Includes
MAX 7000E &
MAX 7000S
MAX 7000
Programmable Logic
Device Family
®
July 1999, ver. 6.01
Features...
Data Sheet
■
■
■
■
■
■
■
f
High-performance, EEPROM-based programmable logic devices
(PLDs) based on second-generation Multiple Array MatriX (MAX®)
architecture
5.0-V in-system programmability (ISP) through the built-in
IEEE Std. 1149.1 Joint Test Action Group (JTAG) interface available in
MAX 7000S devices
Includes 5.0-V MAX 7000 devices and 5.0-V ISP-based MAX 7000S
devices
Built-in JTAG boundary-scan test (BST) circuitry in MAX 7000S
devices with 128 or more macrocells
Complete EPLD family with logic densities ranging from 600 to
5,000 usable gates (see Tables 1 and 2)
5-ns pin-to-pin logic delays with up to 175.4-MHz counter
frequencies (including interconnect)
Peripheral component interconnect (PCI)-compliant devices
available
For information on in-system programmable 3.3-V MAX 7000A or 2.5-V
MAX 7000B devices, see the MAX 7000A Programmable Logic Device Family
Data Sheet or the MAX 7000B Programmable Logic Devices Advance
Information Brief.
Table 1. MAX 7000 Device Features
Feature
EPM7032
EPM7064
EPM7096
EPM7128E
EPM7160E
EPM7192E
EPM7256E
Usable
gates
600
1,250
1,800
2,500
3,200
3,750
5,000
Macrocells
32
64
96
128
160
192
256
Logic array
blocks
2
4
6
8
10
12
16
Maximum
user I/O pins
36
68
76
100
104
124
164
tPD (ns)
6
6
7.5
7.5
10
12
12
tSU (ns)
5
5
6
6
7
7
7
tFSU (ns)
2.5
2.5
3
3
3
3
3
tCO1 (ns)
4
4
4.5
4.5
5
6
6
151.5
151.5
125.0
125.0
100.0
90.9
90.9
fCNT (MHz)
Altera Corporation
A-DS-M7000-06.01
1
MAX 7000 Programmable Logic Device Family Data Sheet
Table 2. MAX 7000S Device Features
Feature
EPM7032S
EPM7064S
EPM7128S
EPM7160S
EPM7192S
EPM7256S
Usable gates
600
1,250
2,500
3,200
3,750
5,000
Macrocells
32
64
128
160
192
256
Logic array
blocks
2
4
8
10
12
16
Maximum
user I/O pins
36
68
100
104
124
164
tPD (ns)
5
5
6
6
7.5
7.5
tSU (ns)
2.9
2.9
3.4
3.4
4.1
3.9
tFSU (ns)
2.5
2.5
2.5
2.5
3
3
tCO1 (ns)
3.2
3.2
4
3.9
4.7
4.7
175.4
175.4
147.1
149.3
125.0
128.2
fCNT (MHz)
...and More
Features
■
■
■
■
■
■
■
■
■
2
Open-drain output option in MAX 7000S devices
Programmable macrocell flipflops with individual clear, preset,
clock, and clock enable controls
Programmable power-saving mode for a reduction of over 50% in
each macrocell
Configurable expander product-term distribution, allowing up to
32 product terms per macrocell
44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic
pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat
pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
Programmable security bit for protection of proprietary designs
3.3-V or 5.0-V operation
– MultiVoltTM I/O interface operation, allowing devices to
interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is
not available in 44-pin packages)
–
Pin compatible with low-voltage MAX 7000A and MAX 7000B
devices
Enhanced features available in MAX 7000E and MAX 7000S devices
– Six pin- or logic-driven output enable signals
– Two global clock signals with optional inversion
– Enhanced interconnect resources for improved routability
– Fast input setup times provided by a dedicated path from I/O
pin to macrocell registers
– Programmable output slew-rate control
Software design support and automatic place-and-route provided by
Altera’s MAX+PLUS® II development system for Windows-based
PCs and Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC
System/6000 workstations, and the QuartusTM development system
for Windows-based PCs and Sun SPARCstation and HP 9000
Series 700 workstations
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
■
■
General
Description
Additional design entry and simulation support provided by EDIF
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM),
Verilog HDL, VHDL, and other interfaces to popular EDA tools from
manufacturers such as Cadence, Exemplar Logic, Mentor Graphics,
OrCAD, Synopsys, and VeriBest
Programming support
– Altera’s Master Programming Unit (MPU) and programming
hardware from third-party manufacturers program all
MAX 7000 devices
– The BitBlasterTM serial download cable, ByteBlasterTM parallel
port download cable, ByteBlasterMVTM parallel port download
cable, and MasterBlasterTM serial/universal serial bus (USB)
download cable program MAX 7000S devices
The MAX 7000 family of high-density, high-performance PLDs is based
on Altera’s second-generation MAX architecture. Fabricated with
advanced CMOS technology, the EEPROM-based MAX 7000 family
provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns,
and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6,
-7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in
-5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest
Group (PCI SIG) PCI Local Bus Specification, Revision 2.2. See Table 3
for available speed grades.
Table 3. MAX 7000 Speed Grades
Device
Speed Grade
-5
EPM7032
EPM7032S
v
EPM7064
-7
v
v
v
v
v
v
v
v
-10
-12P
-12
-15
-15T
v
v
v
v
v
v
v
v
v
v
v
EPM7128E
v
v
v
v
EPM7128S
v
-10P
EPM7096
EPM7064S
v
-6
v
v
v
v
v
EPM7160E
EPM7160S
v
v
v
EPM7192S
v
v
v
Altera Corporation
v
v
v
v
v
v
v
v
v
EPM7256E
EPM7256S
v
v
v
v
v
v
EPM7192E
-20
v
v
v
v
3
MAX 7000 Programmable Logic Device Family Data Sheet
The MAX 7000E devices—including the EPM7128E, EPM7160E,
EPM7192E, and EPM7256E devices—have several enhanced features:
additional global clocking, additional output enable controls, enhanced
interconnect resources, fast input registers, and a programmable slew
rate.
In-system programmable MAX 7000 devices—called MAX 7000S
devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S,
EPM7192S, and EPM7256S devices. MAX 7000S devices have the
enhanced features of MAX 7000E devices as well as JTAG BST circuitry in
devices with 128 or more macrocells, ISP, and an open-drain output
option. See Table 4.
Table 4. MAX 7000 Device Features
Feature
EPM7032
EPM7064
EPM7096
All
MAX 7000E
Devices
All
MAX 7000S
Devices
ISP via JTAG interface
v
JTAG BST circuitry
v (1)
v
Open-drain output option
Fast input registers
v
v
v
Six global output enables
v
Two global clocks
v
v
Slew-rate control
v
v
MultiVolt interface (2)
v
v
v
Programmable register
v
v
v
Parallel expanders
v
v
v
Shared expanders
v
v
v
Power-saving mode
v
v
v
Security bit
v
v
v
PCI-compliant devices available
v
v
v
Notes:
(1)
(2)
4
Available in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.
The MultiVolt I/O interface is not available in 44-pin packages.
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
The MAX 7000 architecture supports 100% TTL emulation and highdensity integration of SSI, MSI, and LSI logic functions. It easily
integrates multiple devices ranging from PALs, GALs, and 22V10s to
MACH and pLSI devices. MAX 7000 devices are available in a wide
range of packages, including PLCC, PGA, PQFP, RQFP, and TQFP
packages. See Table 5.
Table 5. MAX 7000 Maximum User I/O Pins
Device
Note (1)
4444446884- 100- 100Pin
Pin
Pin
Pin
Pin
Pin
Pin
PLCC PQFP TQFP PLCC PLCC PQFP TQFP
EPM7032
36
EPM7032S
36
36
EPM7064
36
36
EPM7064S
36
36
EPM7096
36
160Pin
PQFP
192Pin
PGA
208Pin
PQFP
208Pin
RQFP
36
52
68
68
68
52
64
68
76
EPM7128E
68
84
EPM7128S
68
84
EPM7160E
64
84
EPM7160S
64
100
84 (2)
100
104
84 (2)
104
EPM7192E
124
EPM7192S
124
EPM7256E
132 (2)
EPM7256S
160Pin
PGA
124
164
164
164 (2)
164
Notes:
(1)
(2)
When the JTAG interface in MAX 7000S devices is used, four I/O pins become JTAG pins.
Perform a complete thermal analysis before committing a design to this device package. See the Operating
Requirements for Altera Devices Data Sheet for more information.
MAX 7000 devices use CMOS EEPROM cells to implement logic
functions. The user-configurable MAX 7000 architecture
accommodates a variety of independent combinatorial and
sequential logic functions. The devices can be reprogrammed for
quick and efficient iterations during design development and debug
cycles, and can be programmed and erased up to 100 times.
Altera Corporation
5
MAX 7000 Programmable Logic Device Family Data Sheet
MAX 7000 devices contain from 32 to 256 macrocells that are
combined into groups of 16 macrocells, called logic array blocks
(LABs). Each macrocell has a programmable-AND/fixed-OR array and
a configurable register with independently programmable clock,
clock enable, clear, and preset functions. To build complex logic
functions, each macrocell can be supplemented with both shareable
expander product terms and high-speed parallel expander product
terms to provide up to 32 product terms per macrocell.
The MAX 7000 family provides programmable speed/power
optimization. Speed-critical portions of a design can run at high
speed/full power, while the remaining portions run at reduced
speed/low power. This speed/power optimization feature enables
the designer to configure one or more macrocells to operate at 50%
or lower power while adding only a nominal timing delay.
MAX 7000E and MAX 7000S devices also provide an option that
reduces the slew rate of the output buffers, minimizing noise
transients when non-speed-critical signals are switching. The output
drivers of all MAX 7000 devices (except 44-pin devices) can be set for
either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be
used in mixed-voltage systems.
The MAX 7000 family is supported by the Quartus and
MAX+PLUS II development systems, a single, integrated package
that allows schematic, text—including VHDL, Verilog HDL, and the
Altera Hardware Description Language (AHDL)—and waveform
design entry, compilation and logic synthesis, simulation and timing
analysis, and device programming. The Quartus and MAX+PLUS II
software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL,
and other interfaces for additional design entry and simulation
support from other industry-standard PC- and UNIX-workstationbased EDA tools. The MAX+PLUS II software runs on Windowsbased PCs, as well as Sun SPARCstation, HP 9000 Series 700/800,
and IBM RISC System/6000 workstations. The Quartus software
runs on Windows-based PCs, as well as Sun SPARCstation and
HP 9000 Series 700 workstations.
f
Functional
Description
6
For more information on development tools, go to the MAX+PLUS II
Programmable Logic Development System & Software Data Sheet.
The MAX 7000 architecture includes the following elements:
■
■
■
■
■
Logic array blocks
Macrocells
Expander product terms (shareable and parallel)
Programmable interconnect array
I/O control blocks
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
The MAX 7000 architecture includes four dedicated inputs that can
be used as general-purpose inputs or as high-speed, global control
signals (clock, clear, and two output enable signals) for each
macrocell and I/O pin. Figure 1 shows the architecture of EPM7032,
EPM7064, and EPM7096 devices.
Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram
INPUT/GLCK1
INPUT/GCLRn
INPUT/OE1n
INPUT/OE2n
LAB A
8 to 16
8 to 16
I/O pins
LAB B
36
Macrocells
1 to 16
I/O
Control
Block
36
16
8 to 16
PIA
36
Macrocells
33 to 48
16
8 to 16
Altera Corporation
8 to 16
I/O pins
I/O
Control
Block
8 to 16
I/O pins
8 to 16
LAB C
I/O
Control
Block
I/O
Control
Block
16
8 to 16
8 to 16
I/O pins
8 to 16
Macrocells
17 to 32
LAB D
36
Macrocells
49 to 64
8 to 16
16
8 to 16
7
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.
Figure 2. MAX 7000E & MAX 7000S Device Block Diagram
INPUT/GCLK1
INPUT/OE2/GCLK2
INPUT/OE1
INPUT/GCLRn
6 Output Enables
6 Output Enables
6 to16
6 to 16 I/O Pins
I/O
Control
Block
LAB B
LAB A
6 to16
36
Macrocells
1 to 16
36
16
6 to16
6 to 16 I/O Pins
I/O
Control
Block
6
6 to16
6 to16
Macrocells
17 to 32
PIA
6 to16
6 to 16 I/O Pins
6
LAB D
LAB C
36
Macrocells
33 to 48
I/O
Control
Block
16
6 to16
6
6 to16
36
16
16
6 to16
6 to16
Macrocells
49 to 64
6 to16
6 to16
I/O
Control
Block
6 to 16 I/O Pins
6
Logic Array Blocks
The MAX 7000 device architecture is based on the linking of highperformance, flexible, logic array modules called logic array blocks
(LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2.
Multiple LABs are linked together via the programmable interconnect
array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and
macrocells.
8
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Each LAB is fed by the following signals:
■
■
■
36 signals from the PIA that are used for general logic inputs
Global controls that are used for secondary register functions
Direct input paths from I/O pins to the registers that are used
for fast setup times for MAX 7000E and MAX 7000S devices
Macrocells
The MAX 7000 macrocell can be individually configured for either
sequential or combinatorial logic operation. The macrocell consists
of three functional blocks: the logic array, the product-term select
matrix, and the programmable register. The macrocell of EPM7032,
EPM7064, and EPM7096 devices is shown in Figure 3.
Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell
Global
Clear
Logic Array
Global
Clock
Parallel Logic
Expanders
(from other
macrocells)
Programmable
Register
Register
Bypass
PRN
D/T Q
Clock/
Enable
Select
ProductTerm
Select
Matrix
to I/O
Control
Block
ENA
CLRN
VCC
Clear
Select
Shared Logic
Expanders
36 Signals
from PIA
to PIA
16 Expander
Product Terms
Altera Corporation
9
MAX 7000 Programmable Logic Device Family Data Sheet
The macrocell of MAX 7000E and MAX 7000S devices is shown in
Figure 4.
Figure 4. MAX 7000E & MAX 7000S Device Macrocell
ProductTerm
Select
Matrix
Combinatorial logic is implemented in the logic array, which provides
five product terms per macrocell. The product-term select matrix allocates
these product terms for use as either primary logic inputs (to the OR and
XOR gates) to implement combinatorial functions, or as secondary inputs
to the macrocell’s register clear, preset, clock, and clock enable control
functions. Two kinds of expander product terms (“expanders”) are
available to supplement macrocell logic resources:
■
■
Shareable expanders, which are inverted product terms that are fed
back into the logic array
Parallel expanders, which are product terms borrowed from adjacent
macrocells
The Quartus and MAX+PLUS II software automatically optimizes
product-term allocation according to the logic requirements of the design.
For registered functions, each macrocell flipflop can be individually
programmed to implement D, T, JK, or SR operation with programmable
clock control. The flipflop can be bypassed for combinatorial operation.
During design entry, the designer specifies the desired flipflop type; the
Quartus and MAX+PLUS II software then selects the most efficient
flipflop operation for each registered function to optimize resource
utilization.
10
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Each programmable register can be clocked in three different modes:
■
■
■
By a global clock signal. This mode achieves the fastest clock-tooutput performance.
By a global clock signal and enabled by an active-high clock
enable. This mode provides an enable on each flipflop while still
achieving the fast clock-to-output performance of the global
clock.
By an array clock implemented with a product term. In this
mode, the flipflop can be clocked by signals from buried
macrocells or I/O pins.
In EPM7032, EPM7064, and EPM7096 devices, the global clock signal
is available from a dedicated clock pin, GCLK1, as shown in Figure 1.
In MAX 7000E and MAX 7000S devices, two global clock signals are
available. As shown in Figure 2, these global clock signals can be the
true or the complement of either of the global clock pins, GCLK1 or
GCLK2.
Each register also supports asynchronous preset and clear functions.
As shown in Figures 3 and 4, the product-term select matrix allocates
product terms to control these operations. Although the productterm-driven preset and clear of the register are active high, activelow control can be obtained by inverting the signal within the logic
array. In addition, each register clear function can be individually
driven by the active-low dedicated global clear pin (GCLRn).
All MAX 7000E and MAX 7000S I/O pins have a fast input path to a
macrocell register. This dedicated path allows a signal to bypass the
PIA and combinatorial logic and be driven to an input D flipflop
with an extremely fast (2.5-ns) input setup time.
Expander Product Terms
Although most logic functions can be implemented with the five
product terms available in each macrocell, the more complex logic
functions require additional product terms. Another macrocell can
be used to supply the required logic resources; however, the
MAX 7000 architecture also allows both shareable and parallel
expander product terms (“expanders”) that provide additional
product terms directly to any macrocell in the same LAB. These
expanders help ensure that logic is synthesized with the fewest
possible logic resources to obtain the fastest possible speed.
Altera Corporation
11
MAX 7000 Programmable Logic Device Family Data Sheet
Shareable Expanders
Each LAB has 16 shareable expanders that can be viewed as a pool of
uncommitted single product terms (one from each macrocell) with
inverted outputs that feed back into the logic array. Each shareable
expander can be used and shared by any or all macrocells in the LAB to
build complex logic functions. A small delay (tSEXP) is incurred when
shareable expanders are used. Figure 5 shows how shareable expanders
can feed multiple macrocells.
Figure 5. Shareable Expanders
Shareable expanders can be shared by any or all macrocells in an LAB.
Macrocell
Product-Term
Logic
Product-Term Select Matrix
Macrocell
Product-Term
Logic
36 Signals
from PIA
16 Shared
Expanders
Parallel Expanders
Parallel expanders are unused product terms that can be allocated to a
neighboring macrocell to implement fast, complex logic functions.
Parallel expanders allow up to 20 product terms to directly feed the
macrocell OR logic, with five product terms provided by the macrocell and
15 parallel expanders provided by neighboring macrocells in the LAB.
12
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
The Quartus and MAX+PLUS II Compilers can allocate up to three
sets of up to five parallel expanders automatically to the macrocells
that require additional product terms. Each set of five parallel
expanders incurs a small, incremental timing delay (tPEXP). For
example, if a macrocell requires 14 product terms, the Compiler uses
the five dedicated product terms within the macrocell and allocates
two sets of parallel expanders; the first set includes five product
terms and the second set includes 4 product terms, increasing the
total delay by 2 × tPEXP.
Two groups of 8 macrocells within each LAB (e.g., macrocells
1 through 8 and 9 through 16) form two chains to lend or borrow
parallel expanders. A macrocell borrows parallel expanders from
lower-numbered macrocells. For example, macrocell 8 can borrow
parallel expanders from macrocell 7, from macrocells 7 and 6, or
from macrocells 7, 6, and 5. Within each group of 8, the lowestnumbered macrocell can only lend parallel expanders and the
highest-numbered macrocell can only borrow them. Figure 6 shows
how parallel expanders can be borrowed from a neighboring
macrocell.
Figure 6. Parallel Expanders
Unused product terms in a macrocell can be allocated to a neighboring macrocell.
From
Previous
Macrocell
Preset
ProductTerm
Select
Matrix
Macrocell
ProductTerm Logic
Clock
Clear
Preset
ProductTerm
Select
Matrix
Macrocell
ProductTerm Logic
Clock
Clear
36 Signals
from PIA
Altera Corporation
16 Shared
Expanders
To Next
Macrocell
13
MAX 7000 Programmable Logic Device Family Data Sheet
Programmable Interconnect Array
Logic is routed between LABs via the programmable interconnect array
(PIA). This global bus is a programmable path that connects any signal
source to any destination on the device. All MAX 7000 dedicated inputs,
I/O pins, and macrocell outputs feed the PIA, which makes the signals
available throughout the entire device. Only the signals required by each
LAB are actually routed from the PIA into the LAB. Figure 7 shows how
the PIA signals are routed into the LAB. An EEPROM cell controls one
input to a 2-input AND gate, which selects a PIA signal to drive into the
LAB.
Figure 7. PIA Routing
to LAB
PIA Signals
While the routing delays of channel-based routing schemes in masked or
field-programmable gate arrays (FPGAs) are cumulative, variable, and
path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus
eliminates skew between signals and makes timing performance easy to
predict.
I/O Control Blocks
The I/O control block allows each I/O pin to be individually configured
for input, output, or bidirectional operation. All I/O pins have a tri-state
buffer that is individually controlled by one of the global output enable
signals or directly connected to ground or VCC. Figure 8 shows the I/O
control block for the MAX 7000 family. The I/O control block of EPM7032,
EPM7064, and EPM7096 devices has two global output enable signals that
are driven by two dedicated active-low output enable pins (OE1 and OE2).
The I/O control block of MAX 7000E and MAX 7000S devices has six
global output enable signals that are driven by the true or complement of
two output enable signals, a subset of the I/O pins, or a subset of the I/O
macrocells.
14
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 8. I/O Control Block of MAX 7000 Devices
EPM7032, EPM7064 & EPM7096 Devices
VCC
OE1
OE2
GND
From Macrocell
To PIA
MAX 7000E & MAX 7000S Devices
Six Global Output Enable Signals
PIA
VCC
To Other I/O Pins
From
Macrocell
Fast Input to
Macrocell
Register
GND
Open-Drain Output (1)
Slew-Rate Control
To PIA
Note:
(1)
Altera Corporation
The open-drain output option is available in MAX 7000S devices only.
15
MAX 7000 Programmable Logic Device Family Data Sheet
When the tri-state buffer control is connected to ground, the output is
tri-stated (high impedance) and the I/O pin can be used as a dedicated
input. When the tri-state buffer control is connected to VCC, the output is
enabled.
The MAX 7000 architecture provides dual I/O feedback, in which
macrocell and pin feedbacks are independent. When an I/O pin is
configured as an input, the associated macrocell can be used for buried
logic.
In-System
Programmability (ISP)
MAX 7000S devices are in-system programmable via an industrystandard 4-pin Joint Test Action Group (JTAG) interface (IEEE Std.
1149.1-1990). ISP allows quick, efficient iterations during design
development and debugging cycles. The MAX 7000S architecture
internally generates the high programming voltage required to program
EEPROM cells, allowing in-system programming with only a single 5.0 V
power supply. During in-system programming, the I/O pins are tri-stated
and pulled-up to eliminate board conflicts. The pull-up value is nominally
50 kΩ.
ISP simplifies the manufacturing flow by allowing devices to be mounted
on a printed circuit board with standard in-circuit test equipment before
they are programmed. MAX 7000S devices can be programmed by
downloading the information via in-circuit testers (ICT), embedded
processors, or the Altera BitBlaster, ByteBlaster, ByteBlasterMV, or
MasterBlaster download cables. (The ByteBlaster cable is obsolete and is
replaced by the ByteBlasterMV cable, which can program and configure
2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are
placed on the board eliminates lead damage on high-pin-count packages
(e.g., QFP packages) due to device handling and allows devices to be
reprogrammed after a system has already shipped to the field. For
example, product upgrades can be performed in the field via software or
modem.
In-system programming can be accomplished with either an adaptive or
constant algorithm. An adaptive algorithm reads information from the
unit and adapts subsequent programming steps to achieve the fastest
possible programming time for that unit. Because some in-circuit testers
can not support an adaptive algorithm, Altera offers devices tested with a
constant algorithm. Devices tested to the constant algorithm are marked
with an “F” suffix in the ordering code.
The JamTM programming and test language can be used to program
MAX 7000S devices with in-circuit test equipment (e.g., PC, embedded
processor).
f
16
For more information on using the Jam language, see Application Note 88
(Using the Jam Language for ISP & ICR via an Embedded Processor).
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Programmable
Speed/Power
Control
MAX 7000 devices offer a power-saving mode that supports low-power
operation across user-defined signal paths or the entire device. This
feature allows total power dissipation to be reduced by 50% or more,
because most logic applications require only a small fraction of all gates to
operate at maximum frequency.
The designer can program each individual macrocell in a MAX 7000
device for either high-speed (i.e., with the Turbo BitTM option turned on)
or low-power (i.e., with the Turbo Bit option turned off) operation. As a
result, speed-critical paths in the design can run at high speed, while the
remaining paths can operate at reduced power. Macrocells that run at low
power incur a nominal timing delay adder (tLPA) for the tLAD, tLAC, tIC,
tEN, and tSEXP, tACL, and tCPPW parameters.
Output
Configuration
MAX 7000 device outputs can be programmed to meet a variety of
system-level requirements.
MultiVolt I/O Interface
MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O
interface feature, which allows MAX 7000 devices to interface with
systems that have differing supply voltages. The 5.0-V devices in all
packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices
have one set of VCC pins for internal operation and input buffers (VCCINT),
and another set for I/O output drivers (VCCIO).
The VCCINT pins must always be connected to a 5.0-V power supply. With
a 5.0-V VCCINT level, input voltage thresholds are at TTL levels, and are
therefore compatible with both 3.3-V and 5.0-V inputs.
The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply,
depending on the output requirements. When the VCCIO pins are
connected to a 5.0-V supply, the output levels are compatible with 5.0-V
systems. When VCCIO is connected to a 3.3-V supply, the output high is
3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices
operating with VCCIO levels lower than 4.75 V incur a nominally greater
timing delay of tOD2 instead of tOD1.
Open-Drain Output Option (MAX 7000S Devices Only)
MAX 7000S devices provide an optional open-drain (functionally
equivalent to open-collector) output for each I/O pin. This open-drain
output enables the device to provide system-level control signals (e.g.,
interrupt and write enable signals) that can be asserted by any of several
devices. It can also provide an additional wired-OR plane.
Altera Corporation
17
MAX 7000 Programmable Logic Device Family Data Sheet
Output pins on 5.0-V MAX 7000S devices with VCCIO = 3.3 V or 5.0 V (with
a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input
pins. In this case, the pull-up transistor will turn off when the pin voltage
exceeds 3.3 V. Therefore, the pin does not have to be open-drain.
Slew-Rate Control
The output buffer for each MAX 7000E and MAX 7000S I/O pin has an
adjustable output slew rate that can be configured for low-noise or highspeed performance. A faster slew rate provides high-speed transitions for
high-performance systems. However, these fast transitions may introduce
noise transients into the system. A slow slew rate reduces system noise,
but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the
Turbo Bit is turned off, the slew rate is set for low noise performance. For
MAX 7000S devices, each I/O pin has an individual EEPROM bit that
controls the slew rate, allowing designers to specify the slew rate on a
pin-by-pin basis.
Programming
with External
Hardware
MAX 7000 devices can be programmed on Windows-based PCs with the
MAX+PLUS II Programmer, an Altera Logic Programmer card, the
Master Programming Unit (MPU), and the appropriate device adapter.
The MPU performs a continuity check to ensure adequate electrical
contact between the adapter and the device. For more information, see the
Altera Programming Hardware Data Sheet.
The MAX+PLUS II software can use text- or waveform-format test vectors
created with the MAX+PLUS II Text Editor or Waveform Editor to test the
programmed device. For added design verification, designers can
perform functional testing to compare the functional behavior of a
MAX 7000 device with the results of simulation. Moreover, Data I/O, BP
Microsystems, and other programming hardware manufacturers also
provide programming support for Altera devices. For more information,
see Programming Hardware Manufacturers.
18
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
IEEE Std.
1149.1 (JTAG)
Boundary-Scan
Support
MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std.
1149.1-1990. Table 6 describes the JTAG instructions supported by the
MAX 7000 family. The pin-out tables starting on page 55 of this data sheet
show the location of the JTAG control pins for each device. If the JTAG
interface is not required, the JTAG pins are available as user I/O pins.
Table 6. MAX 7000 JTAG Instructions
JTAG Instruction
Devices
SAMPLE/PRELOAD
EPM7128S
EPM7160S
EPM7192S
EPM7256S
Allows a snapshot of signals at the device pins to be captured and
examined during normal device operation, and permits an initial data
pattern output at the device pins.
EXTEST
EPM7128S
EPM7160S
EPM7192S
EPM7256S
Allows the external circuitry and board-level interconnections to be
tested by forcing a test pattern at the output pins and capturing test
results at the input pins.
BYPASS
EPM7032S
EPM7064S
EPM7128S
EPM7160S
EPM7192S
EPM7256S
Places the 1-bit bypass register between the TDI and TDO pins, which
allows the BST data to pass synchronously through a selected device
to adjacent devices during normal device operation.
IDCODE
EPM7032S
EPM7064S
EPM7128S
EPM7160S
EPM7192S
EPM7256S
Selects the IDCODE register and places it between TDI and TDO,
allowing the IDCODE to be serially shifted out of TDO.
ISP Instructions
EPM7032S
EPM7064S
EPM7128S
EPM7160S
EPM7192S
EPM7256S
These instructions are used when programming MAX 7000S devices
via the JTAG ports with the BitBlaster, ByteBlaster, ByteBlasterMV, or
MasterBlaster download cable, or using a Jam File (.jam), Jam ByteCode (.jbc), or Serial Vector Format (.svf) file via an embedded
processor or test equipment.
Altera Corporation
Description
19
MAX 7000 Programmable Logic Device Family Data Sheet
The instruction register length of MAX 7000S devices is 10 bits. Tables 7
and 8 show the boundary-scan register length and device IDCODE
information for MAX 7000S devices.
Table 7. MAX 7000S Boundary-Scan Register Length
Device
Boundary-Scan Register Length
1 (1)
EPM7032S
1 (1)
EPM7064S
EPM7128S
288
EPM7160S
312
EPM7192S
360
EPM7256S
480
Note:
(1)
This device does not support JTAG boundary-scan testing.
Table 8. 32-Bit MAX 7000 Device IDCODE
Device
Note (1)
IDCODE (32 Bits)
Version
(4 Bits)
Part Number (16 Bits)
Manufacturer’s 1 (1 Bit)
Identity (11 Bits)
(2)
EPM7032S
0000
0111 0000 0011 0010
00001101110
1
EPM7064S
0000
0111 0000 0110 0100
00001101110
1
EPM7128S
0000
0111 0001 0010 1000
00001101110
1
EPM7160S
0000
0111 0001 0110 0000
00001101110
1
EPM7192S
0000
0111 0001 1001 0010
00001101110
1
EPM7256S
0000
0111 0010 0101 0110
00001101110
1
Notes:
(1)
(2)
20
The most significant bit (MSB) is on the left.
The least significant bit (LSB) for all JTAG IDCODEs is 1.
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 9 shows the timing requirements for the JTAG signals.
Figure 9. MAX 7000 JTAG Waveforms
TMS
TDI
t JCP
t JCH
t JCL
t JPSU
t JPH
TCK
tJPZX
t JPXZ
t JPCO
TDO
tJSH
tJSSU
Signal
to Be
Captured
Signal
to Be
Driven
tJSCO
tJSZX
tJSXZ
Table 9 shows the JTAG timing parameters and values for MAX 7000S
devices.
Table 9. JTAG Timing Parameters & Values for MAX 7000S Devices
Symbol
f
Altera Corporation
Parameter
tJCP
TCK clock period
tJCH
tJCL
Min
Max
Unit
100
ns
TCK clock high time
50
ns
TCK clock low time
50
ns
tJPSU
JTAG port setup time
20
ns
tJPH
JTAG port hold time
45
tJPCO
JTAG port clock to output
25
ns
tJPZX
JTAG port high impedance to valid output
25
ns
tJPXZ
JTAG port valid output to high impedance
25
ns
tJSSU
Capture register setup time
20
tJSH
Capture register hold time
45
tJSCO
Update register clock to output
25
ns
tJSZX
Update register high impedance to valid output
25
ns
tJSXZ
Update register valid output to high impedance
25
ns
ns
ns
ns
For more information, see Application Note 39 (IEEE 1149.1 (JTAG)
Boundary-Scan Testing in Altera Devices).
21
MAX 7000 Programmable Logic Device Family Data Sheet
Design Security
All MAX 7000 devices contain a programmable security bit that controls
access to the data programmed into the device. When this bit is
programmed, a proprietary design implemented in the device cannot be
copied or retrieved. This feature provides a high level of design security,
because programmed data within EEPROM cells is invisible. The security
bit that controls this function, as well as all other programmed data, is
reset only when the device is reprogrammed.
Generic Testing
Each MAX 7000 device is functionally tested. Complete testing of each
programmable EEPROM bit and all internal logic elements ensures 100%
programming yield. AC test measurements are taken under conditions
equivalent to those shown in Figure 10. Test patterns can be used and then
erased during early stages of the production flow.
Figure 10. MAX 7000 AC Test Conditions
Power supply transients can affect AC
measurements. Simultaneous
transitions of multiple outputs should be
avoided for accurate measurement.
Threshold tests must not be performed
under AC conditions. Large-amplitude,
fast ground-current transients normally
occur as the device outputs discharge
the load capacitances. When these
transients flow through the parasitic
inductance between the device ground
pin and the test system ground,
significant reductions in observable
noise immunity can result. Numbers in
brackets are for 2.5-V devices and
outputs. Numbers without brackets are
for 3.3-V devices and outputs.
QFP Carrier &
Development
Socket
f
464 Ω
[703 Ω]
Device
Output
To Test
System
250 Ω
[8.06 KΩ ]
C1 (includes JIG
capacitance)
Device input
rise and fall
times < 3 ns
MAX 7000 and MAX 7000E devices in QFP packages with 100 or more
pins are shipped in special plastic carriers to protect the QFP leads. The
carrier is used with a prototype development socket and special
programming hardware available from Altera. This carrier technology
makes it possible to program, test, erase, and reprogram a device without
exposing the leads to mechanical stress.
For detailed information and carrier dimensions, refer to the QFP Carrier
& Development Socket Data Sheet.
1
22
VCC
MAX 7000S devices are not shipped in carriers.
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Operating
Conditions
Tables 10 through 15 provide information about absolute maximum
ratings, recommended operating conditions, operating conditions,
and capacitance for 5.0-V MAX 7000 devices.
Table 10. MAX 7000 5.0-V Device Absolute Maximum Ratings
Symbol
Parameter
VCC
Supply voltage
Note (1)
Conditions
With respect to ground (2)
Min
Max
Unit
–2.0
7.0
V
VI
DC input voltage
–2.0
7.0
V
IOUT
DC output current, per pin
–25
25
mA
TSTG
Storage temperature
No bias
–65
150
°C
TAMB
Ambient temperature
Under bias
–65
135
°C
TJ
Junction temperature
Ceramic packages, under bias
150
°C
PQFP and RQFP packages, under bias
135
°C
Table 11. MAX 7000 5.0-V Device Recommended Operating Conditions
Min
Max
Unit
VCCINT
Symbol
Supply voltage for internal logic and (3), (4)
input buffers
Parameter
Conditions
4.75
(4.50)
5.25
(5.50)
V
VCCIO
Supply voltage for output drivers,
5.0-V operation
(3), (4)
4.75
(4.50)
5.25
(5.50)
V
Supply voltage for output drivers,
3.3-V operation
(3), (4), (5)
3.00
(3.00)
3.60
(3.60)
V
VCCISP
Supply voltage during ISP
(6)
VI
Input voltage
VO
Output voltage
TA
Ambient temperature
For commercial use
For industrial use
TJ
Junction temperature
For commercial use
For industrial use
4.75
5.25
V
–0.5 (7)
VCCINT + 0.5
V
0
VCCIO
V
0
70
°C
–40
85
°C
0
90
°C
–40
105
°C
tR
Input rise time
40
ns
tF
Input fall time
40
ns
Altera Corporation
23
MAX 7000 Programmable Logic Device Family Data Sheet
Table 12. MAX 7000 5.0-V Device DC Operating Conditions
Symbol
Parameter
Note (8)
Conditions
Min
Max
Unit
VIH
High-level input voltage
2.0
VCCINT + 0.5
V
VIL
Low-level input voltage
–0.5 (7)
0.8
V
VOH
5.0-V high-level TTL output voltage
IOH = –4 mA DC, VCCIO = 4.75 V (9)
2.4
V
3.3-V high-level TTL output voltage
IOH = –4 mA DC, VCCIO = 3.00 V (9)
2.4
V
3.3-V high-level CMOS output
voltage
IOH = –0.1 mA DC, VCCIO = 3.0 V (9)
VCCIO – 0.2
V
5.0-V low-level TTL output voltage
IOL = 12 mA DC, VCCIO = 4.75 V (10)
0.45
V
3.3-V low-level TTL output voltage
IOL = 12 mA DC, VCCIO = 3.00 V (10)
0.45
V
3.3-V low-level CMOS output
voltage
IOL = 0.1 mA DC, VCCIO = 3.0 V(10)
0.2
V
II
Leakage current of dedicated input
pins
VI = VCC or ground
–10
10
µA
IOZ
I/O pin tri-state output off-state
current
VO = VCC or ground (11)
–40
40
µA
VOL
Table 13. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices
Symbol
Parameter
Conditions
Min
Note (12)
Max
Unit
CIN
Input pin capacitance
VIN = 0 V, f = 1.0 MHz
12
pF
CI/O
I/O pin capacitance
VOUT = 0 V, f = 1.0 MHz
12
pF
Table 14. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices
Symbol
Parameter
Conditions
Note (12)
Max
Unit
CIN
Input pin capacitance
VIN = 0 V, f = 1.0 MHz
15
pF
CI/O
I/O pin capacitance
VOUT = 0 V, f = 1.0 MHz
15
pF
Max
Unit
Table 15. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices
Symbol
Parameter
Conditions
Min
Note (12)
Min
CIN
Dedicated input pin capacitance
VIN = 0 V, f = 1.0 MHz
10
pF
CI/O
I/O pin capacitance
VOUT = 0 V, f = 1.0 MHz
10
pF
24
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Notes to tables:
(1)
(2)
See the Operating Requirements for Altera Devices Data Sheet.
Minimum DC input voltage on I/O pins is –0.5 V and on 4 dedicated input pins is –0.3 V. During transitions, the
inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than
20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) VCC must rise monotonically.
(5) 3.3-V I/O operation is not available for 44-pin packages.
(6) The VCCISP parameter applies only to MAX 7000S devices.
(7) During in-system programming, the minimum DC input voltage is –0.3 V.
(8) These values are specified in Table 11 on page 23.
(9) The parameter is measured with 50% of the outputs each sourcing the specified current. The IOH parameter refers
to high-level TTL or CMOS output current.
(10) The parameter is measured with 50% of the outputs each sinking the specified current. The IOL parameter refers to
low-level TTL or CMOS output current.
(11) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically
–60 µA.
(12) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF.
Figure 11 shows the typical output drive characteristics of MAX 7000
devices.
Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices
150
150
IOL
120
Typical I O
Output
Current (mA)
IOL
120
90
VCCIO = 5.0 V
Room Temperature
60
Typical I O
Output
Current (mA)
90
VCCIO = 3.3 V
Room Temperature
60
IOH
IOH
30
30
1
2
3
4
VO Output Voltage (V)
Timing Model
Altera Corporation
5
1
2
3 3.3
4
5
VO Output Voltage (V)
MAX 7000 device timing can be analyzed with the Quartus or
MAX+PLUS II software, with a variety of popular industry-standard
EDA simulators and timing analyzers, or with the timing model shown in
Figure 12. MAX 7000 devices have fixed internal delays that enable the
designer to determine the worst-case timing of any design. The Quartus
and MAX+PLUS II software provides timing simulation, point-to-point
delay prediction, and detailed timing analysis for a device-wide
performance evaluation.
25
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 12. MAX 7000 Timing Model
Internal Output
Enable Delay
t IOE (1)
Global Control
Delay
t GLOB
Input
Delay
t IN
PIA
Delay
t PIA
Logic Array
Delay
t LAD
Parallel
Expander Delay
t PEXP
Register
Control Delay
t LAC
tIC
t EN
Shared
Expander Delay
t SEXP
Fast
Input Delay
t F I N (1)
Register
Delay
t SU
tH
t PRE
t CLR
t RD
t COMB
t FSU
t FH
Output
Delay
t OD1
t OD2 (2)
t OD3
t XZ
t Z X1
t Z X2 (2)
t Z X3 (1)
I/O
Delay
tIO
Notes:
(1)
(2)
Only available in MAX 7000E and MAX 7000S devices.
Not available in 44-pin devices.
The timing characteristics of any signal path can be derived from the
timing model and parameters of a particular device. External timing
parameters, which represent pin-to-pin timing delays, can be calculated
as the sum of internal parameters. Figure 13 shows the internal timing
relationship of internal and external delay parameters.
f
26
See Application Note 94 (Understanding MAX 7000 Timing) for more
information.
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 13. Switching Waveforms
tR & tF < 3 ns.
Inputs are driven at 3 V
for a logic high and 0 V
for a logic low. All timing
characteristics are
measured at 1.5 V.
Combinatorial Mode
tIN
Input Pin
tIO
I/O Pin
tPIA
PIA Delay
tSEXP
Shared Expander
Delay
tLAC , tLAD
Logic Array
Input
tPEXP
Parallel Expander
Delay
tCOMB
Logic Array
Output
tOD
Output Pin
Global Clock Mode
Global
Clock Pin
tR
tCH
tIN
Global Clock
at Register
tSU
tCL
tF
tACL
tF
tGLOB
tH
Data or Enable
(Logic Array Output)
Array Clock Mode
tR
tACH
Input or I/O Pin
tIN
tIO
Clock into PIA
Clock into
Logic Array
Clock at
Register
tPIA
tIC
tSU
tH
Data from
Logic Array
tRD
tPIA
tPIA
tCLR , tPRE
Register to PIA
to Logic Array
tOD
tOD
Register Output
to Pin
Altera Corporation
27
MAX 7000 Programmable Logic Device Family Data Sheet
Tables 16 through 23 show the MAX 7000 and MAX 7000E AC operating
conditions.
Table 16. MAX 7000 & MAX 7000E External Timing Parameters
Symbol
Parameter
Note (1)
Conditions
Speed Grade
-6
Min
Unit
-7
Max
Min
Max
tPD1
Input to non-registered output
C1 = 35 pF
6.0
7.5
tPD2
I/O input to non-registered output
C1 = 35 pF
6.0
7.5
ns
tSU
Global clock setup time
5.0
6.0
ns
tH
Global clock hold time
0.0
0.0
ns
ns
ns
tFSU
Global clock setup time of fast input
(2)
2.5
3.0
tFH
Global clock hold time of fast input
(2)
0.5
0.5
tCO1
Global clock to output delay
C1 = 35 pF
tCH
Global clock high time
2.5
3.0
ns
tCL
Global clock low time
2.5
3.0
ns
tASU
Array clock setup time
2.5
3.0
ns
tAH
Array clock hold time
2.0
2.0
ns
tACO1
Array clock to output delay
tACH
Array clock high time
tACL
Array clock low time
3.0
3.0
ns
tCPPW
Minimum pulse width for clear and
preset
(3)
3.0
3.0
ns
tODH
Output data hold time after clock
C1 = 35 pF (4)
1.0
tCNT
Minimum global clock period
fCNT
Maximum internal global clock
frequency
tACNT
Minimum array clock period
fACNT
Maximum internal array clock
frequency
(5)
151.5
125.0
MHz
fMAX
Maximum clock frequency
(6)
200
166.7
MHz
28
4.0
C1 = 35 pF
6.5
3.0
7.5
3.0
151.5
ns
ns
8.0
125.0
6.6
ns
ns
1.0
6.6
(5)
ns
4.5
ns
MHz
8.0
ns
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 17. MAX 7000 & MAX 7000E Internal Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
-6
Min
Unit
-7
Max
Min
Max
tIN
Input pad and buffer delay
0.4
0.5
ns
tIO
I/O input pad and buffer delay
0.4
0.5
ns
tFIN
Fast input delay
0.8
1.0
ns
tSEXP
Shared expander delay
3.5
4.0
ns
tPEXP
Parallel expander delay
0.8
0.8
ns
tLAD
Logic array delay
2.0
3.0
ns
tLAC
Logic control array delay
2.0
3.0
ns
tIOE
Internal output enable delay
(2)
2.0
ns
tOD1
Output buffer and pad delay
Slow slew rate = off, VCCIO = 5.0 V
C1 = 35 pF
2.0
2.0
ns
tOD2
Output buffer and pad delay
Slow slew rate = off, VCCIO = 3.3 V
C1 = 35 pF (7)
2.5
2.5
ns
tOD3
Output buffer and pad delay
Slow slew rate = on,
VCCIO = 5.0 V or 3.3 V
C1 = 35 pF (2)
7.0
7.0
ns
tZX1
Output buffer enable delay
Slow slew rate = off, VCCIO = 5.0 V
C1 = 35 pF
4.0
4.0
ns
tZX2
Output buffer enable delay
Slow slew rate = off, VCCIO = 3.3 V
C1 = 35 pF (7)
4.5
4.5
ns
tZX3
Output buffer enable delay
Slow slew rate = on
VCCIO = 5.0 V or 3.3 V
C1 = 35 pF (2)
9.0
9.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
4.0
4.0
ns
tSU
Register setup time
3.0
3.0
ns
tH
Register hold time
1.5
2.0
ns
tFSU
Register setup time of fast input
(2)
2.5
3.0
ns
tFH
Register hold time of fast input
(2)
0.5
0.5
tRD
Register delay
0.8
1.0
ns
tCOMB
Combinatorial delay
0.8
1.0
ns
tIC
Array clock delay
2.5
3.0
ns
tEN
Register enable time
2.0
3.0
ns
tGLOB
Global control delay
0.8
1.0
ns
tPRE
Register preset time
2.0
2.0
ns
tCLR
Register clear time
2.0
2.0
ns
tPIA
PIA delay
0.8
1.0
ns
tLPA
Low-power adder
10.0
10.0
ns
Altera Corporation
(2)
(8)
ns
29
MAX 7000 Programmable Logic Device Family Data Sheet
Table 18. MAX 7000 & MAX 7000E External Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
Unit
MAX 7000E (-10P) MAX 7000 (-10)
MAX 7000E (-10)
Min
Max
Min
Max
tPD1
Input to non-registered output
C1 = 35 pF
10.0
10.0
tPD2
I/O input to non-registered output
C1 = 35 pF
10.0
10.0
tSU
Global clock setup time
tH
Global clock hold time
0.0
0.0
ns
tFSU
Global clock setup time of fast input (2)
3.0
3.0
ns
tFH
Global clock hold time of fast input (2)
0.5
tCO1
Global clock to output delay
tCH
Global clock high time
4.0
4.0
ns
tCL
Global clock low time
4.0
4.0
ns
tASU
Array clock setup time
2.0
3.0
ns
7.0
C1 = 35 pF
8.0
ns
5
tAH
Array clock hold time
Array clock to output delay
tACH
Array clock high time
tACL
Array clock low time
4.0
4.0
ns
tCPPW
Minimum pulse width for clear and
preset
(3)
4.0
4.0
ns
tODH
Output data hold time after clock
C1 = 35 pF (4)
1.0
tCNT
Minimum global clock period
fCNT
Maximum internal global clock
frequency
tACNT
Minimum array clock period
fACNT
fMAX
C1 = 35 pF
3.0
ns
tACO1
30
3.0
ns
ns
0.5
5.0
ns
10.0
4.0
ns
10.0
4.0
1.0
10.0
ns
ns
ns
10.0
ns
(5)
100.0
Maximum internal array clock
frequency
(5)
100.0
100.0
MHz
Maximum clock frequency
(6)
125.0
125.0
MHz
100.0
10.0
MHz
10.0
ns
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 19. MAX 7000 & MAX 7000E Internal Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
MAX 7000E (-10P)
Min
Max
Unit
MAX 7000 (-10)
MAX 7000E (-10)
Min
Max
tIN
Input pad and buffer delay
0.5
1.0
tIO
I/O input pad and buffer delay
0.5
1.0
ns
tFIN
Fast input delay
1.0
1.0
ns
tSEXP
Shared expander delay
5.0
5.0
ns
tPEXP
Parallel expander delay
0.8
0.8
ns
tLAD
Logic array delay
5.0
5.0
ns
tLAC
Logic control array delay
5.0
5.0
ns
tIOE
Internal output enable delay
(2)
2.0
2.0
ns
tOD1
Output buffer and pad delay
Slow slew rate = off
VCCIO = 5.0 V
C1 = 35 pF
1.5
2.0
ns
tOD2
Output buffer and pad delay
Slow slew rate = off
VCCIO = 3.3 V
C1 = 35 pF (7)
2.0
2.5
ns
tOD3
Output buffer and pad delay
Slow slew rate = on
VCCIO = 5.0 V or 3.3 V
C1 = 35 pF (2)
5.5
6.0
ns
tZX1
Output buffer enable delay
Slow slew rate = off
VCCIO = 5.0 V
C1 = 35 pF
5.0
5.0
ns
tZX2
Output buffer enable delay
Slow slew rate = off
VCCIO = 3.3 V
C1 = 35 pF (7)
5.5
5.5
ns
tZX3
Output buffer enable delay
Slow slew rate = on
VCCIO = 5.0 V or 3.3 V
C1 = 35 pF (2)
9.0
9.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
tSU
Register setup time
tH
Register hold time
tFSU
Register setup time of fast input
(2)
tFH
Register hold time of fast input
(2)
0.5
tRD
Register delay
2.0
1.0
ns
tCOMB
Combinatorial delay
2.0
1.0
ns
tIC
Array clock delay
5.0
5.0
ns
tEN
Register enable time
5.0
5.0
ns
tGLOB
Global control delay
1.0
1.0
ns
tPRE
Register preset time
3.0
3.0
ns
tCLR
Register clear time
3.0
3.0
ns
tPIA
PIA delay
1.0
1.0
ns
tLPA
Low-power adder
11.0
11.0
ns
Altera Corporation
(2)
(8)
5.0
5.0
ns
ns
2.0
3.0
ns
3.0
3.0
ns
3.0
3.0
ns
0.5
ns
31
MAX 7000 Programmable Logic Device Family Data Sheet
Table 20. MAX 7000 & MAX 7000E External Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
MAX 7000E (-12P)
Min
Max
Unit
MAX 7000 (-12)
MAX 7000E (-12)
Min
Max
tPD1
Input to non-registered output
C1 = 35 pF
12.0
12.0
ns
tPD2
I/O input to non-registered output
C1 = 35 pF
12.0
12.0
ns
tSU
Global clock setup time
7.0
10.0
ns
tH
Global clock hold time
0.0
0.0
ns
tFSU
Global clock setup time of fast input (2)
3.0
3.0
ns
tFH
Global clock hold time of fast input (2)
0.0
tCO1
Global clock to output delay
tCH
Global clock high time
4.0
4.0
ns
tCL
Global clock low time
4.0
4.0
ns
tASU
Array clock setup time
3.0
4.0
ns
tAH
Array clock hold time
tACO1
Array clock to output delay
tACH
Array clock high time
5.0
5.0
tACL
Array clock low time
5.0
5.0
ns
tCPPW
Minimum pulse width for clear and
preset
(3)
5.0
5.0
ns
tODH
Output data hold time after clock
C1 = 35 pF (4)
1.0
tCNT
Minimum global clock period
fCNT
Maximum internal global clock
frequency
C1 = 35 pF
0.0
ns
6.0
4.0
C1 = 35 pF
6.0
4.0
ns
12.0
12.0
90.9
ns
ns
1.0
ns
11.0
(5)
ns
11.0
90.9
ns
MHz
tACNT
Minimum array clock period
fACNT
Maximum internal array clock
frequency
(5)
90.9
90.9
MHz
fMAX
Maximum clock frequency
(6)
125.0
125.0
MHz
32
11.0
11.0
ns
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 21. MAX 7000 & MAX 7000E Internal Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
MAX 7000E (-12P)
Min
Max
Unit
MAX 7000 (-12)
MAX 7000E (-12)
Min
Max
tIN
Input pad and buffer delay
1.0
2.0
tIO
I/O input pad and buffer delay
1.0
2.0
ns
tFIN
Fast input delay
1.0
1.0
ns
tSEXP
Shared expander delay
7.0
7.0
ns
tPEXP
Parallel expander delay
1.0
1.0
ns
tLAD
Logic array delay
7.0
5.0
ns
tLAC
Logic control array delay
5.0
5.0
ns
tIOE
Internal output enable delay
(2)
2.0
2.0
ns
tOD1
Output buffer and pad delay
Slow slew rate = off
VCCIO = 5.0 V
C1 = 35 pF
1.0
3.0
ns
tOD2
Output buffer and pad delay
Slow slew rate = off
VCCIO = 3.3 V
C1 = 35 pF (7)
2.0
4.0
ns
tOD3
Output buffer and pad delay
Slow slew rate = on
VCCIO = 5.0 V or 3.3 V
C1 = 35 pF (2)
5.0
7.0
ns
tZX1
Output buffer enable delay
Slow slew rate = off
VCCIO = 5.0 V
C1 = 35 pF
6.0
6.0
ns
tZX2
Output buffer enable delay
Slow slew rate = off
VCCIO = 3.3 V
C1 = 35 pF (7)
7.0
7.0
ns
tZX3
Output buffer enable delay
Slow slew rate = on
VCCIO = 5.0 V or 3.3 V
C1 = 35 pF (2)
10.0
10.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
tSU
Register setup time
tH
Register hold time
tFSU
Register setup time of fast input
(2)
tFH
Register hold time of fast input
(2)
0.0
tRD
Register delay
2.0
1.0
ns
tCOMB
Combinatorial delay
2.0
1.0
ns
tIC
Array clock delay
5.0
5.0
ns
tEN
Register enable time
7.0
5.0
ns
tGLOB
Global control delay
2.0
0.0
ns
tPRE
Register preset time
4.0
3.0
ns
tCLR
Register clear time
4.0
3.0
ns
tPIA
PIA delay
1.0
1.0
ns
tLPA
Low-power adder
12.0
12.0
ns
Altera Corporation
(2)
(8)
6.0
6.0
ns
ns
1.0
4.0
ns
6.0
4.0
ns
4.0
2.0
ns
2.0
ns
33
MAX 7000 Programmable Logic Device Family Data Sheet
Table 22. MAX 7000 & MAX 7000E External Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
-15
Min
Unit
-15T
Max
Min
-20
Max
Min
Max
tPD1
Input to non-registered output
C1 = 35 pF
15.0
15.0
20.0
ns
tPD2
I/O input to non-registered
output
C1 = 35 pF
15.0
15.0
20.0
ns
tSU
Global clock setup time
11.0
11.0
12.0
ns
tH
Global clock hold time
0.0
0.0
0.0
ns
tFSU
Global clock setup time of fast
input
(2)
3.0
–
5.0
ns
tFH
Global clock hold time of fast
input
(2)
0.0
–
0.0
ns
C1 = 35 pF
tCO1
Global clock to output delay
tCH
Global clock high time
5.0
6.0
6.0
ns
tCL
Global clock low time
5.0
6.0
6.0
ns
tASU
Array clock setup time
4.0
4.0
5.0
ns
tAH
Array clock hold time
4.0
4.0
5.0
ns
tACO1
Array clock to output delay
tACH
Array clock high time
tACL
Array clock low time
6.0
6.5
8.0
ns
tCPPW
Minimum pulse width for clear
and preset
(3)
6.0
6.5
8.0
ns
tODH
Output data hold time after
clock
C1 = 35 pF (4)
1.0
1.0
1.0
ns
(5)
76.9
8.0
C1 = 35 pF
8.0
15.0
6.0
12.0
15.0
6.5
20.0
8.0
ns
ns
ns
tCNT
Minimum global clock period
fCNT
Maximum internal global clock
frequency
tACNT
Minimum array clock period
fACNT
Maximum internal array clock
frequency
(5)
76.9
76.9
62.5
MHz
fMAX
Maximum clock frequency
(6)
100
83.3
83.3
MHz
34
13.0
13.0
76.9
13.0
16.0
62.5
13.0
ns
MHz
16.0
ns
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 23. MAX 7000 & MAX 7000E Internal Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
-15
Min
Unit
-15T
Max
Min
-20
Max
Min
Max
tIN
Input pad and buffer delay
2.0
2.0
3.0
ns
tIO
I/O input pad and buffer delay
2.0
2.0
3.0
ns
tFIN
Fast input delay
2.0
–
4.0
ns
tSEXP
Shared expander delay
8.0
10.0
9.0
ns
tPEXP
Parallel expander delay
1.0
1.0
2.0
ns
tLAD
Logic array delay
6.0
6.0
8.0
ns
tLAC
Logic control array delay
6.0
6.0
8.0
ns
tIOE
Internal output enable delay
(2)
3.0
–
4.0
ns
tOD1
Output buffer and pad delay
Slow slew rate = off
VCCIO = 5.0 V
C1 = 35 pF
4.0
4.0
5.0
ns
tOD2
Output buffer and pad delay
Slow slew rate = off
VCCIO = 3.3 V
C1 = 35 pF (7)
5.0
–
6.0
ns
tOD3
Output buffer and pad delay
Slow slew rate = on
VCCIO = 5.0 V or 3.3 V
C1 = 35 pF (2)
8.0
–
9.0
ns
tZX1
Output buffer enable delay
Slow slew rate = off
VCCIO = 5.0 V
C1 = 35 pF
6.0
6.0
10.0
ns
tZX2
Output buffer enable delay
Slow slew rate = off
VCCIO = 3.3 V
C1 = 35 pF (7)
7.0
–
11.0
ns
tZX3
Output buffer enable delay
Slow slew rate = on
VCCIO = 5.0 V or 3.3 V
C1 = 35 pF (2)
10.0
–
14.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
10.0
ns
tSU
Register setup time
4.0
4.0
4.0
ns
tH
Register hold time
4.0
4.0
5.0
ns
tFSU
Register setup time of fast input (2)
2.0
–
4.0
ns
tFH
Register hold time of fast input
(2)
2.0
–
3.0
tRD
Register delay
1.0
1.0
1.0
ns
tCOMB
Combinatorial delay
1.0
1.0
1.0
ns
tIC
Array clock delay
6.0
6.0
8.0
ns
tEN
Register enable time
6.0
6.0
8.0
ns
tGLOB
Global control delay
1.0
1.0
3.0
ns
tPRE
Register preset time
4.0
4.0
4.0
ns
tCLR
Register clear time
4.0
4.0
4.0
ns
tPIA
PIA delay
2.0
2.0
3.0
ns
tLPA
Low-power adder
13.0
15.0
15.0
ns
Altera Corporation
(2)
(8)
6.0
6.0
ns
35
MAX 7000 Programmable Logic Device Family Data Sheet
Notes to tables:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
These values are specified in Table 11 on page 23.
This parameter applies to MAX 7000E devices only.
This minimum pulse width for preset and clear applies for both global clear and array controls. The tLPA parameter
must be added to this minimum width if the clear or reset signal incorporates the tLAD parameter into the signal
path.
This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
The fMAX values represent the highest frequency for pipelined data.
Operating conditions: VCCIO = 3.3 V ± 10% for commercial and industrial use.
The tLPA parameter must be added to the tLAD, tLAC, tIC, tEN, tSEXP, tACL, and tCPPW parameters for macrocells
running in the low-power mode.
Tables 24 and 25 show the EPM7032S AC operating conditions.
Table 24. EPM7032S External Timing Parameters (Part 1 of 2)
Symbol
Parameter
Conditions
Speed Grade
-5
-6
Unit
-7
-10
Min Max Min Max Min Max Min Max
tPD1
Input to non-registered output
C1 = 35 pF
5.0
6.0
7.5
10.0
ns
tPD2
I/O input to non-registered
output
C1 = 35 pF
5.0
6.0
7.5
10.0
ns
tSU
Global clock setup time
2.9
4.0
5.0
7.0
ns
tH
Global clock hold time
0.0
0.0
0.0
0.0
ns
tFSU
Global clock setup time of fast
input
2.5
2.5
2.5
3.0
ns
tFH
Global clock hold time of fast
input
0.0
0.0
0.0
0.5
ns
tCO1
Global clock to output delay
tCH
Global clock high time
2.0
2.5
3.0
4.0
ns
tCL
Global clock low time
2.0
2.5
3.0
4.0
ns
tASU
Array clock setup time
0.7
0.9
1.1
2.0
ns
tAH
Array clock hold time
1.8
2.1
2.7
3.0
ns
tACO1
Array clock to output delay
tACH
Array clock high time
C1 = 35 pF
3.2
C1 = 35 pF
3.5
5.4
2.5
4.3
6.6
2.5
5.0
8.2
3.0
10.0
4.0
ns
ns
ns
tACL
Array clock low time
2.5
2.5
3.0
4.0
ns
tCPPW
Minimum pulse width for clear
and preset
(1)
2.5
2.5
3.0
4.0
ns
tODH
Output data hold time after
clock
C1 = 35 pF (2)
1.0
1.0
1.0
1.0
ns
tCNT
Minimum global clock period
fCNT
Maximum internal global clock
frequency
tACNT
Minimum array clock period
36
5.7
(3)
175.4
7.0
142.9
5.7
8.6
116.3
7.0
10.0
100.0
8.6
ns
MHz
10.0
ns
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 24. EPM7032S External Timing Parameters (Part 2 of 2)
Symbol
Parameter
Conditions
Speed Grade
-5
-6
Unit
-7
-10
Min Max Min Max Min Max Min Max
fACNT
Maximum internal array clock
frequency
(3)
175.4
142.9
116.3
100.0
MHz
fMAX
Maximum clock frequency
(4)
250.0
200.0
166.7
125.0
MHz
Table 25. EPM7032S Internal Timing Parameters (Part 1 of 2)
Symbol
Parameter
Conditions
Speed Grade
-5
Min
-6
Max
Min
Unit
-7
Max
Min
-10
Max
Min
Max
tIN
Input pad and buffer delay
0.2
0.2
0.3
0.5
ns
tIO
I/O input pad and buffer delay
0.2
0.2
0.3
0.5
ns
tFIN
Fast input delay
2.2
2.1
2.5
1.0
ns
tSEXP
Shared expander delay
3.1
3.8
4.6
5.0
ns
tPEXP
Parallel expander delay
0.9
1.1
1.4
0.8
ns
tLAD
Logic array delay
2.6
3.3
4.0
5.0
ns
tLAC
Logic control array delay
2.5
3.3
4.0
5.0
ns
tIOE
Internal output enable delay
0.7
0.8
1.0
2.0
ns
tOD1
Output buffer and pad delay
C1 = 35 pF
0.2
0.3
0.4
1.5
ns
tOD2
Output buffer and pad delay
C1 = 35 pF (5)
0.7
0.8
0.9
2.0
ns
tOD3
Output buffer and pad delay
C1 = 35 pF
5.2
5.3
5.4
5.5
ns
tZX1
Output buffer enable delay
C1 = 35 pF
4.0
4.0
4.0
5.0
ns
tZX2
Output buffer enable delay
C1 = 35 pF (5)
4.5
4.5
4.5
5.5
ns
tZX3
Output buffer enable delay
C1 = 35 pF
9.0
9.0
9.0
9.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
4.0
4.0
4.0
5.0
ns
tSU
Register setup time
0.8
1.0
1.3
2.0
ns
tH
Register hold time
1.7
2.0
2.5
3.0
ns
tFSU
Register setup time of fast
input
1.9
1.8
1.7
3.0
ns
tFH
Register hold time of fast
input
0.6
0.7
0.8
0.5
ns
tRD
Register delay
1.2
1.6
1.9
2.0
ns
tCOMB
Combinatorial delay
0.9
1.1
1.4
2.0
ns
tIC
Array clock delay
2.7
3.4
4.2
5.0
ns
tEN
Register enable time
2.6
3.3
4.0
5.0
ns
tGLOB
Global control delay
1.6
1.4
1.7
1.0
ns
tPRE
Register preset time
2.0
2.4
3.0
3.0
ns
Altera Corporation
37
MAX 7000 Programmable Logic Device Family Data Sheet
Table 25. EPM7032S Internal Timing Parameters (Part 2 of 2)
Symbol
Parameter
Conditions
Speed Grade
-5
Min
tCLR
Register clear time
tPIA
PIA delay
tLPA
Low-power adder
-6
Max
Min
Unit
-7
Max
Min
-10
Max
Min
Max
2.0
2.4
3.0
3.0
ns
(6)
1.1
1.1
1.4
1.0
ns
(7)
12.0
10.0
10.0
11.0
ns
Notes to tables:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
This minimum pulse width for preset and clear applies for both global clear and array controls. The tLPA parameter
must be added to this minimum width if the clear or reset signal incorporates the tLAD parameter into the signal
path.
This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
The fMAX values represent the highest frequency for pipelined data.
Operating conditions: VCCIO = 3.3 V ± 10% for commercial and industrial use.
For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these
devices, add an additional 0.1 ns to the PIA timing value.
The tLPA parameter must be added to the tLAD, tLAC, tIC, tEN, tSEXP, tACL, and tCPPW parameters for macrocells
running in the low-power mode.
Tables 26 and 27 show the EPM7064S AC operating conditions.
Table 26. EPM7064S External Timing Parameters (Part 1 of 2)
Symbol
Parameter
Conditions
Speed Grade
-5
-6
Unit
-7
-10
Min Max Min Max Min Max Min Max
tPD1
Input to non-registered output
C1 = 35 pF
5.0
6.0
7.5
10.0
ns
tPD2
I/O input to non-registered
output
C1 = 35 pF
5.0
6.0
7.5
10.0
ns
tSU
Global clock setup time
2.9
3.6
6.0
7.0
tH
Global clock hold time
0.0
0.0
0.0
0.0
ns
ns
tFSU
Global clock setup time of fast
input
2.5
2.5
3.0
3.0
ns
tFH
Global clock hold time of fast
input
0.0
0.0
0.5
0.5
ns
tCO1
Global clock to output delay
tCH
Global clock high time
2.0
2.5
3.0
4.0
ns
tCL
Global clock low time
2.0
2.5
3.0
4.0
ns
tASU
Array clock setup time
0.7
0.9
3.0
2.0
ns
tAH
Array clock hold time
1.8
2.1
2.0
3.0
ns
38
C1 = 35 pF
3.2
4.0
4.5
5.0
ns
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 26. EPM7064S External Timing Parameters (Part 2 of 2)
Symbol
Parameter
Conditions
Speed Grade
-5
-6
Unit
-7
-10
Min Max Min Max Min Max Min Max
tACO1
Array clock to output delay
C1 = 35 pF
tACH
Array clock high time
tACL
Array clock low time
tCPPW
Minimum pulse width for clear
and preset
(1)
tODH
Output data hold time after
clock
C1 = 35 pF (2)
5.4
6.7
7.5
10.0
ns
2.5
2.5
3.0
4.0
ns
2.5
2.5
3.0
4.0
ns
2.5
2.5
3.0
4.0
ns
1.0
1.0
1.0
1.0
ns
tCNT
Minimum global clock period
fCNT
Maximum internal global clock
frequency
tACNT
Minimum array clock period
fACNT
Maximum internal array clock
frequency
(3)
175.4
140.8
125.0
100.0
MHz
fMAX
Maximum clock frequency
(4)
250.0
200.0
166.7
125.0
MHz
5.7
(3)
175.4
7.1
140.8
8.0
125.0
5.7
10.0
100.0
7.1
8.0
ns
MHz
10.0
ns
Table 27. EPM7064S Internal Timing Parameters (Part 1 of 2)
Symbol
Parameter
Conditions
Speed Grade
-5
-6
Unit
-7
-10
Min Max Min Max Min Max Min Max
tIN
Input pad and buffer delay
0.2
0.2
0.5
0.5
tIO
I/O input pad and buffer delay
0.2
0.2
0.5
0.5
ns
tFIN
Fast input delay
2.2
2.6
1.0
1.0
ns
tSEXP
Shared expander delay
3.1
3.8
4.0
5.0
ns
tPEXP
Parallel expander delay
0.9
1.1
0.8
0.8
ns
tLAD
Logic array delay
2.6
3.2
3.0
5.0
ns
tLAC
Logic control array delay
2.5
3.2
3.0
5.0
ns
tIOE
Internal output enable delay
0.7
0.8
2.0
2.0
ns
tOD1
Output buffer and pad delay
C1 = 35 pF
0.2
0.3
2.0
1.5
ns
tOD2
Output buffer and pad delay
C1 = 35 pF (5)
0.7
0.8
2.5
2.0
ns
tOD3
Output buffer and pad delay
C1 = 35 pF
5.2
5.3
7.0
5.5
ns
tZX1
Output buffer enable delay
C1 = 35 pF
4.0
4.0
4.0
5.0
ns
tZX2
Output buffer enable delay
C1 = 35 pF (5)
4.5
4.5
4.5
5.5
ns
tZX3
Output buffer enable delay
C1 = 35 pF
9.0
9.0
9.0
9.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
4.0
4.0
4.0
5.0
tSU
Register setup time
Altera Corporation
0.8
1.0
3.0
2.0
ns
ns
ns
39
MAX 7000 Programmable Logic Device Family Data Sheet
Table 27. EPM7064S Internal Timing Parameters (Part 2 of 2)
Symbol
Parameter
Conditions
Speed Grade
-5
-6
Unit
-7
-10
Min Max Min Max Min Max Min Max
tH
Register hold time
1.7
2.0
2.0
3.0
ns
tFSU
Register setup time of fast
input
1.9
1.8
3.0
3.0
ns
tFH
Register hold time of fast
input
0.6
0.7
0.5
0.5
ns
tRD
Register delay
1.2
1.6
1.0
2.0
ns
tCOMB
Combinatorial delay
0.9
1.0
1.0
2.0
ns
tIC
Array clock delay
2.7
3.3
3.0
5.0
ns
tEN
Register enable time
2.6
3.2
3.0
5.0
ns
tGLOB
Global control delay
1.6
1.9
1.0
1.0
ns
tPRE
Register preset time
2.0
2.4
2.0
3.0
ns
tCLR
Register clear time
2.0
2.4
2.0
3.0
ns
tPIA
PIA delay
(6)
1.1
1.3
1.0
1.0
ns
tLPA
Low-power adder
(7)
12.0
11.0
10.0
11.0
ns
Notes to tables:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
This minimum pulse width for preset and clear applies for both global clear and array controls. The tLPA parameter
must be added to this minimum width if the clear or reset signal incorporates the tLAD parameter into the signal
path.
This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
The fMAX values represent the highest frequency for pipelined data.
Operating conditions: VCCIO = 3.3 V ± 10% for commercial and industrial use.
For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these
devices, add an additional 0.1 ns to the PIA timing value.
The tLPA parameter must be added to the tLAD, tLAC, tIC, tEN, tSEXP, tACL, and tCPPW parameters for macrocells
running in the low-power mode.
Tables 28 and 29 show the EPM7128S AC operating conditions.
40
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 28. EPM7128S External Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
-6
-7
Unit
-10
-15
Min Max Min Max Min Max Min Max
tPD1
Input to non-registered output
C1 = 35 pF
6.0
7.5
10.0
15.0
ns
tPD2
I/O input to non-registered
output
C1 = 35 pF
6.0
7.5
10.0
15.0
ns
tSU
Global clock setup time
3.4
6.0
7.0
11.0
ns
tH
Global clock hold time
0.0
0.0
0.0
0.0
ns
tFSU
Global clock setup time of fast
input
2.5
3.0
3.0
3.0
ns
tFH
Global clock hold time of fast
input
0.0
0.5
0.5
0.0
ns
tCO1
Global clock to output delay
tCH
Global clock high time
3.0
3.0
4.0
5.0
ns
tCL
Global clock low time
3.0
3.0
4.0
5.0
ns
tASU
Array clock setup time
0.9
3.0
2.0
4.0
ns
tAH
Array clock hold time
1.8
2.0
5.0
4.0
ns
C1 = 35 pF
4.0
Array clock high time
3.0
3.0
4.0
6.0
ns
tACL
Array clock low time
3.0
3.0
4.0
6.0
ns
tCPPW
Minimum pulse width for clear
and preset
(1)
3.0
3.0
4.0
6.0
ns
tODH
Output data hold time after
clock
C1 = 35 pF (2)
1.0
1.0
1.0
1.0
ns
Maximum internal global clock
frequency
tACNT
Minimum array clock period
fACNT
fMAX
6.8
10.0
8.0
15.0
ns
Array clock to output delay
Minimum global clock period
7.5
8.0
tACO1
tCNT
6.5
5.0
tACH
fCNT
C1 = 35 pF
4.5
10.0
13.0
ns
ns
(3)
147.1
Maximum internal array clock
frequency
(3)
147.1
125.0
100.0
76.9
MHz
Maximum clock frequency
(4)
166.7
166.7
125.0
100.0
MHz
Altera Corporation
125.0
6.8
100.0
8.0
76.9
10.0
MHz
13.0
ns
41
MAX 7000 Programmable Logic Device Family Data Sheet
Table 29. EPM7128S Internal Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
-6
-7
Unit
-10
-15
Min Max Min Max Min Max Min Max
tIN
Input pad and buffer delay
0.2
0.5
0.5
2.0
ns
tIO
I/O input pad and buffer delay
0.2
0.5
0.5
2.0
ns
tFIN
Fast input delay
2.6
1.0
1.0
2.0
ns
tSEXP
Shared expander delay
3.7
4.0
5.0
8.0
ns
tPEXP
Parallel expander delay
1.1
0.8
0.8
1.0
ns
tLAD
Logic array delay
3.0
3.0
5.0
6.0
ns
tLAC
Logic control array delay
3.0
3.0
5.0
6.0
ns
tIOE
Internal output enable delay
0.7
2.0
2.0
3.0
ns
tOD1
Output buffer and pad delay
C1 = 35 pF
0.4
2.0
1.5
4.0
ns
tOD2
Output buffer and pad delay
C1 = 35 pF (5)
0.9
2.5
2.0
5.0
ns
tOD3
Output buffer and pad delay
C1 = 35 pF
5.4
7.0
5.5
8.0
ns
tZX1
Output buffer enable delay
C1 = 35 pF
4.0
4.0
5.0
6.0
ns
tZX2
Output buffer enable delay
C1 = 35 pF (5)
4.5
4.5
5.5
7.0
ns
tZX3
Output buffer enable delay
C1 = 35 pF
9.0
9.0
9.0
10.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
4.0
4.0
5.0
6.0
ns
tSU
Register setup time
1.0
3.0
2.0
4.0
ns
tH
Register hold time
1.7
2.0
5.0
4.0
ns
tFSU
Register setup time of fast
input
1.9
3.0
3.0
2.0
ns
tFH
Register hold time of fast
input
0.6
0.5
0.5
1.0
ns
tRD
Register delay
1.4
1.0
2.0
1.0
ns
tCOMB
Combinatorial delay
1.0
1.0
2.0
1.0
ns
tIC
Array clock delay
3.1
3.0
5.0
6.0
ns
tEN
Register enable time
3.0
3.0
5.0
6.0
ns
tGLOB
Global control delay
2.0
1.0
1.0
1.0
ns
tPRE
Register preset time
2.4
2.0
3.0
4.0
ns
tCLR
Register clear time
2.4
2.0
3.0
4.0
ns
tPIA
PIA delay
(6)
1.4
1.0
1.0
2.0
ns
tLPA
Low-power adder
(7)
11.0
10.0
11.0
13.0
ns
42
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Notes to tables:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
This minimum pulse width for preset and clear applies for both global clear and array controls. The tLPA parameter
must be added to this minimum width if the clear or reset signal incorporates the tLAD parameter into the signal
path.
This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
The fMAX values represent the highest frequency for pipelined data.
Operating conditions: VCCIO = 3.3 V ± 10% for commercial and industrial use.
For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these
devices, add an additional 0.1 ns to the PIA timing value.
The tLPA parameter must be added to the tLAD, tLAC, tIC, tEN, tSEXP, tACL, and tCPPW parameters for macrocells
running in the low-power mode.
Tables 30 and 31 show the EPM7160S AC operating conditions.
Table 30. EPM7160S External Timing Parameters (Part 1 of 2)
Symbol
Parameter
Conditions
Speed Grade
-6
-7
Unit
-10
-15
Min Max Min Max Min Max Min Max
tPD1
Input to non-registered output
C1 = 35 pF
6.0
7.5
10.0
15.0
ns
tPD2
I/O input to non-registered
output
C1 = 35 pF
6.0
7.5
10.0
15.0
ns
tSU
Global clock setup time
3.4
4.2
7.0
11.0
ns
tH
Global clock hold time
0.0
0.0
0.0
0.0
ns
tFSU
Global clock setup time of fast
input
2.5
3.0
3.0
3.0
ns
tFH
Global clock hold time of fast
input
0.0
0.0
0.5
0.0
ns
tCO1
Global clock to output delay
tCH
Global clock high time
3.0
3.0
4.0
5.0
ns
tCL
Global clock low time
3.0
3.0
4.0
5.0
ns
tASU
Array clock setup time
0.9
1.1
2.0
4.0
ns
C1 = 35 pF
3.9
Array clock to output delay
tACH
Array clock high time
3.0
3.0
4.0
6.0
ns
tACL
Array clock low time
3.0
3.0
4.0
6.0
ns
tCPPW
Minimum pulse width for clear
and preset
(1)
2.5
3.0
4.0
6.0
ns
tODH
Output data hold time after
clock
C1 = 35 pF (2)
1.0
1.0
1.0
1.0
ns
tCNT
Minimum global clock period
Maximum internal global clock
frequency
tACNT
Minimum array clock period
Altera Corporation
7.9
6.7
(3)
149.3
6.7
10.0
8.2
122.0
4.0
ns
Array clock hold time
6.4
3.0
8
tAH
C1 = 35 pF
2.1
5
tACO1
fCNT
1.7
4.8
10.0
100.0
8.2
ns
15.0
13.0
76.9
10.0
ns
ns
MHz
13.0
ns
43
MAX 7000 Programmable Logic Device Family Data Sheet
Table 30. EPM7160S External Timing Parameters (Part 2 of 2)
Symbol
Parameter
Conditions
Speed Grade
-6
-7
Unit
-10
-15
Min Max Min Max Min Max Min Max
fACNT
Maximum internal array clock
frequency
(3)
149.3
122.0
100.0
76.9
MHz
fMAX
Maximum clock frequency
(4)
166.7
166.7
125.0
100.0
MHz
Table 31. EPM7160S Internal Timing Parameters (Part 1 of 2)
Symbol
Parameter
Conditions
Speed Grade
-6
-7
Unit
-10
-15
Min Max Min Max Min Max Min Max
tIN
Input pad and buffer delay
0.2
0.3
0.5
2.0
ns
tIO
I/O input pad and buffer delay
0.2
0.3
0.5
2.0
ns
tFIN
Fast input delay
2.6
3.2
1.0
2.0
ns
tSEXP
Shared expander delay
3.6
4.3
5.0
8.0
ns
tPEXP
Parallel expander delay
1.0
1.3
0.8
1.0
ns
tLAD
Logic array delay
2.8
3.4
5.0
6.0
ns
tLAC
Logic control array delay
2.8
3.4
5.0
6.0
ns
tIOE
Internal output enable delay
0.7
0.9
2.0
3.0
ns
tOD1
Output buffer and pad delay
C1 = 35 pF
0.4
0.5
1.5
4.0
ns
tOD2
Output buffer and pad delay
C1 = 35 pF (5)
0.9
1.0
2.0
5.0
ns
tOD3
Output buffer and pad delay
C1 = 35 pF
5.4
5.5
5.5
8.0
ns
tZX1
Output buffer enable delay
C1 = 35 pF
4.0
4.0
5.0
6.0
ns
tZX2
Output buffer enable delay
C1 = 35 pF (5)
4.5
4.5
5.5
7.0
ns
tZX3
Output buffer enable delay
C1 = 35 pF
9.0
9.0
9.0
10.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
4.0
4.0
5.0
6.0
ns
tSU
Register setup time
1.0
1.2
2.0
4.0
ns
tH
Register hold time
1.6
2.0
3.0
4.0
ns
tFSU
Register setup time of fast
input
1.9
2.2
3.0
2.0
ns
tFH
Register hold time of fast
input
0.6
0.8
0.5
1.0
ns
tRD
Register delay
1.3
1.6
2.0
1.0
ns
tCOMB
Combinatorial delay
1.0
1.3
2.0
1.0
ns
tIC
Array clock delay
2.9
3.5
5.0
6.0
ns
tEN
Register enable time
2.8
3.4
5.0
6.0
ns
tGLOB
Global control delay
2.0
2.4
1.0
1.0
ns
tPRE
Register preset time
2.4
3.0
3.0
4.0
ns
44
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 31. EPM7160S Internal Timing Parameters (Part 2 of 2)
Symbol
Parameter
Conditions
Speed Grade
-6
-7
Unit
-10
-15
Min Max Min Max Min Max Min Max
tCLR
Register clear time
2.4
3.0
3.0
4.0
ns
tPIA
PIA delay
(6)
1.6
2.0
1.0
2.0
ns
tLPA
Low-power adder
(7)
11.0
10.0
11.0
13.0
ns
Notes to tables:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
This minimum pulse width for preset and clear applies for both global clear and array controls. The tLPA parameter
must be added to this minimum width if the clear or reset signal incorporates the tLAD parameter into the signal
path.
This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
The fMAX values represent the highest frequency for pipelined data.
Operating conditions: VCCIO = 3.3 V ± 10% for commercial and industrial use.
For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these
devices, add an additional 0.1 ns to the PIA timing value.
The tLPA parameter must be added to the tLAD, tLAC, tIC, tEN, tSEXP, tACL, and tCPPW parameters for macrocells
running in the low-power mode.
Tables 32 and 33 show the EPM7192S AC operating conditions.
Table 32. EPM7192S External Timing Parameters (Part 1 of 2)
Symbol
Parameter
Conditions
Speed Grade
-7
Min
Unit
-10
Max
Min
-15
Max
Min
Max
tPD1
Input to non-registered output
C1 = 35 pF
7.5
10.0
15.0
ns
tPD2
I/O input to non-registered
output
C1 = 35 pF
7.5
10.0
15.0
ns
tSU
Global clock setup time
4.1
7.0
11.0
ns
tH
Global clock hold time
0.0
0.0
0.0
ns
tFSU
Global clock setup time of fast
input
3.0
3.0
3.0
ns
tFH
Global clock hold time of fast
input
0.0
0.5
0.0
ns
tCO1
Global clock to output delay
tCH
Global clock high time
3.0
4.0
5.0
ns
tCL
Global clock low time
3.0
4.0
5.0
ns
tASU
Array clock setup time
1.0
2.0
4.0
ns
tAH
Array clock hold time
1.8
3.0
4.0
tACO1
Array clock to output delay
Altera Corporation
C1 = 35 pF
C1 = 35 pF
4.7
7.8
5.0
10.0
8.0
ns
ns
15.0
ns
45
MAX 7000 Programmable Logic Device Family Data Sheet
Table 32. EPM7192S External Timing Parameters (Part 2 of 2)
Symbol
Parameter
Conditions
Speed Grade
-7
Min
Unit
-10
Max
Min
-15
Max
Min
Max
tACH
Array clock high time
3.0
4.0
6.0
ns
tACL
Array clock low time
3.0
4.0
6.0
ns
tCPPW
Minimum pulse width for clear
and preset
(1)
3.0
4.0
6.0
ns
tODH
Output data hold time after
clock
C1 = 35 pF (2)
1.0
1.0
1.0
ns
tCNT
Minimum global clock period
fCNT
Maximum internal global clock
frequency
8.0
(3)
125.0
10.0
100.0
13.0
76.9
ns
MHz
tACNT
Minimum array clock period
fACNT
Maximum internal array clock
frequency
(3)
125.0
100.0
76.9
MHz
fMAX
Maximum clock frequency
(4)
166.7
125.0
100.0
MHz
8.0
10.0
13.0
ns
Table 33. EPM7192S Internal Timing Parameters (Part 1 of 2)
Symbol
Parameter
Conditions
Speed Grade
-7
Min
Unit
-10
Max
Min
-15
Max
Min
Max
tIN
Input pad and buffer delay
0.3
0.5
2.0
ns
tIO
I/O input pad and buffer delay
0.3
0.5
2.0
ns
tFIN
Fast input delay
3.2
1.0
2.0
ns
tSEXP
Shared expander delay
4.2
5.0
8.0
ns
tPEXP
Parallel expander delay
1.2
0.8
1.0
ns
tLAD
Logic array delay
3.1
5.0
6.0
ns
tLAC
Logic control array delay
3.1
5.0
6.0
ns
tIOE
Internal output enable delay
0.9
2.0
3.0
ns
tOD1
Output buffer and pad delay
C1 = 35 pF
0.5
1.5
4.0
ns
tOD2
Output buffer and pad delay
C1 = 35 pF (5)
1.0
2.0
5.0
ns
tOD3
Output buffer and pad delay
C1 = 35 pF
5.5
5.5
7.0
ns
tZX1
Output buffer enable delay
C1 = 35 pF
4.0
5.0
6.0
ns
tZX2
Output buffer enable delay
C1 = 35 pF (5)
4.5
5.5
7.0
ns
tZX3
Output buffer enable delay
C1 = 35 pF
9.0
9.0
10.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
tSU
Register setup time
1.1
2.0
4.0
ns
tH
Register hold time
1.7
3.0
4.0
ns
46
4.0
5.0
6.0
ns
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 33. EPM7192S Internal Timing Parameters (Part 2 of 2)
Symbol
Parameter
Conditions
Speed Grade
-7
Min
Unit
-10
Max
Min
-15
Max
Min
Max
tFSU
Register setup time of fast
input
2.3
3.0
2.0
ns
tFH
Register hold time of fast
input
0.7
0.5
1.0
ns
tRD
Register delay
1.4
2.0
1.0
ns
tCOMB
Combinatorial delay
1.2
2.0
1.0
ns
tIC
Array clock delay
3.2
5.0
6.0
ns
tEN
Register enable time
3.1
5.0
6.0
ns
tGLOB
Global control delay
2.5
1.0
1.0
ns
tPRE
Register preset time
2.7
3.0
4.0
ns
tCLR
Register clear time
2.7
3.0
4.0
ns
tPIA
PIA delay
(6)
2.4
1.0
2.0
ns
tLPA
Low-power adder
(7)
10.0
11.0
13.0
ns
Notes to tables:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
This minimum pulse width for preset and clear applies for both global clear and array controls. The tLPA parameter
must be added to this minimum width if the clear or reset signal incorporates the tLAD parameter into the signal
path.
This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
The fMAX values represent the highest frequency for pipelined data.
Operating conditions: VCCIO = 3.3 V ± 10% for commercial and industrial use.
For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these
devices, add an additional 0.1 ns to the PIA timing value.
The tLPA parameter must be added to the tLAD, tLAC, tIC, tEN, tSEXP, tACL, and tCPPW parameters for macrocells
running in the low-power mode.
Altera Corporation
47
MAX 7000 Programmable Logic Device Family Data Sheet
Tables 34 and 35 show the EPM7256S AC operating conditions.
Table 34. EPM7256S External Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
-7
Min
Unit
-10
Max
Min
-15
Max
Min
Max
tPD1
Input to non-registered output
C1 = 35 pF
7.5
10.0
15.0
ns
tPD2
I/O input to non-registered
output
C1 = 35 pF
7.5
10.0
15.0
ns
tSU
Global clock setup time
3.9
7.0
11.0
ns
tH
Global clock hold time
0.0
0.0
0.0
ns
tFSU
Global clock setup time of fast
input
3.0
3.0
3.0
ns
tFH
Global clock hold time of fast
input
0.0
0.5
0.0
ns
tCO1
Global clock to output delay
4.7
5.0
tCH
Global clock high time
3.0
4.0
5.0
ns
tCL
Global clock low time
3.0
4.0
5.0
ns
tASU
Array clock setup time
0.8
2.0
4.0
ns
tAH
Array clock hold time
1.9
3.0
4.0
tACO1
Array clock to output delay
7.8
10.0
tACH
Array clock high time
3.0
4.0
6.0
tACL
Array clock low time
3.0
4.0
6.0
ns
tCPPW
Minimum pulse width for clear
and preset
(1)
3.0
4.0
6.0
ns
tODH
Output data hold time after
clock
C1 = 35 pF (2)
1.0
1.0
1.0
ns
tCNT
Minimum global clock period
7.8
10.0
fCNT
Maximum internal global clock
frequency
(3)
128.2
100.0
C1 = 35 pF
C1 = 35 pF
8.0
ns
ns
15.0
ns
ns
13.0
76.9
ns
MHz
tACNT
Minimum array clock period
7.8
10.0
fACNT
Maximum internal array clock
frequency
(3)
128.2
100.0
76.9
MHz
fMAX
Maximum clock frequency
(4)
166.7
125.0
100.0
MHz
48
13.0
ns
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 35. EPM7256S Internal Timing Parameters
Symbol
Parameter
Conditions
Speed Grade
-7
Min
Unit
-10
Max
Min
-15
Max
Min
Max
tIN
Input pad and buffer delay
0.3
0.5
2.0
ns
tIO
I/O input pad and buffer delay
0.3
0.5
2.0
ns
tFIN
Fast input delay
3.4
1.0
2.0
ns
tSEXP
Shared expander delay
3.9
5.0
8.0
ns
tPEXP
Parallel expander delay
1.1
0.8
1.0
ns
tLAD
Logic array delay
2.6
5.0
6.0
ns
tLAC
Logic control array delay
2.6
5.0
6.0
ns
tIOE
Internal output enable delay
0.8
2.0
3.0
ns
tOD1
Output buffer and pad delay
C1 = 35 pF
0.5
1.5
4.0
ns
tOD2
Output buffer and pad delay
C1 = 35 pF (5)
1.0
2.0
5.0
ns
tOD3
Output buffer and pad delay
C1 = 35 pF
5.5
5.5
8.0
ns
tZX1
Output buffer enable delay
C1 = 35 pF
4.0
5.0
6.0
ns
tZX2
Output buffer enable delay
C1 = 35 pF (5)
4.5
5.5
7.0
ns
tZX3
Output buffer enable delay
C1 = 35 pF
9.0
9.0
10.0
ns
tXZ
Output buffer disable delay
C1 = 5 pF
4.0
5.0
6.0
ns
tSU
Register setup time
1.1
2.0
4.0
ns
tH
Register hold time
1.6
3.0
4.0
ns
tFSU
Register setup time of fast
input
2.4
3.0
2.0
ns
tFH
Register hold time of fast
input
0.6
0.5
1.0
ns
tRD
Register delay
1.1
2.0
1.0
ns
tCOMB
Combinatorial delay
1.1
2.0
1.0
ns
tIC
Array clock delay
2.9
5.0
6.0
ns
tEN
Register enable time
2.6
5.0
6.0
ns
tGLOB
Global control delay
2.8
1.0
1.0
ns
tPRE
Register preset time
2.7
3.0
4.0
ns
tCLR
Register clear time
2.7
3.0
4.0
ns
tPIA
PIA delay
(6)
3.0
1.0
2.0
ns
tLPA
Low-power adder
(7)
10.0
11.0
13.0
ns
Altera Corporation
49
MAX 7000 Programmable Logic Device Family Data Sheet
Notes to tables:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
This minimum pulse width for preset and clear applies for both global clear and array controls. The tLPA parameter
must be added to this minimum width if the clear or reset signal incorporates the tLAD parameter into the signal
path.
This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
The fMAX values represent the highest frequency for pipelined data.
Operating conditions: VCCIO = 3.3 V ± 10% for commercial and industrial use.
For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these
devices, add an additional 0.1 ns to the PIA timing value.
The tLPA parameter must be added to the tLAD, tLAC, tIC, tEN, tSEXP, tACL, and tCPPW parameters for macrocells
running in the low-power mode.
Power
Consumption
Supply power (P) versus frequency (fMAX in MHz) for MAX 7000 devices
is calculated with the following equation:
P = PINT + PIO = ICCINT × VCC + PIO
The PIO value, which depends on the device output load characteristics
and switching frequency, can be calculated using the guidelines given in
Application Note 74 (Evaluating Power for Altera Devices).
The ICCINT value, which depends on the switching frequency and the
application logic, is calculated with the following equation:
ICCINT =
A × MCTON + B × (MCDEV – MCTON) + C × MCUSED × fMAX × togLC
The parameters in this equation are shown below:
MCTON
= Number of macrocells with the Turbo Bit option turned on,
as reported in the MAX+PLUS II Report File (.rpt)
MCDEV = Number of macrocells in the device
MCUSED = Total number of macrocells in the design, as reported
in the MAX+PLUS II Report File (.rpt)
fMAX
= Highest clock frequency to the device
togLC
= Average ratio of logic cells toggling at each clock
(typically 0.125)
A, B, C
= Constants, shown in Table 36
50
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 36. MAX 7000 ICC Equation Constants
Device
A
B
C
EPM7032
1.87
0.52
0.144
EPM7064
1.63
0.74
0.144
EPM7096
1.63
0.74
0.144
EPM7128E
1.17
0.54
0.096
EPM7160E
1.17
0.54
0.096
EPM7192E
1.17
0.54
0.096
EPM7256E
1.17
0.54
0.096
EPM7032S
0.93
0.40
0.040
EPM7064S
0.93
0.40
0.040
EPM7128S
0.93
0.40
0.040
EPM7160S
0.93
0.40
0.040
EPM7192S
0.93
0.40
0.040
EPM7256S
0.93
0.40
0.040
This calculation provides an ICC estimate based on typical conditions
using a pattern of a 16-bit, loadable, enabled, up/down counter in each
LAB with no output load. Actual ICC values should be verified during
operation because this measurement is sensitive to the actual pattern in
the device and the environmental operating conditions.
Altera Corporation
51
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 14 shows typical supply current versus frequency for MAX 7000
devices.
Figure 14. ICC vs. Frequency for MAX 7000 Devices (Part 1 of 2)
EPM7064
EPM7032
180
VCC = 5.0 V
Room Temperature
300
VCC = 5.0 V
Room Temperature
151.5 MHz
151.5 MHz
140
High Speed
200
Typical ICC
Active (mA)
High Speed
100
Typical ICC
Active (mA)
60.2 MHz
100
60
60.2 MHz
Low Power
20
0
Low Power
50
100
150
200
0
50
100
150
200
Frequency (MHz)
Frequency (MHz)
EPM7096
450
VCC = 5.0 V
Room Temperature
125 MHz
350
High Speed
Typical ICC
Active (mA)
250
55.5 MHz
150
Low Power
50
0
50
100
150
Frequency (MHz)
52
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 14. ICC vs. Frequency for MAX 7000 Devices (Part 2 of 2)
EPM7128E
EPM7160E
500
500
VCC = 5.0 V
Room Temperature
VCC = 5.0 V
Room Temperature
400
400
100 MHz
125 MHz
Typical ICC
Active (mA)
Typical ICC
Active (mA)
300
300
High Speed
High Speed
200
200
47.6 MHz
55.5 MHz
100
100
Low Power
50
0
Low Power
100
150
0
200
50
EPM7192E
150
200
EPM7256E
500
750
VCC = 5.0 V
Room Temperature
VCC = 5.0 V
Room Temperature
90.9 MHz
400
Typical ICC
Active (mA)
100
Frequency (MHz)
Frequency (MHz)
600
300
High Speed
43.5 MHz
200
25
50
High Speed
43.4 MHz
150
75
100
Frequency (MHz)
Altera Corporation
450
300
Low Power
100
0
Typical ICC
Active (mA)
90.9 MHz
125
0
Low Power
25
50
75
100
125
Frequency (MHz)
53
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 15 shows typical supply current versus frequency for MAX 7000S
devices.
Figure 15. ICC vs. Frequency for MAX 7000S Devices (Part 1 of 2)
EPM7032S
EPM7064S
VCC = 5.0 V
Room Temperature
60
142.9 MHz
50
Typical ICC
Active (mA)
40
VCC = 5.0 V
Room Temperature
120
175.4 MHz
100
Typical ICC
Active (mA)
High Speed
30
80
High Speed
60
58.8 MHz
20
Low Power
10
0
50
56.5 MHz
40
100
Low Power
20
150
0
200
50
Frequency (MHz)
100
150
200
Frequency (MHz)
EPM7160S
EPM7128S
VCC = 5.0 V
Room Temperature
280
VCC = 5.0 V
Room Temperature
300
149.3 MHz
240
240
147.1 MHz
200
Typical ICC
Active (mA)
160
Typical ICC
Active (mA)
High Speed
High Speed
180
120
120
Low Power
40
0
50
100
60
150
Frequency (MHz)
54
56.5 MHz
56.2 MHz
80
200
Low Power
0
50
100
150
200
Frequency (MHz)
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 15. ICC vs. Frequency for MAX 7000S Devices (Part 2 of 2)
EPM7256S
EPM7192S
VCC = 5.0 V
Room Temperature
300
VCC = 5.0 V
Room Temperature
400
128.2 MHz
125.0 MHz
240
Typical ICC
Active (mA)
High Speed
180
High Speed
300
Typical ICC
Active (mA)
200
56.2 MHz
55.6 MHz
120
Low Power
Low Power
100
60
0
25
50
75
100
0
125
25
50
Device
Pin-Outs
75
100
125
Frequency (MHz)
Frequency (MHz)
Tables 37 through 51 show the pin names and numbers for the pins in
each MAX 7000 device package.
Table 37. EPM7032 & EPM7032S Dedicated Pin-Outs
Pin Name
Altera Corporation
44-Pin PQFP/TQFP (1)
44-Pin PLCC
INPUT/GCLK1
43
37
INPUT/GCLRn
1
39
INPUT/OE1
44
38
INPUT/OE2/GCLK2 (2)
2
40
TDI (3)
7
1
TMS (3)
13
7
TCK (3)
32
26
TDO (3)
38
32
PDn (4)
3
41
GND
10, 22, 30, 42
4, 16, 24, 36
VCC
3, 15, 23, 35
9, 17, 29, 41
No Connect (N.C.)
–
–
Total User I/O Pins (5)
36
36
55
MAX 7000 Programmable Logic Device Family Data Sheet
Table 38. EPM7032 & EPM7032S I/O Pin-Outs
LAB
A
MC
1
44-Pin
PLCC
4
44-Pin
PQFP/TQFP (1)
42
LAB
B
MC
17
44-Pin
PLCC
41
44-Pin
PQFP/TQFP (1)
35
2
5
43
18
40
34
3
6
44
19
39
33
4
7 (3)
1 (3)
20
38 (3)
32 (3)
5
8
2
21
37
31
6
9
3
22
36
30
7
11
5
23
34
28
8
12
6
24
33
27
9
13 (3)
7 (3)
25
32 (3)
26 (3)
10
14
8
26
31
25
11
16
10
27
29
23
12
17
11
28
28
22
13
18
12
29
27
21
14
19
13
30
26
20
15
20
14
31
25
19
16
21
15
32
24
18
Notes to tables:
(1)
(2)
(3)
(4)
(5)
56
EPM7032S and EPM7032V devices are not available in the 44-pin PQFP package.
The GCLK2 function is available in MAX 7000S and MAX 7000E devices only.
This JTAG pin applies to MAX 7000S devices only and this pin may function as either a JTAG port or a user I/O
pin. If the device is configured to use the JTAG ports for ISP, this pin is not available as a user I/O pin.
The PDn pin is available in EPM7032V devices only.
The user I/O pin count includes dedicated input pins and all I/O pins.
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 39. EPM7064 & EPM7064S Dedicated Pin-Outs
Dedicated Pin
INPUT/GCLK1
44-Pin
PLCC
43
44-Pin
TQFP
37
68-Pin
PLCC (1)
67
84-Pin
PLCC
83
100-Pin
TQFP (2)
87
100-Pin
PQFP (1)
89
INPUT/GCLRn
1
39
1
1
89
91
INPUT/OE1
44
38
68
84
88
90
INPUT/OE2/GCLK2 (3) 2
40
2
2
90
92
TDI (4)
7
1
12
14
4
6
TMS (4)
13
7
19
23
15
17
TCK (4)
32
26
50
62
62
64
TDO (4)
38
32
57
71
73
75
GND
10, 22, 30,
42
4, 16, 24,
36
6, 16, 26, 34, 7, 19, 32,
38, 48, 58,
42, 47, 59,
66
72, 82
38, 86, 11,
26, 43, 59,
74, 95
13, 28, 40,
45, 61, 76,
88, 97
VCCINT (5.0 V only)
3, 15, 23, 35 9, 17, 29,
41
3, 35
3, 43
39, 91
41, 93
VCCIO (3.3 V or 5.0 V)
–
–
11, 21, 31,
43, 53, 63
13, 26, 38,
53, 66, 78
3, 18, 34, 51, 5, 20, 36, 53,
66, 82
68, 84
No Connect (N.C.)
–
–
–
–
1, 2, 5, 7, 22,
24, 27, 28,
49, 50, 53,
55, 70, 72,
77, 78
1, 2, 7, 9, 24,
26, 29, 30,
51, 52, 55,
57, 72, 74,
79, 80
Total User I/O Pins (5)
32
32
48
64
64
64
Altera Corporation
57
MAX 7000 Programmable Logic Device Family Data Sheet
Table 40. EPM7064 & EPM7064S I/O Pin-Outs (44-Pin PLCC, 44-Pin TQFP & 68-Pin PLCC Packages)
LAB
A
B
58
MC
44-Pin
PLCC
44-Pin
TQFP
68-Pin
PLCC (1)
LAB
C
MC
44-Pin
PLCC
44-Pin
TQFP
68-Pin
PLCC (1)
1
12
6
18
33
24
18
36
2
–
–
3
11
5
–
34
–
–
–
17
35
25
19
37
4
9
5
8
3
15
36
26
20
39
2
14
37
27
21
6
–
40
–
13
38
–
–
41
7
–
–
–
39
–
–
–
8
7 (4)
1 (4)
12 (4)
40
28
22
42
9
–
–
10
41
29
23
44
10
–
–
–
42
–
–
–
11
6
44
9
43
–
–
45
12
–
–
8
44
–
–
46
13
–
–
7
45
–
–
47
49
14
5
43
5
46
31
25
15
–
–
–
47
–
–
–
16
4
42
4
48
32 (4)
26 (4)
50 (4)
49
33
27
51
50
–
–
–
17
21
15
33
18
–
–
–
D
19
20
14
32
51
34
28
52
20
19
13
30
52
36
30
54
21
18
12
29
53
37
31
55
22
–
–
28
54
–
–
56
23
–
–
–
55
–
–
–
24
17
11
27
56
38 (4)
32 (4)
57 (4)
25
16
10
25
57
39
33
59
26
–
–
–
58
–
–
–
27
–
–
24
59
–
–
60
28
–
–
23
60
–
–
61
29
–
–
22
61
–
–
62
30
14
8
20
62
40
34
64
31
–
–
–
63
–
–
–
32
13 (4)
7 (4)
19 (4)
64
41
35
65
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 41. EPM7064 & EPM7064S I/O Pin-Outs (84-Pin PLCC, 100-Pin TQFP & 100-Pin PQFP Packages)
LAB
A
B
MC
84-Pin
PLCC
100-Pin
TQFP (2)
100-Pin
PQFP (1)
1
22
14
16
2
21
13
3
20
12
4
18
5
6
7
8
LAB
C
MC
84-Pin
PLCC
100-Pin
TQFP (2)
100-Pin
PQFP (1)
33
44
40
42
15
34
45
41
43
14
35
46
42
44
10
12
36
48
44
46
17
9
11
37
49
45
47
16
8
10
38
50
46
48
15
6
8
39
51
47
49
14 (4)
4 (4)
6 (4)
40
52
48
50
9
12
100
4
41
54
52
54
10
11
99
3
42
55
54
56
11
10
98
100
43
56
56
58
12
9
97
99
44
57
57
59
13
8
96
98
45
58
58
60
14
6
94
96
46
60
60
62
15
5
93
95
47
61
61
63
16
4
92
94
48
62 (4)
62 (4)
64 (4)
17
41
37
39
49
63
63
65
18
40
36
38
50
64
64
66
19
39
35
37
51
65
65
67
20
37
33
35
52
67
67
69
21
36
32
34
53
68
68
70
22
35
31
33
54
69
69
71
23
34
30
32
55
70
71
73
D
24
33
29
31
56
71 (4)
73 (4)
75 (4)
25
31
25
27
57
73
75
77
26
30
23
25
58
74
76
78
27
29
21
23
59
75
79
81
28
28
20
22
60
76
80
82
29
27
19
21
61
77
81
83
30
25
17
19
62
79
83
85
31
24
16
18
63
80
84
86
32
23 (4)
15 (4)
17 (4)
64
81
85
87
Altera Corporation
59
MAX 7000 Programmable Logic Device Family Data Sheet
Notes to tables:
(1)
(2)
(3)
(4)
(5)
EPM7064S devices are not available in the 100-pin PQFP package or 68-pin PLCC packages.
EPM7064 devices are not available in the 100-pin TQFP package.
The GCLK2 function is available in MAX 7000S and MAX 7000E devices only.
This JTAG pin applies to MAX 7000S devices only and this pin may function as either a JTAG port or a user I/O
pin. If the device is configured to use the JTAG ports for ISP, this pin is not available as a user I/O pin.
The user I/O pin count includes dedicated input pins and all I/O pins.
Table 42. EPM7096 Dedicated Pin-Outs
Dedicated Pin
68-Pin PLCC
84-Pin PLCC
100-Pin PQFP
INPUT/GCLK1
67
83
INPUT/GCLRn
1
1
89
91
INPUT/OE1
68
84
90
INPUT/OE2
2
2
92
GND
6, 16, 26, 34,
38, 48, 58, 66
7, 19, 32, 42, 47, 13, 28, 40, 45,
59, 72, 82
61, 76, 88, 97
VCCINT (5.0 V Only)
3, 35
3, 43
41, 93
VCCIO (3.3 V or 5.0 V)
11, 21, 31, 43,
53, 63
13, 26, 38, 53,
66, 78
5, 20, 36, 53, 68,
84
No Connect (N.C.)
–
6, 39, 46, 79
9, 24, 37, 44, 57,
72, 85, 96
Total User I/O Pins (1)
48
60
72
Note:
(1)
60
The user I/O pin count includes dedicated input pins and all I/O pins.
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 43. EPM7096 I/O Pin-Outs (Part 1 of 2)
LAB
A
MC
68-Pin
PLCC
84-Pin
PLCC
100-Pin
PQFP
1
13
16
8
2
–
–
3
–
15
4
12
5
6
LAB
68-Pin
PLCC
84-Pin
PLCC
100-Pin
PQFP
17
23
28
23
–
18
–
–
–
7
19
22
27
22
14
6
20
–
–
21
–
–
4
21
20
25
19
10
12
3
22
–
24
18
7
–
–
–
23
–
–
–
8
9
11
2
24
19
23
17
9
8
10
1
25
18
22
16
10
–
–
–
26
–
–
–
11
–
9
100
27
17
21
15
12
7
8
99
28
–
20
14
13
–
–
98
29
15
18
12
14
5
5
95
30
–
–
11
15
–
–
–
31
–
–
–
16
4
4
94
32
14
17
10
Altera Corporation
B
MC
61
MAX 7000 Programmable Logic Device Family Data Sheet
Table 43. EPM7096 I/O Pin-Outs (Part 2 of 2)
LAB
C
D
62
MC
68-Pin
PLCC
84-Pin
PLCC
100-Pin
PQFP
33
33
41
39
34
–
–
35
32
40
36
–
37
30
38
LAB
E
MC
68-Pin
PLCC
84-Pin
PLCC
100-Pin
PQFP
65
46
57
58
–
66
–
–
–
38
67
47
58
59
–
35
68
–
–
60
37
34
69
49
60
62
–
36
33
70
–
61
63
39
–
–
–
71
–
–
–
40
29
35
32
72
50
62
64
41
28
34
31
73
51
63
65
42
–
–
–
74
–
–
–
43
27
33
30
75
52
64
66
44
–
–
29
76
–
65
67
45
25
31
27
77
54
67
69
46
–
30
26
78
–
–
70
47
–
–
–
79
–
–
–
48
24
29
25
80
55
68
71
49
36
44
42
81
56
69
73
50
–
–
–
82
–
–
–
51
37
45
43
83
–
70
74
52
–
–
46
84
57
71
75
53
39
48
47
85
–
–
77
54
–
49
48
86
59
73
78
55
–
–
–
87
–
–
–
56
40
50
49
88
60
74
79
57
41
51
50
89
61
75
80
58
–
–
–
90
–
–
–
59
42
52
51
91
–
76
81
60
–
–
52
92
62
77
82
61
44
54
54
93
–
–
83
62
–
55
55
94
64
80
86
63
–
–
–
95
–
–
–
64
45
56
56
96
65
81
87
F
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 44. EPM7128E & EPM7128S Dedicated Pin-Outs
Dedicated Pin
INPUT/GCLK1
84-Pin PLCC
83
100-Pin PQFP
89
100-Pin TQFP
(1), (2)
87
160-Pin PQFP
139
INPUT/GCLRn
1
91
89
141
INPUT/OE1
84
90
88
140
INPUT/OE2/GCLK2
2
92
90
142
TDI (3)
14
6
4
9
TMS (3)
23
17
15
22
TCK (3)
62
64
62
99
TDO (3)
71
75
73
112
40, 88
GNDINT
42, 82
38, 86
60, 138
GNDIO
7, 19, 32,47, 59, 72 13, 28, 45, 61, 76,
97
11, 26, 43, 59, 74,
95
17, 42, 66, 95, 113,
148
VCCINT (5.0 V only)
3, 43
39, 91
61, 143
41, 93
VCCIO (3.3 V or 5.0 V) 13, 26, 38, 53, 66, 5, 20, 36, 53, 68, 84 3, 18, 34, 51, 66, 82 8, 26, 55, 79, 104, 133
78
No Connect (N.C.)
–
Total User I/O Pins (4) 64
Altera Corporation
–
–
1, 2, 3, 4, 5, 6, 7, 34,
35, 36, 37, 38, 39, 40,
44, 45, 46, 47, 74, 75,
76, 77, 81, 82, 83, 84,
85, 86, 87, 114, 115,
116, 117, 118, 119,
120, 124, 125, 126,
127, 154, 155, 156,
157
80
80
96
63
MAX 7000 Programmable Logic Device Family Data Sheet
Table 45. EPM7128E & EPM7128S I/O Pin-Outs (Part 1 of 2)
LAB
A
B
64
MC
84-Pin 100-Pin
PLCC
PQFP
100-Pin
TQFP
(1), (2)
160-Pin
PQFP
1
–
4
2
160
2
–
–
–
3
12
3
1
4
–
–
5
11
6
10
7
8
LAB
C
MC
84-Pin
PLCC
100-Pin
PQFP
100-Pin 160-Pin
TQFP
PQFP
(1), (2)
33
–
27
25
41
–
34
–
–
–
–
159
35
31
26
24
33
–
158
36
–
–
–
32
2
100
153
37
30
25
23
31
1
99
152
38
29
24
22
30
–
–
–
–
39
–
–
–
–
9
100
98
151
40
28
23
21
29
9
–
99
97
150
41
–
22
20
28
10
–
–
–
–
42
–
–
–
–
11
8
98
96
149
43
27
21
19
27
12
–
–
–
147
44
–
–
–
25
13
6
96
94
146
45
25
19
17
24
14
5
95
93
145
46
24
18
16
23
15
–
–
–
–
47
–
–
–
–
16
4
94
92
144
48
23 (3)
17 (3)
15 (3)
22 (3)
17
22
16
14
21
49
41
39
37
59
18
–
–
–
–
50
–
–
–
–
19
21
15
13
20
51
40
38
36
58
20
–
–
–
19
52
–
–
–
57
21
20
14
12
18
53
39
37
35
56
22
–
12
10
16
54
–
35
33
54
23
–
–
–
–
55
–
–
–
–
24
18
11
9
15
56
37
34
32
53
25
17
10
8
14
57
36
33
31
52
26
–
–
–
–
58
–
–
–
–
27
16
9
7
13
59
35
32
30
51
28
–
–
–
12
60
–
–
–
50
29
15
8
6
11
61
34
31
29
49
30
–
7
5
10
62
–
30
28
48
31
–
–
–
–
63
–
–
–
–
32
14 (3)
6 (3)
4 (3)
9 (3)
64
33
29
27
43
D
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 45. EPM7128E & EPM7128S I/O Pin-Outs (Part 2 of 2)
LAB
E
F
MC
84-Pin 100-Pin
PLCC
PQFP
100-Pin
TQFP
(1), (2)
160-Pin
PQFP
65
44
42
40
62
66
–
–
–
67
45
43
41
68
–
–
69
46
70
–
71
72
LAB
84-Pin
PLCC
100-Pin
PQFP
100-Pin 160-Pin
TQFP
PQFP
(1), (2)
97
63
65
63
100
–
98
–
–
–
–
63
99
64
66
64
101
–
64
100
–
–
–
102
44
42
65
101
65
67
65
103
46
44
67
102
–
69
67
105
–
–
–
–
103
–
–
–
–
48
47
45
68
104
67
70
68
106
73
49
48
46
69
105
68
71
69
107
74
–
–
–
–
106
–
–
–
–
75
50
49
47
70
107
69
72
70
108
76
–
–
–
71
108
–
–
–
109
77
51
50
48
72
109
70
73
71
110
78
–
51
49
73
110
–
74
72
111
79
–
–
–
–
111
–
–
–
–
80
52
52
50
78
112
71 (3)
75 (3)
73 (3)
112 (3)
81
–
54
52
80
113
–
77
75
121
82
–
–
–
–
114
–
–
–
–
83
54
55
53
88
115
73
78
76
122
84
–
–
–
89
116
–
–
–
123
85
55
56
54
90
117
74
79
77
128
86
56
57
55
91
118
75
80
78
129
87
–
–
–
–
119
–
–
–
–
88
57
58
56
92
120
76
81
79
130
89
–
59
57
93
121
–
82
80
131
90
–
–
–
–
122
–
–
–
–
91
58
60
58
94
123
77
83
81
132
92
–
–
–
96
124
–
–
–
134
93
60
62
60
97
125
79
85
83
135
94
61
63
61
98
126
80
86
84
136
95
–
–
–
–
127
–
–
–
–
96
62 (3)
64 (3)
62 (3)
99 (3)
128
81
87
85
137
Altera Corporation
G
MC
H
65
MAX 7000 Programmable Logic Device Family Data Sheet
Notes to tables:
(1)
(2)
(3)
(4)
A complete thermal analysis should be performed before committing a design to this device package.
EPM7128E devices are not available in the 100-pin TQFP package.
This JTAG pin applies to MAX 7000S devices only and this pin may function as either a JTAG port or a user I/O
pin. If the device is configured to use the JTAG ports for boundary-scan testing or for ISP, this pin is not available
as a user I/O pin.
The user I/O pin count includes dedicated input pins and all I/O pins.
Table 46. EPM7160E & EPM7160S Dedicated Pin-Outs
Dedicated Pin
84-Pin PLCC
100-Pin TQFP
(1), (2)
100-Pin PQFP (3)
160-Pin PQFP
INPUT/GCLK1
83
87
89
139
INPUT/GCLRn
1
89
91
141
INPUT/OE1
84
88
90
140
INPUT/OE2/GCLK2
2
90
92
142
TDI (4)
14
4
6
9
TMS (4)
23
15
17
22
TCK (4)
62
62
64
99
TDO (4)
71
73
75
112
GND
7, 19, 32, 42, 47,
59, 72, 82
38, 86, 11, 26, 43,
59, 74, 95
13, 28, 40, 45, 61,
76, 88, 97
17, 42, 60, 66, 95,
113, 138, 148
VCCINT (5.0 V only)
3, 43
39,91
41, 93
61, 143
VCCIO (3.3 V or 5.0 V)
13, 26, 38, 53, 66,
78
3, 18, 34, 51, 66, 82 5, 20, 36, 53, 68, 84 8, 26, 55, 79, 104,
133
No Connect (N.C.)
6, 39, 46, 79
–
–
1, 2, 3, 4, 5, 6, 34, 35,
36, 37, 38, 39, 40, 45,
46, 47, 74, 75, 76, 81,
82, 83, 84, 85, 86, 87,
115, 116, 117, 118,
119, 120, 124, 125,
126, 127, 154, 155,
156, 157
Total User I/O Pins (5)
60
80
80
100
66
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 47. EPM7160E & EPM7160S I/O Pin-Outs (Part 1 of 3)
LAB
A
B
MC
84-Pin
PLCC
100-Pin 100-Pin 160-Pin LAB
TQFP PQFP (3) PQFP
(1), (2)
C
MC
84-Pin
PLCC
100-Pin
TQFP
(1), (2)
100-Pin 160-Pin
PQFP (3) PQFP
1
11
100
2
158
33
–
19
21
27
2
–
–
–
3
10
99
1
–
34
–
–
–
–
153
35
25
17
19
4
–
–
–
25
–
36
–
–
–
–
5
–
–
–
152
37
–
–
–
24
6
–
98
100
151
38
24
16
18
23
7
–
–
–
–
39
–
–
–
–
8
9
97
99
150
40
23 (4)
15 (4)
17 (4)
22 (4)
9
8
96
98
149
41
–
10
12
16
10
–
–
–
–
42
–
–
–
–
11
5
94
96
147
43
20
12
14
18
12
–
–
–
–
44
–
–
–
–
13
–
–
–
146
45
–
–
–
19
14
–
93
95
145
46
21
13
15
20
15
–
–
–
–
47
–
–
–
–
16
4
92
94
144
48
22
14
16
21
17
18
9
11
15
49
–
–
–
48
18
–
–
–
–
50
–
–
–
–
19
17
8
10
14
51
33
28
30
44
20
–
–
–
–
52
–
–
–
–
21
–
–
–
13
53
–
27
29
43
22
–
7
9
12
54
31
25
27
41
23
–
–
–
–
55
–
–
–
–
24
16
6
8
11
56
30
24
26
33
25
15
5
7
10
57
–
–
–
32
26
–
–
–
–
58
–
–
–
–
D
27
14 (4)
4 (4)
6 (4)
9 (4)
59
29
23
25
31
28
–
–
–
–
60
–
–
–
–
29
–
–
–
7
61
–
22
24
30
30
–
2
4
160
62
28
21
23
29
31
–
–
–
–
63
–
–
–
–
32
12
1
3
159
64
27
20
22
28
Altera Corporation
67
MAX 7000 Programmable Logic Device Family Data Sheet
Table 47. EPM7160E & EPM7160S I/O Pin-Outs (Part 2 of 3)
LAB
E
F
68
MC
84-Pin
PLCC
100-Pin 100-Pin 160-Pin LAB
TQFP PQFP (3) PQFP
(1), (2)
65
–
–
–
59
66
–
–
–
67
41
37
39
68
–
–
69
–
70
40
71
72
G
MC
84-Pin
PLCC
100-Pin
TQFP
(1), (2)
100-Pin 160-Pin
PQFP (3) PQFP
97
–
–
–
73
–
98
–
–
–
–
58
99
52
49
51
77
–
–
100
–
–
–
–
36
38
57
101
–
50
52
78
35
37
56
102
54
52
54
80
–
–
–
–
103
–
–
–
–
37
33
35
54
104
55
53
55
88
73
–
–
–
53
105
–
–
–
89
74
–
–
–
–
106
–
–
–
–
75
36
32
34
52
107
56
54
56
90
76
–
–
–
–
108
–
–
–
–
77
–
31
33
51
109
–
55
57
91
78
35
30
32
50
110
57
56
58
92
79
–
–
–
–
111
–
–
–
–
80
34
29
31
49
112
58
57
59
93
81
–
–
–
62
113
–
58
60
94
82
–
–
–
–
114
–
–
–
–
83
44
40
42
63
115
60
60
62
96
84
–
–
–
–
116
–
–
–
–
85
–
41
43
64
117
–
–
–
97
86
45
42
44
65
118
61
61
63
98
87
–
–
–
–
119
–
–
–
–
H
88
48
44
46
67
120
62 (4)
62 (4)
64 (4)
99 (4)
89
–
–
–
68
121
–
67
69
105
90
–
–
–
–
122
–
–
–
–
91
49
45
47
69
123
65
65
67
103
92
–
–
–
–
124
–
–
–
–
93
–
46
48
70
125
–
–
–
102
94
50
47
49
71
126
64
64
66
101
95
–
–
–
–
127
–
–
–
–
96
51
48
50
72
128
63
63
65
100
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 47. EPM7160E & EPM7160S I/O Pin-Outs (Part 3 of 3)
LAB
I
MC
84-Pin
PLCC
100-Pin 100-Pin 160-Pin LAB
TQFP PQFP (3) PQFP
(1), (2)
129
67
68
70
106
130
–
–
–
131
68
69
71
132
–
–
133
–
134
–
135
136
J
MC
84-Pin
PLCC
100-Pin
TQFP
(1), (2)
100-Pin 160-Pin
PQFP (3) PQFP
145
74
77
79
123
–
146
–
–
–
–
107
147
75
78
80
128
–
–
148
–
–
–
–
–
–
108
149
–
–
–
129
70
72
109
150
–
79
81
130
–
–
–
–
151
–
–
–
–
69
71
73
110
152
76
80
82
131
137
70
72
74
111
153
77
81
83
132
138
–
–
–
–
154
–
–
–
–
139
71 (4)
73 (4)
75 (4)
112 (4)
155
80
83
85
134
140
–
–
–
–
156
–
–
–
–
141
–
–
–
114
157
–
–
–
135
142
–
75
77
121
158
–
84
86
136
143
–
–
–
–
159
–
–
–
–
144
73
76
78
122
160
81
85
87
137
Notes to tables:
(1)
(2)
(3)
(4)
(5)
EPM7160E devices are not available in the 100-pin TQFP package.
A complete thermal analysis should be performed before committing a design to this device package.
EPM7160S devices are not available in the 100-pin PQFP package.
This JTAG pin applies to MAX 7000S devices only and this pin may function as either a JTAG port or a user I/O
pin. If the device is configured to use the JTAG ports for BST or with ISP, this pin is not available as a user I/O pin.
The user I/O pin count includes dedicated input pins and all I/O pins.
Altera Corporation
69
MAX 7000 Programmable Logic Device Family Data Sheet
Table 48. EPM7192E & EPM7192S Dedicated Pin-Outs
160-Pin PGA (1)
Dedicated Pin
160-Pin PQFP
INPUT/GCLK1
M8
139
INPUT/GCLRn
N8
141
INPUT/OE1
P8
140
INPUT/OE2/GCLK2
R8
142
TDI (2)
P9
146
TMS (2)
G15
23
TCK (2)
G2
98
TDO (2)
R7
135
GND
C4, C6, C11, D7, D9, D13, G4, H12, J4, 3, 18, 32, 47, 57, 64, 66, 81, 96, 111, 126,
M7, M9, M13, N4, N11
138, 143, 148
VCCINT (5.0 V Only)
C7, C9, N7, N9
VCCIO (3.3 V or 5.0 V)
C5, C10, C12, D3, G12, H4, J12, M3, N5, 10, 25, 40, 55, 74, 89, 103, 118, 133, 155
N12
56, 65, 137, 144
No Connect (N.C.)
A1, A2, A14, A15, R1, R2, R14, R15
1, 11, 39,54, 67, 82, 110, 120
Total User I/O Pins (3)
120
120
Table 49. EPM7192E & EPM7192S I/O Pin-Outs (Part 1 of 3)
LAB
A
70
MC
1
160-Pin 160-Pin
PGA (1) PQFP
M12
156
LAB
B
MC
17
160-Pin 160-Pin
PGA (1) PQFP
L14
8
LAB
C
MC
33
160-Pin 160-Pin
PGA (1) PQFP
H14
21
2
–
–
18
–
–
34
–
–
3
P11
154
19
M14
7
35
J13
20
4
–
–
20
–
–
36
–
–
5
P12
153
21
M15
6
37
H15
19
6
P10
152
22
N14
5
38
J15
17
7
–
–
23
–
–
39
–
–
8
R12
151
24
N15
4
40
J14
16
9
N10
150
25
P15
2
41
K15
15
10
–
–
26
–
–
42
–
–
11
R11
149
27
N13
160
43
K13
14
12
–
–
28
–
–
44
–
–
13
R10
147
29
P14
159
45
L15
13
14
P9 (2)
146 (2)
30
P13
158
46
K14
12
15
–
–
31
–
–
47
–
–
16
R9
145
32
R13
157
48
L13
9
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 49. EPM7192E & EPM7192S I/O Pin-Outs (Part 2 of 3)
LAB
D
E
MC
49
160-Pin 160-Pin
PGA (1) PQFP
D15
33
LAB
F
MC
81
160-Pin 160-Pin
PGA (1) PQFP
D8
60
LAB
H
MC
113
160-Pin 160-Pin
PGA (1) PQFP
A3
76
50
–
–
82
–
–
114
–
–
51
E15
31
83
A9
59
115
B4
77
52
–
–
84
–
–
116
–
–
53
E14
30
85
C8
58
117
B3
78
54
F15
29
86
B9
53
118
C3
79
55
–
–
87
–
–
119
–
–
56
F13
28
88
A10
52
120
B2
80
57
G14
27
89
B10
51
121
B1
83
58
–
–
90
–
–
122
–
–
59
F14
26
91
A11
50
123
C2
84
60
–
–
92
–
–
124
–
–
61
G13
24
93
B11
49
125
C1
85
62
G15 (2)
23 (2)
94
A12
48
126
D2
86
63
–
–
95
–
–
127
–
–
64
H13
22
96
A13
46
128
D1
87
65
B12
45
66
–
–
G
97
A8
61
98
–
–
I
129
E3
88
130
–
–
67
B13
44
99
B8
62
131
F3
90
68
–
–
100
–
–
132
–
–
69
C13
43
101
A7
63
133
E2
91
70
B14
42
102
A6
68
134
F2
92
71
–
–
103
–
–
135
–
–
72
C14
41
104
B7
69
136
E1
93
73
D12
38
105
A5
70
137
G3
94
74
–
–
106
–
–
138
–
–
75
B15
37
107
B6
71
139
F1
95
76
–
–
108
–
–
140
–
–
77
D14
36
109
A4
72
141
G1
97
78
C15
35
110
B5
73
142
G2 (2)
98 (2)
79
–
–
111
–
–
143
–
–
80
E13
34
112
D4
75
144
H1
99
Altera Corporation
71
MAX 7000 Programmable Logic Device Family Data Sheet
Table 49. EPM7192E & EPM7192S I/O Pin-Outs (Part 3 of 3)
LAB
J
MC
145
160-Pin 160-Pin
PGA (1) PQFP
H2
100
LAB
K
MC
161
160-Pin 160-Pin
PGA (1) PQFP
L2
113
LAB
L
MC
177
160-Pin 160-Pin
PGA (1) PQFP
R3
125
146
–
–
162
–
–
178
–
–
147
J1
101
163
N1
114
179
R4
127
148
–
–
164
–
–
180
–
–
149
H3
102
165
L3
115
181
M4
128
150
J3
104
166
P1
116
182
R5
129
151
–
–
167
–
–
183
–
–
152
K1
105
168
M2
117
184
P5
130
153
J2
106
169
N2
119
185
R6
131
154
–
–
170
–
–
186
–
–
155
K2
107
171
P2
121
187
P6
132
156
–
–
172
–
–
188
–
–
157
K3
108
173
N3
122
189
N6
134
158
L1
109
174
P3
123
190
R7 (2)
135 (2)
159
–
–
175
–
–
191
–
–
160
M1
112
176
P4
124
192
P7
136
Notes to tables:
(1)
(2)
(3)
72
EPM7192S devices are not available in the 160-pin PGA package.
This JTAG pin applies to MAX 7000S devices only and this pin may function as either a JTAG port or a user I/O
pin. If the device is configured to use the JTAG ports for ISP, this pin is not available as a user I/O pin.
The user I/O pin count includes dedicated input pins and all I/O pins.
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 50. EPM7256E & EPM7256S Dedicated Pin-Outs
160-Pin PQFP (1), (2)
Dedicated Pin
192-Pin PGA (2)
208-Pin RQFP/PQFP (3)
INPUT/GCLK1
139
P9
184
INPUT/GCLRn
141
R9
182
INPUT/OE1
140
T9
183
INPUT/OE2/GCLK2
142
U9
181
TDI (4)
146
U10
176
TMS (4)
23
H15
127
TCK (4)
98
H3
30
TDO (4)
135
U8
189
GND
3, 18, 32, 47, 57, 64, 66,
C7, C13, D4, D8, D10,
81, 96, 111, 126, 138, 143, G14, H4, K14, L4, P8,
148
P10, P15, R4, R11
14, 32, 50, 72, 75, 82, 94,
116, 134, 152, 174, 180,
185, 200
VCCINT (5.0 V only)
56, 65, 137, 144
74, 83, 179, 186
VCCIO (3.3 V or 5.0 V)
10, 25, 40, 55, 74, 89, 103, C5, C11, D14, G4, H14,
118, 133, 155
K4, L14, P3, R5, R14
5, 23, 41, 63, 85, 107, 125,
143, 165, 191
No Connect (N.C.)
–
–
1, 2, 51, 52, 53, 54, 103,
104, 105, 106, 155, 156,
157, 158, 207, 208.
Total User I/O Pins (5)
128
160
160
Altera Corporation
D7, D11, P7, P11
73
MAX 7000 Programmable Logic Device Family Data Sheet
Table 51. EPM7256E & EPM7256S I/O Pin-Outs (Part 1 of 5)
LAB
A
B
74
MC
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
1
2
U17
153
2
–
–
3
1
R16
4
–
5
6
LAB
C
MC
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
(3)
33
39
B17
108
–
34
–
–
–
154
35
38
C15
109
–
–
36
–
–
–
160
P14
159
37
37
C17
110
–
U16
160
38
–
C16
111
7
–
–
–
39
–
–
–
8
159
R15
161
40
36
D17
112
9
158
U15
162
41
35
D15
113
10
–
–
–
42
–
–
–
11
157
T15
163
43
34
E17
114
12
–
–
–
44
–
–
–
13
156
U14
164
45
33
D16
115
14
–
U13
166
46
–
E15
117
15
–
–
–
47
–
–
–
16
154
T14
167
48
31
F16
118
17
12
N17
141
49
49
A14
92
18
–
–
–
50
–
–
–
19
11
M16
142
51
48
B12
93
20
–
–
–
52
–
–
–
21
9
M15
144
53
46
B13
95
22
–
P17
145
54
–
A15
96
23
–
–
–
55
–
–
–
24
8
N16
146
56
45
B14
97
25
7
R17
147
57
44
A16
98
26
–
–
–
58
–
–
–
27
6
P16
148
59
43
C14
99
28
–
–
–
60
–
–
–
29
5
T17
149
61
42
B16
100
30
–
N15
150
62
–
B15
101
31
–
–
–
63
–
–
–
32
4
T16
151
64
41
A17
102
D
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 51. EPM7256E & EPM7256S I/O Pin-Outs (Part 2 of 5)
LAB
E
F
MC
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
65
153
U12
168
66
–
–
67
152
R13
68
–
69
70
LAB
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
(3)
97
30
E16
119
–
98
–
–
–
169
99
29
F17
120
–
–
100
–
–
–
151
U11
170
101
28
F15
121
–
T13
171
102
–
G16
122
71
–
–
–
103
–
–
–
72
150
T11
172
104
27
G15
123
73
149
T12
173
105
26
G17
124
74
–
–
–
106
–
–
–
75
147
R12
175
107
24
H17
126
76
–
–
–
108
–
–
–
77
146 (4)
U10 (4)
176 (4)
109
23 (4)
H15 (4)
127 (4)
78
–
R10
177
110
–
J17
128
79
–
–
–
111
–
–
–
80
145
T10
178
112
22
H16
129
81
21
J16
130
113
60
C9
79
82
–
–
–
114
–
–
–
83
20
J15
131
115
59
D9
80
84
–
–
–
116
–
–
–
85
19
K17
132
117
58
C10
81
86
–
J14
133
118
–
A10
84
87
–
–
–
119
–
–
–
88
17
K16
135
120
54
A11
86
89
16
K15
136
121
53
B10
87
90
–
–
–
122
–
–
–
91
15
L17
137
123
52
A12
88
92
–
–
–
124
–
–
–
93
14
L16
138
125
51
B11
89
94
–
M17
139
126
–
A13
90
95
–
–
–
127
–
–
–
96
13
L15
140
128
50
C12
91
Altera Corporation
G
MC
H
75
MAX 7000 Programmable Logic Device Family Data Sheet
Table 51. EPM7256E & EPM7256S I/O Pin-Outs (Part 3 of 5)
LAB
I
76
MC
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
129
128
U6
197
130
–
–
131
129
T5
132
–
133
134
LAB
J
MC
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
(3)
145
100
J2
27
–
146
–
–
–
196
147
101
J3
26
–
–
148
–
–
–
130
U7
195
149
102
K1
25
–
T6
194
150
–
J4
24
135
–
–
–
151
–
–
–
136
131
T7
193
152
104
K2
22
137
132
R6
192
153
105
K3
21
138
–
–
–
154
–
–
–
139
134
R7
190
155
106
L1
20
140
–
–
–
156
–
–
–
141
135 (4)
U8 (4)
189 (4)
157
107
L2
19
142
–
R8
188
158
–
M1
18
143
–
–
–
159
–
–
–
144
136
T8
187
160
108
L3
17
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Table 51. EPM7256E & EPM7256S I/O Pin-Outs (Part 4 of 5)
LAB
K
L
MC
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
161
91
F3
38
162
–
–
163
92
F1
164
–
165
166
LAB
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
(3)
193
119
U1
4
–
194
–
–
–
37
195
120
R2
3
–
–
196
–
–
–
93
E2
36
197
121
R3
206
–
G2
35
198
–
U2
205
167
–
–
–
199
–
–
–
168
94
G3
34
200
122
P4
204
169
95
G1
33
201
123
U3
203
170
–
–
–
202
–
–
–
171
97
H1
31
203
124
T3
202
172
–
–
–
204
–
–
–
173
98 (4)
H3 (4)
30 (4)
205
125
U4
201
174
–
J1
29
206
–
U5
199
175
–
–
–
207
–
–
–
176
99
H2
28
208
127
T4
198
177
61
B9
78
209
109
N1
16
178
–
–
–
210
–
–
–
179
62
C8
77
211
110
M2
15
180
–
–
–
212
–
–
–
181
63
A9
76
213
112
M3
13
182
–
A8
73
214
–
P1
12
183
–
–
–
215
–
–
–
184
67
A7
71
216
113
N2
11
185
68
B8
70
217
114
R1
10
186
–
–
–
218
–
–
–
187
69
A6
69
219
115
P2
9
188
–
–
–
220
–
–
–
189
70
B7
68
221
116
T1
8
190
–
A5
67
222
–
N3
7
191
–
–
–
223
–
–
–
192
71
C6
66
224
117
T2
6
Altera Corporation
M
MC
N
77
MAX 7000 Programmable Logic Device Family Data Sheet
Table 51. EPM7256E & EPM7256S I/O Pin-Outs (Part 5 of 5)
LAB
O
MC
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
225
82
B1
49
226
–
–
227
83
C3
228
–
229
230
LAB
P
MC
160-Pin
PQFP
(1), (2)
192-Pin
PGA (2)
208-Pin
RQFP/PQFP
(3)
241
72
A4
65
–
242
–
–
–
48
243
73
B6
64
–
–
244
–
–
–
84
C1
47
245
75
B5
62
–
D3
46
246
–
A3
61
231
–
–
–
247
–
–
–
232
85
D1
45
248
76
B4
60
233
86
C2
44
249
77
A2
59
234
–
–
–
250
–
–
–
235
87
E1
43
251
78
C4
58
236
–
–
–
252
–
–
–
237
88
E3
42
253
79
B2
57
238
–
D2
40
254
–
B3
56
239
–
–
–
255
–
–
–
240
90
F2
39
256
80
A1
55
Notes to tables:
(1)
(2)
(3)
(4)
(5)
78
A complete thermal analysis should be performed before committing a design to this device package. See the
Operating Requirements for Altera Devices Data Sheet for more information.
EPM7256S devices is not available in the 160-pin PQFP package.
EPM7256E devices are not available in the 208-pin RQFP/PQFP packages.
This JTAG pin applies to MAX 7000S devices only and this pin may function as either a JTAG port or a user I/O
pin. If the device is configured to use the JTAG ports for ISP, this pin is not available as a user I/O pin.
The user I/O pin count includes dedicated input pins and all I/O pins.
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Figures 16 through 22 show the package pin-out diagrams for MAX 7000
devices.
Figure 16. 44-Pin Package Pin-Out Diagram
(2) I/O/(TDI)
I/O
I/O
1 44 43 42 41 40
INPUT/OE1n
2
INPUT/GCLK1
3
GND
INPUT/OE2/(GCLK2) (1)
5 4
INPUT/GCLRn
6
VCC
I/O
I/O
Pin 34
I/O
I/O
I/O
INPUT//GCLK1
GND
INPUT/GCLRn
INPUT/OE1n
INPUT/OE2/(GCLK2) (1)
VCC
I/O
I/O
Pin 1
I/O
Package outlines not drawn to scale. Pin functions shown in parentheses are for MAX 7000S or MAX 7000E devices only.
(2) I/O /(TDI)
7
39
I/O
I/O
I/O/(TDO) (2)
I/O
8
38
I/O/(TDO) (2)
I/O
I/O
I/O
9
37
I/O
GND
I/O
GND
10
36
I/O
I/O
11
35
VCC
I/O
12
34
I/O
(2) I/O/(TMS)
13
33
I/O
I/O
14
32
I/O/(TCK) (2)
VCC
15
31
I/O
I/O
I/O
16
30
GND
I/O
GND
I/O
17
29
I/O
I/O
I/O
I/O
I/O
VCC
I/O
I/O
EPM7032
(2) I/O/(TMS)
I/O
I/O/(TCK) (2)
I/O
VCC
EPM7032
EPM7032S
EPM7064
EPM7064S
I/O
I/O
I/O
I/O
I/O
VCC
GND
I/O
I/O
Pin 23
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
GND
I/O
I/O
I/O
Pin 12
I/O
18 19 20 21 22 23 24 25 26 27 28
44-Pin PLCC
I/O
I/O
INPUT/GCLK1
GND
INPUT/GCLRn
INPUT/OE1n
INPUT/OE2/(GCLK2) (1)
VCC
I/O
I/O
Pin 1
I/O
44-Pin PQFP
Pin 34
(2) I/O /(TDI)
I/O
I/O
I/O/(TDO) (2)
I/O
I/O
GND
I/O
EPM7032
EPM7032S
EPM7064
EPM7064S
I/O
I/O
(2) I/O /(TMS)
I/O
VCC
I/O
I/O
I/O/(TCK) (2)
I/O
VCC
I/O
I/O
I/O
I/O
I/O
VCC
GND
I/O
Pin 12
I/O
I/O
I/O
GND
I/O
I/O
I/O
Pin 23
44-Pin TQFP
Notes:
(1)
(2)
These pins are available in MAX 7000E and MAX 7000S devices only.
JTAG ports are available in MAX 7000S devices only.
Altera Corporation
79
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 17. 68-Pin Package Pin-Out Diagram
9
8
7
6
5
4
3
2
1
68
67
66
65
64
63
62
61
I/O
I/O
I/O
GND
I/O
I/O
VCCINT
INPUT/OE2/(GCLK2) (1)
INPUT/GCLRn
INPUT/OE1
INPUT/GCLK1
GND
I/O
I/O
VCCIO
I/O
I/O
Package outlines not drawn to scale. Pin functions shown in parentheses are for
MAX 7000S or MAX 7000E devices only.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
EPM7064
EPM7096
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
I/O
I/O
GND
I/O/(TDO) (2)
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O/(TCK) (2)
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
GND
VCCINT
I/O
I/O
GND
I/O
I/O
I/O
I/O
VCCIO
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
I/O
VCCIO
(2) I/O/(TDI)
I/O
I/O
I/O
GND
I/O
I/O
(2) I/O/(TMS)
I/O
VCCIO
I/O
I/O
I/O
I/O
GND
68-Pin PLCC
Notes:
(1)
(2)
80
These pins are available in MAX 7000E and MAX 7000S devices only.
JTAG ports are available in MAX 7000S devices only.
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 18. 84-Pin Package Pin-Out Diagram
11
10
9
8
7
6
5
4
3
2
1
84
83
82
81
80
79
78
77
76
75
I/O
I/O
I/O
I/O
GND
I/O (1)
I/O
I/O
VCCINT
INPUT/OE2/(GCLK2) (2)
INPUT/GLCRn
INPUT/OE1
INPUT/GCLK1
GND
I/O
I/O
I/O (1)
VCCIO
I/O
I/O
I/O
Package outline not drawn to scale. Pin functions in parentheses are for MAX 7000S or MAX 7000E devices only.
I/O
VCCIO
(3) I/O/(TDI)
EPM7064
EPM7064S
EPM7096
EPM7128E
EPM7128S
EPM7160E
EPM7160S
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
I/O
I/O
GND
I/O/(TDO) (3)
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O/(TCK) (3)
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O (1)
I/O
I/O
GND
VCCINT
I/O
I/O
I/O (1)
GND
I/O
I/O
I/O
I/O
I/O
VCCIO
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
(3) I/O/(TMS)
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O
I/O
GND
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
84-Pin PLCC
Notes:
(1)
(2)
(3)
Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
This pin is available in MAX 7000E and MAX 7000S devices only.
JTAG ports are available in MAX 7000S devices only.
Altera Corporation
81
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 19. 100-Pin Package Pin-Out Diagram
Package outline not drawn to scale.
Pin 1
Pin 81
Pin 1
Pin 76
EPM7064S
EPM7128S
EPM7160S
EPM7064
EPM7096
EPM7128E
EPM7128S
EPM7160E
Pin 31
Pin 51
Pin 26
100-Pin PQFP
Pin 51
100-Pin TQFP
Figure 20. 160-Pin Package Pin-Out Diagram
Package outline not drawn to scale.
Pin 121
Pin 1
R
P
N
M
L
K
EPM7128E
EPM7128S
EPM7160E
EPM7160S
EPM7192E
EPM7192S
EPM7256E
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
160-Pin PGA
82
Pin 81
Pin 41
160-Pin PQFP
Altera Corporation
MAX 7000 Programmable Logic Device Family Data Sheet
Figure 21. 192-Pin Package Pin-Out Diagram
Package outline not drawn to scale.
U
T
R
P
N
M
L
K
EPM7256E
J
Bottom
View
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17
192-Pin PGA
Figure 22. 208-Pin Package Pin-Out Diagram
Package outline not drawn to scale.
Pin 1
Pin 157
EPM7256E
EPM7256S
Pin 53
Pin 105
208-Pin PQFP/RQFP
Altera Corporation
83
MAX 7000 Programmable Logic Device Family Data Sheet
Revision
History
The information contained in the MAX 7000 Programmable Logic Device
Family Data Sheet version 6.01 supersedes information published in
previous version. The following changes were made to the MAX 7000
Programmable Logic Device Family Data Sheet version 6.01:
■
■
■
84
The MasterBlaster serial/USB download cable was added to this
document
Figures 3 and 4 were updated.
tCPPW timing parameter information was clarified in the “Timing
Model” section.
Altera Corporation
Copyright © 1995, 1996, 1997, 1998, 1999 Altera Corporation, 101 Innovation Drive,
San Jose, CA 95134, USA, all rights reserved.
By accessing this information, you agree to be bound by the terms of Altera’s
Legal Notice.