0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FC80960HD80SL2LZ

FC80960HD80SL2LZ

  • 厂商:

    ENPIRION(英特尔)

  • 封装:

    QFP208

  • 描述:

    IC MPU I960 80MHZ 208QFP

  • 数据手册
  • 价格&库存
FC80960HD80SL2LZ 数据手册
80960HA/HD/HT 32-Bit High-Performance Superscalar Processor Datasheet Product Features ■ ■ ■ ■ ■ ■ 32-Bit Parallel Architecture — Load/Store Architecture — Sixteen 32-Bit Global Registers — Sixteen 32-Bit Local Registers — 1.28 Gbyte Internal Bandwidth (80 MHz) — On-Chip Register Cache Processor Core Clock — 80960HA is 1x Bus Clock — 80960HD is 2x Bus Clock — 80960HT is 3x Bus Clock Binary Compatible with Other 80960 Processors Issue Up To 150 Million Instructions per Second High-Performance On-Chip Storage — 16 Kbyte Four-Way Set-Associative Instruction Cache — 8 Kbyte Four-Way Set-Associative Data Cache — 2 Kbyte General Purpose RAM Separate 128-Bit Internal Paths For Instructions/Data ■ ■ ■ ■ ■ 3.3 V Supply Voltage — 5 V Tolerant Inputs — TTL Compatible Outputs Guarded Memory Unit — Provides Memory Protection — User/Supervisor Read/Write/Execute 32-Bit Demultiplexed Burst Bus — Per-Byte Parity Generation/Checking — Address Pipelining Option — Fully Programmable Wait State Generator — Supports 8-, 16- or 32-Bit Bus Widths — 160 Mbyte/s External Bandwidth (40 MHz) High-Speed Interrupt Controller — Up to 240 External Interrupts — 31 Fully Programmable Priorities — Separate, Non-maskable Interrupt Pin Dual On-Chip 32-Bit Timers — Auto Reload Capability and One-Shot — CLKIN Prescaling, divided by 1, 2, 4 or 8 — JTAG Support - IEEE 1149.1 Compliant Order Number: 272495-009 August 2004 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The 80960HA/HD/HT 32-Bit High-Performance Superscalar Processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com. Copyright © Intel Corporation, 2002, 2004 AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. 2 Datasheet Contents Contents 1.0 About This Document ................................................................................................................... 9 2.0 Intel 80960Hx Processor ............................................................................................................... 9 2.1 2.2 2.3 3.0 The i960® Processor Family ...............................................................................................10 Key 80960Hx Features .......................................................................................................10 2.2.1 Execution Architecture ...........................................................................................10 2.2.2 Pipelined, Burst Bus ..............................................................................................10 2.2.3 On-Chip Caches and Data RAM............................................................................11 2.2.4 Priority Interrupt Controller.....................................................................................11 2.2.5 Guarded Memory Unit ...........................................................................................11 2.2.6 Dual Programmable Timers ...................................................................................12 2.2.7 Processor Self Test ...............................................................................................12 Instruction Set Summary ....................................................................................................13 Package Information ...................................................................................................................14 3.1 3.2 3.3 3.4 3.5 3.6 3.7 4.0 Pin Descriptions ..................................................................................................................15 80960Hx Mechanical Data..................................................................................................20 3.2.1 80960Hx PGA Pinout.............................................................................................20 3.2.2 80960Hx PQ4 Pinout .............................................................................................26 Package Thermal Specifications ........................................................................................31 Heat Sink Adhesives...........................................................................................................34 PowerQuad4 Plastic Package ............................................................................................34 Stepping Register Information ............................................................................................34 Sources for Accessories .....................................................................................................36 Electrical Specifications .............................................................................................................37 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 5.0 Absolute Maximum Ratings ................................................................................................37 Operating Conditions ..........................................................................................................37 Recommended Connections ..............................................................................................38 VCC5 Pin Requirements (VDIFF) ........................................................................................38 VCCPLL Pin Requirements ................................................................................................39 DC Specifications ...............................................................................................................40 AC Specifications................................................................................................................42 4.7.1 AC Test Conditions ................................................................................................45 AC Timing Waveforms ........................................................................................................46 Bus Waveforms ...........................................................................................................................54 5.1 5.2 80960Hx Boundary Scan Chain .........................................................................................84 Boundary Scan Description Language Example ................................................................88 Figures 1 2 3 4 5 6 80960Hx Block Diagram ............................................................................................................... 9 80960Hx 168-Pin PGA Pinout—View from Top (Pins Facing Down) .........................................20 80960Hx 168-Pin PGA Pinout—View from Bottom (Pins Facing Up) ........................................21 80960Hx 208-Pin PQ4 Pinout.....................................................................................................26 Measuring 80960Hx PGA Case Temperature ............................................................................31 80960Hx Device Identification Register......................................................................................34 Datasheet 3 Contents 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 4 VCC5 Current-Limiting Resistor ................................................................................................. 38 AC Test Load.............................................................................................................................. 45 CLKIN Waveform........................................................................................................................ 46 Output Delay Waveform ............................................................................................................. 46 Output Delay Waveform ............................................................................................................. 46 Output Float Waveform .............................................................................................................. 47 Input Setup and Hold Waveform ................................................................................................ 47 NMI, XINT7:0 Input Setup and Hold Waveform.......................................................................... 47 Hold Acknowledge Timings ........................................................................................................ 48 Bus Backoff (BOFF) Timings ...................................................................................................... 48 TCK Waveform ........................................................................................................................... 49 Input Setup and Hold Waveforms for TBSIS1 and TBSIH1.......................................................... 49 Output Delay and Output Float for TBSOV1 and TBSOF1 ........................................................ 50 Output Delay and Output Float Waveform for TBSOV2 and TBSOF2 ....................................... 50 Input Setup and Hold Waveform for TBSIS2 and TBSIH2 ......................................................... 50 Rise and Fall Time Derating at 85 °C and Minimum VCC.......................................................... 51 ICC Active (Power Supply) vs. Frequency................................................................................... 51 ICC Active (Thermal) vs. Frequency............................................................................................ 52 Output Delay or Hold vs. Load Capacitance .............................................................................. 52 Output Delay vs. Temperature ................................................................................................... 53 Output Hold Times vs. Temperature .......................................................................................... 53 Output Delay vs. VCC ................................................................................................................ 53 Cold Reset Waveform ................................................................................................................ 54 Warm Reset Waveform .............................................................................................................. 55 Entering ONCE Mode................................................................................................................. 56 Non-Burst, Non-Pipelined Requests without Wait States ........................................................... 57 Non-Burst, Non-Pipelined Read Request with Wait States ........................................................ 58 Non-Burst, Non-Pipelined Write Request with Wait States ........................................................ 59 Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus ........................................ 60 Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus ............................................. 61 Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus ........................................ 62 Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus ............................................. 63 Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus ............................................. 64 Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus ............................................... 65 Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus ........................................ 66 Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus ............................................. 67 Burst, Pipelined Read Request without Wait States, 32-Bit Bus ................................................ 68 Burst, Pipelined Read Request with Wait States, 32-Bit Bus ..................................................... 69 Burst, Pipelined Read Request with Wait States, 8-Bit Bus ....................................................... 70 Burst, Pipelined Read Request with Wait States, 16-Bit Bus ..................................................... 71 Using External READY............................................................................................................... 72 Terminating a Burst with BTERM ............................................................................................... 73 BREQ and BSTALL Operation ................................................................................................... 74 BOFF Functional Timing. BOFF occurs during a burst or non-burst data cycle. ........................ 75 HOLD Functional Timing ............................................................................................................ 76 LOCK Delays HOLDA Timing..................................................................................................... 77 FAIL Functional Timing............................................................................................................... 77 A Summary of Aligned and Unaligned Transfers for 32-Bit Regions.......................................... 78 A Summary of Aligned and Unaligned Transfers for 32-Bit Regions (Continued) ...................... 79 A Summary of Aligned and Unaligned Transfers for 16-Bit Bus................................................. 80 Datasheet Contents 57 A Summary of Aligned and Unaligned Transfers for 8-Bit Bus...................................................81 58 Idle Bus Operation ......................................................................................................................82 59 Bus States ..................................................................................................................................83 Tables 1 2 3 4 5 6 7 8 9 10 11 13 12 15 14 17 18 16 19 20 21 22 23 25 24 26 80960Hx Product Description ....................................................................................................... 9 Fail Codes For BIST (bit 7 = 1) ...................................................................................................12 Remaining Fail Codes (bit 7 = 0) ................................................................................................12 80960Hx Instruction Set .............................................................................................................13 80960HA/HD/HT Package Types and Speeds...........................................................................14 Pin Description Nomenclature ....................................................................................................15 80960Hx Processor Family Pin Descriptions..............................................................................16 80960Hx 168-Pin PGA Pinout—Signal Name Order..................................................................22 80960Hx 168-Pin PGA Pinout—Pin Number Order ...................................................................24 80960Hx PQ4 Pinout—Signal Name Order................................................................................27 80960Hx PQ4 Pinout—Pin Number Order .................................................................................29 80960Hx 168-Pin PGA Package Thermal Characteristics .........................................................32 Maximum TA at Various Airflows in °C (PGA Package Only) .....................................................32 80960Hx 208-Pin PQ4 Package Thermal Characteristics..........................................................33 Maximum TA at Various Airflows in °C (PQ4 Package Only)......................................................33 80960Hx Device ID Model Types ...............................................................................................35 Device ID Version Numbers for Different Steppings...................................................................35 Fields of 80960Hx Device ID ......................................................................................................35 Absolute Maximum Ratings ........................................................................................................37 Operating Conditions ..................................................................................................................37 VDIFF Specification for Dual Power Supply Requirements (3.3 V, 5 V) ......................................39 80960Hx DC Characteristics ......................................................................................................40 80960Hx AC Characteristics.......................................................................................................42 80960Hx Boundary Scan Test Signal Timings ...........................................................................44 AC Characteristics Notes............................................................................................................44 80960Hx Boundary Scan Chain .................................................................................................84 Datasheet 5 Contents Revision History Date August 2004 Revision 009 History To address the fact that many of the package prefix variables have changed, all package prefix variables in this document are now indicated with an "x". Formatted the datasheet in a new template. In “32-Bit Parallel Architecture” on page 1: • Removed operating frequency of 16/32 (bus/core) from 80960HD. • Removed operating frequency of 20/60 (bus/core) from 80960HT. In Table 5 “80960HA/HD/HT Package Types and Speeds” on page 14: September 2002 008 • Removed core speed of 32 MHz and bus speed of 16 MHz, and order number A80960HD32-S-L2GG from the 168L PGA package, 80960HD device. • Removed core speed of 60 MHz and bus speed of 20 MHz, and order number A80960HT60 from the 168L PGA package, 80960HT device. • Removed core speed of 32 MHz and bus speed of 16 MHz, and order number FC80960HD32-S-L2GL from the 208L PQFP package, 80960HD device. • Removed core speed of 60 MHz and bus speed of 20 MHz, and order number FC80960HT60-S-L2G2 from the 208L PQFP package, 80960HT device. In “32-Bit Parallel Architecture” on page 1: • Revised 1.2 Gbyte Internal Bandwidth (75 MHz) to 1.28 Gbyte Internal Bandwidth (80 MHz). In Section 3.0, “Package Information” on page 14: • Added paragraph two and Table 5 “80960HA/HD/HT Package Types and Speeds” on page 14. In Table 7 “80960Hx Processor Family Pin Descriptions” on page 16: • Corrected minor typeset and spacing errors. • BREQ; Revised description. • ONCE; last sentence, changed ‘low’ to ‘high’. • TDI and TMS; removed last sentence stating, “Pull this pin low when not in use.” In Figure 2 “80960Hx 168-Pin PGA Pinout—View from Top (Pins Facing Down)” on page 20: July 1998 007 • Added insert package marking diagram. In Figure 4 “80960Hx 208-Pin PQ4 Pinout” on page 26: • Added insert package marking diagram. In Table 10 “80960Hx PQ4 Pinout—Signal Name Order” on page 27: • Corrected TDO (‘O’ was zero) and revised alphabetical ordering. In Table 11 “80960Hx PQ4 Pinout—Pin Number Order” on page 29: • Corrected TDO (‘O’ was zero) and revised alphabetical ordering. In Section 4.1, “Absolute Maximum Ratings” on page 37: • Revised VCC to VCC5 for Voltage on Other Pins with respect to VSS. In Section 4.5, “VCCPLL Pin Requirements” on page 39: • Added section. In Table 22 “80960Hx DC Characteristics” on page 40: • Added footnote (1) to ILO notes column for TDO pin. • Added footnote (10) to CIN, COUT and CI/O pin. 6 Datasheet Contents Date Revision History In Table 23 “80960Hx AC Characteristics” on page 42: • Added overbars where required. • Modified TDVNH to list separate specifications for 3.3 V and 5 V. July 1998 (continued) 007 (continued) • Modified TOV2, TOH2 and TTVEL to reflect specific 80960HA, 80960HD and 80960HT values. In Figure 23 “ICC Active (Power Supply) vs. Frequency” on page 51: • Changed ‘5’ to ‘0’ on the CLKIN Frequency axis. In Figure 49 “BREQ and BSTALL Operation” on page 74: • Added figure and following text. August 1997 Datasheet 006 Fixed several font and format issues. 7 Contents This page intentionally left blank. 8 Datasheet 80960HA/HD/HT 1.0 About This Document This document describes the parametric performance of Intel’s 80960Hx embedded superscalar microprocessors. Detailed descriptions for functional topics, other than parametric performance, are published in the i960® Hx Microprocessor User’s Guide (272484). In this document, ‘80960Hx’ and ‘i960 Hx processor’ refer to the products described in Table 1. Throughout this document, information that is specific to each is clearly indicated. Figure 1. 80960Hx Block Diagram Guarded Memory Unit Instruction Prefetch Queue JTAG Port Instruction Cache 16 Kbyte, Four-Way Set-Associative Timers Interrupt Port 128-Bit Cache Bus Programmable Interrupt Controller Control Memory Region Configuration Address Bus Controller Bus Request Queues Parallel Instruction Scheduler Data Data Cache 8 Kbyte, Four-Way Set-Associative Multiply/Divide Unit Register-Side Memory-Side Machine Bus Machine Bus Execution Unit Data RAM - 2 Kbyte Register Cache - 5 to 15 sets Six-Port Register File 64-bit SRC1 Bus 32-bit Base Bus Address Generation Unit 64-bit SRC2 Bus 128-bit Load Bus 64-bit DST Bus 2.0 128-bit Store Bus Intel 80960Hx Processor The Intel 80960Hx processor provides new performance levels while maintaining backward compatibility (pin1 and software) with the i960 CA/CF processor. This newest member of the family of i960 32-bit, RISC-style, embedded processors allows customers to create scalable designs that meet multiple price and performance points. This is accomplished by providing processors that may run at the bus speed or faster using Intel’s clock multiplying technology (see Table 1). The 80960Hx core is capable of issuing 150 million instructions per second, using a sophisticated instruction scheduler that allows the processor to sustain a throughput of two instructions every core clock, with a peak performance of three instructions per clock. The 80960Hx-series comprises three processors, which differ in the ratio of core clock speed to external bus speed. Table 1. 80960Hx Product Description Product 80960HA Core 1x Voltage Operating Frequency (bus/core) 3.3 V † 25/25, 33/33, 40/40 † 25/50, 33/66, 40/80 80960HD 2x 3.3 V 80960HT 3x 3.3 V† 25/75 † Processor inputs are 5 V tolerant. 1. The 80960Hx is not “drop-in” compatible in an 80960Cx-based system. Customers may design systems that accept either 80960Hx or Cx processors. Datasheet 9 80960HA/HD/HT In addition to expanded clock frequency options, the 80960Hx provides essential enhancements for an emerging class of high-performance embedded applications. Features include a larger instruction cache, data cache, and data RAM than any other 80960 processor to date. It also boasts a 32-bit demultiplexed and pipelined burst bus, fast interrupt mechanism, guarded memory unit, wait state generator, dual programmable timers, ONCE and IEEE 1149.1-compliant boundary scan test and debug support, and new instructions. 2.1 The i960® Processor Family The i960® processor family is a 32-bit RISC architecture created by Intel to serve the needs of embedded applications. The embedded market includes applications as diverse as industrial automation, avionics, image processing, graphics and communications. Because all members of the i960 processor family share a common core architecture, i960 applications are code-compatible. Each new processor in the family adds its own special set of functions to the core to satisfy the needs of a specific application or range of applications in the embedded market. 2.2 Key 80960Hx Features 2.2.1 Execution Architecture Independent instruction paths inside the processor allow the execution of multiple, out-of-sequence instructions per clock. Register and resource scoreboarding interlocks maintain the logical integrity of sequential instructions that are being executed in parallel. To sustain execution of multiple instructions in each clock cycle, the processor decodes multiple instructions in parallel and simultaneously issues these instructions to parallel processing units. The various processing units are then able to independently access instruction operands in parallel from a common register set. Local Register Cache integrated on-chip provides automatic register management on call/return instructions. Upon a call instruction, the processor allocates a set of local registers for the called procedure, then stores the registers for the previous procedure in the on-chip register cache. As additional procedures are called, the cache stores the associated registers such that the most recently called procedure is the first available by the next return (ret) instruction. The processor may store up to fifteen register sets, after which the oldest sets are stored (spilled) into external memory. The 80960Hx supports the 80960 architecturally-defined branch prediction mechanism. This allows many branches to execute with no pipeline break. With the 80960Hx’s efficient pipeline, a branch may take as few as zero clocks to execute. The maximum penalty for an incorrect prediction is two core clocks. 2.2.2 Pipelined, Burst Bus A 32-bit high performance bus controller interfaces the 80960Hx core to the external memory and peripherals. The Bus Control Unit features a maximum transfer rate of 160 Mbytes per second (at a 40 MHz external bus clock frequency). A key advantage of this design is its versatility. The user may independently program the physical and logical attributes of system memory. Physical attributes include wait state profile, bus width, and parity. Logical attributes include cacheability and Big or Little Endian byte order. Internally programmable wait states and 16 separately configurable physical memory regions allow the processor to interface with a variety of memory 10 Datasheet 80960HA/HD/HT subsystems with minimum system complexity. To reduce the effect of wait states, the bus design is decoupled from the core. This lets the processor execute instructions while the bus performs memory accesses independently. The Bus Controller’s key features include: • • • • • • • • 2.2.3 Demultiplexed, Burst Bus to support most efficient DRAM access modes Address Pipelining to reduce memory cost while maintaining performance 32-, 16- and 8-bit modes to facilitate I/O interfacing Full internal wait state generation to reduce system cost Little and Big Endian support Unaligned Access support implemented in hardware Three-deep request queue to decouple the bus from the core Independent physical and logical address space characteristics On-Chip Caches and Data RAM As shown in Figure 1, the 80960Hx provides generous on-chip cache and storage features to decouple CPU execution from the external bus. The processor includes a 16 Kbyte instruction cache, an 8 Kbyte data cache and 2 Kbytes of Data RAM. The caches are organized as 4-way set associative. Stores that hit the data cache are written through to memory. The data cache performs write allocation on cache misses. A fifteen-set stack frame cache allows the processor to rapidly allocate and deallocate local registers. All of the on-chip RAM sustains a 4-word (128-bit) access every clock cycle. 2.2.4 Priority Interrupt Controller The interrupt unit provides the mechanism for the low latency and high throughput interrupt service essential for embedded applications. A priority interrupt controller provides full programmability of 240 interrupt sources with a typical interrupt task switch (latency) time of 17 core clocks. The controller supports 31 priority levels. Interrupts are prioritized and signaled within 10 core clocks of the request. When the interrupt has a higher priority than the processor priority, the context switch to the interrupt routine would typically complete in another seven bus clocks. External agents post interrupts through the 8-bit external interrupt port. The Interrupt unit also handles the two internal sources from the Timers. Interrupts may be level- or edge-triggered. 2.2.5 Guarded Memory Unit The Guarded Memory Unit (GMU) provides memory protection without the address translation found in Memory Management Units. The GMU contains two memory protection schemes: one prevents illegal memory accesses, the other detects memory access violations. Both signal a fault to the processor. The programmable protection modes are: user read, write or execute; and supervisor read, write or execute. Datasheet 11 80960HA/HD/HT 2.2.6 Dual Programmable Timers The processor provides two independent 32-bit timers, with four programmable clock rates. The user configures the timers through the Timer Unit registers. These registers are memory-mapped within the 80960Hx, addressable on 32-bit boundaries. The timers have a single-shot mode and auto-reload capabilities for continuous operation. Each timer has an independent interrupt request to the processor’s interrupt controller. 2.2.7 Processor Self Test When a system error is detected, the FAIL pin is asserted, a fail code message is driven onto the address bus, and the processor stops execution at the point of failure. The only way to resume normal operation is to perform a RESET operation. Because System Error generation may occur sometime after the bus confidence test and even after initialization during normal processor operation, the FAIL pin is HIGH (logic “1”) before the detection of a System Error. The processor uses only one read bus-transaction to signal the fail code message; the address of the bus transaction is the fail code itself. The fail code is of the form: 0xfeffffnn; bits 6 to 0 contain a mask recording the possible failures. Bit 7, when set to 1, indicates that the mask contains failures from the internal Built-In Self-Test (BIST); when 0, the mask indicates other failures. Ignore reserved bits 0 and 1. Also ignore bits 5 and 6 when bit 7 is clear (=0). The mask is shown in Table 2 and Table 3. Table 2. Fail Codes For BIST (bit 7 = 1) Bit Table 3. When Set 6 On-chip Data-RAM failure detected by BIST. 5 Internal Microcode ROM failure detected by BIST. 4 Instruction cache failure detected by BIST. 3 Data cache failure detected by BIST. 2 Local-register cache or processor core failure detected by BIST. 1 Reserved. Always zero. 0 Reserved. Always zero. Remaining Fail Codes (bit 7 = 0) Bit 12 When Set 6 Reserved. Always one. 5 Reserved. Always one. 4 A data structure within the IMI is not aligned to a word boundary. 3 A System Error during normal operation has occurred. 2 The Bus Confidence test has failed. 1 Reserved. Always zero. 0 Reserved. Always zero. Datasheet 80960HA/HD/HT 2.3 Instruction Set Summary Table 4 summarizes the 80960Hx instruction set by logical groupings. Table 4. 80960Hx Instruction Set Data Movement Arithmetic Logical Bit / Bit Field / Byte Add Subtract Multiply And Divide Not And Remainder And Not Load Modulo Or Store Shift Exclusive Or Move Extended Shift Not Or Load Address Extended Multiply Or Not Conditional Select2 Extended Divide Nor Add with Carry Exclusive Nor Subtract with Carry Not Rotate Nand Set Bit Clear Bit Not Bit Alter Bit Scan For Bit Span Over Bit Extract Modify Scan Byte for Equal Byte Swap2 Conditional Add2 Conditional Subtract2 Comparison Branch Call/Return Fault Compare Conditional Compare Compare and Increment Compare and Decrement Compare Byte 2 Compare Short2 Call Unconditional Branch Call Extended Conditional Branch Call System Compare and Branch Return Conditional Fault Synchronize Faults Branch and Link Test Condition Code Check Bit Debug Processor Mgmt Atomic Cache Control Flush Local Registers Modify Trace Controls Modify Arithmetic Controls Mark Modify Process Controls Force Mark Interrupt Enable/ Disable1, 2 Atomic Add Instruction Cache Control1, 2 Atomic Modify Data Cache Control1, 2 System Control1 NOTES: 1. 80960Hx extensions to the 80960 core instruction set. 2. 80960Hx extensions to the 80960Cx instruction set. Datasheet 13 80960HA/HD/HT 3.0 Package Information This section describes the pins, pinouts and thermal characteristics for the 80960Hx in the 168-pin ceramic Pin Grid Array (PGA) package, 208-pin PowerQuad2* (PQ4). For complete package specifications and information, see the Intel Packaging Handbook (Order# 240800). The 80960HA/HD/HT is offered with eight speeds and two package types (Table 5). Both the 168-pin ceramic Pin Grid Array (PGA) and the 208-pin PowerQuad2* (PQ4) devices are specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of 0 °C to 85 °C. Table 5. 80960HA/HD/HT Package Types and Speeds Package/Name Device Core Speed (MHz) 80960HA 168L PGA Bus Speed (MHz) 25 x80960HA25 S L2GX 33 x80960HA33 S L2GY 40 x80960HA40 S L2GZ 50 80960HD 80960HT 25 33 x80960HD66 S L2GJ 80 40 x80960HD80 S L2GK 75 25 x80960HT75 S L2GP 25 x80960HA25 S L2GU 33 x80960HA33 S L2GV 40 80960HD 80960HT x80960HD50 S L2GH 66 80960HA 208L PQFP (also known as PQ4) Order # x80960HA40 S L2GW 50 25 x80960HD50 S L2GM 66 33 x80960HD66 S L2GN 80 40 x80960HD80 S L2LZ 75 25 x80960HT75 S L2GT NOTE: To address the fact that many of the package prefix variables have changed, all package prefix variables in this document are now indicated with an "x". 14 Datasheet 80960HA/HD/HT 3.1 Pin Descriptions This section defines the 80960Hx pins. Table 6 presents the legend for interpreting the pin descriptions in Table 7. All pins float while the processor is in the ONCE mode, except TDO, which may be driven active according to normal JTAG specifications. Table 6. Pin Description Nomenclature Symbol I Input only pin. O Output only pin. I/O Pin may be input or output. - Datasheet Description Pin must be connected as indicated for proper device functionality. S(E) Synchronous edge sensitive input. This input must meet the setup and hold times relative to CLKIN to ensure proper operation of the processor. S(L) Synchronous level sensitive input. This input must meet the setup and hold times relative to CLKIN to ensure proper operation of the processor. A(E) Asynchronous edge-sensitive input. A(L) Asynchronous level-sensitive input. H(...) While the processor bus is in the HOLD state (HOLDA asserted), the pin: H(1) is driven to VCC H(0) is driven to VSS H(Z) floats H(Q) continues to be a valid output B(...) While the processor is in the bus backoff state (BOFF asserted), the pin: B(1) is driven to VCC B(0) is driven to VSS B(Z) floats B(Q) continues to be a valid output R(...) While the processor’s RESET pin is asserted, the pin: R(1) is driven to VCC R(0) is driven to VSS R(Z) floats R(Q) continues to be a valid output 15 80960HA/HD/HT Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 1 of 4) Name Type Description O A31:2 H(Z) B(Z) R(Z) ADDRESS BUS carries the upper 30 bits of the physical address. A31 is the most significant address bit and A2 is the least significant. During a bus access, A31:2 identify all external addresses to word (4-byte) boundaries. The byte enable signals indicate the selected byte in each word. During burst accesses, A3 and A2 increment to indicate successive addresses. I/O D31:0 S(L) H(Z) B(Z) R(Z) DATA BUS carries 32, 16, or 8-bit data quantities depending on bus width configuration. The least significant bit of the data is carried on D0 and the most significant on D31. The lower eight data lines (D7:0) are used when the bus is configured for 8-bit data. When configured for 16-bit data, D15:0 are used. DATA PARITY carries parity information for the data bus. Each parity bit is assigned a group of eight data bus pins as follows: I/O DP3:0 S(L) H(Z) B(Z) R(Z) DP3 generates/checks parity for D31:24 DP2 generates/checks parity for D23:16 DP1 generates/checks parity for D15:8 DP0 generates/checks parity for D7:0 Parity information is generated for a processor write cycle and is checked for a processor read cycle. Parity checking and polarity are programmable. Parity generation/checking is only performed for the size of the data accessed. O PCHK H(Q) B(Q) R(1) PARITY CHECK indicates the result of a parity check operation. An asserted PCHK indicates that the previous bus read access resulted in a parity check error. BYTE ENABLES select which of the four bytes addressed by A31:2 are active during a bus access. Byte enable encoding is dependent on the bus width of the memory region accessed: O BE3:0 H(Z) B(Z) R(1) 32-bit bus: BE3 enables D31:24 BE2 enables D23:16 BE1 enables D15:8 BE0 enables D7:0 16-bit bus: BE3 becomes Byte High Enable (enables D15:8) BE2 is not used (state is undefined) BE1 becomes Address Bit 1 (A1) BE0 becomes Byte Low Enable (enables D7:0) 8-bit bus: BE3 is not used (state is undefined) BE2 is not used (state is undefined) BE1 Address Bit 1 (A1) BE0 Address Bit 0 (A0) O W/R H(Z) B(Z) R(0) O D/C 16 H(Z) B(Z) R(0) WRITE/READ is low for read accesses and high for write accesses. W/R becomes valid during the address phase of a bus cycle and remains valid until the end of the cycle for non-pipelined accesses. For pipelined accesses, W/ R changes state when the next address is presented. 0= Read 1= Write DATA/CODE indicates that a bus access is a data access or an instruction access. D/C has the same timing as W/R. 0 = Code 1 = Data Datasheet 80960HA/HD/HT Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 2 of 4) Name Type O SUP H(Z) B(Z) R(1) Description SUPERVISOR ACCESS indicates whether the current bus access originates from a request issued while in supervisor mode or user mode. SUP may be used by the memory subsystem to isolate supervisor code and data structures from non-supervisor access. 0 = Supervisor Mode 1 = User Mode O ADS READY H(Z) B(Z) R(1) I S(L) ADDRESS STROBE indicates a valid address and the start of a new bus access. ADS is asserted for the first clock of a bus access. READY, when enabled for a memory region, is asserted by the memory subsystem to indicate the completion of a data transfer. READY is used to indicate that read data on the bus is valid, or that a write transfer has completed. READY works in conjunction with the internal wait state generator to accommodate various memory speeds. READY is sampled after any programmed wait states: During each data cycle of a burst access During the data cycle of a non-burst access BTERM I S(L) O WAIT H(Z) B(Z) R(1) O BLAST H(Z) B(Z) R(1) O DT/R H(Z) B(Z) R(0) O DEN H(Z) B(Z) R(1) O LOCK Datasheet H(Z) B(Z) R(1) BURST TERMINATE, when enabled for a memory region, is asserted by the memory subsystem to terminate a burst access in progress. When BTERM is asserted, the current burst access is terminated and another address cycle occurs. WAIT indicates the status of the internal wait-state generator. WAIT is asserted when the internal wait state generator generates NWAD, NRAD, NWDD and NRDD wait states. WAIT may be used to derive a write data strobe. BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the last data transfer of burst and non-burst accesses after the internal wait-state generator reaches zero. BLAST remains active as long as wait states are inserted through the READY pin. BLAST becomes inactive after the final data transfer in a bus cycle. DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R is used with DEN to provide control for data transceivers connected to the data bus. DT/R is driven low to indicate the processor expects data (a read cycle). DT/R is driven high when the processor is “transmitting” data (a store cycle). DT/R only changes state when DEN is high. 0 = Data Receive 1 = Data Transmit DATA ENABLE indicates data transfer cycles during a bus access. DEN is asserted at the start of the first data cycle in a bus access and de-asserted at the end of the last data cycle. DEN remains asserted for an entire bus request, even when that request spans several bus accesses. For example, a ldq instruction starting at an unaligned quad word boundary is one bus request spanning at least two bus accesses. DEN remains asserted throughout all the accesses (including ADS states) and de-asserts when the Iqd instruction request is satisfied. DEN is used with DT/R to provide control for data transceivers connected to the data bus. DEN remains asserted for sequential reads from pipelined memory regions. BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK may be used by the memory subsystem to prevent external agents from accessing memory that is currently involved in an atomic operation (e.g., a semaphore). LOCK is asserted in the first clock of an atomic operation and deasserted when BLAST is deasserted in the last bus cycle. 17 80960HA/HD/HT Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 3 of 4) Name Type Description HOLD REQUEST signals that an external agent requests access to the processor’s address, data, and control buses. When HOLD is asserted, the processor: HOLD I S(L) Completes the current bus request. Asserts HOLDA and floats the address, data, and control buses. When HOLD is deasserted, the HOLDA pin is deasserted and the processor reassumes control of the address, data, and control pins. O HOLDA H(1) B(0) R(Q) HOLD ACKNOWLEDGE indicates to an external master that the processor has relinquished control of the bus. The processor grants HOLD requests and enters the HOLDA state while the RESET pin is asserted. HOLDA is never granted while LOCK is asserted. BUS BACKOFF forces the processor to immediately relinquish control of the bus on the next clock cycle. When READY/BTERM is enabled and: BOFF I S(L) When BOFF is asserted, the address, data, and control buses are floated on the next clock cycle and the current access is aborted. When BOFF is deasserted, the processor resumes by regenerating the aborted bus access. See Figure 16 on page 48 for BOFF timing requirements. O BREQ H(Q) B(Q) R(0) BSTALL H(Q) B(Q) R(0) O BUS REQUEST indicates that a bus request is pending in the bus controller. BREQ does not indicate whether or not the processor is stalled. See BSTALL for processor stall status. BREQ may be used with BSTALL to indicate to an external bus arbiter the processor’s bus ownership requirements. BUS STALL indicates that the processor has stalled pending the result of a request in the bus controller. When BSTALL is asserted, the processor must regain bus ownership to continue processing (i.e., it may no longer execute strictly out of on-chip cache memory). CYCLE TYPE indicates the type of bus cycle currently being started or processor state. CT3:0 encoding follows: O CT3:0 H(Z) B(Z) R(Z) Cycle Type ADSCT3:0 Program-initiated access using 8-bit bus Program-initiated access using 16-bit bus Program-initiated access using 32-bit bus Event-initiated access using 8-bit bus Event-initiated access using 16-bit bus Event-initiated access using 32-bit bus Reserved Reserved for future products Reserved 00000 00001 00010 00100 00101 00110 00X11 01XXX 1XXXX EXTERNAL INTERRUPT pins are used to request interrupt service. These pins may be configured in three modes: I XINT7:0 A(E) A(L) Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs may be programmed to be level (low or high) or edge (rising or falling) sensitive. Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins are level sensitive in this mode. Mixed Mode: The XINT7:5 pins act as dedicated sources and the XINT4:0 pins act as the five most significant bits of a vectored source. The least significant bits of the vectored source are set to “010” internally. NMI 18 I A(E) NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. NMI is the highest priority interrupt source. NMI is falling edge triggered. Datasheet 80960HA/HD/HT Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 4 of 4) Name CLKIN RESET STEST Type I I A(L) I S(L) O FAIL H(Q) B(Q) R(0) Description CLOCK INPUT provides the time base for the 80960Hx. All internal circuitry is synchronized to CLKIN. All input and output timings are specified relative to CLKIN. For the 80960HD, the 2x internal clock is derived by multiplying the CLKIN frequency by two. For the 80960HT, the 3x internal clock is derived by multiplying the CLKIN frequency by three. RESET forces the device into reset. RESET causes all external and internal signals to return to their reset state (when defined). The rising edge of RESET starts the processor boot sequence. SELF TEST, when asserted during the rising edge of RESET, causes the processor to execute its built in self-test. FAIL indicates a failure of the processor’s built-in self-test performed during initialization. FAIL is asserted immediately out of reset and toggles during self-test to indicate the status of individual tests. When self-test passes, FAIL is deasserted and the processor branches to the user’s initialization code. When selftest fails, the FAIL pin asserts and the processor ceases execution. ONCE I ON-CIRCUIT EMULATION control: the processor samples this pin during reset. When it is asserted low at the end of reset, the processor enters ONCE mode. In ONCE mode, the processor stops all clocks and floats all output pins except the TDO pin. ONCE uses an internal pull-up resistor; see RPU definition in Table 22, “80960Hx DC Characteristics” on page 40. Pull this pin high when not in use. TCK I TEST CLOCK provides the clocking function for IEEE 1149.1 Boundary Scan testing. TDI I TEST DATA INPUT is the serial input pin for IEEE 1149.1 Boundary Scan testing. TDI uses an internal pull-up resistor; see RPU definition in Table 22, “80960Hx DC Characteristics” on page 40. TDO O TEST DATA OUTPUT is the serial output pin for IEEE 1149.1 Boundary Scan testing. ONCE does not disable this pin. TRST I TEST RESET asynchronously resets the Test Access Port (TAP) controller. TRST must be held low at least 10,000 clock cycles after power-up. One method is to provide TRST with a separate power-on-reset circuit. TRST includes an internal pull-up resistor; see RPU definition in Table 22, “80960Hx DC Characteristics” on page 40. Pull this pin low when not in use. TMS I TEST MODE SELECT is sampled at the rising edge of TCK. TCK controls the sequence of TAP controller state changes for IEEE 1149.1 Boundary Scan testing. TMS uses an internal pull-up resistor; see RPU definition in Table 22, “80960Hx DC Characteristics” on page 40. VCC5 I 5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O buffers. Connect this signal to +5 V for use with inputs which exceed 3.3 V. When all inputs are from 3.3 V components, connect this signal to 3.3 V. VCCPLL I PLL VOLTAGE is the +3.3 VDC analog input for the PLL. O VOLTAGE DETECT signal allows external system logic to distinguish between a 5 V 80960Cx processor and the 3.3 V 80960Hx processor. This signal is active low for a 3.3 V 80960Hx (it is high impedance for 5 V 80960Cx). This pin is available only on the PGA version. VOLDET 0 = 80960Hx 1 = 80960Cx Datasheet 19 80960HA/HD/HT 3.2 80960Hx Mechanical Data 3.2.1 80960Hx PGA Pinout Figure 2 depicts the complete 80960Hx PGA pinout as viewed from the top side of the component (i.e., pins facing down). Figure 3 shows the complete 80960Hx PGA pinout as viewed from the pin-side of the package (i.e., pins facing up). Table 9 lists the 80960Hx pin names with package location. See Section 4.3, “Recommended Connections” on page 38 for specifications and recommended connections. Figure 2. 80960Hx 168-Pin PGA Pinout—View from Top (Pins Facing Down) 1 2 3 S R Q P N M L K J H G F E D C B A D25 D24 D21 D19 D17 D16 D15 D13 D12 D11 D9 D8 D7 D5 D3 BOFF VSS D29 D27 D23 D20 D18 VCC D14 VCC VCC D10 VCC D6 D4 D2 D1 STEST FAIL READY D31 D26 D22 VCC VSS VSS VSS VSS VSS VSS VCC D0 NC ONCE DP1 DP0 VSS DP3 DP2 4 HOLDA BTERM D28 5 BE3 HOLD D30 VCC5 TCK VOLDET BE2 ADS VCC VCC TMS TRST BE1 VCC VSS VSS VCC TDI BLAST VCC VSS VSS PCHK TDO DEN BE0 VSS VSS VCC NC W/R VCC VSS DT/R VCC VSS 6 7 8 9 10 11 12 13 14 15 16 WAIT BSTALL i x80960Hx 2 3 4 5 6 7 8 9 M © 19xx VSS VCCPLL XXXXXXXX SS 10 NC 11 VSS VCC CTO SUP VSS VCC CT1 D/C BREQ A30 CLKIN NC CT2 LOCK A29 A28 VCC NC CT3 A31 A26 A24 A20 VCC VSS VSS VSS VSS VSS VSS VSS VCC NMI XINT4 XINT0 XINT1 A27 A23 A21 A19 A16 VCC A13 VCC VCC VCC A7 VCC A4 A2 XINT6 XINT3 RESET A25 A22 A18 A17 A15 A14 A12 A11 A10 A9 A8 A6 A5 A3 XINT7 XINT5 XINT2 S R Q P N M L K J H 12 13 14 15 16 17 20 1 17 G F E D C B A Datasheet 80960HA/HD/HT Figure 3. 80960Hx 168-Pin PGA Pinout—View from Bottom (Pins Facing Up) A B C D E F G H J K L M N P Q R S VSS BOFF D3 D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25 FAIL STEST D1 D2 D4 D6 VCC D10 VCC VCC D14 VCC D18 D20 D23 D27 D29 DP0 DP1 ONCE NC D0 VCC VSS VSS VSS VSS VSS VSS VCC D22 D26 D31 READY DP2 DP3 VSS VOLDET TCK VCC5 D30 HOLD BE3 TRST TMS VCC VCC ADS BE2 TDI VCC VSS VSS VCC BE1 TDO PCHK VSS VSS VCC BLAST NC VCC VSS VSS BE0 DEN VCCPLL VSS VSS VCC W/R VCC DT/R 1 1 2 2 3 4 5 6 3 4 D28 BTERM HOLDA 5 6 7 7 8 8 9 10 NC Package Lid 9 10 11 11 CT0 VCC VSS VSS CT1 VCC VSS SUP BSTALL WAIT CT2 NC CLKIN A30 BREQ D/C CT3 NC VCC A28 A29 LOCK 12 12 13 13 14 14 15 15 XINT1 XINT0 XINT4 NMI VCC VSS VSS VSS VSS VSS VSS VSS VCC A20 A24 A26 A31 RESET XINT3 XINT6 A2 A4 VCC A7 VCC VCC VCC A13 VCC A16 A19 A21 A23 A27 XINT2 XINT5 XINT7 A3 A5 A6 A8 A9 A10 A11 A12 A14 A15 A17 A18 A22 A25 D E F G H J K L M N P Q R S 16 16 17 17 A Datasheet B C 21 80960HA/HD/HT Table 8. 22 80960Hx 168-Pin PGA Pinout—Signal Name Order (Sheet 1 of 2) Signal Name PGA Pin Signal Name PGA Pin Signal Name PGA Pin Signal Name PGA Pin A2 D16 ADS R6 D14 L2 LOCK S14 A3 D17 BE0 R9 D15 L1 NC A9 A4 E16 BE1 S7 D16 M1 NC A10 A5 E17 BE2 S6 D17 N1 NC B13 A6 F17 BE3 S5 D18 N2 NC B14 A7 G16 BLAST S8 D19 P1 NC D3 A8 G17 BOFF B1 D20 P2 NMI D15 A9 H17 BREQ R13 D21 Q1 ONCE C3 A10 J17 BSTALL R12 D22 P3 PCHK B8 A11 K17 BTERM R4 D23 Q2 READY S3 A12 L17 CLKIN C13 D24 R1 RESET A16 A13 L16 CT0 A11 D25 S1 STEST B2 A14 M17 CT1 A12 D26 Q3 SUP Q12 A15 N17 CT2 A13 D27 R2 TCK B5 A16 N16 CT3 A14 D28 Q4 TDI A7 A17 P17 D/C S13 D29 S2 TDO A8 A18 Q17 D0 E3 D30 Q5 TMS B6 A19 P16 D1 C2 D31 R3 TRST A6 A20 P15 D2 D2 DEN S9 VCC B7 A21 Q16 D3 C1 DP0 A3 VCC B9 A22 R17 D4 E2 DP1 B3 VCC B11 A23 R16 D5 D1 DP2 A4 VCC B12 A24 Q15 D6 F2 DP3 B4 VCC C6 A25 S17 D7 E1 DT/R S11 VCC C14 A26 R15 D8 F1 FAIL A2 VCC E15 A27 S16 D9 G1 — — VCC F3 A28 Q14 D10 H2 — — VCC F16 A29 R14 D11 H1 — — VCC G2 A30 Q13 D12 J1 HOLD R5 VCC H16 A31 S15 D13 K1 HOLDA S4 VCC J2 Datasheet 80960HA/HD/HT Table 8. Datasheet 80960Hx 168-Pin PGA Pinout—Signal Name Order (Sheet 2 of 2) Signal Name PGA Pin Signal Name PGA Pin Signal Name PGA Pin Signal Name PGA Pin VCC J16 VCCPLL B10 VSS H3 VSS Q10 VCC K2 VOLDET A5 VSS H15 VSS Q11 VCC K16 VSS A1 VSS J3 W/R S10 VCC M2 VSS C4 VSS J15 WAIT S12 VCC M16 VSS C7 VSS K3 XINT0 B15 VCC N3 VSS C8 VSS K15 XINT1 A15 VCC N15 VSS C9 VSS L3 XINT2 A17 VCC Q6 VSS C10 VSS L15 XINT3 B16 VCC R7 VSS C11 VSS M3 XINT4 C15 VCC R8 VSS C12 VSS M15 XINT5 B17 VCC R10 VSS F15 VSS Q7 XINT6 C16 VCC R11 VSS G3 VSS Q8 XINT7 C17 VCC5 C5 VSS G15 VSS Q9 — — 23 80960HA/HD/HT Table 9. 24 80960Hx 168-Pin PGA Pinout—Pin Number Order (Sheet 1 of 2) PGA Pin Signal Name PGA Pin Signal Name PGA Pin Signal Name PGA Pin Signal Name A1 VSS B14 NC E15 VCC K15 VSS A2 FAIL B15 XINT0 E16 A4 K16 VCC A3 DP0 B16 XINT3 E17 A5 K17 A11 A4 DP2 B17 XINT5 F1 D8 L1 D15 A5 VOLDET C1 D3 F2 D6 L2 D14 A6 TRST C2 D1 F3 VCC L3 VSS A7 TDI C3 ONCE F15 VSS L15 VSS A8 TDO C4 VSS F16 VCC L16 A13 A9 NC C5 VCC5 F17 A6 L17 A12 A10 NC C6 VCC G1 D9 M1 D16 A11 CT0 C7 VSS G2 VCC M2 VCC A12 CT1 C8 VSS G3 VSS M3 VSS A13 CT2 C9 VSS G15 VSS M15 VSS A14 CT3 C10 VSS G16 A7 M16 VCC A15 XINT1 C11 VSS G17 A8 M17 A14 A16 RESET C12 VSS H1 D11 N1 D17 A17 XINT2 C13 CLKIN H2 D10 N2 D18 B1 BOFF C14 VCC H3 VSS N3 VCC B2 STEST C15 XINT4 H15 VSS N15 VCC B3 DP1 C16 XINT6 H16 VCC N16 A16 B4 DP3 C17 XINT7 H17 A9 N17 A15 B5 TCK D1 D5 J1 D12 P1 D19 B6 TMS D2 D2 J2 VCC P2 D20 B7 VCC D3 NC J3 VSS P3 D22 B8 PCHK D15 NMI J15 VSS P15 A20 B9 VCC D16 A2 J16 VCC P16 A19 B10 VCCPLL D17 A3 J17 A10 P17 A17 B11 VCC E1 D7 K1 D13 Q1 D21 B12 VCC E2 D4 K2 VCC Q2 D23 B13 NC E3 D0 K3 VSS Q3 D26 Datasheet 80960HA/HD/HT Table 9. Datasheet 80960Hx 168-Pin PGA Pinout—Pin Number Order (Sheet 2 of 2) PGA Pin Signal Name PGA Pin Signal Name PGA Pin Signal Name PGA Pin Signal Name Q4 D28 Q16 A21 R11 VCC S6 BE2 Q5 D30 Q17 A18 R12 BSTALL S7 BE1 Q6 VCC R1 D24 R13 BREQ S8 BLAST Q7 VSS R2 D27 R14 A29 S9 DEN Q8 VSS R3 D31 R15 A26 S10 W/R Q9 VSS R4 BTERM R16 A23 S11 DT/R Q10 VSS R5 HOLD R17 A22 S12 WAIT Q11 VSS R6 ADS S1 D25 S13 D/C Q12 SUP R7 VCC S2 D29 S14 LOCK Q13 A30 R8 VCC S3 READY S15 A31 Q14 A28 R9 BE0 S4 HOLDA S16 A27 Q15 A24 R10 VCC S5 BE3 S17 A25 25 80960HA/HD/HT 3.2.2 80960Hx PQ4 Pinout Figure 4. 80960Hx 208-Pin PQ4 Pinout PIN 105 A28 A29 A30 A24 A25 A26 A27 VCC VSS A4 A5 A6 A7 VCC VSS A8 A9 A10 A11 VCC VSS A12 A13 A14 A15 VCC VSS VSS VCC A16 A17 A18 A19 VCC VSS A20 A21 A22 A23 VCC VSS VCC VSS VSS VSS VCC VCC VSS A2 A3 VCC VSS PIN 156 PIN 104 PIN 157 VSS VCC A31 VSS VCC VCC NMI XINT7 XINT6 XINT5 XINT4 VSS VCC XINT3 XINT2 XINT1 XINT0 VSS VCC VSS VCC BREQ LOCK VSS SUP D/C VCC VSS VSS VCC BSTALL WAIT DT/R W/R VCC VSS i960 PIN 1 26 BE2 BE3 ADS VCC VSS VCC VSS x80960Hx HOLDA VCC VSS HOLD READY BTERM VCC VSS D31 D30 D29 D28 VCC VCC VSS D27 D26 D25 D24 VSS XXXXXXXX SS D21 D22 D23 D8 D9 D10 D11 V SS V CC VSS VCC D12 D13 D14 D15 VCC D16 D17 D18 D19 VSS VCC © 19xx D7 VSS VCC M D4 D5 D6 VCC D1 BOFF VCC D0 PIN 208 FAIL ONCE VSS VSS VCC VCC VSS VSS VCC TDI TMS TRST TCK VSS VCC VCC5 VSS VCC VSS VCC DP3 DP2 VCC VSS DP0 DP1 STEST D2 D3 VSS VCC VSS i VSS DEN BLAST BE0 BE1 VCC VSS ® D20 VCC VSS VSS VCC RESET CLKIN VCC VCCPLL VSS VCC CT3 CT2 CT1 CT0 VSS VCC VSS VCC TDO PCHK PIN 53 PIN 52 Datasheet 80960HA/HD/HT Table 10. 80960Hx PQ4 Pinout—Signal Name Order (Sheet 1 of 2) Datasheet Signal Name PQ4 Pin Signal Name PQ4 Pin Signal Name PQ4 Pin Signal Name PQ4 Pin A2 151 BE0 83 D16 39 PCHK 189 A3 150 BE1 82 D17 40 READY 68 A4 147 BE2 79 D18 41 RESET 174 A5 146 BE3 78 D19 42 STEST 208 A6 145 BLAST 84 D20 45 SUP 97 A7 144 BOFF 10 D21 50 TCK 194 A8 141 BREQ 100 D22 51 TDI 191 A9 140 BSTALL 91 D23 52 TDO 188 A10 139 BTERM 67 D24 54 TMS 192 A11 138 CLKIN 175 D25 55 TRST 193 A12 135 CT0 183 D26 56 VCC 1 A13 134 CT1 182 D27 57 VCC 4 A14 133 CT2 181 D28 61 VCC 9 A15 132 CT3 180 D29 62 VCC 11 A16 127 D/C 96 D30 63 VCC 17 A17 126 D0 12 D31 64 VCC 19 A18 125 D1 13 DEN 85 VCC 25 A19 124 D2 14 DP0 206 VCC 31 A20 121 D3 15 DP1 207 VCC 33 A21 120 D4 20 DP2 203 VCC 38 A22 119 D5 21 DP3 202 VCC 44 A23 118 D6 22 DT/R 89 VCC 46 A24 113 D7 23 FAIL 5 VCC 49 A25 112 D8 26 — — VCC 59 A26 111 D9 27 — — VCC 60 A27 110 D10 28 — — VCC 66 A28 107 D11 29 HOLD 69 VCC 71 A29 106 D12 34 HOLDA 72 VCC 74 A30 105 D13 35 LOCK 99 VCC 76 A31 104 D14 36 NMI 159 VCC 81 ADS 77 D15 37 ONCE 6 VCC 87 27 80960HA/HD/HT Table 10. 80960Hx PQ4 Pinout—Signal Name Order (Sheet 2 of 2) 28 Signal Name PQ4 Pin Signal Name PQ4 Pin Signal Name PQ4 Pin Signal Name PQ4 Pin VCC 92 VCC 187 VSS 70 VSS 164 VCC 95 VCC 196 VSS 73 VSS 170 VCC 101 VCC 199 VSS 75 VSS 172 VCC 102 VCC 201 VSS 80 VSS 178 VCC 109 VCC 204 VSS 86 VSS 184 VCC 115 VCC5 197 VSS 93 VSS 186 VCC 117 VCCPLL 177 VSS 94 VSS 190 VCC 123 VSS 2 VSS 98 VSS 195 VCC 128 VSS 3 VSS 103 VSS 198 VCC 131 VSS 7 VSS 108 VSS 200 VCC 137 VSS 8 VSS 114 VSS 205 VCC 143 VSS 16 VSS 116 W/R 88 VCC 149 VSS 18 VSS 122 WAIT 90 VCC 153 VSS 24 VSS 129 XINT0 169 VCC 154 VSS 30 VSS 130 XINT1 168 VCC 158 VSS 32 VSS 136 XINT2 167 VCC 165 VSS 43 VSS 142 XINT3 166 VCC 171 VSS 47 VSS 148 XINT4 163 VCC 173 VSS 48 VSS 152 XINT5 162 VCC 176 VSS 53 VSS 155 XINT6 161 VCC 179 VSS 58 VSS 156 XINT7 160 VCC 185 VSS 65 VSS 157 — — Datasheet 80960HA/HD/HT Table 11. 80960Hx PQ4 Pinout—Pin Number Order (Sheet 1 of 2) Datasheet PQ4 Pin Signal Name PQ4 Pin Signal Name PQ4 Pin Signal Name PQ4 Pin Signal Name 1 VCC 31 VCC 61 D28 91 BSTALL 2 VSS 32 VSS 62 D29 92 VCC 3 VSS 33 VCC 63 D30 93 VSS 4 VCC 34 D12 64 D31 94 VSS 5 FAIL 35 D13 65 VSS 95 VCC 6 ONCE 36 D14 66 VCC 96 D/C 7 VSS 37 D15 67 BTERM 97 SUP 8 VSS 38 VCC 68 READY 98 VSS 9 VCC 39 D16 69 HOLD 99 LOCK 10 BOFF 40 D17 70 VSS 100 BREQ 11 VCC 41 D18 71 VCC 101 VCC 12 D0 42 D19 72 HOLDA 102 VCC 13 D1 43 VSS 73 VSS 103 VSS 14 D2 44 VCC 74 VCC 104 A31 15 D3 45 D20 75 VSS 105 A30 16 VSS 46 VCC 76 VCC 106 A29 17 VCC 47 VSS 77 ADS 107 A28 18 VSS 48 VSS 78 BE3 108 VSS 19 VCC 49 VCC 79 BE2 109 VCC 20 D4 50 D21 80 VSS 110 A27 21 D5 51 D22 81 VCC 111 A26 22 D6 52 D23 82 BE1 112 A25 23 D7 53 VSS 83 BE0 113 A24 24 VSS 54 D24 84 BLAST 114 VSS 25 VCC 55 D25 85 DEN 115 VCC 26 D8 56 D26 86 VSS 116 VSS 27 D9 57 D27 87 VCC 117 VCC 28 D10 58 VSS 88 W/R 118 A23 29 D11 59 VCC 89 DT/R 119 A22 30 VSS 60 VCC 90 WAIT 120 A21 29 80960HA/HD/HT Table 11. 80960Hx PQ4 Pinout—Pin Number Order (Sheet 2 of 2) 30 PQ4 Pin Signal Name PQ4 Pin Signal Name PQ4 Pin Signal Name PQ4 Pin Signal Name 121 A20 143 VCC 165 VCC 187 VCC 122 VSS 144 A7 166 XINT3 188 TDO 123 VCC 145 A6 167 XINT2 189 PCHK 124 A19 146 A5 168 XINT1 190 VSS 125 A18 147 A4 169 XINT0 191 TDI 126 A17 148 VSS 170 VSS 192 TMS 127 A16 149 VCC 171 VCC 193 TRST 128 VCC 150 A3 172 VSS 194 TCK 129 VSS 151 A2 173 VCC 195 VSS 130 VSS 152 VSS 174 RESET 196 VCC 131 VCC 153 VCC 175 CLKIN 197 VCC5 132 A15 154 VCC 176 VCC 198 VSS 133 A14 155 VSS 177 VCCPLL 199 VCC 134 A13 156 VSS 178 VSS 200 VSS 135 A12 157 VSS 179 VCC 201 VCC 136 VSS 158 VCC 180 CT3 202 DP3 137 VCC 159 NMI 181 CT2 203 DP2 138 A11 160 XINT7 182 CT1 204 VCC 139 A10 161 XINT6 183 CT0 205 VSS 140 A9 162 XINT5 184 VSS 206 DP0 141 A8 163 XINT4 185 VCC 207 DP1 142 VSS 164 VSS 186 VSS 208 STEST Datasheet 80960HA/HD/HT 3.3 Package Thermal Specifications The 80960Hx is specified for operation when TC (case temperature) is within the range of 0 °C to 85 °C. TC may be measured in any environment to determine whether the 80960Hx is within the specified operating range. Measure the case temperature at the center of the top surface, opposite the pins. Refer to Figure 5. TA (ambient temperature) is calculated from θCA (thermal resistance from case to ambient) using Equation 1: Equation 1. Calculation of Ambient Temperature (TA) T A = T C – ( P ⋅ θCA ) Table 12 shows the maximum TA allowable (without exceeding TC) at various airflows and operating frequencies (fCLKIN). Note that TA is greatly improved by attaching fins or a heatsink to the package. P (maximum power consumption) is calculated by using the typical ICC as tabulated in Section 4.6, “DC Specifications” on page 40 and VCC of 3.3 V. Figure 5. Measuring 80960Hx PGA Case Temperature Measure PGA/PQ4 temperature at center of top surface Datasheet 31 80960HA/HD/HT Table 12. Maximum TA at Various Airflows in °C (PGA Package Only) Airflow-ft/min (m/sec) Core 1X Bus Clock Core 2X Bus Clock Core 3X Bus Clock fCLKIN (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) TA with Heatsink† 25 33 40 69 63 59 74 70 67 78 75 73 79 77 75 80 79 77 80 79 77 TA without Heatsink 25 33 40 64 56 50 67 62 56 71 67 63 74 70 67 75 72 69 76 74 71 TA with Heatsink† 16 25 33 40 68 58 49 41 73 66 60 55 77 73 69 65 79 75 71 68 80 77 74 72 80 77 74 72 TA without Heatsink 16 25 33 40 62 49 38 27 66 56 46 38 71 62 55 48 73 66 60 55 75 68 63 58 76 71 66 62 TA with Heatsink† 20 25 53 45 63 58 71 67 73 70 76 73 76 73 TA without Heatsink 20 25 43 33 51 42 58 51 63 58 66 61 68 64 † *0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing). Table 13. 80960Hx 168-Pin PGA Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 200 (1.01) 400 (2.03) 600 (3.07) 800 (4.06) 1000 (5.07) θ Junction-to-Case (Case measured as shown in Figure 5.) 1.5 1.5 1.5 1.5 1.5 1.5 θ Case-to-Ambient (No Heatsink) 17 14 11 9 8 7 θ Case-to-Ambient (With Heatsink)3 13 9 6 5 4 4 θJA θJC NOTES: 1. This table applies to 80960Hx PGA plugged into socket or soldered directly to board. 2. θJA = θJC + θCA 3. 0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing). 32 Datasheet 80960HA/HD/HT Table 14. Maximum TA at Various Airflows in °C (PQ4 Package Only) Airflow-ft/min (m/sec) Core 1X Bus Clock Core 2X Bus Clock Core 3X Bus Clock fCLKIN (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) TA with Heatsink† 25 33 40 71 67 63 76 74 71 79 77 75 79 77 75 80 79 77 80 79 77 TA without Heatsink 25 33 40 70 65 61 73 68 65 75 72 69 75 72 69 76 74 71 76 74 71 TA with Heatsink† 16 25 33 40 71 62 55 48 76 71 66 62 79 75 71 68 79 75 71 68 80 77 74 72 80 77 74 72 TA without Heatsink 16 25 33 40 69 60 52 42 72 64 57 51 75 68 63 58 75 68 63 58 76 71 66 62 76 71 66 62 TA with Heatsink† 20 25 58 51 68 64 73 70 73 70 76 73 76 73 TA without Heatsink 20 25 56 48 61 55 66 61 66 61 68 64 68 64 † 0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing). Table 15. 80960Hx 208-Pin PQ4 Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 200 (1.01) 400 (2.03) 600 (3.07) 800 (4.06) 1000 (5.07) θ Junction-to-Case (Case measured as shown in Figure 5.) 1 1 1 1 1 1 θ Case-to-Ambient (No Heatsink) 12 10 8 8 7 7 θ Case-to-Ambient (With Heatsink)3 11 7 5 5 4 4 θJA θJC NOTES: 1. This table applies to 80960Hx PQ4 plugged into socket or soldered directly to board. 2. θJA = θJC + θCA 3. 0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing). Datasheet 33 80960HA/HD/HT 3.4 Heat Sink Adhesives Intel recommends silicone-based adhesives to attach heat sinks to the PGA package. There is no particular recommendation concerning the PQ4 package. 3.5 PowerQuad4 Plastic Package The 80960Hx family is available in an improved version of the common 208-lead SQFP plastic package called the PowerQuad4* (PQ4). The PQ4 package dimensions and lead pitch are identical to the SQFP package and the former PQ2 package, so the PQ4 fits into the same board footprint. The advantage of the PQ4 package is the superior thermal conductivity that allows the plastic version of the 80960Hx to operate with the same 0 °C to 85 °C temperature specifications as the more expensive ceramic PGA package. The PQ4 package integrates a copper heat sink within the package to dissipate heat effectively. See Table 14 and Table 15 for more information. 3.6 Stepping Register Information The memory-mapped register at FF008710H contains the 80960Hx Device ID. The ID is identical to the ID obtained from a JTAG Query. Figure 6 defines the current 80960Hx Device IDs. The value for device identification is compliant with the IEEE 1149.1 specification and Intel standards. Table 16 describes the fields of the device ID. Figure 6. 80960Hx Device Identification Register Part Number Version VCC 1 28 34 Product Type 0 0 0 1 24 0 0 Gen 0 20 Model Manufacturer ID 0 1 0 0 16 12 0 0 0 0 8 0 0 1 4 0 0 1 1 1 0 Datasheet 80960HA/HD/HT Table 16. Fields of 80960Hx Device ID Field Value Definition Version See Table 18. Indicates major stepping changes. VCC 1 = 3.3 V device Indicates that a device is 3.3 V. Product Type 00 0100 (Indicates i960 CPU) Designates type of product. Generation Type 0010 = H-series Indicates the generation (or series) the product belongs to. Model See Table 17. Indicates member within a series and specific model information. Manufacturer ID 000 0000 1001 (Indicates Intel) Manufacturer ID assigned by IEEE. Table 17. 80960Hx Device ID Model Types Device Version VCC 1 000100 0010 00000 00000001001 1 See Table 18. 1 000100 0010 00001 00000001001 1 1 000100 0010 00010 00000001001 1 80960HA 80960HD 80960HT Product Gen. Model Manufacturer ID ‘1’ Table 18. Device ID Version Numbers for Different Steppings Stepping Version A0 0000 A1 0001 A2 0001 B0, B2 0010 NOTE: This data sheet applies to the B2 stepping. Datasheet 35 80960HA/HD/HT 3.7 Sources for Accessories The following is a list of suggested sources for 80960Hx accessories. This is neither an endorsement nor a warranty of the performance of any of the listed products and/or companies. Sockets • 3M Textool Test and Interconnection Products 6801 River Place Blvd. MS 130-3N-29 Austin, TX 78726-9000 (800) 328-0411 FAX: (800) 932-9373 • Concept Mfg, Inc. (Decoupling Sockets) 400 Walnut St. Suite 609 Redwood City, CA 94063 (415) 365-1162 FAX: (415) 365-1164 Heatsinks/Fins • Thermalloy, Inc. 2021 West Valley View Lane Dallas, TX 75234-8993 (972) 243-4321 FAX: (972) 241-4656 • Wakefield Engineering, Inc. 60 Audubon Road Wakefield, MA 01880 (617) 245-5900 FAX: (617) 246-0874 • Aavid Thermal Technologies, Inc. One Kool Path Laconia, NH 03247-0400 (603) 523-3400 36 Datasheet 80960HA/HD/HT 4.0 Electrical Specifications 4.1 Absolute Maximum Ratings Table 19. Absolute Maximum Ratings Parameter Warning: 4.2 Maximum Rating Storage Temperature –65 ºC to +150 ºC Case Temperature Under Bias –65 ºC to +110 ºC Supply Voltage with respect to VSS –0.5 V to + 4.6 V Voltage on VCC5 with respect to VSS –0.5 V to + 6.5 V Voltage on Other Pins with respect to VSS –0.5 V to VCC5 + 0.5 V Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage. These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability. Operating Conditions Table 20. Operating Conditions Symbol Datasheet Parameter Min Max Units V VCC Supply Voltage 3.15 3.45 VCC5 Input Protection Bias 3.15 5.5 V fCLKIN 1xcore Input Clock Frequency - 1x Core (80960HA) 16 40 MHz fCLKIN 2xcore Input Clock Frequency - 2x Core (80960HD) 16 40 MHz fCLKIN 3xcore Input Clock Frequency - 3x Core (80960HT) 16 25 MHz TC Case Temp Under Bias (PGA and PQ4 Packages) 0 85 o C 37 80960HA/HD/HT 4.3 Recommended Connections Power and ground connections must be made to multiple VCC and VSS (GND) pins. Every 80960Hx-based circuit board should include power (VCC) and ground (VSS) planes for power distribution. Every VCC pin must be connected to the power plane; every VSS pin must be connected to the ground plane. Pins identified as “NC” —no connect pins—must not be connected in the system. Liberal decoupling capacitance should be placed near the 80960Hx. The processor may cause transient power surges when its output buffers transition, particularly when connected to large capacitive loads. Low inductance capacitors and interconnects are recommended for best high-frequency electrical performance. Inductance may be reduced by shortening the board traces between the processor and decoupling capacitors as much as possible. Capacitors specifically designed for PGA packages offer the lowest possible inductance. For reliable operation, always connect unused inputs to an appropriate signal level. In particular, any unused interrupt (XINT7:0, NMI) input should be connected to VCC through a pull-up resistor, as should BTERM when not used. Pull-up resistors should be in the range of 20 KΩ for each pin tied high. When READY or HOLD are not used, the unused input should be connected to ground. N.C. pins must always remain unconnected. 4.4 VCC5 Pin Requirements (VDIFF) In mixed-voltage systems that drive 80960Hx processor inputs in excess of 3.3 V, the VCC5 pin must be connected to the system’s 5 V supply. To limit current flow into the VCC5 pin, there is a limit to the voltage differential between the VCC5 pin and the other VCC pins. The voltage differential between the 80960Hx VCC5 pin and its 3.3 V VCC pins should never exceed 2.25 V. This limit applies to power-up, power-down, and steady-state operation. Table 21 outlines this requirement. Meeting this requirement ensures proper operation and ensures that the current draw into the VCC5 pin does not exceed the ICC5 specification. When the voltage difference requirements cannot be met due to system design limitations, an alternate solution may be employed. As shown in Figure 7, a minimum of 100 Ω series resistor may be used to limit the current into the VCC5 pin. This resistor ensures that current drawn by the VCC5 pin does not exceed the maximum rating for this pin. Figure 7. VCC5 Current-Limiting Resistor VCC5 Pin +5 V (±0.25 V) 100 Ω (±5%, 0.5 W) This resistor is not necessary in systems that may ensure the VDIFF specification. In 3.3 V-only systems and systems that drive 80960Hx pins from 3.3 V logic, connect the VCC5 pin directly to the 3.3 V VCC plane. 38 Datasheet 80960HA/HD/HT Table 21. VDIFF Specification for Dual Power Supply Requirements (3.3 V, 5 V) Sym VDIFF 4.5 Parameter VCC5-VCC Difference Min Max Units Notes 2.25 V VCC5 input should not exceed VCC by more than 2.25 V during power-up and power-down, or during steady-state operation. VCCPLL Pin Requirements When the voltage on the VCCPLL power supply pin exceeds the VCC pin voltage by 0.5 V at any time, including the power up and power down sequences, excessive currents may permanently damage on-chip electrostatic discharge (ESD) protection diodes. The damage may accumulate over multiple episodes. Pragmatically, this problem only occurs when the VCCPLL and VCC pins are driven by separate power supplies or voltage regulators. Applications that use one power supply for VCCPLL and VCC are not typically at risk. Verify that your application does not allow the VCCPLL voltage to exceed VCC by 0.5 V. The VCCPL low-pass filter recommended in the Developer’s Manual does not promote this problem. Datasheet 39 80960HA/HD/HT 4.6 D.C.Specifications Table 22. 80960Hx D.C. Characteristics (Sheet 1 of 2) Per the conditions described in Section 4.3, “Recommended Connections” on page 38. Symbol Parameter Min Typ Max Units Notes VIL Input Low Voltage – 0.3 +0.8 V VIH Input High Voltage 2.0 VCC5 + 0.3 V All outputs except FAIL 0.4 0.2 V IOL = 3 mA IOL = 100 µA VOL Output Low Voltage FAIL pin 0.4 V IOL = 5 mA VOH Output High Voltage V V IOH = –3 mA IOH = –100 µA VOL Output Low Voltage 2.4 VCC – 0.2 Input Leakage Current ILI 1 µA 0 ≤ VIN ≤ VCC -110 µA VIN = 0 V Non-Test Outputs 1 µA 0.45 ≤ VOUT ≤ VCC TDO pin 5 µA 0.45 ≤ VOUT ≤ VCC mA 4, 5 mA 4, 6 mA 7, 8 mA 7 Non-Test Inputs -1 TDI, TMS, TRST and ONCE Output Leakage Current ILO ICC Active (Power Supply) ICC Active (Thermal) ICC Test (Reset Mode) ICC Test (ONCE mode) 40 80960HA 25 33 40 579 765 927 80960HD 32 50 66 80 631 985 1300 1578 80960HT 60 75 1165 1455 80960HA 25 33 40 392 518 628 80960HD 32 50 66 80 413 645 851 1034 80960HT 60 75 752 938 80960HA 25 33 40 330 436 528 80960HD 32 50 66 80 382 595 785 955 80960HT 60 75 702 878 25 Datasheet 80960HA/HD/HT Table 22. 80960Hx D.C. Characteristics (Sheet 2 of 2) Per the conditions described in Section 4.3, “Recommended Connections” on page 38. Symbol ICC5 Current on the VCC5 Pin Parameter Min Typ 80960HA 80960HD 80960HT Max Units Notes 200 200 200 µA 9 12 12 pF pF FC = 1 MHz10 Input Capacitance for: CIN PQ4 PGA COUT Output Capacitance of each output pin 12 pF FC = 1 MHz3, 10 CI/O I/O Pin Capacitance 12 pF FC = 1 MHz10 RPU Internal Pull-Up Resistance for ONCE, TMS, TDI and TRST 100 kΩ 30 65 NOTES: 1. ICC Maximum is measured at worst case frequency, VCC, and temperature, with device operating and outputs loaded to the test conditions described in Section 4.7.1, “AC Test Conditions” on page 45. 2. ICC Typical is not tested. 3. Output Capacitance is the capacitive load of a floating output. 4. Measured with device operating and outputs loaded to the test conditions in Figure 8, “AC Test Load” on page 45. Input signals rise to VCC and fall to VSS. 5. ICC Active (Power Supply) value is provided for selecting your system’s power supply. It is measured using one of the worst case instruction mixes with VCC = 3.45 V. This parameter is characterized but not tested. 6. ICC Active (Thermal) value is provided for your system’s thermal management. Typical ICC is measured with VCC = 3.3 V and temperature = 25°C. This parameter is characterized but not tested. 7. ICC Test (Power modes) refers to the ICC values that are tested when the 80960HA/HD/HT is in Reset mode or ONCE mode with VCC = 3.45 V. 8. Worst case is VCC = 3.45 V, 0 °C. 9. ICC5 is tested at VCC = 3.0 V, VCC5 = 5.25 V. 10.Pin capacitance is characterized, but not tested. Datasheet 41 80960HA/HD/HT 4.7 A.C. Specifications Table 23. 80960Hx A.C. Characteristics (Sheet 1 of 2) Per conditions in Section 4.2, “Operating Conditions” on page 37 and Section 4.7.1, “AC Test Conditions” on page 45. Symbol Parameter Min Max Units Notes 16 16 16 40 40 25 MHz MHz MHz 25 25 40 62.5 62.5 62.5 ns ns ns -250 +250 ps 11 8 ns 11 8 8 8 ns ns ns 11 Input Clock1, 7 CLKIN Frequency TF 80960HA 80960HD 80960HT CLKIN Period 80960HA T 80960HD 80960HT TCS CLKIN Period Stability TCH CLKIN High Time CLKIN Low Time TCL 80960HA 80960HD 80960HT TCR CLKIN Rise Time 0 4 ns 11 TCF CLKIN Fall Time 0 4 ns 11 1.5 9.5 ns T/2 + 1.5 3T/4 + 1.5 5T/6 + 1.5 T/2 + 9.5 3T/4 + 9.5 5T/6 + 9.5 ns ns ns Synchronous Outputs1, 2, 3, 6 TOV1, TOH1 Output Valid Delay and Output Hold for all outputs except DT/R, BLAST and BREQ for 3.3 V and 5 V inputs and I/Os. Output Valid Delay and Output Hold for DT/R 80960HA 80960HD 80960HT TOV2, TOH2 TOV3, TOH3 Output Valid Delay and Output Hold for BLAST 1.5 9 ns TOV4, TOH4 Output Valid Delay and Output Hold for BREQ 0.5 9 ns TOV5, TOH5 Output Valid Delay and Output Hold for A3:2 1.5 8.5 TOF Output Float for all outputs 1.5 9 ns 11 Synchronous Inputs1, 7, 8, 9 Input Setup for all inputs except READY, BTERM, TIS1 HOLD, and BOFF TIH1 HOLD, and BOFF Input Hold for all inputs except READY, BTERM, 2.5 ns 2.5 ns NOTE: See Table 24, “AC Characteristics Notes” on page 44 for all notes related to AC specifications. 42 Datasheet 80960HA/HD/HT Table 23. 80960Hx A.C. Characteristics (Sheet 2 of 2) Per conditions in Section 4.2, “Operating Conditions” on page 37 and Section 4.7.1, “AC Test Conditions” on page 45. Symbol TIS2 TIH2 Parameter Min Input Setup for READY, BTERM, HOLD, and BOFF Input Hold for READY, BTERM, HOLD, and BOFF Max Units 6 ns 2.5 ns Notes Relative Output Timings1, 2, 3, 6, 10 TAVSH1 A31:2 Valid to ADS Rising T–5 T+5 ns 10 TAVSH2 BE3:0, W/R, SUP, D/C Valid to ADS Rising T–5 T+5 ns 10 TAVEL1 A31:2 Valid to DEN Falling T–5 T+5 ns 10 TAVEL2 BE3:0, W/R, SUP Valid to DEN Falling T–5 T+5 ns 10 TNLQV WAIT Falling to Output Data Valid -5 5 ns 10 TDVNH Output Data Valid to WAIT Rising -5 + N*T 5 + N*T ns 4, 10 TNLNH WAIT Falling to WAIT Rising -4 + N*T 4 + N*T ns 4, 10 TNHQX Output Data Hold after WAIT Rising -5 + (N+1)*T 5 + (N+1)*T ns 5, 10 TEHTV DT/R Hold after DEN High T/2 – 5 Infinite ns 10 ns ns ns 10 DT/R Valid to DEN Falling 80960HA 80960HD 80960HT TTVEL T/2 – 4 T/4 – 4 T/6 – 4 Relative Input Timings1, 7, 10 TIS7 XINT7:0, NMI Input Setup 6 ns 9 TIH7 XINT7:0, NMI Input Hold 2.5 ns 9 TIS8 RESET Input Setup 3 ns 8 TIH8 RESET Input Hold T/4 + 1 ns 8 NOTE: See Table 24, “AC Characteristics Notes” on page 44 for all notes related to AC specifications. Datasheet 43 80960HA/HD/HT Table 24. A.C. Characteristics Notes NOTES: 1. See Section 4.8, “AC Timing Waveforms” on page 46 for waveforms and definitions. 2. See Figure 25, “Output Delay or Hold vs. Load Capacitance” on page 52 for capacitive derating information for output delays and hold times. 3. See Figure 22, “Rise and Fall Time Derating at 85 °C and Minimum VCC” on page 51 for capacitive derating information for rise and fall times. 4. Where N is the number of NRAD, NRDD, NWAD or NWDD wait states that are programmed in the Bus Controller Region Table. WAIT never goes active when there are no wait states in an access. 5. N = Number of wait states inserted with READY. 6. These specifications are ensured by the processor. 7. These specifications must be met by the system for proper operation of the processor. 8. RESET is an asynchronous input that has no required setup and hold time for proper operation. However, to ensure the device exits the reset mode synchronized to a particular clock edge, the rising edge of RESET must meet setup and hold times to the rising edge of the CLKIN. 9. The interrupt pins are synchronized internally by the 80960Hx. They have no required setup or hold times for proper operation. These pins are sampled by the interrupt controller every clock and must be active for at least two consecutive CLKIN rising edges when asserting them asynchronously. To ensure recognition at a particular clock edge, the setup and hold times shown must be met. 10.Relative Output timings are not tested. 11. Not tested. 12.The processor minimizes changes to the bus signals when transitioning from a bus cycle to an idle bus for the following signals: A31:4, SUP, CT3:0, D/C, LOCK, W/R, BE3:0. Table 25. 80960Hx Boundary Scan Test Signal Timings Symbol Parameter Min Max Units Notes TBSF TCK Frequency 0 8 MHz TBSC TCK Period 125 Infinite ns TBSCH TCK High Time 40 ns Measured at 1.5 V† TBSCL TCK Low Time 40 ns Measured at 1.5 V† TBSCR TCK Rise Time 8 ns 0.8 V to 2.0 V† TBSCF TCK Fall Time 8 ns 2.0 V to 0.8 V† TBSIS1 Input Setup to TCK — TDI, TMS 8 ns TBSIH1 Input Hold from TCK — TDI, TMS 10 ns TBSOV1 TDO Valid Delay 3 TBSOF1 TDO Float Delay TBSOV2 All Outputs (Non-Test) Valid Delay TBSOF2 All Outputs (Non-Test) Float Delay TBSIS2 Input Setup to TCK - All Inputs (Non-Test) TBSIH2 Input Hold from TCK - All Inputs (Non-Test) 3 30 ns 36 ns 30 ns 36 ns 8 ns 10 ns † Relative to TCK Relative to TCK† † Not tested. 44 Datasheet 80960HA/HD/HT 4.7.1 A.C. Test Conditions A.C. values are derived using the 50 pF load shown in Figure 8. Figure 25, “Output Delay or Hold vs. Load Capacitance” on page 52, shows how timings vary with load capacitance. Input waveforms (except for CLKIN) are assumed to have a rise and fall time of ≤ 2 ns from 0.8 V to 2.0 V. Figure 8. A.C. Test Load Output Pin CL CL = 50 pF for all signals Datasheet 45 80960HA/HD/HT 4.8 A.C. Timing Waveforms Figure 9. CLKIN Waveform TCR TCF 2.0 V 1.5 V 0.8 V TCH TCL T Figure 10. Output Delay Waveform 1.5 V CLKIN Outputs: A31:2, D31:0 write only, DP3:0 write only PCHK, BE3:0, W/R, D/C, SUP, ADS, DEN, LOCK, HOLDA, BREQ, BSTALL, CT3:0, FAIL, WAIT, BLAST TOH1 1.5 V TOV1 Max Min 1.5 V 1.5 V Figure 11. Output Delay Waveform CLKIN 1.5 V 1.5 V TOV2 TOH2 DT/R 46 1.5 V Min Max 1.5 V Datasheet 80960HA/HD/HT Figure 12. Output Float Waveform 1.5 V CLKIN Outputs: A31:2, D31:0 write only, DP3:0 write only PCHK, BE3:0, W/R, D/C, SUP, ADS, DEN, LOCK, HOLDA, TOF 1.5 V Max Min CT3:0, WAIT, BLAST, DT/R Figure 13. Input Setup and Hold Waveform CLKIN 1.5 V 1.5 V 1.5 V TIH TIS Min Min Inputs: READY, HOLD, BTERM, BOFF, D31:0 on reads, DP3:0 on reads, RESET Valid Figure 14. NMI, XINT7:0 Input Setup and Hold Waveform A CLKIN B 1.5 V A 1.5 V TIH Min TIS Min NMI, XINT7:0 NOTE: Datasheet 1.5 V 1.5 V Valid 1.5 V A and B edges are established by de-assertion of RESET. See Figure 29, “Cold Reset Waveform” on page 54. 47 80960HA/HD/HT Figure 15. Hold Acknowledge Timings CLKIN 1.5 V TIH Min HOLD TIH TIS Min 1.5 V TIS Min Min 1.5 V 1.5 V TOV1 TOH1 HOLDA 1.5 V 1.5 V TOV1 Max Min 1.5 V TOH1 Max Min 1.5 V 1.5 V TOV TOH — OUTPUT DELAY - The maximum output delay is referred to as the Output Valid Delay (TOV). The minimum output delay is referred to as the Output Hold (TOH). TIS TIH — INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window during which synchronous inputs must be stable for correct processor operation. Figure 16. Bus Backoff (BOFF) Timings TIH BOFF 48 1.5 V 1.5 V CLKIN 1.5 V 1.5 V TIS TIS TIH 1.5 V 1.5 V Datasheet 80960HA/HD/HT Figure 17. TCK Waveform TBSCR TBSCF 2.0 V 1.5 V 0.8 V TBSCH TBSCL TBSC Figure 18. Input Setup and Hold Waveforms for TBSIS1 and TBSIH1 TCLK 1.5 V 1.5 V TBSIS1 Inputs: TMS TDI Datasheet 1.5 V 1.5 V TBSIH1 Valid 1.5 V 49 80960HA/HD/HT Figure 19. Output Delay and Output Float for TBSOV1 and TBSOF1 TCK 1.5 V 1.5 V TBSOV1 TDO 1.5 V TBSOF1 Valid 1.5 V Figure 20. Output Delay and Output Float Waveform for TBSOV2 and TBSOF2 TCK 1.5 V 1.5 V TBSOV2 Non-Test Outputs 1.5 V 1.5 V TBSOF2 Valid Figure 21. Input Setup and Hold Waveform for TBSIS2 and TBSIH2 TCK 1.5 V 1.5 V 1.5 V TBSIS2 TBSIH2 Non-Test Inputs 50 1.5 V Valid 1.5 V Datasheet 80960HA/HD/HT Figure 22. Rise and Fall Time Derating at 85 °C and Minimum VCC 5 Time (ns) 4 3 2.0 to 0.8 V 0.8 to 2.0 V 2 1 50pF 100pF 150pF CL (pF) Figure 23. ICC Active (Power Supply) vs. Frequency ICC Active (Power Supply) (mA) 1800 1600 1400 1200 1000 HA 800 600 HD 400 HT 200 0 0 10 20 30 40 CLKIN Frequency (MHz) Datasheet 51 80960HA/HD/HT Figure 24. ICC Active (Thermal) vs. Frequency 1400 ICC Active (Thermal) (mA) 1200 1000 800 HA 600 HD 400 HT 200 10 20 30 40 CLKIN Frequency (MHz) Output Valid Delays (ns) @ 1.5 V Figure 25. Output Delay or Hold vs. Load Capacitance nom + 10 5.5 V Input Signals 3.3 V Input Signals nom + 5 nom 50 100 150 CL (pF) 52 Datasheet 80960HA/HD/HT Figure 26. Output Delay vs. Temperature Output Valid Delays (ns) @ 1.5 V Processor Case Temperature (°C) nom - 0.0 0°C 85°C nom - 0.1 nom - 0.2 nom - 0.3 nom - 0.4 nom - 0.5 Figure 27. Output Hold Times vs. Temperature Output Hold Times (ns) @ 1.5 V Processor Case Temperature (°C) nom + 0.5 0°C 85°C nom + 0.4 nom + 0.3 nom + 0.2 nom + 0.1 nom + 0 Output Valid or Hold Delays (ns) @ 1.5 V Figure 28. Output Delay vs. VCC nom + 0.5 nom + 0.3 nom + 0.1 -nom + 0.1 -nom + 0.3 -nom + 0.5 3.15 3.45 VCC (volts) Datasheet 53 ~ ~ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ Valid Datasheet CLKIN and VCC Stable to RESET high, minimum 10,000 CLKIN periods for PLL stabilization. NOTE: Thold 1CLKIN ∼ ∼ RESET ∼ ∼ Tsetup 1CLKIN ∼ ∼ ∼ ∼ ∼ ∼ Invalid ∼ ∼ Inputs ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ STEST ∼ ∼ D31:0, DP3:0 ∼ ∼ W/R, DT/R, BREQ, FAIL, BSTALL RESET high to First Bus Activity, HA=67, HD=34, HT=23 CLKIN periods VCC stable: As specified in Table 21, “VDIFF Specification for Dual Power Supply Requirements (3.3 V, 5 V)” on page 39 80960HA/HD/HT CT3:0, ADS, LOCK, WAIT, DEN, BLAST A31:2, SUP D/C, BE3:0 B Bus Waveforms VCC, VCC5, ONCE A Figure 29. Cold Reset Waveform CLKIN B 5.0 54 A ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ Tsetup 1 CLKIN Thold 1 CLKIN ∼ ∼ Maximum RESET Low to RESET State 16 CLKIN Periods Valid ∼ ∼ ∼ ∼ ∼ ∼ STEST ∼ ∼ D31:0, DP3:0 ∼ ∼ ∼ ∼ ∼ ∼ SUP, A31:2, D/C, BE3:0 ∼ ∼ ∼ ∼ DT/R RESET ∼ ∼ ∼ ∼ ∼ ∼ ADS, LOCK, WAIT, DEN, BLAST, W/R, BREQ, FAIL, BSTALL Figure 30. Warm Reset Waveform Datasheet CLKIN Minimum RESET Low Time 16 CLKIN Periods 55 80960HA/HD/HT RESET High to First Bus Activity, HA=67, HD=34, HT=23 CLKIN Periods ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ONCE mode is entered within 1 CLKIN period after ONCE becomes low while RESET is low. ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ONCE ∼ ∼ ∼ ∼ RESET ∼ ∼ ∼ ∼ ∼ ∼ ADS, BE3:0, A31:2, D31:0, LOCK, WAIT, BLAST,W/R, D/C, DEN, DT/R, HOLDA, BLAST, FAIL, SUP,BREQ, CT3:0, BSTALL, DP3:0, PCHK ∼ ∼ VCC, VCC5 CLKIN and VCC Stable and RESET low and ONCE low to RESET high, minimum 10,000 CLKIN Periods. Datasheet NOTES: 1. ONCE mode may be entered prior to the rising edge of RESET: ONCE input is not latched until the rising edge of RESET. 2. The ONCE input may be removed after the processor enters ONCE mode. Figure 31. Entering ONCE Mode CLKIN 80960HA/HD/HT 56 CLKIN may neither float nor remain idle. It must continue to run. 80960HA/HD/HT Figure 32. Non-Burst, Non-Pipelined Requests without Wait States PMCON Function Bit Value External Ready Control Burst 29 28 Disabled Disabled 0 0 PipeLining Bus Width Odd Parity 24 23-22 OFF 0 X xx Parity Enable NXDA NWDD NWAD NRDD NRAD 21 20 19-16 15-14 12-8 7-6 4-0 X x Enabled 1 0 0000 0 00 0 00000 0 00 0 00000 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. A D A D A D CLKIN ADS A31:2, SUP, D/C, BE3:0, LOCK, CT3:0 Valid Valid Valid W/R BLAST DT/R DEN WAIT D31:0, DP3:0 In Out In PCHK Datasheet 57 80960HA/HD/HT Figure 33. Non-Burst, Non-Pipelined Read Request with Wait States PMCON Function External Ready Control Burst 29 28 Bit Disabled Disabled 0 0 Value PipeLining Bus Width Odd Parity 24 23-22 OFF 0 X xx Parity Enable NXDA NWDD NWAD NRDD NRAD 21 20 19-16 15-14 12-8 7-6 4-0 X x Enabled 1 1 0001 X xx X xxxxx X xx 3 00011 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. A 3 2 1 D 1 A CLKIN ADS A31:2, BE3:0 Valid W/R BLAST DT/R DEN D/C, SUP, LOCK, CT3:0 Valid WAIT D31:0, DP3:0 In PCHK 58 Datasheet 80960HA/HD/HT Figure 34. Non-Burst, Non-Pipelined Write Request with Wait States PMCON Function Bit Value External Ready Control Burst 29 28 Disabled Disabled 0 0 PipeLining Bus Width Odd Parity 24 23-22 OFF 0 X xx Parity Enable NXDA NWDD NWAD NRDD NRAD 21 20 19-16 15-14 12-8 7-6 4-0 X x Enabled 1 1 0001 X xxxxx 3 00011 X xx X xxxxx NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. A 3 2 1 D 1 A CLKIN ADS A31:2, BE3:0 Valid W/R BLAST DT/R DEN D/C, SUP, LOCK, CT3:0 Valid WAIT D31:0, DP3:0 Out PCHK Datasheet 59 80960HA/HD/HT Figure 35. Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus PMCON Function External Ready Control Burst 29 28 Bit Value PipeLining Disabled Enabled 1 0 Parity Enable NXDA NWDD NWAD NRDD NRAD 21 20 19-16 15-14 12-8 7-6 4-0 X x Enabled 1 0 0000 X xx X xxxxx 0 00 0 00000 Bus Width Odd Parity 24 23-22 OFF 0 32-Bit 10 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. A D D D D A CLKIN ADS A31:4, SUP, CT3:0,D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 WAIT D31:0, DP3:0 In0 In1 In2 In3 PCHK 60 Datasheet 80960HA/HD/HT Figure 36. Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus PMCON Function Bit Value External Ready Control Burst PipeLining Bus Width Odd Parity Parity Enable NXDA NWDD NWAD NRDD NRAD 29 28 24 23-22 21 20 19-16 15-14 12-8 7-6 4-0 OFF 0 32-Bit 10 X x Enabled 1 1 0001 X xx X xxxxx 1 01 2 00010 Disabled Enabled 1 0 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. A 2 1 D 1 D 1 D 1 D 1 A CLKIN ADS A31:4, SUP, CT3:0, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 WAIT D31:0, DP3:0 In0 In1 In2 In3 PCHK Datasheet 61 80960HA/HD/HT Figure 37. Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus PMCON External Function Ready Control Bit Value 29 Burst PipeLining Bus Width Odd Parity Parity Enable NXDA NWDD NWAD NRDD NRAD 28 24 23-22 21 20 19-16 15-14 12-8 7-6 4-0 OFF 0 32-Bit 10 X x Enabled 1 0 0000 0 00 0 00000 X xx X xxxxx Disabled Enabled 1 0 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. A D D D D A CLKIN ADS A31:4, SUP, CT3:0, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 Out1 Out2 Out3 WAIT D31:0, DP3:0 Out0 PCHK 62 Datasheet 80960HA/HD/HT Figure 38. Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus PMCON Function Bit External Ready Control Burst 29 28 Disabled Enabled 1 0 Value Parity Enable NXDA NWDD NWAD NRDD NRAD 21 20 19-16 15-14 12-8 7-6 4-0 X x Enabled 1 1 0001 1 01 2 00010 X xx X xxxxx PipeLining Bus Width Odd Parity 24 23-22 OFF 0 32-bit 10 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. A 2 1 D 1 D 1 D 1 D 1 A CLKIN ADS A31:4, SUP, CT3:0, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 WAIT D31:0, DP3:0 Out0 Out1 Out2 Out3 PCHK Datasheet 63 80960HA/HD/HT Figure 39. Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus PMCON Function Bit Value External Ready Control Burst 29 28 Disabled Enabled 1 0 PipeLining Parity Enable NXDA NWDD NWAD NRDD NRAD 21 20 19-16 15-14 12-8 7-6 4-0 X x Enabled 1 1 0001 X xx X xxxxx 1 01 2 00010 D 1 A Bus Width Odd Parity 24 23-22 OFF 0 16-Bit 01 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. A 2 1 D 1 D 1 D 1 CLKIN ADS SUP, CT3:0, D/C, LOCK, A31:4, BE3/BHE, BE0/BLE Valid W/R BLAST DT/R DEN A3:2 A3:2 = 00 or 10 A3:2 = 01 or 11 BE1/A1 WAIT D31:0, DP3:0 D15:0 A1=0 D15:0 A1=1 D15:0 A1=0 D15:0 A1=1 PCHK 64 Datasheet 80960HA/HD/HT Figure 40. Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus PMCON Function External Ready Control Burst 29 28 Bit Disabled Enabled 1 0 Value PipeLining Bus Width Odd Parity Parity Enable NXDA NWDD NWAD NRDD NRAD 24 23-22 OFF 0 8-Bit 00 21 20 19-16 15-14 12-8 7-6 4-0 X x Enabled 1 1 0001 X xx X xxxxx 1 01 2 00010 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. A 2 1 D 1 D 1 D 1 D 1 A CLKIN ADS SUP, CT3:0, D/C, LOCK, A31:4 Valid W/R BLAST DT/R DEN A3:2 BE1/A1, BE0/A0 A3:2 = 00, 01, 10 or 11 A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 =11 WAIT D31:0, DP3:0 D7:0 Byte 0 D7:0 Byte 1 D7:0 Byte 2 D7:0 Byte 3 PCHK Datasheet 65 80960HA/HD/HT Figure 41. Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus PMCON External Function Ready Control PipeLining Burst Bus Width Odd Parity Parity Enable NXDA NWDD NWAD NRDD NRAD Bit 29 28 24 23-22 21 20 19-16 15-14 12-8 7-6 4-0 Value X x Disabled 0 ON 1 32-Bit 10 X x Enabled 1 X xxxx X xx X xxxxx X xx 0 00000 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. 1 A’ D A A’’ D’ A’’’’ D’’’ A’’’ D’’ D’’’’ 2 CLKIN ADS A31:4, SUP, CT3:0, D/C, LOCK Valid Valid Valid Valid Valid Invalid W/R A3:2 BE3:0 D31:0, DP3:0 Invalid Valid Valid IN D Valid Valid IN D’ IN D’’ Valid IN D’’’ Invalid IN D’’’’ WAIT BLAST DT/R DEN PCHK 1. Non-pipelined request concludes, pipelined reads begin. 2. Pipelined reads conclude, non-pipelined requests begin. 66 Datasheet 80960HA/HD/HT Figure 42. Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus PMCON External Function Ready Control Burst PipeLining Bus Width Odd Parity Parity Enable NXDA NWDD NWAD NRDD NRAD Bit 29 28 24 23-22 21 20 19-16 15-14 12-8 7-6 4-0 Value X x Disabled 0 ON 1 32-Bit 10 X x Enabled 1 X xxxx X xx X xxxxx X xx 1 00001 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. 1 A 1 A’ D 1 D’ 2 CLKIN ADS A31:4, SUP, CT3:0, D/C, LOCK Valid Valid Invalid W/R A3:2 BE3:0 D31:0, DP3:0 Invalid Valid Valid IN D Invalid IN D’ WAIT BLAST DT/R DEN PCHK 1. Non-pipelined request concludes, pipelined reads begin 2. Pipelined reads conclude, non-pipelined requests begin Datasheet 67 80960HA/HD/HT Figure 43. Burst, Pipelined Read Request without Wait States, 32-Bit Bus PMCON External Function Ready Control Burst PipeLining Bus Width Odd Parity Parity Enable NXDA NWDD NWAD NRDD NRAD Bit 29 28 24 23-22 21 20 19-16 15-14 12-8 7-6 4-0 Value X x Enabled 1 ON 1 32-Bit 10 X x Enabled 1 X xxxx X xx X xxxxx 0 00 0 00000 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. 1 A D D D A’ D D’ 2 D’ CLKIN ADS A31:4, SUP, CT3:0, D/C, BE3:0, LOCK Valid InValid Valid W/R A3:2 D31:0, DP3:0 00 01 IN D 10 IN D 11 IN D Valid Valid IN D IN D InValid IN D WAIT BLAST DT/R DEN PCHK 1. Non-pipelined request concludes, pipelined reads begin 2. Pipelined reads conclude, non-pipelined requests begin 68 Datasheet 80960HA/HD/HT Figure 44. Burst, Pipelined Read Request with Wait States, 32-Bit Bus PMCON Function External Ready Control Burst PipeLining Bus Width Odd Parity Parity Enable NXDA NWDD NWAD NRDD NRAD Bit 29 28 24 23-22 21 20 19-16 15-14 12-8 7-6 4-0 Value X x Enabled 1 ON 1 32-Bit 10 X x Enabled 1 X xxxx X xx X xxxxx 1 01 2 00010 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. 2 1 D 1 D 1 1 A D 1 A’ D 2 1 D’ 2 CLKIN ADS A31:4, SUP, CT3:0, D/C, BE3:0, LOCK Valid Valid Invalid W/R A3:2 D31:0, DP3:0 Invalid 00 01 IN D 10 IN D 11 IN D Valid IN D Invalid IN D’ WAIT BLAST DT/R DEN PCHK 1. Non-pipelined request concludes, pipelined reads begin. 2. Pipelined reads conclude, non-pipelined requests begin. Datasheet 69 80960HA/HD/HT Figure 45. Burst, Pipelined Read Request with Wait States, 8-Bit Bus PMCON Function External Ready Control Burst PipeLining Bus Width Odd Parity Parity Enable NXDA NWDD NWAD NRDD NRAD Bit 29 28 24 23-22 21 20 19-16 15-14 12-8 7-6 4-0 Value X x Enabled 1 ON 1 8-Bit 00 X x Enabled 1 X xxxx X xx X xxxxx 1 01 2 00010 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. 2 1 D 1 D 1 D 1 A 1 A’ D 2 1 D’ 2 CLKIN ADS A31:4, SUP, CT3:0, D/C, LOCK Valid Valid Invalid W/R A3:2 BE1/A1, BE0/A0 D31:0, DP3:0 Invalid A3:2 = 00, 01, 10, or 11 A1:0 = 00 Valid A1:0 = 01 A1:0 = 10 A1:0 = 11 D7:0 Byte 0 D7:0 Byte 1 D7:0 Byte 2 Valid D7:0 Byte 3 Invalid Invalid D7:0 D’ WAIT BLAST DT/R DEN PCHK 1. Non-pipelined request concludes, pipelined reads begin 2. Pipelined reads conclude, non-pipelined requests begin 70 Datasheet 80960HA/HD/HT Figure 46. Burst, Pipelined Read Request with Wait States, 16-Bit Bus PMCON Function External Ready Control Burst PipeLining Bus Width Odd Parity Parity Enable NXDA NWDD NWAD NRDD NRAD Bit 29 28 24 23-22 21 20 19-16 15-14 12-8 7-6 4-0 Value X x Enabled 1 ON 1 16-Bit 01 X x Enabled 1 X xxxx X xx X xxxxx 1 01 2 00010 NOTE: Bits 31-30, 27-25, 13, and 5 are reserved. 1 A 2 1 D 1 D 1 D 1 A’ D 2 2 1 D’ CLKIN ADS A31:4, SUP, CT3:0, D/C, BE0/BLC, BE3/BHE, LOCK W/R A3:2 Valid Valid Invalid A3:2 = 00 or 10 A3:2 = 01 or 11 BE1/A1 D31:0, DP3:0 Invalid D15:0 A1=0 D15:0 A1=1 D15:0 A1=0 D15:0 A1=1 Valid Invalid Valid Invalid D15:0 D’ WAIT BLAST DT/R DEN PCHK 1. Non-pipelined request concludes, pipelined reads begin 2. Pipelined reads conclude, non-pipelined requests begin Datasheet 71 80960HA/HD/HT Figure 47. Using External READY Quad-Word Read Request NRAD = 0, NRDD = 0, NXDA = 0 Ready Enabled A 1 D D D D A 1 Quad-Word Write Request NWAD = 1, NWDD = 0, NWDA = 0 Ready Enabled 2 D 1 D 1 D 1 D CLKIN ADS A31:4, SUP, CT3:0, D/C, BE3:0, LOCK Valid Valid W/R BLAST DT/R DEN READY BTERM A3:2 00 01 10 11 00 01 10 11 D1 D2 D3 WAIT D31:0, DP3:0 D0 D1 D2 D3 D0 PCHK NOTE: Pipelining must be disabled to use READY. 72 Datasheet 80960HA/HD/HT Figure 48. Terminating a Burst with BTERM A D Quad-Word Read Request NRAD = 0, NRDD = 0, NRDA = 0 Ready Enabled A D 1 A D 1 1 D 1 CLKIN ADS A31:4, SUP, CT3:0, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN READY See Note BTERM A3:2 00 01 10 11 WAIT D31:0, DP3:0 D0 D1 D2 D3 PCHK Note: READY adds memory access time to data transfers, whether or not the bus access is a burst access. BTERM interrupts a bus access, whether or not the bus access has more data transfers pending. Either the READY signal or the BTERM signal terminates a bus access when the signal is asserted during the last (or only) data transfer of the bus access. Datasheet 73 80960HA/HD/HT Figure 49. BREQ and BSTALL Operation CLKIN ADS BLAST BREQ BSTALL The processor may stall (BSTALL asserted) even with an empty bus queue (BREQ deasserted). Depending on the instruction stream and memory wait states, the two signals may be separated by several CLKIN cycles. Bus arbitration logic that logically ‘ANDs’ BSTALL and BREQ will not correctly grant the bus to the processor in all stall cases, potentially degrading processor performance. Do not logically ‘AND’ BSTALL and BREQ together in arbitration logic. Instead, the simplest bus arbitration should logically “OR” BSTALL and BREQ to determine the processor’s bus ownership requirements. More sophisticated arbitration should recognize the priority nature of these two signals. Using a traffic light analogy, BREQ is a ‘yellow light’ warning of a possible processor stall and BSTALL is a ‘red light’ indicating a stall in progress. 74 Datasheet 80960HA/HD/HT Figure 50. BOFF Functional Timing. BOFF occurs during a burst or non-burst data cycle. A BOFF Mode D A CLKIN ADS ∼ ∼ ∼ ∼ ∼ ∼ Regenerate ADS Non-Burst May Change DP3:0 & D31:0, (WRITES) Valid Resume Request ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ DEN, DT/R ∼ ∼ ∼ ∼ CT3:0, D/C, BE3:0, WAIT, ∼ ∼ A31:2, SUP, ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ Suspend Request ∼ ∼ ∼ ∼ READY BOFF ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ BLAST ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ Burst Valid PCHK Begin Request BOFF may be asserted to suspend request BOFF may not be asserted End Request BOFF may not be asserted Note: READY/BTERM must be enabled; NRAD, NRDD, NWAD, NWDD= 0 Datasheet 75 80960HA/HD/HT Figure 51. HOLD Functional Timing Word Read Request NRAD=1, NXDA=1 Hold State Word Read Request NRAD=0, NXDA=0 Hold State CLKIN ADS A31:2, SUP, CT3:0, D/C, BE3:0, WAIT, DEN, DT/R Valid Valid BLAST LOCK HOLD HOLDA 76 Datasheet 80960HA/HD/HT Figure 52. LOCK Delays HOLDA Timing CLKIN ADS W/R BLAST LOCK HOLD HOLDA ~ ~ ~ ~ Figure 53. FAIL Functional Timing RESET (Bus Test) Pass Datasheet ~ ~ FAIL ~ ~ (Internal Self-Test) Pass 80960HA: 257,517 Cycles Fail 30 Cycles 113 Cycles 80960HD: 128,761 Cycles 15 Cycles 94 Cycles 80960HT: 85,840 Cycles 10 Cycles 90 Cycles Fail 77 80960HA/HD/HT Figure 54. A Summary of Aligned and Unaligned Transfers for 32-Bit Regions 0 4 8 12 16 20 24 Word Offset 0 1 2 3 4 5 6 Byte Offset Short Request (Aligned) Short Requests (Unaligned) Short-Word Load/Store Short Request (Aligned) Byte, Byte Requests Word Request (Aligned) Trey, Byte, Requests Word Load/Store Short, Short Requests Byte, Trey, Requests One Double-Word Burst (Aligned) Trey, Byte, Trey, Byte, Requests Short, Short, Short, Short Requests Double-Word Load/Store Byte, Trey, Byte, Trey, Requests Word, Word Requests One Double-Word Request (Aligned) NOTES: 1. All requests that are less than a word in size and are cacheable will be promoted to a word to be cached. This causes adjacent requests to occur for full words to the same address. 78 Datasheet 80960HA/HD/HT Figure 55. A Summary of Aligned and Unaligned Transfers for 32-Bit Regions (Continued) 0 4 8 12 16 20 24 1 2 3 4 5 6 Byte Offset Word Offset 0 One Three-Word Request (Aligned) Trey, Byte, Trey, Byte, Trey, Byte Requests Triple-Word Load/Store Short, Short, Short, Short Short, Short, Short Requests Byte, Trey, Byte, Trey, Byte, Trey Requests Word, Word, Word Requests Word, Word, Word Requests Word, Word, Word Requests One Four-Word Request (Aligned) Trey, Byte, Trey, Byte, Trey, Byte Trey, Byte Requests Quad-Word Load/Store 8 Short Requests Byte, Trey, Byte, Trey, Byte, Trey, Byte, Trey, Requests 4 Word Requests 4 Word Requests NOTES: 1. All requests that are less than a word in size and are cacheable will be promoted to a word to be cached. This causes adjacent requests to occur for full words to the same address. Datasheet 79 80960HA/HD/HT Figure 56. A Summary of Aligned and Unaligned Transfers for 16-Bit Bus Byte Offset 0 4 8 12 16 20 24 Word Offset 0 1 2 3 4 5 6 Short Short 16-Bit Bus Byte, Byte Short Byte, Byte Two Short Burst Byte, Short, Byte Word 16-Bit Bus (Short)*2 Byte, Short, Byte Two Short Burst Four Short Burst (Byte, Short, Byte) *2 Double Word 16-Bit Bus (Short) *4 (Byte, Short, Byte)*2 (Two Short Burst)*2 Four Short Burst Four Short Burst, Two Short Burst (Byte, Short, Byte) *3 Triple Word 16-Bit Bus (Short) *6 (Byte, Short, Byte) *3 (Two Short Burst) *3 (Two Short Burst) *3 (Four Short Burst)*2 (Byte, Short, Byte) *4 Quad Word 16-Bit Bus (Short) *8 (Byte, Short, Byte) *4 (Two Short Burst)*4 (Two Short Burst) *4 80 Datasheet 80960HA/HD/HT Figure 57. A Summary of Aligned and Unaligned Transfers for 8-Bit Bus Byte Offset 0 4 8 12 16 20 24 Word Offset 0 1 2 3 4 5 6 Two Byte Burst Short 8-Bit Bus Two Byte Burst Two Byte Burst Byte, Byte Four Byte Burst Three Byte Burst, Byte Word 8-Bit Bus (Two Byte Burst)*2 Byte, Three Byte Burst Four Byte Burst (Four Byte Burst) *2 (Three Byte Burst, Byte)*2 Double Word 8-Bit Bus (Two Byte Burst) *4 (Byte, Three Byte Burst) *2 (Four Byte Burst) *2 (Four Byte Burst) *2 (Four Byte Burst)*3 (Three Byte Burst, Byte)*3 Triple Word 8-Bit Bus (Two Byte Burst) *6 (Byte, Three Byte Burst) *3 (Four Byte Burst)*3 (Four Byte Burst)*3 (Four Byte Burst)*4 (Three Byte Burst, Byte)*4 Quad Word 16-Bit Bus (Two Byte Burst) *8 (Byte, Three Byte Burst) *4 (Four Byte Burst)*4 (Four Byte Burst) *4 Datasheet 81 80960HA/HD/HT Figure 58. Idle Bus Operation Write Request NWAD=2, NXDA = 0 Ready Disabled Idle Bus (not in Hold Acknowledge state) Read Request NRAD=2, NXDA = 0 Ready Disabled CLKIN ADS A31:4, SUP, D/C, BE3:0, CT3:0 LOCK Valid Valid Valid Valid W/R BLAST DT/R DEN A3:2 Valid Valid WAIT D31:0 Out In READY, BTERM PCHK 82 Datasheet 80960HA/HD/HT Figure 59. Bus States Tb BOFF WdCNT > 1 BOFF BOFF Tdw3 WdCNT = 1 !BOFF and READY and !BLAST or !BOFF !BOFF and BTERM and !BLAST or !BOFF and READ and Nrdd > 0 or WRITE and Nwdd > 0 !HOLD and BLAST and REQUEST and NXDA = 0 Ta Td1 !BOFF and READ and Nrad = 0 or !BOFF and WRITE and Nwad = 0 !RESET and !HOLD and REQUEST READ and Nrad > 0 or WRITE and Nwad > 0 Taw2 !BOFF and READ and Nrdd = 0 and !BLAST or !BOFF and WRITE and Nwdd = 0 and !BLAST or READY! !BOFF and BLAST and Nxda > 0 WaCNT = 1 Trw4 WaCNT > 1 WxCNT > 1 !BOFF and !HOLD and BLAST and Nxda = 0 !HOLD and WxCNT=1 and REQUEST and !REQUEST To RESET and !ONCE ONCE and RESET WxCNT=1 and HOLD !HOLD and WxCNT=1 and !REQUEST HOLD Ti HOLD !HOLD RESET Th !BOFF and HOLD and BLAST and Nxda= 0 KEY: To = ONCE Ti = IDLE Th = HOLD Ta = ADDRESS Td = DATA Tb = BOFF’ed Taw= address to data wait Tdw= data to data wait Tdw= data to address wait REQUEST= One or more requests in the bus queue. READ= The current access is a read. WRITE= The current access is a write. NOTES: 1. When the PMCON for the region has External Ready Control enabled, wait states are inserted as long as READY and BTERM are de-asserted. When Read Pipelining is enabled, the Ta state of the subsequent read access is concurrent with the last data cycle of the access. Because External Ready Control is disabled for Read Pipelining, the address cycle occurs during BLAST. 2. WaCNT is decremented during Taw. 3. WdCNT is decremented during Tdw. 4. WxCNT is decremented during Trw. Datasheet 83 80960HA/HD/HT 5.1 80960Hx Boundary Scan Chain Table 26. 80960Hx Boundary Scan Chain (Sheet 1 of 4) # Boundary Scan Cell Cell Type DP3 Bidirectional DP2 Bidirectional DP0 Bidirectional DP1 Bidirectional STEST Input FAILBAR Output Enable for FAILBAR, BSTALL and BREQ Control ONCEBAR Input BOFFBAR Input D0 Bidirectional D1 Bidirectional D2 Bidirectional D3 Bidirectional D4 Bidirectional D5 Bidirectional D6 Bidirectional D7 Bidirectional Enable for DP(3:0) and D(31:0) Control D8 Bidirectional D9 Bidirectional D10 Bidirectional D11 Bidirectional D12 Bidirectional D13 Bidirectional D14 Bidirectional D15 Bidirectional D16 Bidirectional D17 Bidirectional D18 Bidirectional D19 Bidirectional D20 Bidirectional Comment NOTES: 1. Cell#1 connects to TDO and cell #112 connects to TDI. 2. All outputs are tri-state. 3. In output and bidirectional signals, a logical 1 on the enable signal enables the output. A logical 0 tri-states the output. 84 Datasheet 80960HA/HD/HT Table 26. 80960Hx Boundary Scan Chain (Sheet 2 of 4) # Boundary Scan Cell Cell Type Comment D21 Bidirectional D22 Bidirectional D23 Bidirectional D24 Bidirectional D25 Bidirectional D26 Bidirectional D27 Bidirectional D28 Bidirectional D29 Bidirectional D30 Bidirectional D31 Bidirectional BTERMBAR Input RDYBAR Input HOLD Input HOLDA Output Enable for HOLDA control Control ADSBAR Output BE3BAR Output BE2BAR Output BE1BAR Output BE0BAR Output BLASTBAR Output DENBAR Output WRRDBAR Output DTRBAR Output Enable for DTRBAR Control WAITBAR Output BSTALL Output DATACODBAR Output Appears as DCBAR in BSDL file. USERSUPBAR Output Appears as SUPBAR in BSDL file. Enable for ADSBAR, BEBAR, BLASTBAR, DENBAR, WRRDBAR, WAITBAR, DCBAR, SUPBAR and LOCKBAR, Control Appears as READYBAR in BSDL file. Appears as BEBAR(3:0) in BSDL file. Appears as WRBAR in BSDL file. NOTES: 1. Cell#1 connects to TDO and cell #112 connects to TDI. 2. All outputs are tri-state. 3. In output and bidirectional signals, a logical 1 on the enable signal enables the output. A logical 0 tri-states the output. Datasheet 85 80960HA/HD/HT Table 26. 80960Hx Boundary Scan Chain (Sheet 3 of 4) # Boundary Scan Cell Cell Type LOCKBAR Output BREQ Output A31 Output A30 Output A29 Output A28 Output A27 Output A26 Output A25 Output A24 Output A23 Output A22 Output A21 Output A20 Output A19 Output A18 Output A17 Output A16 Output Enable for A(31:0) and CT(3:0) Control A15 Output A14 Output A13 Output A12 Output A11 Output A10 Output A9 Output A8 Output A7 Output A6 Output A5 Output A4 Output A3 Output A2 Output NMIBAR Input Comment NOTES: 1. Cell#1 connects to TDO and cell #112 connects to TDI. 2. All outputs are tri-state. 3. In output and bidirectional signals, a logical 1 on the enable signal enables the output. A logical 0 tri-states the output. 86 Datasheet 80960HA/HD/HT Table 26. 80960Hx Boundary Scan Chain (Sheet 4 of 4) # Boundary Scan Cell Cell Type XINT7BAR Input XINT6BAR Input XINT5BAR Input XINT4BAR Input XINT3BAR Input XINT2BAR Input XINT1BAR Input XINT0BAR Input RESETBAR Input CLKIN Input CT3 Output CT2 Output CT1 Output CT0 Output PCHK Output PCHK enable Control Comment Appears as XINTBAR(7:0) in BSDL file. Appears as CT(3:0) in BSDL file. Appears as PCHKBAR in BSDL file. NOTES: 1. Cell#1 connects to TDO and cell #112 connects to TDI. 2. All outputs are tri-state. 3. In output and bidirectional signals, a logical 1 on the enable signal enables the output. A logical 0 tri-states the output. Datasheet 87 80960HA/HD/HT 5.2 Boundary Scan Description Language Example The Boundary-Scan Description Language (BSDL) for PGA Package Example, as shown in Example 1, meets the de-facto standard means of describing essential features of ANSI/IEEE 1149.1-1993 compliant devices. The Boundary-Scan Description Language (BSDL) for PQ2 Package Example is shown in Example 2 on page 96. Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 1 of 8) -- Copyright Intel Corp. 1995 - - *************************************************************************** - - Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein. - - *************************************************************************** - - Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto standard means of describing essential features of ANSI/IEEE 1149.1-1990 compliant devices. This language is under consideration by the IEEE for formal inclusion within a supplement to the 1149.1-1990 standard. The generation of the supplement entails an extensive IEEE review and a formal acceptance balloting procedure which may change the resultant form of the language. Be aware that this process may extend well into 1993, and at this time the IEEE does not endorse or hold an opinion on the language. - - *************************************************************************** --- i960(R) Processor BSDL Model 88 Datasheet 80960HA/HD/HT Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 2 of 8) -- Project code HA -- File **NOT** verified electrically -- ------------------------------------------------- Rev 0.7 18 Dec 1995 -- Rev 0.6 08 Dec 1994 -- Rev 0.5 21 Nov 1994 -- Rev 0.4 31 Oct 1994 -- Rev 0.3 26 July 1994 -- Rev 0.2 22 June 1994 -- Rev 0.1 16 Mar 1994 -- Rev 0.0 30 Aug 1993 Updated for A-1 stepping. entity Ha_Processor is generic(PHYSICAL_PIN_MAP : string:= “PGA”); port (A Datasheet : out bit_vector(2 to 31); ADSBAR : out bit; BEBAR : out bit_vector(0 to 3); BLASTBAR : out bit; BOFFBAR : in bit; BREQ : out bit; BSTALL : out bit; BTERMBAR : in bit; CT : out bit_vector(0 to 3); CLKIN : in bit; D : inout bit_vector(0 to 31); DENBAR : out bit; DP : inout bit_vector(0 to 3); DTRBAR : out bit; DCBAR : out bit; FAILBAR : out bit; HOLD : in bit; HOLDA : out bit; LOCKBAR : out bit; NMIBAR : in bit; ONCEBAR : in bit; PCHKBAR : out bit; READYBAR : in bit; RESETBAR : in bit; STEST : in bit; 89 80960HA/HD/HT Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 3 of 8) SUPBAR : out bit; TCK : in bit; TDI : in bit; TDO : out bit; TMS : in bit; TRST : in bit; WAITBAR : out bit; WRBAR : out bit; XINTBAR : in bit_vector(0 to 7); FIVEVREF : linkage bit; VCCPLL : linkage bit; VOLTDET : out VCC1 : linkage bit_vector(0 to 23); VCC2 : linkage bit_vector(0 to 20); VSS1 : linkage bit_vector(0 to 25); VSS2 : linkage bit_vector(0 to 22); NC : linkage bit_vector(0 to 4) bit; ); use STD_1149_1_1990.all; use i960ha_a.all; attribute PIN_MAP of Ha_Processor : entity is PHYSICAL_PIN_MAP; constant PGA:PIN_MAP_STRING := “A K17, L17, L16, M17, N17, N16, P17, Q17, P16,”& “ P15, Q16, R17, R16, Q15, S17, R15, S16, Q14, ”& “ 90 : (D16, D17, E16, E17, F17, G16, G17, H17, J17,”& “ R14, Q13, S15), “ADSBAR : R06,”& “BEBAR : (R09, S07, S06, S05),”& “BLASTBAR : S08,”& “BOFFBAR : B01,”& “BREQ : R13,”& “BSTALL : R12,”& “BTERMBAR : R04,”& “CT : (A11, A12, A13, A14),”& “CLKIN : C13,”& Datasheet 80960HA/HD/HT Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 4 of 8) “D : (E03, C02, D02, C01, E02, D01, F02, E01, F01,”& “ G01, H02, H01, J01, K01, L02, L01, M01, N01,”& “ “ “DENBAR : S09,”& “DP : (A03, B03, A04, B04),”& “DTRBAR : S11,”& “DCBAR : S13,”& “FAILBAR : A02,”& “HOLD : R05,”& “HOLDA : S04,”& “LOCKBAR : S14,”& “NMIBAR : D15,”& “ONCEBAR : C03,”& “PCHKBAR : B08,”& “READYBAR : S03,”& “RESETBAR : A16,”& “STEST : B02,”& “SUPBAR : Q12,”& “TCK : B05,”& “TDI : A07,”& “TDO : A08,”& “TMS : B06,”& “TRST : A06,”& “WAITBAR : S12,”& “WRBAR : S10,”& “ XINTBAR : (B15, A15, A17, B16, C15, B17, C16, C17),”& “FIVEVREF : C05,”& “VOLTDET : A05,”& “VCCPLL : B10,”& “ VCC1 : (M02, K02, J02, G02, N03, F03, C06, B07, B09, B11,”& “ B12, C14, E15, F16, H16, J16, K16, M16, N15, Q06,”& “ R07, R08, R10, R11),”& “ VSS1 : (G03, H03, J03, K03, L03, M03, C07, C08, C09, C10,”& “ C11, C12, Q07, Q08, Q09, Q10, Q11, F15, G15, H15,”& “ J15, K15, L15, M15, A01, C04),”& “NC Datasheet N02, P01, P02, Q01, P03, Q02, R01, S01, Q03,”& R02, Q04, S02, Q05, R03),”& : (A09, A10, B13, B14, D03)”; 91 80960HA/HD/HT Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 5 of 8) attribute Tap_Scan_In of TDI : signal is true; attribute Tap_Scan_Mode of TMS : signal is true; attribute Tap_Scan_Out of TDO : signal is true; attribute Tap_Scan_Reset of TRST : signal is true; attribute Tap_Scan_Clock of TCK : signal is (66.0e6, BOTH); attribute Instruction_Length of Ha_Processor: entity is 4; attribute Instruction_Opcode of Ha_Processor: entity is “BYPASS (1111),” & “EXTEST (0000),” & “SAMPLE (0001),” & “IDCODE (0010),” & “RUBIST (0111),” & “CLAMP (0100),” & “HIGHZ (1000),” & “Reserved (1011, 1100)”; attribute Instruction_Capture of Ha_Processor: entity is “0001”; attribute Instruction_Private of Ha_Processor: entity is “Reserved” ; attribute Idcode_Register of Ha_Processor: entity is “0010” & --version, “1000100001000000” & --part number “00000001001” & --manufacturers identity “1”; --required by the standard attribute Register_Access of Ha_Processor: entity is “Runbist[32] (RUBIST),” & “Bypass (CLAMP, HIGHZ)”; {***************************************************************************} { The first cell, cell 0, is closest to TDO } { BC_1:Control, Output3 } CBSC_1:Bidir BC_4: Input, Clock {***************************************************************************} 92 Datasheet 80960HA/HD/HT Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 6 of 8) attribute Boundary_Cells of Ha_Processor: entity is “BC_4, BC_1, CBSC_1”; attribute Boundary_Length of Ha_Processor: entity is 112; attribute Boundary_Register of Ha_Processor: entity is Datasheet “0 (CBSC_1, DP(3), bidir, X, 17, 1, Z),” & “1 (CBSC_1, DP(2), bidir, X, 17, 1, Z),” & “2 (CBSC_1, DP(0), bidir, X, 17, 1, Z),” & “3 (CBSC_1, DP(1), bidir, X, 17, 1, Z),” & “4 (BC_4, STEST, input, X),” “5 (BC_1, FAILBAR, output3, X, 1, Z),” & “6 (BC_1, *, control, 1),” & “7 (BC_4, ONCEBAR, input, X),” & “8 (BC_4, BOFFBAR, input, X),” & “9 (CBSC_1, D(0), bidir, X, 17, 1, Z),” & “10 (CBSC_1, D(1), bidir, X, 17, 1, Z),” & “11 (CBSC_1, D(2), bidir, X, 17, 1, Z),” & “12 (CBSC_1, D(3), bidir, X, 17, 1, Z),” & “13 (CBSC_1, D(4), bidir, X, 17, 1, Z),” & “14 (CBSC_1, D(5), bidir, X, 17, 1, Z),” & “15 (CBSC_1, D(6), bidir, X, 17, 1, Z),” & “16 (CBSC_1, D(7), bidir, X, 17, 1, Z),” & “17 (BC_1, *, control, 1),” & 6, & “18 (CBSC_1, D(8), bidir, X, 17, 1, Z),” & “19 (CBSC_1, D(9), bidir, X, 17, 1, Z),” & “20 (CBSC_1, D(10), bidir, X, 17, 1, Z),” & “21 (CBSC_1, D(11), bidir, X, 17, 1, Z),” & “22 (CBSC_1, D(12), bidir, X, 17, 1, Z),” & “23 (CBSC_1, D(13), bidir, X, 17, 1, Z),” & “24 (CBSC_1, D(14), bidir, X, 17, 1, Z),” & “25 (CBSC_1, D(15), bidir, X, 17, 1, Z),” & “26 (CBSC_1, D(16), bidir, X, 17, 1, Z),” & “27 (CBSC_1, D(17), bidir, X, 17, 1, Z),” & “28 (CBSC_1, D(18), bidir, X, 17, 1, Z),” & “29 (CBSC_1, D(19), bidir, X, 17, 1, Z),” & “30 (CBSC_1, D(20), bidir, X, 17, 1, Z),” & “31 (CBSC_1, D(21), bidir, X, 17, 1, Z),” & “32 (CBSC_1, D(22), bidir, X, 17, 1, Z),” & “33 (CBSC_1, D(23), bidir, X, 17, 1, Z),” & “34 (CBSC_1, D(24), bidir, X, 17, 1, Z),” & 93 80960HA/HD/HT Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 7 of 8) 94 “35 (CBSC_1, D(25), bidir, X, 17, 1, Z),” & “36 (CBSC_1, D(26), bidir, X, 17, 1, Z),” & “37 (CBSC_1, D(27), bidir, X, 17, 1, Z),” & “38 (CBSC_1, D(28), bidir, X, 17, 1, Z),” & “39 (CBSC_1, D(29), bidir, X, 17, 1, Z),” & “40 (CBSC_1, D(30), bidir, X, 17, 1, Z),” & 17, 1, Z),” & Z),” & “41 (CBSC_1, D(31), bidir, X, “42 (BC_4, BTERMBAR, input, X),” & “43 (BC_4, READYBAR, input, X),” & “44 (BC_4, HOLD, input, X),” & “45 (BC_1, HOLDA, output3, X, “46 (BC_1, *, control, 1),” 46, 1, “47 (BC_1, ADSBAR, output3, X, 61, 1, Z),” & “48 (BC_1, BEBAR(3), output3, X, 61, 1, Z),” & & “49 (BC_1, BEBAR(2), output3, X, 61, 1, Z),” & “50 (BC_1, BEBAR(1), output3, X, 61, 1, Z),” & “51 (BC_1, BEBAR(0), output3, X, 61, 1, Z),” & “52 (BC_1, BLASTBAR, output3, X, 61, 1, Z),” & “53 (BC_1, DENBAR, output3, X, 61, 1, Z),” & “54 (BC_1, WRBAR, output3, X, 61, 1, Z),” & “55 (BC_1, DTRBAR, output3, X, 56, 1, Z),” & “56 (BC_1, *, control, 1),” & “57 (BC_1, WAITBAR, output3, X, 61, 1, Z),” & “58 (BC_1, BSTALL, output3, X, 6, 1, Z),” & “59 (BC_1, DCBAR, output3, X, 61, 1, Z),” & “60 (BC_1, SUPBAR, output3, X, 61, 1, Z),” & “61 (BC_1, *, control, 1),” “62 (BC_1, LOCKBAR, output3, X, 61, 1, Z),” & “63 (BC_1, BREQ, output3, X, 6, 1, Z),” & “64 (BC_1, A(31), output3, X, 80, 1, Z),” & & “65 (BC_1, A(30), output3, X, 80, 1, Z),” & “66 (BC_1, A(29), output3, X, 80, 1, Z),” & “67 (BC_1, A(28), output3, X, 80, 1, Z),” & “68 (BC_1, A(27), output3, X, 80, 1, Z),” & “69 (BC_1, A(26), output3, X, 80, 1, Z),” & “70 (BC_1, A(25), output3, X, 80, 1, Z),” & “71 (BC_1, A(24), output3, X, 80, 1, Z),” & “72 (BC_1, A(23), output3, X, 80, 1, Z),” & “73 (BC_1, A(22), output3, X, 80, 1, Z),” & Datasheet 80960HA/HD/HT Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 8 of 8) “74 (BC_1, A(21), output3, X, 80, 1, Z),” & “75 (BC_1, A(20), output3, X, 80, 1, Z),” & “76 (BC_1, A(19), output3, X, 80, 1, Z),” & “77 (BC_1, A(18), output3, X, 80, 1, Z),” & “78 (BC_1, A(17), output3, X, 80, 1, Z),” & “79 (BC_1, A(16), output3, X, 80, 1, Z),” & “80 (BC_1, *, control, 1),” “81 (BC_1, A(15), output3, X, 80, 1, & Z),” & “82 (BC_1, A(14), output3, X, 80, 1, Z),” & “83 (BC_1, A(13), output3, X, 80, 1, Z),” & “84 (BC_1, A(12), output3, X, 80, 1, Z),” & “85 (BC_1, A(11), output3, X, 80, 1, Z),” & “86 (BC_1, A(10), output3, X, 80, 1, Z),” & “87 (BC_1, A(9), output3, X, 80, 1, Z),” & “88 (BC_1, A(8), output3, X, 80, 1, Z),” & “89 (BC_1, A(7), output3, X, 80, 1, Z),” & “90 (BC_1, A(6), output3, X, 80, 1, Z),” & “91 (BC_1, A(5), output3, X, 80, 1, Z),” & “92 (BC_1, A(4), output3, X, 80, 1, Z),” & “93 (BC_1, A(3), output3, X, 80, 1, Z),” & “94 (BC_1, A(2), output3, X, 80, 1, Z),” & “95 (BC_4, NMIBAR, input, X),” & Z),” & 80, 1, Z),” & “96 (BC_4, XINTBAR(7), input, X),” & “97 (BC_4, XINTBAR(6), input, X),” & “98 (BC_4, XINTBAR(5), input, X),” & “99 (BC_4, XINTBAR(4), input, X),” & “100(BC_4, XINTBAR(3), input, X),” & “101(BC_4, XINTBAR(2), input, X),” & “102(BC_4, XINTBAR(1), input, X),” & “103(BC_4, XINTBAR(0), input, X),” & “104(BC_4, RESETBAR, input, X),” & “105(BC_4, CLKIN, input, X),” & “106(BC_1, CT(3), output3, X, “107(BC_1, CT(2), output3, X, 80, 1, “108(BC_1, CT(1), output3, X, 80, 1, Z),” & “109(BC_1, CT(0), output3, X, 80, 1, Z),” & “110(BC_1, PCHKBAR, output3, X, 111, 1, Z),” & “111(BC_1, *, control, 1)”; end Ha_Processor; Datasheet 95 80960HA/HD/HT Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 1 of 8) -- Copyright Intel Corporation 1995, 1996 -- ***************************************************************************** -- Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein. -- ***************************************************************************** -- Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto -- standard means of describing essential features of ANSI/IEEE 1149.1-1990 compliant devices. This language is under consideration by the IEEE for formal inclusion within a supplement to the 1149.1-1990 standard. The generation of the supplement entails an extensive IEEE review and a formal acceptance balloting procedure which may change the resultant form of the language. Be aware that this process may extend well into 1993, and at this time the IEEE does not endorse or hold an opinion on the language. -- i960(R) Processor BSDL Model -- Project code HA -- File **NOT** verified electrically -- ----------------------------------------------- 96 -- Rev 0.8 4 Apr 1996 Changed for PQ2 Package -- Rev 0.7 18 Dec 1995 Updated for A-1 stepping. -- Rev 0.6 08 Dec 1994 -- Rev 0.5 21 Nov 1994 -- Rev 0.4 31 Oct 1994 -- Rev 0.3 26 July 1994 -- Rev 0.2 22 June 1994 -- Rev 0.1 16 Mar 1994 -- Rev 0.0 30 Aug 1993 Datasheet 80960HA/HD/HT Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 2 of 8) entity Ha_Processor is generic(PHYSICAL_PIN_MAP : string:= “PQ2”); port (A Datasheet : out bit_vector(2 to 31); ADSBAR : out bit; BEBAR : out bit_vector(0 to 3); BLASTBAR : out bit; BOFFBAR : in bit; BREQ : out bit; BSTALL : out bit; BTERMBAR : in bit; CT : out bit_vector(0 to 3); CLKIN : in bit; D : inout bit_vector(0 to 31); DENBAR : out bit; DP : inout bit_vector(0 to 3); DTRBAR : out bit; DCBAR : out bit; FAILBAR : out bit; HOLD : in bit; HOLDA : out bit; LOCKBAR : out bit; NMIBAR : in bit; ONCEBAR : in bit; PCHKBAR : out bit; READYBAR : in bit; RESETBAR : in bit; STEST : in bit; SUPBAR : out bit; TCK : in bit; TDI : in bit; TDO : out bit; TMS : in bit; TRST : in bit; WAITBAR : out bit; WRBAR : out bit; XINTBAR : in bit_vector(0 to 7); FIVEVREF : linkage bit; VCCPLL : linkage bit; 97 80960HA/HD/HT Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 3 of 8) VCC1 : linkage bit_vector(0 to 23); VCC2 : linkage bit_vector(0 to 23); VSS1 : linkage bit_vector(0 to 23); VSS2 : linkage bit_vector(0 to 23) ); use STD_1149_1_1990.all; use i960ha_a.all; attribute PIN_MAP of Ha_Processor : entity is PHYSICAL_PIN_MAP; constant PQ2:PIN_MAP_STRING := “A 98 : (151, 150, 147, 146, 145, 144, 141, 140, 139, 138,”& “ 135, 134, 133, 132, 127, 126, 125, 124, 121, 120,”& “ 119, 118, 113, 112, 111, 110, 107, 106, 105, 104),”& “ADSBAR : 77,”& “BEBAR : (83, 82, 79, 78),”& “BLASTBAR : 84,”& “BOFFBAR : 10,”& “BREQ : 100,”& “BSTALL : 91,”& “BTERMBAR : 67,”& “CT : (183, 182, 181, 180),”& “CLKIN : 175,”& “D : (12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 28, 29,”& “ 34, 35, 36, 37, 39, 40, 41, 42, 45, 50, 51, 52,”& “ 54, 55, 56, 57, 61, 62, 63, 64),”& “DENBAR : 85,”& “DP : (206, 207, 203, 202),”& “DTRBAR : 89,”& “DCBAR : 96,”& “FAILBAR : 5,”& “HOLD : 69,”& “HOLDA : 72,”& “LOCKBAR : 99,”& “NMIBAR : 159,”& Datasheet 80960HA/HD/HT Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 4 of 8) “ONCEBAR : 6,”& “PCHKBAR : 189,”& “READYBAR : 68,”& “RESETBAR : 174,”& “STEST : 208,”& “SUPBAR : 97,”& “TCK : 194,”& “TDI : 191,”& “TDO : 188,”& “TMS : 192,”& “TRST : 193,”& “WAITBAR : 90,”& “WRBAR : 88,”& “XINTBAR : (169, 168, 167, 166, 163, 162, 161, 160),”& “FIVEVREF : 197,”& “VCCPLL : 177,”& “VCC1 : (1, 4, 9, 11, 17, 19, 25, 31, 33, 38, 44, 46,”& “ “VCC2 49, 59, 60, 66, 71, 74, 76, 81, 87, 92, 95, 101),”& : (102, 109, 115, 117, 123, 128, 131, 137, 143, 149,”& “ 153, 154, 158, 165, 171, 173, 176, 179, 185, 187,”& “ 196, 199, 201, 204),”& “VSS1 “ “VSS2 : (2, 3, 7, 8, 16, 18, 24, 30, 32, 43, 47, 48,”& 53, 58, 65, 70, 73, 75, 80, 86, 93, 94, 98, 103),”& : (108, 114, 116, 122, 129, 130, 136, 142, 148, 152,”& “ 155, 156, 157, 164, 170, 172, 178, 184, 186, 190,”& “ 195, 198, 200, 205)”; attribute Tap_Scan_In of TDI : signal is true; attribute Tap_Scan_Mode of TMS : signal is true; attribute Tap_Scan_Out of TDO : signal is true; attribute Tap_Scan_Reset of TRST : signal is true; attribute Tap_Scan_Clock of TCK : signal is (66.0e6, BOTH); attribute Instruction_Length of Ha_Processor: entity is 4; attribute Instruction_Opcode of Ha_Processor: entity is Datasheet 99 80960HA/HD/HT Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 5 of 8) “BYPASS (1111),” & “EXTEST (0000),” & “SAMPLE (0001),” & “IDCODE (0010),” & “RUBIST (0111),” & “CLAMP (0100),” & “HIGHZ (1000),” & “Reserved (1011, 1100)”; attribute Instruction_Capture of Ha_Processor: entity is “0001”; attribute Instruction_Private of Ha_Processor: entity is “Reserved” ; attribute Idcode_Register of Ha_Processor: entity is “0001” & version, “1000100001000000” “00000001001”& “1”; & part number manufacturers identity required by the standard attribute Register_Access of Ha_Processor: entity is “Runbist[32] (RUBIST),” & “Bypass (CLAMP, HIGHZ)”; ******************************************************************************* { The first cell, cell 0, is closest to TDO } { BC_1:Control, Output3 } CBSC_1:Bidir BC_4: Input, Clock ******************************************************************************* attribute Boundary_Cells of Ha_Processor: entity is “BC_4, BC_1, CBSC_1”; attribute Boundary_Length of Ha_Processor: entity is 112; attribute Boundary_Register of Ha_Processor: entity is 100 “0 (CBSC_1, DP(3), bidir, X, 17, 1, Z),” & “1 (CBSC_1, DP(2), bidir, X, 17, 1, Z),” & “2 (CBSC_1, DP(0), bidir, X, 17, 1, Z),” & “3 (CBSC_1, DP(1), bidir, X, 17, 1, Z),” & “4 (BC_4, STEST, input, X),” “5 (BC_1, FAILBAR, output3, X, Z),” & & 6, 1, Datasheet 80960HA/HD/HT Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 6 of 8) Datasheet “6 (BC_1, *, control, 1),” & “7 (BC_4, ONCEBAR, input, X),” & “8 (BC_4, BOFFBAR, input, X),” & “9 (CBSC_1, D(0), bidir, X, 17, 1, Z),” & “10 (CBSC_1, D(1), bidir, X, 17, 1, Z),” & “11 (CBSC_1, D(2), bidir, X, 17, 1, Z),” & “12 (CBSC_1, D(3), bidir, X, 17, 1, Z),” & “13 (CBSC_1, D(4), bidir, X, 17, 1, Z),” & “14 (CBSC_1, D(5), bidir, X, 17, 1, Z),” & “15 (CBSC_1, D(6), bidir, X, 17, 1, Z),” & “16 (CBSC_1, D(7), bidir, X, 17, 1, Z),” & “17 (BC_1, *, control, 1),” “18 (CBSC_1, D(8), bidir, X, 17, 1, Z),” & “19 (CBSC_1, D(9), bidir, X, 17, 1, Z),” & “20 (CBSC_1, D(10), bidir, X, 17, 1, Z),” & “21 (CBSC_1, D(11), bidir, X, 17, 1, Z),” & “22 (CBSC_1, D(12), bidir, X, 17, 1, Z),” & “23 (CBSC_1, D(13), bidir, X, 17, 1, Z),” & “24 (CBSC_1, D(14), bidir, X, 17, 1, Z),” & “25 (CBSC_1, D(15), bidir, X, 17, 1, Z),” & “26 (CBSC_1, D(16), bidir, X, 17, 1, Z),” & “27 (CBSC_1, D(17), bidir, X, 17, 1, Z),” & “28 (CBSC_1, D(18), bidir, X, 17, 1, Z),” & “29 (CBSC_1, D(19), bidir, X, 17, 1, Z),” & “30 (CBSC_1, D(20), bidir, X, 17, 1, Z),” & “31 (CBSC_1, D(21), bidir, X, 17, 1, Z),” & “32 (CBSC_1, D(22), bidir, X, 17, 1, Z),” & “33 (CBSC_1, D(23), bidir, X, 17, 1, Z),” & “34 (CBSC_1, D(24), bidir, X, 17, 1, Z),” & “35 (CBSC_1, D(25), bidir, X, 17, 1, Z),” & “36 (CBSC_1, D(26), bidir, X, 17, 1, Z),” & “37 (CBSC_1, D(27), bidir, X, 17, 1, Z),” & “38 (CBSC_1, D(28), bidir, X, 17, 1, Z),” & “39 (CBSC_1, D(29), bidir, X, 17, 1, Z),” & “40 (CBSC_1, D(30), bidir, X, 17, 1, Z),” & & 101 80960HA/HD/HT Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 7 of 8) “41 (CBSC_1, 102 D(31), bidir, X, 17, 1, Z),” & Z),” & “42 (BC_4, BTERMBAR, input, X),” & “43 (BC_4, READYBAR, input, X),” & “44 (BC_4, HOLD, input, X),” & “45 (BC_1, HOLDA, output3, X, “46 (BC_1, *, control, 1),” “47 (BC_1, ADSBAR, output3, X, 61, 1, Z),” & “48 (BC_1, BEBAR(3), output3, X, 61, 1, Z),” & “49 (BC_1, BEBAR(2), output3, X, 61, 1, Z),” & 46, 1, & “50 (BC_1, BEBAR(1), output3, X, 61, 1, Z),” & “51 (BC_1, BEBAR(0), output3, X, 61, 1, Z),” & “52 (BC_1, BLASTBAR, output3, X, 61, 1, Z),” & “53 (BC_1, DENBAR, output3, X, 61, 1, Z),” & “54 (BC_1, WRBAR, output3, X, 61, 1, Z),” & “55 (BC_1, DTRBAR, output3, X, 56, 1, Z),” & “56 (BC_1, *, control, 1),” “57 (BC_1, WAITBAR, output3, X, Z),” & & 61, 1, “58 (BC_1, BSTALL, output3, X, 6, 1, Z),” & “59 (BC_1, DCBAR, output3, X, 61, 1, Z),” & “60 (BC_1, SUPBAR, output3, X, 61, 1, Z),” & “61 (BC_1, *, control, 1),” & “62 (BC_1, LOCKBAR, output3, X, 61, 1, Z),” & “63 (BC_1, BREQ, output3, X, 6, 1, Z),” & “64 (BC_1, A(31), output3, X, 80, 1, Z),” & “65 (BC_1, A(30), output3, X, 80, 1, Z),” & “66 (BC_1, A(29), output3, X, 80, 1, Z),” & “67 (BC_1, A(28), output3, X, 80, 1, Z),” & “68 (BC_1, A(27), output3, X, 80, 1, Z),” & “69 (BC_1, A(26), output3, X, 80, 1, Z),” & “70 (BC_1, A(25), output3, X, 80, 1, Z),” & “71 (BC_1, A(24), output3, X, 80, 1, Z),” & “72 (BC_1, A(23), output3, X, 80, 1, Z),” & “73 (BC_1, A(22), output3, X, 80, 1, Z),” & “74 (BC_1, A(21), output3, X, 80, 1, Z),” & “75 (BC_1, A(20), output3, X, 80, 1, Z),” & Datasheet 80960HA/HD/HT Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 8 of 8) “76 (BC_1, A(19), output3, X, 80, 1, Z),” & “77 (BC_1, A(18), output3, X, 80, 1, Z),” & “78 (BC_1, A(17), output3, X, 80, 1, Z),” & “79 (BC_1, A(16), output3, X, 80, 1, Z),” & “80 (BC_1, *, control, 1),” & “81 (BC_1, A(15), output3, X, 80, 1, Z),” & “82 (BC_1, A(14), output3, X, 80, 1, Z),” & “83 (BC_1, A(13), output3, X, 80, 1, Z),” & “84 (BC_1, A(12), output3, X, 80, 1, Z),” & “85 (BC_1, A(11), output3, X, 80, 1, Z),” & “86 (BC_1, A(10), output3, X, 80, 1, Z),” & “87 (BC_1, A(9), output3, X, 80, 1, Z),” & “88 (BC_1, A(8), output3, X, 80, 1, Z),” & “89 (BC_1, A(7), output3, X, 80, 1, Z),” & “90 (BC_1, A(6), output3, X, 80, 1, Z),” & “91 (BC_1, A(5), output3, X, 80, 1, Z),” & “92 (BC_1, A(4), output3, X, 80, 1, Z),” & “93 (BC_1, A(3), output3, X, 80, 1, Z),” & “94 (BC_1, A(2), output3, X, 80, 1, Z),” & “95 (BC_4, NMIBAR, input, X),” & “96 (BC_4, XINTBAR(7), input, X),” & “97 (BC_4, XINTBAR(6), input, X),” & “98 (BC_4, XINTBAR(5), input, X),” & “99 (BC_4, XINTBAR(4), input, X),” & “100(BC_4, XINTBAR(3), input, X),” & “101(BC_4, XINTBAR(2), input, X),” & “102(BC_4, XINTBAR(1), input, X),” & “103(BC_4, XINTBAR(0), input, X),” & “104(BC_4, RESETBAR, input, X),” & “105(BC_4, CLKIN, input, X),” “106(BC_1, CT(3), output3, X, 80, 1, Z),” & “107(BC_1, CT(2), output3, X, 80, 1, Z),” & “108(BC_1, CT(1), output3, X, 80, 1, Z),” & & “109(BC_1, CT(0), output3, X, 80, 1, Z),” & “110(BC_1, PCHKBAR, output3, X, 111,1, Z),” & “111(BC_1, *, control, 1)”; end Ha_Processor; Datasheet 103 80960HA/HD/HT This page intentionally left blank. 104 Datasheet
FC80960HD80SL2LZ 价格&库存

很抱歉,暂时无法提供与“FC80960HD80SL2LZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货