40 ICC vs. Frequency and Temperature—80960CF-33 and -25...................................................... 40 ICC vs. Frequency and Temperature—80960CF-40................................................................... 41 Cold Reset Waveform ................................................................................................................ 43 Warm Reset Waveform .............................................................................................................. 44 Entering the ONCE State ........................................................................................................... 45 Clock Synchronization in the 2-x Clock Mode ............................................................................ 46 Clock Synchronization in the 1-x Clock Mode ............................................................................ 46 Non-Burst, Non-Pipelined Requests Without Wait States .......................................................... 47 Non-Burst, Non-Pipelined Read Request With Wait States ....................................................... 48 Non-Burst, Non-Pipelined Write Request With Wait States ....................................................... 49 Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus ....................................... 50 Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus ............................................ 51 Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus........................................ 52 Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus............................................. 53 Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus ............................................ 54 Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus .............................................. 55 Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus ....................................... 56 Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus ............................................ 57 Burst, Pipelined Read Request Without Wait States, 32-Bit Bus ............................................... 58 Burst, Pipelined Read Request With Wait States, 32-Bit Bus .................................................... 59 Burst, Pipelined Read Request With Wait States, 16-Bit Bus .................................................... 60 Burst, Pipelined Read Request With Wait States, 8-Bit Bus ...................................................... 61 Using External READY ............................................................................................................... 62 Terminating a Burst with BTERM ............................................................................................... 63 BOFF Functional Timing............................................................................................................. 64 HOLD Functional Timing ............................................................................................................ 65 DREQ and DACK Functional Timing .......................................................................................... 66 EOP Functional Timing............................................................................................................... 66 Terminal Count Functional Timing.............................................................................................. 67 FAIL Functional Timing............................................................................................................... 67 A Summary of Aligned and Unaligned Transfers for Little Endian Regions ............................... 68 A Summary of Aligned and Unaligned Transfers for Little Endian Regions ............................... 69 Idle Bus Operation ...................................................................................................................... 70 Tables 1 2 3 4 5 6 7 8 9 10 11 4 80960CF Instruction Set............................................................................................................. 10 Symbol Legend........................................................................................................................... 11 80960CF Pin Description—External Bus Signals ....................................................................... 12 80960CF Pin Description—Processor Control Signals .............................................................. 14 80960CF Pin Description—DMA and Interrupt Unit Control Signals .......................................... 15 80960CF PGA Pinout—In Signal Order ..................................................................................... 18 80960CF PGA Pinout—In Pin Order .......................................................................................... 19 80960CF PQFP Pinout—In Signal Order (80960CF-33 and -25 Only) ...................................... 20 80960CF PQFP Pinout—In Pin Order (80960CF-33 and -25 Only) ........................................... 21 Maximum TA at Various Airflows in oC (PGA Package Only) ..................................................... 23 80960CF PGA Package Thermal Characteristics ...................................................................... 24 Datasheet Contents 12 13 14 15 16 17 18 19 20 21 80960CF PQFP Package Thermal Characteristics ....................................................................24 Die Stepping Cross Reference ...................................................................................................25 Absolute Maximum Ratings ........................................................................................................26 Operating Conditions ..................................................................................................................26 D.C. Specifications .....................................................................................................................28 80960CF AC Characteristics (40 MHz) ......................................................................................29 80960CF AC Characteristics (33 MHz) ......................................................................................31 80960CF AC Characteristics (25 MHz) ......................................................................................33 Reset Conditions ........................................................................................................................42 Hold Acknowledge and Backoff Conditions ................................................................................42 Revision History Datasheet Date Revision Description September 2002 002 References to the -16 MHz product have been removed from the datasheet. June 1996 001 Initial release of the datasheet. 5 Contents This page intentionally left blank. 6 Datasheet 80960-40, -33, -25 1.0 Purpose This document provides electrical characteristics of Intel’s i960® CF embedded microprocessor. For functional descriptions consult the i960® CA/CF Microprocessor User’s Manual (order number 270710). To obtain data sheet updates and errata, visit the Intel World Wide Web site at http://www.intel.com or contact your Intel field sales representative. 2.0 80960CF Processor Overview Intel’s 80960CF is the second processor in the series of superscalar i960 microprocessors that also includes the 80960CA and the 80960HA/HD/HT. Upgrading from the 80960CA to the 80960CF is straightforward because the two processors are socket- and object code-compatible. As shown in Figure 1, the 80960CF’s instruction cache is 4 Kbytes; data cache is 1 Kbyte (80960CA instruction cache is 1 Kbyte; it does not have a data cache.) This extra cache on the CF adds a significant performance boost over the CA. Figure 1. 80960CF Processor-Block Diagram Four-Channel Instruction Prefetch Queue Memory Region Instruction Cache (4 Kbyte, Two-Way Set Associative) Interrupt Port 128-BIT CACHE BUS Programmable Interrupt Controller Parallel Instruction Scheduler Multiply/Divide Unit Execution Unit Register-side Memory-side Machine Bus Machine Bus Six-Port Register File 64-Bit SRC1 Bus 32-Bit Base Bus 64-Bit SRC2 Bus 128-Bit Load Bus 64-Bit DST Bus 128-Bit Store Bus DMA Port DMA Controller Control Configuration Bus Controller Bus Request Queues Address Data 1 Kbyte Direct Mapped Data Cache 1 Kbyte Data RAM 5 to 15 Sets Register Cache Address Generation Unit F_CF001A Datasheet 7 80960-40, -33, -25 The 80960CF, object code compatible with the 32-bit 80960 core Architecture, employs Special Function Register extensions to control on-chip peripherals and instruction set extensions to shift 64-bit operands and configure on-chip hardware. Multiple 128-bit internal buses, on-chip instruction caching and a sophisticated instruction scheduler allow the processor to sustain execution of two instructions per clock with peak execution of three instructions per clock. A 32-bit demultiplexed and pipelined burst bus provides a 132 Mbyte/s bandwidth to a system’s high-speed external memory subsystem. Also, the 80960CF’s on-chip caching of instructions, procedure context and critical program data substantially decouples system performance from the wait states associated with accesses to the system’s slower, cost sensitive, main memory subsystem. The 80960CF bus controller integrates full wait state and bus width control for highest system performance with minimal system design complexity. Unaligned access and Big Endian byte order support reduces the cost of porting existing applications to the 80960CF. The processor also integrates four complete data-chaining DMA channels and a high-speed interrupt controller on-chip. DMA channels perform single-cycle or two-cycle transfers, data packing and unpacking and data chaining. Block transfers — in addition to source or destination synchronized transfers — are supported. The interrupt controller provides full programmability of 248 interrupt sources into 32 priority levels with a typical interrupt task switch (latency) time of 625 ns. 2.1 The 80960C-Series Core The C-Series core is a very high performance microarchitectural implementation of the 80960 Core Architecture. This core may sustain execution of two instructions per clock (80 MIPS at 40 MHz). To achieve this level of performance, Intel has incorporated state-of-the-art silicon technology and innovative microarchitectural constructs into the C-Series core implementation. Factors that contribute to the core’s performance include: • Parallel instruction decoding allows issuance of up to three instructions per clock. • Single-clock execution of most instructions • Parallel instruction decode allows sustained, simultaneous execution of two single-clock instructions every clock cycle. • • • • • • • 8 Efficient instruction pipeline minimizes pipeline break losses. Register and resource scoreboarding allow simultaneous multi-clock instruction execution. Branch look-ahead and prediction allows many branches to execute with no pipeline break. Local Register Cache integrated on-chip caches Call/Return context. Two-way set associative, 4 Kbyte integrated instruction cache 1 Kbyte integrated Data RAM sustains a four-word (128-bit) access every clock cycle. Direct mapped, 1 Kbyte data cache, write through, write allocate Datasheet 80960-40, -33, -25 2.2 Pipelined, Burst Bus A 32-bit high performance bus controller interfaces the 80960CF to external memory and peripherals. The Bus Control Unit features a maximum transfer rate of 160 Mbytes per second (at 40 MHz). Internally programmable wait states and 16 separately configurable memory regions allow the processor to interface with a variety of memory subsystems with a minimum of system complexity and a maximum of performance. The Bus Control Unit’s main features include: • • • • • • • 2.3 Demultiplexed, burst bus to exploit most efficient DRAM access modes Address pipelining to reduce memory cost while maintaining performance 32-, 16- and 8-bit modes for I/O interfacing ease Full internal wait state generation to reduce system cost Little and Big Endian support to ease application development Unaligned access support for code portability Three-deep request queue to decouple the bus from the core Instruction Set Summary Table 1 summarizes the 80960CF instruction set by logical groupings. For a complete description of the instruction set, see the i960® CA/CF Microprocessor User’s Manual (order number 270710). 2.4 Flexible DMA Controller A four-channel DMA controller provides high speed DMA control for data transfers involving peripherals and memory. The DMA provides advanced features such as data chaining, byte assembly and disassembly and a high performance fly-by mode capable of transfer speeds of up to 71 Mbytes per second at 40 MHz. The DMA controller features a performance and flexibility which is only possible by integrating the DMA controller and the 80960CF core. 2.5 Priority Interrupt Controller A programmable-priority interrupt controller manages up to 248 external sources through the 8-bit external interrupt port. The Interrupt Unit also handles the four internal sources from the DMA controller and a single non-maskable interrupt input. The 8-bit interrupt port may also be configured to provide individual interrupt sources that are level or edge triggered. 80960CF interrupts are prioritized and signaled within 225 ns of the request. When the interrupt is of higher priority than the processor priority, the context switch to the interrupt routine typically completes in another 400 ns. The interrupt unit provides the mechanism for the low latency and high throughput interrupt service which is essential for embedded applications. Table 1 presents the 80960CF Instruction Set. Datasheet 9 80960-40, -33, -25 Table 1. 80960CF Instruction Set Data Movement Arithmetic Logical Bit / Bit Field / Byte Add Load Store Move Load Address Subtract And Multiply Not And Set Bit Divide And Not Clear Bit Remainder Or Not Bit Modulo Exclusive Or Alter Bit Shift Not Or Scan For Bit *Extended Shift Or Not Span Over Bit Extended Multiply Nor Extract Extended Divide Exclusive Nor Modify Add with Carry Not Scan Byte for Equal Subtract with Carry Nand Rotate Comparison Branch Compare Conditional Compare Compare and Increment Compare and Decrement Test Condition Code Fault Call Unconditional Branch Call Extended Conditional Branch Call System Compare and Branch Return Conditional Fault Synchronize Faults Branch and Link Check Bit Debug Call/Return Processor Mgmt Atomic Flush Local Registers Modify Trace Controls Mark Force Mark Modify Arithmetic Controls Atomic Add Modify Process Controls Atomic Modify *System Control *DMA Control NOTE: Instructions marked by (*) are 80960Cx extensions to the 80960 instruction set. 3.0 Package Information 3.1 Package Introduction This section describes the pins, pinouts and thermal characteristics for the 80960CF in the 168-pin Ceramic Pin Grid Array (PGA) package; the 80960CF-33 and -25 devices are also available in the 196-pin Plastic Quad Flat Package (PQFP). For complete package specifications and information, see the Intel Packaging Databook, available in individual chapters, at http://www.intel.com. 10 Datasheet 80960-40, -33, -25 3.2 Pin Descriptions This section defines the 80960CF pins. Table 2 presents the legend for interpreting the pin descriptions in Tables 3 through 5. Table 3 presents the external bus signals. Table 4 presents processor control signals. Table 5 presents the DMA and Interrupt Unit control signals. Note: Table 2. All pins float while the processor is in the ONCE mode. Symbol Legend Symbol I Input only pin O Output only pin I/O Pin may be either an input or output – Datasheet Description Pins “must be” connected as described S(...) Synchronous. Inputs must meet setup and hold times relative to PCLK2:1 for proper operation. Outputs are synchronous to PCLK2:1. S(E) Edge sensitive input S(L) Level sensitive input A(...) Asynchronous. Inputs may be asynchronous to PCLK2:1. A(E)Edge sensitive input A(L)Level sensitive input H(...) While the bus is in the Hold Acknowledge or Bus Backoff state, the pin: H(1) is driven to VCC H(0)is driven to VSS H(Z) floats H(Q)continues to be a valid input R(...) While the processor’s RESET pin is low, the pin: R(1) is driven to VCC R(0)is driven to VSS R(Z) floats R(Q)continues to be a valid output 11 80960-40, -33, -25 Table 3. 80960CF Pin Description—External Bus Signals (Sheet 1 of 2) Name Type Description A31:2 O S H(Z) R(Z) ADDRESS BUS carries the physical address’ upper 30 bits. A31 is the most significant bit; A2 is least significant. During a bus access, A31:2 identify all external addresses to word (4-byte) boundaries. Byte enable signals indicate the selected byte in each word. During burst accesses, A3:2 increment to indicate successive data cycles. D31:0 I/O S(L) H(Z) R(Z) DATA BUS carries 32-, 16- or 8-bit data quantities depending on bus width configuration. The least significant bit is carried on D0 and the most significant on D31. When the bus is configured for 8-bit data, the lower 8 data lines, D7:0 are used. For 16bit data bus widths, D15:0 are used. For 32-bit bus widths the full data bus is used. BYTE ENABLES select which of the four bytes addressed by A31:2 are active during an access to a memory region configured for a 32-bit data-bus width. BE3 applies to D31:24; BE2 applies to D23:16; BE1 applies to D15:8 BE0 applies to D7:0. 32-bit bus: BE3 BE2 BE1 BE0 BE3:0 O S H(Z) R(1) Byte Enable 3 Byte Enable 2 Byte Enable 1 Byte Enable 0 enable D31:24 enable D23:16 enable D15:8 enable D7:0 For accesses to a memory region configured for a 16-bit data-bus width, the processor uses the BE3, BE1 and BE0 pins as BHE, A1 and BLE respectively. 16-bit bus: BE3 BE2 BE1 BE0 Byte High Enable (BHE) enable D15:8 Not used (driven high or low) Address Bit 1 (A1) Byte Low Enable (BLE) enable D7:0 For accesses to a memory region configured for an 8-bit data-bus width, the processor uses the BE1 and BE0 pins as A1 and A0 respectively. 8-bit bus: BE3 BE2 BE1 BE0 W/R O S H(Z) R(0) WRITE/READ is asserted for read requests and deasserted for write requests. The W/R signal changes in the same clock cycle as ADS. It remains valid for the entire access in non-pipelined regions. In pipelined regions, W/R is not ensured to be valid in the last cycle of a read access. ADS O S H(Z) R(1) ADDRESS STROBE indicates a valid address and the start of a new bus access. ADS is asserted for the first clock of a bus access. I S(L) H(Z) R(Z) READY is an input which signals the termination of a data transfer. READY is used to indicate that read data on the bus is valid or that a write-data transfer has completed. The READY signal works in conjunction with the internally programmed wait-state generator. When READY is enabled in a region, the pin is sampled after the programmed number of wait-states has expired. When the READY pin is deasserted, wait states continue to be inserted until READY becomes asserted. This is true for the NRAD, NRDD, NWAD and NWDD wait states. The NXDA wait states cannot be extended. BTERM I S(L) H(Z) R(Z) BURST TERMINATE is an input which breaks up a burst access and causes another address cycle to occur. The BTERM signal works in conjunction with the internally programmed wait-state generator. When READY and BTERM are enabled in a region, the BTERM pin is sampled after the programmed number of wait states has expired. When BTERM is asserted, a new ADS signal is generated and the access is completed. The READY input is ignored when BTERM is asserted. BTERM must be externally synchronized to satisfy BTERM setup and hold times. WAIT O S H(Z) R(1) WAIT indicates internal wait state generator status. WAIT is asserted when wait states are being caused by the internal wait state generator and not by the READY or BTERM inputs. WAIT may be used to derive a write-data strobe. WAIT may also be thought of as a READY output that the processor provides when it is inserting wait states. READY 12 Not used (driven high or low) Not used (driven high or low) Address Bit 1 (A1) Address Bit 0 (A0) Datasheet 80960-40, -33, -25 Table 3. Datasheet 80960CF Pin Description—External Bus Signals (Sheet 2 of 2) Name Type Description BLAST O S H(Z) R(0) BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the last data transfer of burst and non-burst accesses after the wait state counter reaches zero. BLAST remains asserted until the clock following the last cycle of the last data transfer of a bus access. When the READY or BTERM input is used to extend wait states, the BLAST signal remains asserted until READY or BTERM terminates the access. DT/R O S H(Z) R(0) DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R is used in conjunction with DEN to provide control for data transceivers attached to the external bus. When DT/R is asserted, the signal indicates that the processor receives data. Conversely, when deasserted, the processor sends data. DT/R changes only while DEN is high. DEN O S H(Z) R(1) DATA ENABLE indicates data cycles in a bus request. DEN is asserted at the start of the bus request first data cycle and is deasserted at the end of the last data cycle. DEN is used in conjunction with DT/R to provide control for data transceivers attached to the external bus. DEN remains asserted for sequential reads from pipelined memory regions. DEN is deasserted when DT/R changes. LOCK O S H(Z) R(1) BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK may be used to prevent external agents from accessing memory which is currently involved in an atomic operation. LOCK is asserted in the first clock of an atomic operation and deasserted in the clock cycle following the last bus access for the atomic operation. To allow the most flexibility for memory system enforcement of locked accesses, the processor acknowledges a bus hold request when LOCK is asserted. The processor performs DMA transfers while LOCK is active. HOLD I S(L) H(Z) R(Z) HOLD REQUEST signals that an external agent requests access to the external bus. The processor asserts HOLDA after completing the current bus request. HOLD, HOLDA and BREQ are used together to arbitrate access to the processor’s external bus by external bus agents. BOFF I S(L) H(Z) R(Z) BUS BACKOFF, when asserted, suspends the current access and causes the bus pins to float. When BOFF is deasserted, the ADS signal is asserted on the next clock cycle and the access is resumed. HOLDA O S H(1) R(Q) HOLD ACKNOWLEDGE indicates to a bus requestor that the processor has relinquished control of the external bus. When HOLDA is asserted, the external address bus, data bus and bus control signals are floated. HOLD, BOFF, HOLDA and BREQ are used together to arbitrate access to the processor’s external bus by external bus agents. Since the processor grants HOLD requests and enters the Hold Acknowledge state even while RESET is asserted, the state of the HOLDA pin is independent of the RESET pin. BREQ O S H(Q) R(0) BUS REQUEST is asserted when the bus controller has a request pending. BREQ may be used by external bus arbitration logic in conjunction with HOLD and HOLDA to determine when to return mastership of the external bus to the processor. D/C O S H(Z) R(Z) DATA OR CODE is asserted for a data request and deasserted for instruction requests. D/C has the same timing as W/R. DMA O S H(Z) R(Z) DMA ACCESS indicates whether the bus request was initiated by the DMA controller. DMA is asserted for any DMA request. DMA is deasserted for all other requests. SUP O S H(Z) R(Z) SUPERVISOR ACCESS indicates whether the bus request is issued while in supervisor mode. SUP is asserted when the request has supervisor privileges and is deasserted otherwise. SUP may be used to isolate supervisor code and data structures from nonsupervisor requests. 13 80960-40, -33, -25 Table 4. 80960CF Pin Description—Processor Control Signals (Sheet 1 of 2) Name RESET FAIL STEST Type I A(L) H(Z) R(Z) O S H(Q) R(0) I S(L) H(Z) R(Z) Description RESET causes the chip to reset. When RESET is asserted, all external signals return to the reset state. When RESET is deasserted, initialization begins. When the 2-x clock mode is selected, RESET must remain asserted for 32 CLKIN cycles before being deasserted to ensure correct processor initialization. When the 1-x clock mode is selected, RESET must remain asserted for 10,000 CLKIN cycles before being deasserted to ensure correct processor initialization. The CLKMODE pin selects 1-x or 2-x input clock division of the CLKIN pin. The Hold Acknowledge bus state functions while the chip is reset. When the bus is in the Hold Acknowledge state when RESET is asserted, the processor internally resets, but maintains the Hold Acknowledge state on external pins until the Hold request is removed. When a Hold request is made while the processor is in the reset state, the processor bus grants HOLDA and enters the Hold Acknowledge state. FAIL indicates failure of the self-test performed at initialization. When RESET is deasserted and initialization begins, the FAIL pin is asserted. An internal self-test is performed as part of the initialization process. When this self-test passes, the FAIL pin is deasserted; otherwise it remains asserted. The FAIL pin is reasserted while the processor performs an external bus self-confidence test. When this self-test passes, the processor deasserts the FAIL pin and branches to the user’s initialization routine; otherwise the FAIL pin remains asserted. Internal self-test and the use of the FAIL pin may be disabled with the STEST pin. SELF TEST enables or disables the internal self-test feature at initialization. STEST is read on the rising edge of RESET. When asserted, internal self-test and external bus confidence tests are performed during processor initialization. When deasserted, only the bus confidence tests are performed during initialization. ON CIRCUIT EMULATION, when asserted, causes all outputs to be floated. ONCE is continuously sampled while RESET is low and is latched on the rising edge of RESET. To place the processor in the ONCE state: (1) Assert RESET and ONCE (order does not matter) (2) Wait for at least 16 CLKIN periods in 2-x mode—or 10,000 CLKIN periods in 1-x mode—after VCC and CLKIN are within operating specifications ONCE I A(L) H(Z) R(Z) (3) Deassert RESET (4) Wait at least 32 CLKIN periods (The processor may now be latched in the ONCE state while RESET is high.) To exit the ONCE state, bring VCC and CLKIN to operating conditions, then assert RESET and bring ONCE high prior to deasserting RESET. CLKIN must operate within the specified operating conditions until Step 4 completes. CLKIN may then be changed to DC to achieve the lowest possible ONCE mode leakage current. ONCE may be used by emulator products or board testers to effectively make an installed processor transparent in the board. 14 CLKIN I A(E) H(Z) R(Z) CLOCK INPUT is an input for the external clock needed to run the processor. The external clock is internally divided as prescribed by the CLKMODE pin to produce PCLK2:1. CLKMODE I A(L) H(Z) R(Z) CLOCK MODE selects the division factor applied to the external clock input (CLKIN). When CLKMODE is high, CLKIN is divided by one to create PCLK2:1 and the processor’s internal clock. When CLKMODE is low, CLKIN is divided by two to create PCLK2:1 and the processor’s internal clock. CLKMODE should be tied high or low in a system as the clock mode is not latched by the processor. When left unconnected, the processor internally pulls the CLKMODE pin low, enabling the 2-x clock mode. Datasheet 80960-40, -33, -25 Table 4. Table 5. 80960CF Pin Description—Processor Control Signals (Sheet 2 of 2) Name Type Description PCLK2:1 O S H(Q) R(Q) VSS – GROUND connections must be connected externally to a VSS board plane. VCC – POWER connections must be connected externally to a VCC board plane. VCCPLL – VCCPLL is a separate VCC supply pin for the phase lock loop used in 1-x clock mode. Connecting a simple lowpass filter to VCCPLL may help reduce clock jitter (TCP) in noisy environments. Otherwise, VCCPLL should be connected to VCC. NC – NO CONNECT pins must not be connected in a system. PROCESSOR OUTPUT CLOCKS provide a timing reference for all inputs and outputs. All input and output timings are specified in relation to PCLK2 and PCLK1. PCLK2 and PCLK1 are identical signals. Two output pins are provided to allow flexibility in the system’s allocation of capacitive loading on the clock. PCLK2:1 may also be connected at the processor to form a single clock signal. 80960CF Pin Description—DMA and Interrupt Unit Control Signals Name Type Description DREQ3:0 I A(L) H(Z) R(Z) DMA REQUEST is used to request a DMA transfer. Each of the four signals requests a transfer on a single channel. DREQ0 requests channel 0, DREQ1 requests channel 1, etc. When two or more channels are requested simultaneously, the channel with the highest priority is serviced first. Channel priority mode is programmable. DACK3:0 O S H(1) R(1) DMA ACKNOWLEDGE indicates that a DMA transfer is being executed. Each of the four signals acknowledges a transfer for a single channel. DACK0 acknowledges channel 0, DACK1 acknowledges channel 1, etc. DACK3:0 are asserted when the requesting device of a DMA is accessed. EOP/TC3:0 I/O A(L) H(Z/Q) R(Z) END OF PROCESS/TERMINAL COUNT may be programmed as either an input (EOP3:0) or output (TC3:0), but not both. Each pin is individually programmable. When programmed as an input, EOPx causes termination of a current DMA transfer for the channel that corresponds to the EOPx pin. EOP0 corresponds to channel 0, EOP1 corresponds to channel 1, etc. When a channel is configured for source and destination chaining, the EOP pin for that channel causes termination of only the current buffer transferred and causes the next buffer to be transferred. EOP3:0 are asynchronous inputs. When programmed as an output, the channel’s TCx pin indicates that the channel byte count has reached 0 and a DMA has terminated. TCx is driven with the same timing as DACKx during the last DMA transfer for a buffer. When the last bus request is executed as multiple bus accesses, TCx stays asserted for the entire bus request. EXTERNAL INTERRUPT PINS cause interrupts to be requested. These pins may be configured in three modes: Dedicated Mode: Each pin is a dedicated external interrupt source. Dedicated inputs may be individually programmed to be level (low) or edge (falling) activated. XINT7:0 I A(E/L) H(Z) R(Z) Expanded Mode: The eight pins act together as an 8-bit vectored interrupt source. The interrupt pins in this mode are level activated. Since the interrupt pins are active low, the vector number requested is the 1’s complement of the positive logic value place on the port. This eliminates glue logic to interface to combinational priority encoders which output negative logic. Mixed Mode: XINT7:5 are dedicated sources and XINT4:0 act as the five most significant bits of an expanded mode vector. The least significant bits are set to 010 internally. NMI Datasheet I A(E) H(Z) R(Z) NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. NMI is the highest priority interrupt recognized. NMI is an edge (falling) activated source. 15 80960-40, -33, -25 3.3 80960CF Mechanical Data 3.3.1 80960CF PGA Pinout Figure 2 shows the complete 80960CF PGA pinout as viewed from the top side of the component (i.e., pins facing down). Figure 3 shows the complete 80960CF PGA pinout as viewed from the pin-side of the package (i.e., pins facing up). Table 6 presents the 80960CF pin names and package location in signal order. Table 7 presents the pin names and package location in pin order. See Section 4.0, “Electrical Specifications” on page 26 for specifications and recommended connections. Figure 2. 80960CF PGA Pinout—View from Top (Pins Facing Down) 1 2 3 4 5 S R Q P N M L K J H G F E D C B A D25 D24 D21 D19 D17 D16 D15 D13 D12 D11 D9 D8 D7 D5 D3 BOFF NC D29 D27 D23 D20 D18 VCC D14 VCC VCC D10 VCC D6 D4 D2 D1 STEST FAIL READY D31 D26 D22 VCC VSS VSS VSS VSS VSS VSS VCC D0 NC ONCE NC NC NC NC NC DREQ0 NC HOLDA BTERM D28 BE2 ADS VCC VCC DREQ2 DREQ1 BE1 VCC VSS VSS BLAST VCC VSS VSS DEN BE0 VSS VSS W/R VCC VSS VSS DT/R VCC VSS VSS VCC EOP/TC0 WAIT DMA SUP VSS VCC EOP/TC1 D/C BREQ A30 CLKIN PCLK2 EOP/TC2 LOCK A29 A28 CLKMODE PCLK1 EOP/TC3 A31 A26 A24 A20 VCC VSS VSS VSS VSS VSS VSS VSS VCC NMI A27 A23 A21 A19 A16 VCC A13 VCC VCC VCC A7 VCC A4 A2 XINT6 XINT3 RESET A25 A22 A18 A17 A15 A14 A12 A11 A10 A9 A8 A6 A5 A3 XINT7 XINT5 R Q P N M L K J H G F E D 10 11 16 5 NC 9 15 4 D30 8 14 3 HOLD 7 13 2 BE3 6 12 1 6 7 VCC DREQ3 8 DACK0 DACK1 9 VCC DACK2 VCCPLL DACK3 10 11 12 13 14 XINT4 XINT0 15 XINT1 17 16 17 S C B XINT2 A F_CA002A 16 Datasheet 80960-40, -33, -25 Figure 3. 80960CF PGA Pinout—View from Bottom (Pins Facing Up) A B C D E F G H J K L M N P Q R S NC BOFF D3 D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25 FAIL STEST D1 D2 D4 D6 VCC D10 VCC VCC D14 VCC D18 D20 D23 D27 D29 NC NC ONCE NC D0 VCC VSS VSS VSS VSS VSS VSS VCC D22 D26 D31 READY NC NC NC D28 NC DREQ0 NC D30 HOLD BE3 DREQ1 DREQ2 VCC VCC ADS BE2 DREQ3 VSS VSS VCC BE1 VSS VCC BLAST 1 1 2 2 3 3 4 4 BTERM HOLDA 5 5 6 6 7 7 VCC 8 8 DACK1 DACK0 VSS DACK2 VSS VSS BE0 DEN VSS VSS VCC W/R Metal Lid 9 9 VCC 10 10 DACK3 VCCPLL 11 11 EOP/TC0 VCC VSS VSS VCC DT/R EOP/TC1 VCC VSS SUP DMA WAIT EOP/TC2 PCLK2 CLKIN A30 BREQ D/C EOP/TC3 PCLK1 CLK MODE A28 A29 LOCK 12 12 13 13 14 14 15 15 XINT1 XINT0 XINT4 NMI VCC VSS VSS VSS VSS VSS VSS VSS VCC A20 A24 A26 A31 RESET XINT3 XINT6 A2 A4 VCC A7 VCC VCC VCC A13 VCC A16 A19 A21 A23 A27 XINT2 XINT5 XINT7 A3 A5 A6 A8 A9 A10 A11 A12 A14 A15 A17 A18 A22 A25 D E F G H J K L M N P Q R S 16 16 17 17 A B C F_CA003A Datasheet 17 80960-40, -33, -25 Table 6. 80960CF PGA Pinout—In Signal Order Address Bus 18 Data Bus Bus Control Processor Control I/O Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin A31 S15 D31 R3 BE3 S5 RESET A16 DREQ3 A7 A30 Q13 D30 Q5 BE2 S6 DREQ2 B6 A29 R14 D29 S2 BE1 S7 FAIL A2 DREQ1 A6 A28 Q14 D28 Q4 BE0 R9 DREQ0 B5 A27 S16 D27 R2 DACK3 A10 DACK2 A9 DACK1 A8 DACK0 B8 A26 R15 D26 Q3 A25 S17 D25 S1 A24 Q15 D24 R1 A23 R16 D23 Q2 W/R ADS STEST B2 ONCE C3 S10 R6 CLKIN C13 A22 R17 D22 P3 READY S3 CLKMODE C14 A21 Q16 D21 Q1 BTERM R4 PLCK1 B14 EOP/TC3 A14 A20 P15 D20 P2 PLCK2 B13 EOP/TC2 A13 A19 P16 D19 P1 WAIT S12 EOP/TC1 A12 BLAST S8 EOP/TC0 A11 XINT7 C17 XINT6 C16 A18 Q17 D18 N2 A17 P17 D17 N1 A16 N16 D16 M1 DT/R S11 A15 N17 D15 L1 DEN S9 A14 M17 D14 L2 A13 L16 D13 K1 LOCK S14 A12 L17 D12 J1 A11 K17 D11 H1 A10 J17 D10 H2 HOLD R5 A9 H17 D9 G1 HOLDA S4 A8 G17 D8 F1 BREQ R13 A7 G16 D7 E1 VSS Location C7, C8, C9, C10, C11, C12, F15, G3, G15, H3, H15, J3, J15, K3, K15, L3, L15, M3, M15, Q7, Q8, Q9, Q10, Q11 XINT5 B17 XINT4 C15 XINT3 B16 XINT2 A17 Location XINT1 A15 B7, B9, B11, B12, C6, E15, F3, F16, G2, H16, J2, J16, K2, K16, M2, M16, N3, N15, Q6, R7, R8, R10, R11 XINT0 B15 NMI D15 VCC A6 F17 D6 F2 D/C S13 A5 E17 D5 D1 DMA R12 A4 E16 D4 E2 SUP Q12 A3 D17 D3 C1 A2 D16 D2 D2 D1 C2 D0 E3 VCCPLL B10 No Connect BOFF B1 Location A1, A3, A4, A5, B3, B4, C4, C5, D3 Datasheet 80960-40, -33, -25 Table 7. 80960CF PGA Pinout—In Pin Order Pin Datasheet Signal Pin Signal Pin Signal Pin Signal Pin A1 NC C1 D3 F17 A6 A2 FAIL C2 D1 G1 D9 A3 NC C3 ONCE G2 A4 NC C4 NC A5 NC C5 A6 DREQ1 C6 A7 DREQ3 C7 A8 DACK1 Signal M15 VSS R3 D31 M16 VCC R4 BTERM VCC M17 A14 R5 HOLD G3 VSS N1 D17 R6 ADS NC G15 VSS N2 D18 R7 VCC VCC G16 A7 N3 VCC R8 VCC VSS G17 A8 N15 VCC R9 BE0 C8 VSS H1 D11 N16 A16 R10 VCC A9 DACK2 C9 VSS H2 D10 N17 A15 R11 VCC A10 DACK3 C10 VSS H3 VSS P1 D19 R12 DMA A11 EOP/TC0 C11 VSS H15 VSS P2 D20 R13 BREQ A12 EOP/TC1 C12 VSS H16 VCC P3 D22 R14 A29 A13 EOP/TC2 C13 CLKIN H17 A9 P15 A20 R15 A26 A14 EOP/TC3 C14 CLKMODE J1 D12 P16 A19 R16 A23 A15 XINT1 C15 XINT4 J2 VCC P17 A17 R17 A22 A16 RESET C16 XINT6 J3 VSS Q1 D21 S1 D25 A17 XINT2 C17 XINT7 J15 VSS Q2 D23 S2 D29 B1 BOFF D1 D5 J16 VCC Q3 D26 S3 READY B2 STEST D2 D2 J17 A10 Q4 D28 S4 HOLDA B3 NC D3 NC K1 D13 Q5 D30 S5 BE3 B4 NC D15 NMI K2 VCC Q6 VCC S6 BE2 B5 DREQ0 D16 A2 K3 VSS Q7 VSS S7 BE1 B6 DREQ2 D17 A3 K15 VSS Q8 VSS S8 BLAST B7 VCC E1 D7 K16 VCC Q9 VSS S9 DEN B8 DACK0 E2 D4 K17 A11 Q10 VSS S10 W/R B9 VCC E3 D0 L1 D15 Q11 VSS S11 DT/R B10 VCCPLL E15 VCC L2 D14 Q12 SUP S12 WAIT B11 VCC E16 A4 L3 VSS Q13 A30 S13 D/C B12 VCC E17 A5 L15 VSS Q14 A28 S14 LOCK B13 PCLK2 F1 D8 L16 A13 Q15 A24 S15 A31 B14 PCLK1 F2 D6 L17 A12 Q16 A21 S16 A27 B15 XINT0 F3 VCC M1 D16 Q17 A18 S17 A25 B16 XINT3 F15 VSS M2 VCC R1 D24 B17 XINT5 F16 VCC M3 VSS R2 D27 19 80960-40, -33, -25 3.3.2 80960CF PQFP Pinout (80960CF-33 and -25 Only) Table 8 and Table 9 present the 80960CF pin names with package location. Figure 4 shows the 80960CF PQFP pinout as viewed from the top side. See Section 4.0, “Electrical Specifications” on page 26 for specifications and recommended connections. Table 8. 80960CF PQFP Pinout—In Signal Order (80960CF-33 and -25 Only) Address Bus 20 Data Bus Bus Control Processor Control I/O Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin A31 153 D31 186 BE3 176 RESET 91 DREQ3 60 A30 152 D30 187 BE2 175 FAIL 45 DREQ2 59 A29 151 D29 188 BE1 172 STEST 46 DREQ1 58 A28 145 D28 189 BE0 170 DREQ0 57 A27 144 D27 191 A26 143 D26 192 A25 142 D25 194 A24 141 D24 195 A23 139 D23 3 A22 138 D22 A21 137 A20 W/R 164 ADS 178 4 READY 182 D21 5 BTERM 184 136 D20 6 A19 134 D19 8 WAIT 162 A18 133 D18 9 BLAST 169 A17 132 D17 10 A16 130 D16 11 DT/R 163 A15 129 D15 13 DEN 167 A14 128 D14 14 A13 124 D13 15 A12 123 D12 17 ONCE 43 CLKIN 87 CLKMOD E 85 DACK3 65 PCLK2 74 DACK2 64 PCLK1 78 DACK1 63 DACK0 62 EOP/TC3 69 EOP/TC2 68 EOP/TC1 67 EOP/TC0 66 XINT7 107 VSS LOCK 156 Location 2, 7, 16, 24, 30, 38, 39, 49, 56, 70, 75, 77, 81, 83, 88, 89, 92, 98, 105, 109, 110, 121, 125, 131, 135, 147, 150, 161, 165, 173, 174, 185, 196 VCC XINT6 106 Location XINT5 102 1, 12, 20, 28, 32, 37, 44, 50, 61, 71, 79, 82, 96, 99, 103, 115, 127, 140, 148, 154, 168, 171, 180, 190 XINT4 101 XINT3 100 A11 122 D11 18 HOLD 181 XINT2 95 A10 120 D10 19 HOLDA 179 XINT1 94 A9 119 D9 21 BREQ 155 XINT0 93 A8 118 D8 22 NMI 108 VCCPLL 72 A7 117 D7 23 D/C 159 No Connect A6 116 D6 25 DMA 160 Location A5 114 D5 26 SUP 158 A4 113 D4 27 A3 112 D3 33 BOFF 40 A2 111 D2 34 29, 31, 41, 42, 47, 48, 51, 52, 53, 54, 55, 73, 76, 80, 84, 86, 90, 97, 104, 126, 146, 149, 157, 166, 177, 183, 193 D1 35 D0 36 Datasheet 80960-40, -33, -25 Table 9. Datasheet 80960CF PQFP Pinout—In Pin Order (80960CF-33 and -25 Only) Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal 1 VCC 34 D2 67 EOP/TC1 100 XINT3 133 A18 166 NC 2 VSS 35 D1 68 EOP/TC2 101 XINT4 134 A19 167 DEN 3 D23 36 D0 69 EOP/TC3 102 XINT5 135 VSS 168 VCC 4 D22 37 VCC 70 VSS 103 VCC 136 A20 169 BLAST 5 D21 38 VSS 71 VCC 104 NC 137 A21 170 BE0 6 D20 39 VSS 72 VCCPLL 105 VSS 138 A22 171 VCC 7 VSS 40 BOFF 73 NC 106 XINT6 139 A23 172 BE1 8 D19 41 NC 74 PCLK2 107 XINT7 140 VCC 173 VSS 9 D18 42 NC 75 VSS 108 NMI 141 A24 174 VSS 10 D17 43 ONCE 76 NC 109 VSS 142 A25 175 BE2 11 D16 44 VCC 77 VSS 110 VSS 143 A26 176 BE3 12 VCC 45 FAIL 78 PCLK1 111 A2 144 A27 177 NC 13 D15 46 STEST 79 VCC 112 A3 145 A28 178 ADS 14 D14 47 NC 80 NC 113 A4 146 NC 179 HOLDA 15 D13 48 NC 81 VSS 114 A5 147 VSS 180 VCC 16 VSS 49 VSS 82 VCC 115 VCC 148 VCC 181 HOLD 17 D12 50 VCC 83 VSS 116 A6 149 NC 182 READY 18 D11 51 NC 84 NC 117 A7 150 VSS 183 NC 19 D10 52 NC 85 CLKMODE 118 A8 151 A29 184 BTERM 20 VCC 53 NC 86 NC 119 A9 152 A30 185 VSS 21 D9 54 NC 87 CLKIN 120 A10 153 A31 186 D31 22 D8 55 NC 88 VSS 121 VSS 154 VCC 187 D30 23 D7 56 VSS 89 VSS 122 A11 155 BREQ 188 D29 24 VSS 57 DREQ0 90 NC 123 A12 156 LOCK 189 D28 25 D6 58 DREQ1 91 RESET 124 A13 157 NC 190 VCC 26 D5 59 DREQ2 92 VSS 125 VSS 158 SUP 191 D27 27 D4 60 DREQ3 93 XINT0 126 NC 159 D/C 192 D26 28 VCC 61 VCC 94 XINT1 127 VCC 160 DMA 193 NC 29 NC 62 DACK0 95 XINT2 128 A14 161 VSS 194 D25 30 VSS 63 DACK1 96 VCC 129 A15 162 WAIT 195 D24 31 NC 64 DACK2 97 NC 130 A16 163 DT/R 196 VSS 32 VCC 65 DACK3 98 VSS 131 VSS 164 W/R 33 D3 66 EOP/TC0 99 VCC 132 A17 165 VSS 21 80960-40, -33, -25 Figure 4. 80960CF PQFP Pinout—Top View (80960CF-33 and -25 Only) 98 50 99 49 147 Pin 1 196 148 F_CA004A 3.4 Package Thermal Specifications The 80960CF is specified for operation when case temperature (TC) is within the range of 0 °C–100 °C for 33 and 25 MHz, and 0 °C–85 °C for 40 MHz. TC may be measured in any environment to determine whether the 80960CF is within specified operating range. Case temperature should be measured at the center of the top surface, opposite the pins. Refer to Figure 5 for more information. Ambient temperature (TA) is calculated from thermal resistance from case to ambient (θCA) using Equation 1: Equation 1. Calculation of Ambient Temperature (TA) T A = T C – ( P ⋅ θ CA ) Table 10 shows the maximum TA allowable (without exceeding TC) at various airflows and operating frequencies (fPCLK). Note that TA is greatly improved by attaching fins or a heatsink to the package. Maximum power consumption (P) is calculated by using the typical ICC as tabulated in Section 4.4, “D.C. Specifications” on page 27 and VCC of 5 V. 22 Datasheet 80960-40, -33, -25 Figure 5. Measuring 80960CF PGA and PQFP Case Temperature Measure PGA temperature at center of top surface Measure PQFP case temperature at center of top surface. 168 - Pin PGA Pin 196 Pin 1 Table 10. Maximum TA at Various Airflows in oC (PGA Package Only) Airflow-ft/min (m/sec) TA with Heatsink (†) TA without Heatsink (†) fPCLK (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) 40 20 40 58 60 66 68 33 38 57 74 76 81 84 25 50 65 79 81 85 87 16 63 74 84 86 89 90 40 0 15 30 40 50 52 33 18 33 47 57 66 67 25 34 46 57 65 72 74 16 51 60 68 74 80 81 † 0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing). Datasheet 23 80960-40, -33, -25 Table 11. 80960CF PGA Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 200 (1.01) 400 (2.03) 600 (3.07) 800 (4.06) 1000 (5.07) θ Junction-to-Case (Case measured as shown in Figure 5.) 1.5 1.5 1.5 1.5 1.5 1.5 θ Case-to-Ambient (No Heatsink) 17 14 11 9 7.1 6.6 13 9 5.5 5 3.9 3.4 θ Case-to-Ambient (With Heatsink) θJA θJC (See Note 3.) NOTES: 1. This table applies to 80960CF PGA plugged into socket or soldered directly to board. 2. θJA = θJC + θCA 3. 0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing). Table 12. 80960CF PQFP Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 50 (0.25) 100 (0.50) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) θ Junction-to-Case (Case Measured as shown in Figure 5.) 5 5 5 5 5 5 5 θ Case-to-Ambient (No Heatsink) 19 18 17 15 12 10 9 NOTES: 1. This table applies to 80960CF PQFP soldered directly to board. 2. θJA = θJC + θCA θJC 3.5 Stepping Register Information Upon reset, register g0 contains die stepping information (see Figure 6). The most significant byte contains ASCII 0; the upper middle byte contains an ASCII C; the lower middle byte contains an ASCII F. The least significant byte contains the stepping number in ASCII, and g0 retains this information until it is overwritten by the user program. Table 13 contains a cross reference of the number in the least significant byte of register g0 to the die stepping number. 24 Datasheet 80960-40, -33, -25 Figure 6. Register g0 ASCII DECIMAL 00 43 46 Stepping Number 0 C F MSB Stepping Number LSB Table 13. Die Stepping Cross Reference 3.6 g0 Least Significant Byte Die Stepping 01 A 02 B 03 C 04 D 05 E Sources for Accessories The following is a list of suggested sources for 80960CF accessories. This is neither an endorsement nor a warranty of the performance of any of the listed products and/or companies. Sockets 1. 3M Textool Test and Interconnection Products 6801 River Place Blvd. Mail Stop 130-3N-29 Austin, TX 78726-9000 (800) 328-0411 2. Augat, Inc. Interconnection Products Group 452 John Dietsch Blvd. Attleboro Falls, MA 02763 (508) 699-7646 3. Concept Mfg., Inc. (Decoupling Sockets) 400 Walnut St. Suite 609 Redwood City, CA 94063 (415) 365-1162 FAX: (415)265-1164 Heatsinks/Fins 1. Thermalloy, Inc. 2021 West Valley View Lane Dallas, TX 75234 (214) 243-4321 FAX: (214) 241-4656 2. Wakefield Engineering 60 Audubon Road Wakefield, MA 01880 (617) 245-5900 Datasheet 25 80960-40, -33, -25 4.0 Electrical Specifications 4.1 Absolute Maximum Ratings Table 14 presents the absolute maximum ratings for the 80960CF. Table 14. Absolute Maximum Ratings Parameter Maximum Rating Storage Temperature –65 °C to +150 °C Case Temperature Under Bias –65 °C to +110 °C Supply Voltage wrt. VSS –0.5 V to + 6.5 V Voltage on Other Pins wrt. VSS Note: Warning: 4.2 –0.5 V to VCC + 0.5 V The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design. Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage. These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability. Operating Conditions Table 15 presents the operating conditions for the 80960CF. Table 15. Operating Conditions Symbol Parameter Min Max Units 4.75 4.50 4.50 5.25 5.50 5.50 V 0 0 0 80 66 50 MHz 8 8 8 40 33 25 MHz 0 0 0 85 100 100 Notes Supply Voltage VCC 80960CF-40 80960CF-33 80960CF-25 Input Clock Frequency (2-x Mode) fCLK2x 80960CF-40 80960CF-33 80960CF-25 Input Clock Frequency (1-x Mode) fCLK1x 80960CF-40 80960CF-33 80960CF-25 (†) Case Temp Under Bias TC PGA Pkg. (80960CF-40) PGA Pkg. (80960CF-33, -25 Only) 196-Pin PQFP (80960CF-33, -25 Only) o C † When in the 1-x input clock mode, CLKIN is an input to an internal phase-locked loop and must maintain a minimum frequency of 8 MHz for proper processor operation. However, in the 1-x mode, CLKIN may still be stopped when the processor is in a reset condition. When CLKIN is stopped, the specified RESET low time must be provided once CLKIN restarts and has stabilized. 26 Datasheet 80960-40, -33, -25 4.3 Recommended Connections Power and ground connections must be made to multiple VCC and VSS (GND) pins. Every 80960CF-based circuit board should include power (VCC) and ground (VSS) planes for power distribution. Every VCC pin must be connected to the power plane, and every VSS pin must be connected to the ground plane. Pins identified as ‘NC’ must not be connected in the system. Liberal decoupling capacitance should be placed near the 80960CF. The processor may cause transient power surges when its numerous output buffers transition, particularly when connected to large capacitive loads. Low inductance capacitors and interconnects are recommended for best high frequency electrical performance. Inductance may be reduced by shortening the board traces between the processor and decoupling capacitors as much as possible. Capacitors specifically designed for PGA packages may offer the lowest possible inductance. For reliable operation, always connect unused inputs to an appropriate signal level. In particular, any unused interrupt (XINT, NMI), DMA (DREQ), or BTERM input should be connected to VCC through a pull-up resistor. Pull-up resistors should be in the in the range of 20 KW for each pin tied high. When READY or HOLD are not used, the unused input should be connected to ground. N.C. pins must always remain unconnected. For additional information refer to the i960® CA/CF Microprocessor User’s Manual (order number 270710). 4.4 D.C. Specifications Table 16 presents the D.C. specifications of the 80960CF. Datasheet 27 80960-40, -33, -25 Table 16. D.C. Specifications Symbol Parameter (1) Min Max Units VIL Input Low Voltage for all pins except RESET – 0.3 +0.8 V VIH Input High Voltage for all pins except RESET 2.0 VCC + 0.3 V VOL Output Low Voltage 0.45 V VOH Output High Voltage IOH = –1 mA IOH = – 200 µA Notes IOL = 5 mA V V 2.4 VCC – 0.5 VILR Input Low Voltage for RESET – 0.3 1.5 V VIHR Input High Voltage for RESET 3.5 VCC + 0.3 V ±15 µA 0 ≤ VIN ≤ VCC (2) ILI1 Input Leakage Current for each pin except: BTERM, ONCE, DREQ3:0, STEST, EOP3:0/TC3:0, NMI, XINT7:0, BOFF, READY, HOLD, CLKMODE Input Leakage Current for: BTERM, ONCE, DREQ3:0, STEST, EOP3:0/TC3:0, NMI, XINT7:0, BOFF 0 – 300 µA VIN = 0.45 V (3) ILI3 Input Leakage Current for: READY, HOLD, CLKMODE 0 500 µA VIN = 2.4 V (4, 8) ILO Output Leakage Current ±15 µA 0.45 ≤ VOUT ≤ VCC ICC Supply Current (80960CF-40, 33): ICC Max ICCTyp 1150 1000 mA mA (5) (6) ICC Supply Current (80960CF-25): ICC Max ICCTyp 950 775 mA mA (5) (6) ICC Supply Current (80960CF-16): ICC Max ICCTyp 750 575 mA (5) (6) 225 150 mA 12 pF FC = 1 MHz Output Capacitance of each output pin 12 pF FC = 1 MHz (7) I/O Pin Capacitance 12 pF FC = 1 MHz ILI2 ONCE-mode Supply Current IONCE CIN COUT CI/O 80960CF-40 80960CF-33, -25, -16 Input Capacitance for: CLKIN, RESET, ONCE, READY, HOLD, DREQ3:0, BOFF, XINT7:0, NMI, BTERM, CLKMODE 0 NOTES: 1. 80960CF-33 and -25 under the conditions described in Section 4.2, “Operating Conditions” on page 26. 2. No pullup or pulldown. 3. These pins have internal pullup resistors. 4. These pins have internal pulldown resistors. 5. Measured at worst case frequency, VCC and temperature, with device operating and outputs loaded to the test conditions described in Section 4.5.1, “A.C. Test Conditions” on page 35. 6. ICC Typical is not tested. 7. Output Capacitance is the capacitive load of a floating output. 8. CLKMODE pin has a pulldown resistor only when ONCE pin is deasserted. 28 Datasheet 80960-40, -33, -25 4.5 A.C. Specifications Table 17. 80960CF AC Characteristics (40 MHz) (Sheet 1 of 2) Symbol Parameter (1) Min Max Units Notes 0 80 MHz 25 12.5 125 ∞ ns ns (12) ±0.1% ∆ (13) Input Clock (2, 10) TF TC TCS TCH TCL CLKIN Frequency CLKIN Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) CLKIN Period Stability In 1-x Mode (fCLK1x) CLKIN High Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 5 5 62.5 ∞ ns ns (12) CLKIN Low Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 5 5 62.5 ∞ ns ns (12) TCR CLKIN Rise Time 0 6 ns TCF CLKIN Fall Time 0 6 ns –2 2 2 25 ns ns (4, 13) (4) ns ns (13) (4) Output Clocks (2, 9) TCP T CLKIN to PCLK2:1 Delay In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) PCLK2:1 Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) TC 2TC TPH PCLK2:1 High Time (T/2) – 2 T/2 ns (13) TPL PCLK2:1 Low Time (T/2) – 2 T/2 ns (13) TPR PCLK2:1 Rise Time 1 4 ns (4) TPF PCLK2:1 Fall Time 1 4 ns (4) 3 3 6 3 4 5 3 4 4 4 3 T/2 + 3 2 3 14 16 16 16 16 16 16 16 16 16 16 T/2 + 14 14 16 ns ns ns ns ns ns ns ns ns ns ns ns ns ns (7, 11) 3 22 ns (7) Synchronous Outputs (9) TOH TOV TOF Output Valid Delay, Output Hold TOH1, TOV1 TOH2, TOV2 TOH3, TOV3 TOH4, TOV4 TOH5, TOV5 TOH6, TOV6 TOH7, TOV7 TOH8, TOV8 TOH9, TOV9 TOH10, TOV10 TOH11, TOV11 TOH12, TOV12 TOH13, TOV13 TOH14, TOV14 (7, 11) A31:2 BE3:0 ADS W/R D/C, SUP, DMA BLAST, WAIT DEN HOLDA, BREQ LOCK DACK3:0 D31:0 DT/R FAIL EOP3:0/TC3:0 Output Float for all outputs Synchronous Inputs (2, 10, 11) TIS Datasheet Input Setup TIS1 TIS2 TIS3 TIS4 D31:0 BOFF BTERM/READY HOLD 3 15 7 5 ns ns ns ns 29 80960-40, -33, -25 Table 17. 80960CF AC Characteristics (40 MHz) (Sheet 2 of 2) Symbol TIH Parameter (1) Input Hold TIH1 TIH2 TIH3 TIH4 Min Max 5 5 2 3 D31:0 BOFF BTERM/READY HOLD Units Notes ns ns ns ns Relative Output Timings (2, 3, 4, 9) TAVSH1 A31:2 Valid to ADS Rising T–4 T+4 ns TAVSH2 BE3:0, W/R, SUP, D/C, DMA, DACK3:0 Valid to ADS Rising T–6 T+6 ns TAVEL1 A31:2 Valid to DEN Falling T–4 T+4 ns TAVEL2 BE3:0, W/R, SUP, INST,DMA, DACK3:0 Valid to DEN Falling T–6 T+6 ns TNLQV WAIT Falling to Output Data Valid TDVNH Output Data Valid to WAIT Rising TNLNH WAIT Falling to WAIT Rising TNHQX Output Data Hold after WAIT Rising TEHTV DT/R Hold after DEN High T/2 – 7 TTVEL DT/R Valid to DEN Falling T/2 – 4 ns ±6 N*T – 6 ns N*T + 6 N*T ± 4 (N+1)*T–8 (N+1)*T+6 ns (5) ns (5) ns (6) ns (7) Relative Input Timings (2, 3, 4) TIS5 RESET Input Setup (2-x Clock Mode) 6 ns (14) TIH5 RESET Input Hold (2-x Clock Mode) 5 ns (14) TIS6 DREQ3:0 Input Setup 12 ns (8) TIH6 DREQ3:0 Input Hold 7 ns (8) TIS7 XINT7:0, NMI Input Setup 7 ns (16) TIH7 XINT7:0, NMI Input Hold 3 ns (16) TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (15) TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (15) NOTES: 1. 80960CF-40 only, per the conditions in Section 4.2, Operating Conditions and Section 4.5.1, A.C. Test Conditions. 2. See Table 19 for all notes related to AC specifications. 30 Datasheet 80960-40, -33, -25 Table 18. 80960CF AC Characteristics (33 MHz) (Sheet 1 of 2) Symbol Parameter (1) Min Max Units Notes 0 66.66 MHz 30 15 125 ∞ ns ns (12) ±0.1% ∆ (13) Input Clock (2, 10) TF TC TCS TCH TCL CLKIN Frequency CLKIN Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) CLKIN Period Stability In 1-x Mode (fCLK1x) CLKIN High Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 5 5 62.5 ∞ ns ns (12) CLKIN Low Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 5 5 62.5 ∞ ns ns (12) TCR CLKIN Rise Time 0 6 ns TCF CLKIN Fall Time 0 6 ns –2 2 2 25 ns ns (4,13) (4) ns ns (13) (4) Output Clocks (2, 9) TCP T CLKIN to PCLK2:1 Delay In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) PCLK2:1 Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) TC 2TC TPH PCLK2:1 High Time (T/2) – 2 T/2 ns (13) TPL PCLK2:1 Low Time (T/2) – 2 T/2 ns (13) TPR PCLK2:1 Rise Time 1 4 ns (4) TPF PCLK2:1 Fall Time 1 4 ns (4) 3 3 6 3 4 5 3 4 4 4 3 T/2 + 3 2 3 14 16 18 18 16 16 16 16 16 18 16 T/2 + 14 14 18 ns ns ns ns ns ns ns ns ns ns ns ns ns ns (7, 11) 3 22 ns (7) Synchronous Outputs (9) TOH TOV TOF Output Valid Delay, Output Hold A31:2 TOH1, TOV1 BE3:0 TOH2, TOV2 TOH3, TOV3 ADS TOH4, TOV4 W/R TOH5, TOV5 D/C, SUP, DMA TOH6, TOV6 BLAST, WAIT TOH7, TOV7 DEN TOH8, TOV8 HOLDA, BREQ LOCK TOH9, TOV9 TOH10, TOV10 DACK3:0 TOH11, TOV11 D31:0 DT/R TOH12, TOV12 TOH13, TOV13 FAIL TOH14, TOV14 EOP3:0/TC3:0 (7, 11) Output Float for all outputs Synchronous Inputs (2, 10, 11) Datasheet TIS Input Setup TIS1 TIS2 TIS3 TIS4 D31:0 BOFF BTERM/READY HOLD 3 17 7 7 ns ns ns ns TIH Input Hold TIH1 TIH2 TIH3 TIH4 D31:0 BOFF BTERM/READY HOLD 5 5 2 3 ns ns ns ns 31 80960-40, -33, -25 Table 18. 80960CF AC Characteristics (33 MHz) (Sheet 2 of 2) Symbol Parameter (1) Min Max Units Notes Relative Output Timings (2, 3, 4, 9) TAVSH1 A31:2 Valid to ADS Rising T–4 T+4 ns TAVSH2 BE3:0, W/R, SUP, D/C, DMA, DACK3:0 Valid to ADS Rising T–6 T+6 ns TAVEL1 A31:2 Valid to DEN Falling T–4 T+4 ns TAVEL2 BE3:0, W/R, SUP, INST,DMA, DACK3:0 Valid to DEN Falling T–6 T+6 ns N*T + 6 ns (5) ns (5) TNLQV WAIT Falling to Output Data Valid TDVNH Output Data Valid to WAIT Rising TNLNH WAIT Falling to WAIT Rising TNHQX Output Data Hold after WAIT Rising TEHTV TTVEL ±6 N*T – 6 ns N*T ± 4 (N+1)*T–8 (N+1)*T+6 ns (6) DT/R Hold after DEN High T/2 – 7 ∞ ns (7) DT/R Valid to DEN Falling T/2 – 4 ns Relative Input Timings (2, 3, 4) TIS5 RESET Input Setup (2-x Clock Mode) 6 ns (14) TIH5 RESET Input Hold (2-x Clock Mode) TIS6 DREQ3:0 Input Setup 5 ns (14) 12 ns (8) TIH6 DREQ3:0 Input Hold 7 ns (8) TIS7 XINT7:0, NMI Input Setup 7 ns (16) TIH7 XINT7:0, NMI Input Hold 3 ns (16) TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (15) TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (15) NOTES: 1. 80960CF-33 only, per the conditions in Section 4.2, Operating Conditions and Section 4.5.1, A.C. Test Conditions. 2. See Table 19 for all notes related to AC specifications. 32 Datasheet 80960-40, -33, -25 Table 19. 80960CF AC Characteristics (25 MHz) (Sheet 1 of 3) Symbol Parameter (1) Min Max Unit Notes 0 50 MHz 40 20 125 ∞ ns ns (12) ±0.1% ∆ (13) Input Clock (2, 10) TF TC TCS TCH TCL CLKIN Frequency CLKIN Period In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) CLKIN Period Stability In 1-x Mode (f CLK1x) CLKIN High Time In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) 8 8 62.5 ∞ ns ns (12) CLKIN Low Time In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) 8 8 62.5 ∞ ns ns (12) TCR CLKIN Rise Time 0 6 ns TCF CLKIN Fall Time 0 6 ns –2 2 2 25 ns ns (4, 13) (4) ns ns (13) (4) Output Clocks (2, 9) TCP T CLKIN to PCLK2:1 Delay In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) PCLK2:1 Period In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) TC 2TC TPH PCLK2:1 High Time (T/2) – 3 T/2 ns (13) TPL PCLK2:1 Low Time (T/2) – 3 T/2 ns (13) TPR PCLK2:1 Rise Time 1 4 ns (4) TPF PCLK2:1 Fall Time 1 4 ns (4) 3 3 6 3 4 5 3 4 4 4 3 T/2 + 3 2 3 16 18 20 20 18 18 18 18 18 20 18 T/2 + 16 16 20 ns ns ns ns ns ns ns ns ns ns ns ns ns ns (7, 11) 3 22 ns (7) Synchronous Outputs (9) TOH TOV Output Valid Delay, Output Hold TOH1, TOV1 TOH2, TOV2 TOH3, TOV3 TOH4, TOV4 TOH5, TOV5 TOH6, TOV6 TOH7, TOV7 TOH8, TOV8 TOH9, TOV9 TOH10, TOV10 TOH11, TOV11 TOH12, TOV12 TOH13, TOV13 TOH14, TOV14 TOF Output Float for all outputs (7, 11) A31:2 BE3:0 ADS W/R D/C, SUP, DMA BLAST, WAIT DEN HOLDA, BREQ LOCK DACK3:0 D31:0 DT/R FAIL EOP3:0/TC3:0 Synchronous Inputs (2, 10, 11) TIS TIH Datasheet Input Setup TIS1 TIS2 TIS3 TIS4 Input Hold TIH1 TIH2 TIH3 TIH4 D31:0 BOFF BTERM/READY HOLD D31:0 BOFF BTERM/READY HOLD 5 19 9 9 ns ns ns ns 5 19 9 9 ns ns ns ns 33 80960-40, -33, -25 Table 19. 80960CF AC Characteristics (25 MHz) (Sheet 2 of 3) Symbol Parameter (1) Min Max Unit Notes Relative Output Timings (2, 3, 4, 9) TAVSH1 A31:2 Valid to ADS Rising T–4 T+4 ns TAVSH2 BE3:0, W/R, SUP, D/C, DMA, DACK3:0 Valid to ADS Rising T–6 T+6 ns TAVEL1 A31:2 Valid to DEN Falling T–4 T+4 ns TAVEL2 BE3:0, W/R, SUP, INST, DMA, DACK3:0 Valid to DEN Falling T–6 T+6 ns TNLQV WAIT Falling to Output Data Valid TDVNH Output Data Valid to WAIT Rising TNLNH WAIT Falling to WAIT Rising ±6 N*T – F ns N*T + 6 N*T ± 4 ns (5) ns (5) (N+1)*T– 8 (N+1)*T+6 ns (6) ∞ ns (7) TNHQX Output Data Hold after WAIT Rising TEHTV DT/R Hold after DEN High T/2 – 7 TTVEL DT/R Valid to DEN Falling T/2 – 4 ns Relative Input Timings (2, 3, 4) 34 TIS5 RESET Input Setup (2-x Clock Mode) 8 ns (14) TIH5 RESET Input Hold (2-x Clock Mode) 7 ns (14) TIS6 DREQ3:0 Input Setup 14 ns (8) TIH6 DREQ3:0 Input Hold 9 ns (8) TIS7 XINT7:0, NMI Input Setup 9 ns (16) TIH7 XINT7:0, NMI Input Hold 5 ns (16) TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (15) TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (15) Datasheet 80960-40, -33, -25 Table 19. 80960CF AC Characteristics (25 MHz) (Sheet 3 of 3) Symbol Parameter (1) Min Max Unit Notes NOTES: 1. 80960CF-25 only, per the conditions in Section 4.2, Operating Conditions and Section 4.5.1, A.C. Test Conditions. 2. See Section 4.5.2, A.C. Timing Waveforms for waveforms and definitions. 3. See Figure 16 for capacitive derating information for output delays and hold times. 4. See Figure 17 for capacitive derating information for rise and fall times. 5. Where N is the number of NRAD, NRDD, NWAD or NWDD wait states that are programmed in the Bus Controller Region Table. WAIT never goes active when there are no wait states in an access. 6. N = Number of wait states inserted with READY. 7. Output Data and/or DT/R may be driven indefinitely following a cycle when there is no subsequent bus activity. 8. Since asynchronous inputs are synchronized internally by the 80960CF, they have no required setup or hold times to be recognized and for proper operation. However, to ensure recognition of the input at a particular edge of PCLK2:1, the setup times shown must be met. Asynchronous inputs must be active for at least two consecutive PCLK2:1 rising edges to be seen by the processor. 9. These specifications are ensured by the processor. 10.These specifications must be met by the system for proper operation of the processor. 11. This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3, Derating Curves to adjust the timing for PCLK2:1 loading. 12.In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When the processor is in reset, the input clock may stop even in 1-x mode. 13.When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation of less than ± 0.1% between adjacent cycles. 14.In 2-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to ensure the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the falling edge of the CLKIN. (See Figure 23.) 15.In 1-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to ensure the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the rising edge of the CLKIN. (See Figure 24.) 16.The interrupt pins are synchronized internally by the 80960CF. They have no required setup or hold times for proper operation. These pins are sampled by the interrupt controller every other clock and must be active for at least three consecutive PCLK2:1 rising edges when asserting them asynchronously. To ensure recognition at a particular clock edge, the setup and hold times shown must be met for two consecutive PCLK2:1 rising edges. 4.5.1 A.C. Test Conditions The AC Specifications in Section 4.5, “A.C. Specifications” on page 29 are tested with the 50 pF load shown in Figure 7. Figure 16 shows how timings vary with load capacitance. Specifications are measured at the 1.5 V crossing point, unless otherwise indicated. Input waveforms are assumed to have a rise and fall time of < 2 ns from 0.8 V to 2.0 V. See Section 4.5.2, “A.C. Timing Waveforms” on page 36 for AC specification definitions, test points and illustrations. Figure 7. A.C. Test Load Output Pin CL CL = 50 pF for all signals Datasheet F_CX008A 35 80960-40, -33, -25 4.5.2 A.C. Timing Waveforms Figure 8. Input and Output Clocks Waveform CLKIN 1.5 V TCP T 2.4 V 1.5 V 0.45 V 1.5 V PCLK2:1 TPH TPR TPL TPF F_CX009A Figure 9. CLKIN Waveform TCR TCF 2.0 V 1.5 V 0.8 V TCH TCL TC F_CX010A 36 Datasheet 80960-40, -33, -25 Figure 10. Output Delay and Float Waveform 1.5 V PCLK2:1 TOV TOH Outputs Max Min 1.5 V 1.5 V TOF Outputs 1.5 V Min Max 1.5 V 1.5 V F_CX011A NOTES: 1. TOV TOH - OUTPUT DELAY - Maximum output delay is referred to as Output Valid Delay (TOV); minimum output delay is referred to as Output Hold (TOH). 2. TOF - OUTPUT FLOAT DELAY - Output float condition occurs when the maximum output current becomes less that ILO in magnitude. Figure 11. Input Setup and Hold Waveform PCLK2:1 1.5 V 1.5 V TIH TIS Min Inputs: (READY, HOLD, BTERM, BOFF, DREQ3:0, D31:0 on reads) 1.5 V Max Valid F_CX012A NOTE: TIS TIH - INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window during which synchronous inputs must be stable for correct processor operation. Datasheet 37 80960-40, -33, -25 Figure 12. NMI, XINT7:0 Input Setup and Hold Waveform PCLK2:1 1.5 V 1.5 V Min NMI, XINT7:0 1.5 V TIH TIS Min 1.5 V Valid 1.5 V F_CX013A Figure 13. Hold Acknowledge Timings PCLK2:1 1.5 V 1.5 V 1.5 V TOV TOF Min Outputs: A31:2, D31:0, BE3:0, ADS, BLAST, WAIT, W/R, DT/R, DEN, LOCK, D/C, SUP, DMA Max Min Max 1.5 V Valid Valid TIH TIS Min TIH Min TIS Min Min HOLD 1.5 V 1.5 V 1.5 V TOV TOV Min Min Max HOLDA 1.5 V 1.5 V Max 1.5 V F_CX014A NOTES: 1. TOV TOH - OUTPUT DELAY - Maximum output delay is referred to as Output Valid Delay (TOV); minimum output delay is referred to as Output Hold (TOH). 2. TOF - OUTPUT FLOAT DELAY - Output float condition occurs when the maximum output current becomes less that ILO in magnitude. 3. TIS TIH - INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window during which synchronous inputs must be stable for correct processor operation. 38 Datasheet 80960-40, -33, -25 Figure 14. Bus Backoff (BOFF) Timings 1.5 V PCLK2:1 1.5 V 1.5 V TOV TOF Max Min Outputs: A31:2, D31:0, BE3:0, ADS, BLAST, WAIT, W/R, DT/R, DEN, LOCK, D/C, SUP, DMA 1.5 V Valid 1.5 V TIS TIS TIH BOFF Min 1.5 V Valid Max TIH 1.5 V 1.5 V 1.5 V F_CX015A Figure 15. Relative Timings Waveforms PCLK2:1 ADS 1.5 V 1.5 V 1.5 V 1.5 V 1.5 V 1.5 V TAVSH A31:2, BE3:0, W/R, LOCK, SUP, D/C, DMA 1.5 V 1.5 V D31:0 TNLQV TAVEL DT/R D31:0 TNHQX 1.5 V TNLNH 1.5 V TEHTV DEN TDVNH 1.5 V WAIT 1.5 V Out 1.5 V TVEL 1.5 V In VIH VIL F_CX016A Datasheet 39 80960-40, -33, -25 4.5.3 Derating Curves Figure 16. Output Delay or Hold vs. Load Capacitance Output Valid Delays (ns) @ 1.5 V nom + 10 All outputs except: LOCK, DMA, SUP, BREQ, DACK3:0, EOP3:0/TC3:0, FAIL nom + 5 LOCK, DMA, SUP, BREQ, DACK3:0, EOP3:0/TC3:0, FAIL nom 50 100 CL (pF) 150 Note: PCLK Load = 50pF F_CX017A Figure 17. Rise and Fall Time Derating at Highest Operating Temperature and Minimum VCC 10 0.8 V to 2.0 V 8 Time (ns) Time (ns) 8 6 4 2 CL (pF) 50 0.8 V to 2.0 V 10 6 4 2 100 150 CL (pF) 50 100 150 a) All outputs except: LOCK, DMA, SUP, HOLDA, BREQ b) LOCK, DMA, SUP, HOLDA, BREQ, DACK3:0, DACK3:0, EOP3:0/TC3:0, FAIL EOP3:0/TC3:0, FAIL F_CX019A Figure 18. ICC vs. Frequency and Temperature—80960CF-33 and -25 900 TC = 100° C ICC (mA) TC = 0° C 0 0 ICC - ICC under test conditions 40 fPCLK (MHz) 33 F_CX020A Datasheet 80960-40, -33, -25 Figure 19. ICC vs. Frequency and Temperature—80960CF-40 1100 ICC (mA) TC = 1000° ICC - ICC under test conditions TC = 85° C 0 0 5.0 fPCLK (MHz) 40 F_CX020A Reset, Backoff and Hold Acknowledge Table 20 lists the condition of each processor output pin while RESET is asserted (low). Table 21 lists the condition of each processor output pin while HOLDA is asserted (high). In Table 21, with regard to bus output pin state only, the Hold Acknowledge state takes precedence over the reset state. Although asserting the RESET pin internally resets the processor, the processor’s bus output pins do not enter the reset state when Hold Acknowledge has been granted to a previous HOLD request (HOLDA is active). Furthermore, the processor grants new HOLD requests and enters the Hold Acknowledge state even while in reset. For example, when HOLD is asserted while HOLDA is inactive and the processor is in the reset state, the processor’s bus pins enter the Hold Acknowledge state and HOLDA is granted. The processor is not able to perform memory accesses until the HOLD request is removed, even when the RESET pin is brought high. This operation is provided to simplify boot-up synchronization among multiple processors sharing the same bus. Datasheet 41 80960-40, -33, -25 Table 20. Reset Conditions Pins State During Reset (HOLDA inactive) A31:2 Floating D31:0 Floating BE3:0 Driven high (Inactive) W/R Driven low (Read) ADS Driven high (Inactive) WAIT Driven high (Inactive) BLAST Driven low (Active) DT/R Driven low (Receive) DEN Driven high (Inactive) LOCK Driven high (Inactive) BREQ Driven low (Inactive) D/C Floating DMA Floating SUP Floating FAIL Driven low (Active) DACK3:0 EOP3:0/TC3:0 Driven high (Inactive) Floating (Set to input mode) Table 21. Hold Acknowledge and Backoff Conditions Pins 42 State During HOLDA A31:2 Floating D31:0 Floating BE3:0 Floating W/R Floating ADS Floating WAIT Floating BLAST Floating DT/R Floating DEN Floating LOCK Floating BREQ Driven (High or low) D/C Floating DMA Floating SUP Floating FAIL Driven high (Inactive) DACK3:0 Driven high (Inactive) EOP3:0/TC3:0 Driven (When output) Datasheet RESET STEST D31:0, EOP/TC3:0 INST, SUP, DMA, A31:2, D/C, BE3:0 BLAST W/R, DT/R, BREQ, FAIL ADS, LOCK, WAIT, DEN, DACK3:0 Inputs Tdelay 1 PCLK Valid Invalid CLKIN and VCC Stable to RESET high, minimum 32 CLKIN Periods in 2x Mode, 10,000 CLKIN periods in 1x Mode. Tsetup 1PCLK RESET high to First Bus activity, approximately 32 PCLK periods. Thold 1 PCLK ∼ ∼ ∼ ∼ PCLK2:1 VCC and CLKIN Stable to Outputs Valid, maximum 32 CLKIN Periods. ∼ ∼ ∼ ∼ ∼ ∼ VCC - ONCE ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ Datasheet ∼ ∼ ∼ ∼ F_CX021A 6.0 ∼ ∼ CLKIN 80960-40, -33, -25 Bus Waveforms Figure 20. Cold Reset Waveform 43 ∼ ∼ ∼ ∼ ∼ ∼ Tdelay 1PCLK ∼ ∼ STEST Maximum RESET Low to RESET State 4 PCLK Periods ∼ ∼ Valid Thold 1 PCLK ∼ ∼ Tsetup 1 PCLK ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ D31:0, EOP/TC3:0 ∼ ∼ SUP, DMA, A31:2, D/C, BE3:0 ∼ ∼ ∼ ∼ ∼ ∼ BLAST RESET ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ W/R, DT/R, BREQ, FAIL Figure 21. Warm Reset Waveform ADS, LOCK, WAIT, DEN, DACK3:0 RESET High to First Bus Activity, Approximately 32 PCLK Periods Datasheet Minimum RESET Low Time 16 PCLK Periods F_CX022A 80960-40, -33, -25 44 PCLK2:1 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ONCE ∼ ∼ RESET ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼∼ ∼ ∼ ∼ ∼ ∼ Maximum 32 CLKIN Periods Required after ONCE Mode entered VCC and CLKIN Stable to Outputs Valid, maximum 32 CLKIN Periods. ∼ ∼ ∼ ∼ ADS, BE3:0, A31:2, D31:0, LOCK, WAIT, BLAST,W/R, D/C, DEN, DT/R, HOLD, HOLDA, BLAST, FAIL, SUP,BREQ, DMA, EOP3:0/TC3:0, STEST, XINT7:0, NMI, DACK3:0, DREQ3:0 READY, BTERM ∼ ∼ PCLK2:1 ∼ ∼ VCC Figure 22. Entering the ONCE State Datasheet CLKIN CLKIN may not float. It must be driven high or low or continue to run F_CX023A 45 80960-40, -33, -25 CLKIN and VCC Stable and RESET low and ONCE low to RESET high, minimum 32 CLKIN Periods in 2x Mode, 10,000 CLKIN Periods in 1x Mode. 80960-40, -33, -25 Figure 23. Clock Synchronization in the 2-x Clock Mode 1.5 V CLKIN TIH RESET 1.5 V 1.5 V 1.5 V 1.5 V TIS 1.5 V PCLK2:1 (Case 1) 1.5 V 1.5 V Max Min TCP PCLK2:1 (Case 2) 1.5 V Max Min 1.5 V Min TCP Max 1.5 V TCP 1.5 V SYNC Note: Case 1 and Case 2 show two possible polarities of PCLK2:1 F_CX024A Figure 24. Clock Synchronization in the 1-x Clock Mode 2x CLK CLKIN 1.5 V 1.5 V TIH RESET TIS 1.5 V Note: In 1x clock mode, the RESET pin is actually sampled on the falling edge of 2xCLK. 2xCLK is an internal signal generated by the PLL and is not available on an external pin. Therefore, RESET is specified relative to the rising edge of CLKIN. The RESET pin is sampled when PCLK is high. F_CX025A 46 Datasheet 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x reserved Function reserved Figure 25. Non-Burst, Non-Pipelined Requests Without Wait States Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 X xx X xx 0 00000 0 00 X xx 0 00000 OFF 0 A D A D A PipeLining External Ready Control Burst 1 0 Disabled Disabled 0 0 D PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid Valid Valid Valid Valid W/R BLAST DT/R DEN A3:2 Valid WAIT D31:0 In Out In F_CX026A Datasheet 47 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x reserved Function reserved Figure 26. Non-Burst, Non-Pipelined Read Request With Wait States Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 X xx X xx X xxxxx 1 01 X xx 3 00011 OFF 0 A 3 2 1 D PipeLining 1 External Ready Control Burst 1 0 Disabled Disabled 0 0 A PCLK ADS A31:2, BE3:0 Valid W/R BLAST DT/R DEN DMA, D/C, SUP, LOCK Valid WAIT D31:0 In F_CX027A 48 Datasheet 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x reserved Function reserved Figure 27. Non-Burst, Non-Pipelined Write Request With Wait States Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 X xx X xx 3 00011 1 01 X xx X xxxxxx OFF 0 A 3 2 1 D PipeLining 1 External Ready Control Burst 1 0 Disabled Disabled 0 0 A PCLK ADS A31:2, BE3:0 Valid W/R BLAST DT/R DEN SUP, DMA, D/C, LOCK Valid WAIT D31:0 Out F_CX028A Datasheet 49 80960-40, -33, -25 Bit Value Byte Order reserved Function reserved Figure 28. Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus 31-23 22 0 0..0 X x PipeLining Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 32-Bit 10 X xx X xxxxx 0 00 0 00 0 00000 OFF 0 A D D D D External Ready Control Burst 1 0 Disabled Enabled 1 0 A PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 WAIT D31:0 In0 In1 In2 In3 F_CX029A 50 Datasheet 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x A reserved Function reserved Figure 29. Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 32-bit 10 X xx X xxxxx 1 01 1 01 2 00010 OFF 0 D 1 2 1 D 1 D 1 PipeLining D 1 External Ready Control Burst 1 0 Disabled Enabled 1 0 A PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 WAIT D31:0 In0 In1 In2 In3 F_CX030A Datasheet 51 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x reserved Function reserved Figure 30. Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 32-bit 10 0 00 0 00000 0 00 X xx X xxxxx OFF 0 A D D D PipeLining D External Ready Control Burst 1 0 Disabled Enabled 1 0 A PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 Out2 Out3 WAIT D31:0 Out0 Out1 F_CX031A 52 Datasheet 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x A reserved Function reserved Figure 31. Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 32-bit 10 1 01 2 00010 1 01 X xx X xxxxx OFF 0 2 1 D 1 D 1 D 1 PipeLining D 1 External Ready Control Burst 1 0 Disabled Enabled 1 0 A PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 WAIT D31:0 Out0 Out1 Out2 Out3 F_CX032A Datasheet 53 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x reserved Function reserved Figure 32. Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 16-bit 01 X xx X xxxxx 1 01 1 01 2 00010 OFF 0 Disabled Enabled 1 0 D 1 A 2 1 D 1 D 1 D 1 PipeLining External Ready Control Burst 1 0 A PCLK ADS SUP, DMA, D/C, LOCK, A31:4, BE3/BHE, BE0/BLE Valid W/R BLAST DT/R DEN A3:2 A3:2 = 00 or 10 A3:2 = 01 or 11 BE1/A1 WAIT D31:0 D15:0 A1=0 D15:0 A1=1 D15:0 A1=0 D15:0 A1=1 F_CX033A 54 Datasheet 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x reserved Function reserved Figure 33. Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 8-bit 00 X xx X xxxxx 1 01 1 01 2 00010 OFF 0 Disabled Enabled 1 0 D 1 A 2 1 D 1 D 1 D 1 PipeLining External Ready Control Burst 1 0 A PCLK ADS SUP, DMA, D/C, LOCK, A31:4 Valid W/R BLAST DT/R DEN A3:2 BE1/A1, BE0/A0 A3:2 = 00, 01, 10 or 11 A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 =11 WAIT D31:0 D7:0 Byte 0 D7:0 Byte 1 D7:0 Byte 2 D7:0 Byte 3 F_CX034A Datasheet 55 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x reserved Function reserved Figure 34. Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining External Ready Control 21 20-19 18-17 16-12 11-10 9-8 7-3 2 1 0 0 0 X xx X xx X xxxxx X xx X xx 0 00000 ON 1 X x Disabled 0 A A’ D A’’ D’ A’’’ D’’ A’’’’ D’’’ Burst D’’’’ PCLK ADS A31:4, SUP, DMA, D/C, LOCK Valid Valid Valid Valid Valid Invalid W/R A3:2 BE3:0 D31:0 Invalid Valid Valid IN D Valid IN D’ Valid IN D’’ Valid IN D’’’ Invalid IN D’’’’ WAIT BLAST DT/R DEN Non-pipelined request concludes pipelined reads begin. 56 Pipelined reads conclude, non-pipelined requests begin. F_CX035A Datasheet 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x reserved Function reserved Figure 35. Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 1 0 0 0 X xx X xx X xxxxx X xx X xx 1 00001 ON 1 X x Disabled 1 A 1 A’ D 1 PipeLining External Ready Control Burst D’ PCLK ADS A31:4, SUP, DMA, D/C, LOCK Valid Valid Invalid W/R A3:2 BE3:0 Invalid Valid Valid IN D D31:0 Invalid IN D’ WAIT BLAST DT/R DEN Non-pipelined request concludes pipelined reads begin. Datasheet Pipelined reads conclude, non-pipelined requests begin. F_CX036A 57 80960-40, -33, -25 Bit Value Byte Order 31-23 22 0 0..0 X x reserved Function reserved Figure 36. Burst, Pipelined Read Request Without Wait States, 32-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 32-bit 10 X xx X xxxxx X xx 0 00 0 00000 ON 1 A D D D A’ D D’ PipeLining External Ready Control Burst 1 0 Disabled Enabled 1 0 D’ PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid InValid Valid InValid W/R A3:2 D31:0 00 01 IN D 10 11 IN D IN D Valid Valid IN D IN D InValid IN D WAIT BLAST DT/R DEN Non-pipelined request concludes, pipelined reads begin 58 Pipelined reads conclude, non-pipelined requests begin F_CX037A Datasheet 80960-40, -33, -25 Byte Order 31-23 22 0 0..0 X x Function Bit Value A reserved reserved Figure 37. Burst, Pipelined Read Request With Wait States, 32-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 32-bit 10 X xx X xxxxx X xx 1 01 2 00010 ON 1 2 1 D 1 D 1 D 1 PipeLining A’ D 2 External Ready Control Burst 1 0 Disabled Enabled 1 0 1 D’ PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid Valid Invalid W/R A3:2 D31:0 Invalid 00 01 IN D 10 IN D 11 IN D Valid IN D Invalid IN D’ WAIT BLAST DT/R DEN Non-pipelined request concludes, pipelined reads begin. Pipelined reads conclude, non-pipelined requests begin. F_CX038A Datasheet 59 80960-40, -33, -25 Byte Order 31-23 22 0 0..0 X x Function Bit Value A reserved reserved Figure 38. Burst, Pipelined Read Request With Wait States, 16-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 16-bit 01 X xx X xxxxx X xx 1 01 2 00010 ON 1 2 1 D 1 D 1 D 1 PipeLining A’ D 2 External Ready Control Burst 1 0 Disabled Enabled 1 0 1 D’ PCLK ADS A31:4, SUP, DMA, D/C, BE0/BLE, BE3/BHE, LOCK Valid Valid Invalid W/R A3:2 A3:2 = 00 or 10 A3:2 = 01 or 11 BE1/A1 D31:0 Invalid D15:0 A1=0 D15:0 A1=1 D15:0 A1=0 Valid Invalid Valid Invalid D15:0 A1=1 D15:0 D’ WAIT BLAST DT/R DEN Non-pipelined request concludes, pipelined reads begin. Pipelined reads conclude, non-pipelined requests begin. F_CX040A 60 Datasheet 80960-40, -33, -25 Byte Order 31-23 22 0 0..0 X x Function Bit Value A reserved reserved Figure 39. Burst, Pipelined Read Request With Wait States, 8-Bit Bus Bus Width NWDD NWAD NXDA NRDD NRAD 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0 8-bit 00 X xx X xxxxx X xx 1 01 2 00010 ON 1 2 1 D 1 D 1 D 1 A’ D PipeLining External Ready Control Burst 1 0 Disabled Enabled 1 0 2 1 D’ PCLK ADS A31:4, SUP, Valid DMA, D/C, LOCK Valid Invalid W/R A3:2 BE1/A1, BE0/A0 D31:0 Invalid A3:2 = 00, 01, 10, or 11 A1:0 = 00 Valid A1:0 = 01 A1:0 = 10 A1:0 = 11 D7:0 Byte 0 D7:0 Byte 1 D7:0 Byte 2 Valid D7:0 Byte 3 Invalid Invalid D7:0 D’ WAIT BLAST DT/R DEN Non-pipelined request concludes, pipelined reads begin. Pipelined reads conclude, non-pipelined requests begin. F_CX039A Datasheet 61 80960-40, -33, -25 Figure 40. Using External READY Quad-Word Write Request NWAD = 1, NWDD = 0, NWDA = 0 Ready Enabled Quad-Word Read Request NRAD = 0, NRDD = 0, NXDA = 0 Ready Enabled PCLK ADS A31:4, SUP, DMA, INST, D/C, BE3:0, LOCK Valid Valid W/R BLAST DT/R DEN READY BTERM A3:2 00 01 10 11 00 01 10 11 D1 D2 D3 WAIT D31:0 D0 D1 D2 D3 D0 F_CX041A 62 Datasheet 80960-40, -33, -25 Figure 41. Terminating a Burst with BTERM Quad-Word Write Request NWAD = 0, NWDD = 0, NWDA = 0 Ready Enabled PCLK ADS A31:4, SUP, DMA, INST, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN READY See Note BTERM A3:2 00 01 10 11 WAIT D31:0 D0 D1 D2 D3 Note: READY adds memory access time to data transfers, whether or not the bus access is a burst access. BTERM interrupts a bus access, whether or not the bus access has more data transfers pending. Either the READY signal or the BTERM signal may terminate a bus access when the signal is asserted during the last (or only) data transfer of the bus access. Datasheet F_CX042A 63 80960-40, -33, -25 Figure 42. BOFF Functional Timing NON-BURST A31:2, SUP, DMA, D/C, BE3:0, WAIT, DEN, DT/R D31:0, (WRITES) RESUME REQUEST ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ SUSPEND REQUEST ∼ ∼ MAY CHANGE READY BOFF ∼ ∼ ∼ ∼ ∼ ∼ BLAST BURST ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ BURST ∼ ∼ ∼ ∼ ADS ∼ ∼ ∼ ∼ ∼ ∼ Regenerate ADS Begin Request BOFF may be asserted to suspend request BOFF may not be asserted Note: READY/BTERM must be enabled; NRAD, NRDD, NWAD, NWDD= 0 64 End Request BOFF may not be asserted F_CX043A Datasheet 80960-40, -33, -25 Figure 43. HOLD Functional Timing Word Read Request NRAD=1, NXDA=1 Hold State Word Read Request NRAD=0, NXDA=0 Hold State PCLK2:1 ADS A31:2, SUP, DMA, D/C, BE3:0, WAIT, DEN, DT/R Valid Valid BLAST HOLD HOLDA F_CX044A Datasheet 65 80960-40, -33, -25 Figure 44. DREQ and DACK Functional Timing System Clock ∼ ∼ Start DMA Bus Request ∼ ∼ PCLK2:1 End DMA Bus Request (see Note) DMA Acknowledge ADS ! (BLAST & READY & !WAIT) ∼ ∼∼ ∼∼ ∼∼ ∼∼ ∼ DACKx (All Modes) DREQx (Case 1) DREQx (Case 2) high to prevent next bus cycle tIS6 tIH6 high to prevent next bus cycle tIS6 DMA Request tIH6 Note: 1. Case 1: DREQ must deassert before DACK deasserts. This applies to all Fly-By modes: source synchronized packing modes and destination synchronized unpacking modes. 2. Case 2: DREQ must be deasserted by the second clock (rising edge) after DACK is driven high. This applies to all other DMA transfers. F_CX018A 3. DACKx is asserted for the duration of a DMA bus request. The request may consist of multiple bus accesses (defined by ADS and BLAST). Figure 45. EOP Functional Timing ∼ ∼ ∼ ∼ ∼ ∼ PCLK2:1 EOP 2 CLKs Min 15 CLKs Max Note: EOP has the same AC Timing Requirements as DREQ to prevent unwanted DMA requests. EOP is NOT edge triggered. EOP must beheld for a minimum of 2 clock cycles then deasserted within 15 clock cycles. F_CX045A 66 Datasheet 80960-40, -33, -25 Figure 46. Terminal Count Functional Timing PCLK2:1 DREQ ADS DACK TC Note: Terminal Count becomes active during the last bus request of a buffer transfer. When the last LOAD/STORE bus request is executed as multiple bus accesses, the TC may be active for the entire bus request. Refer to the i960® Cx Microprocessor User’s Manual for further information. F_CX046A ∼ ∼ ∼ ∼ Figure 47. FAIL Functional Timing RESET (Bus Test) Pass ~65,000 Cycles Fail 5 Cycles ∼ ∼ FAIL ∼ ∼ (Internal Self-Test) Pass Fail 102 Cycles F_CX047A Datasheet 67 80960-40, -33, -25 Figure 48. A Summary of Aligned and Unaligned Transfers for Little Endian Regions 0 4 8 12 16 20 24 Word Offset 0 1 2 3 4 5 6 Byte Offset Short Request (Aligned) Byte, Byte Requests Short-Word Load/Store Short Request (Aligned) Byte, Byte Requests Word Request (Aligned) Byte, Short, Byte, Requests Word Load/Store Short, Short Requests Byte, Short, Byte Requests One Double-Word Burst (Aligned) Byte, Short, Word, Byte Requests Short, Word, Short Requests Double-Word Load/Store Byte, Word, Short, Byte Requests Word, Word Requests One Double-Word Request (Aligned) F_CX048A 68 Datasheet 80960-40, -33, -25 Figure 49. A Summary of Aligned and Unaligned Transfers for Little Endian Regions 0 4 8 12 16 20 24 1 2 3 4 5 6 Byte Offset Word Offset 0 One Three-Word Request (Aligned) Byte, Short, Word, Word, Byte Requests Triple-Word Load/Store Short, Word, Word, Short Requests Byte, Word, Word, Short, Byte Requests Word, Word, Word Requests Word, Word, Word Requests Word, Word, Word Requests One Four-Word Request (Aligned) Byte, Short, Word, Word, Word, Byte Requests Quad-Word Load/Store Short, Word, Word, Word, Short Requests Byte, Word, Word, Word, Short, Byte Requests Word, Word, Word, Word Requests DoubleWord, DoubleWord, Requests F_CX049A Datasheet 69 80960-40, -33, -25 Figure 50. Idle Bus Operation Write Request NWAD=2, NXDA = 0 Ready Disabled Idle Bus (not in Hold Acknowledge state) Read Request NWAD=2, NXDA = 0 Ready Disabled PCLK ADS A31:4, SUP, DMA, INST, D/C, BE3:0 Valid Valid LOCK Valid Valid W/R BLAST DT/R DEN A3:2 Valid Valid WAIT D31:0 Out In READY, BTERM F_CX050A 70 Datasheet
A80960CF40 价格&库存

很抱歉,暂时无法提供与“A80960CF40”相匹配的价格&库存,您可以联系我们找货

免费人工找货