0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PEF3452HV1.3

PEF3452HV1.3

  • 厂商:

    ENPIRION(英特尔)

  • 封装:

    QFP44

  • 描述:

    LINE INTERFACE UNIT

  • 数据手册
  • 价格&库存
PEF3452HV1.3 数据手册
P re li mi na ry D ata S he et , DS 1, D ec em be r 20 01 T E 3 -L I U ™ Line Interface Unit for D S 3 , S T S 1 a nd E 3 P EF 3 45 2 V e r s i on 1 . 3 W ir ed Co m mu n ic a ti o n s N e v e r s t o p t h i n k i n g . Edition 2001-12-05 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München, Germany © Infineon Technologies AG 2001. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Y P re li mi na ry D ata S he et , DS 1, D ec em be r 20 01 R T E 3 -L I U ™ IN A Line Interface Unit for D S 3 , S T S 1 a nd E 3 P R E LI M P EF 3 45 2 V e r s i on 1 . 3 W ir ed Co m mu n ic a ti o n s N e v e r s t o p t h i n k i n g . PEF 3452 PRELIMINARY Revision History: 2001-12-05 Previous Version: Preliminary Data Sheet TE3-LIU V1.2, 2001-07, DS3 Page Subjects (major changes since last revision) 24 Chapter 4.1.4 27 Table 10 28 Figure 12 DS1 For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com PEF 3452 TE3-LIU V1.3 Table of Contents Page 1 1.1 1.2 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 3.1 3.2 3.3 3.3.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 17 18 18 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.5.1 4.1.5.2 4.1.5.3 4.1.6 4.1.6.1 4.1.6.2 4.1.6.3 4.1.7 4.1.8 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.6.1 4.2.6.2 4.2.6.3 4.2.7 4.3 4.4 Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard Receiver Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Line Monitoring Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Line Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AMI Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3ZS Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDB3 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS3 LOS Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STS-1 LOS Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E3 LOS Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Output Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jitter Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intrinsic Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit Line Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AMI Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3ZS Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDB3 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AIS Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Framer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maintenance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 22 23 24 24 24 24 25 25 25 25 26 27 28 29 29 30 31 32 33 33 33 33 33 34 34 35 Preliminary Data Sheet 1 2 4 5 2001-12-05 PEF 3452 TE3-LIU V1.3 Table of Contents 4.4.1 4.4.2 Page Remote Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Local Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 5.1 5.2 5.3 5.4 Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operational Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit Line Inactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 37 37 37 37 6 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 6.4.7.1 6.4.7.2 6.4.7.3 6.5 6.6 6.7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jitter Attenuator Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microprocessor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse Template E3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse Template DS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse Template STS-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 38 39 40 42 42 43 44 46 47 48 49 49 50 52 54 54 55 7 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8 8.1 8.2 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Cable Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Preliminary Data Sheet 2001-12-05 PEF 3452 TE3-LIU V1.3 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Page Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 T3/T1 Multiplexer Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Channelized T3 Link Layer Application . . . . . . . . . . . . . . . . . . . . . . . . . 5 Unchannelized T3 Link Layer Application . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Receiver Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DS3 Line Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Receive Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 E3 Loss of Signal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Jitter Tolerance Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Transmitter Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Transmit Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Jitter Attenuation Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Remote Loop Signal Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Local Loop Signal Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Reference Clock Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 XTAL Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Recommended Crystal Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Crystal Pulling Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chip Select Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 XCLK Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 RCLK Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 E3 Pulse Shape at Transmitter Output . . . . . . . . . . . . . . . . . . . . . . . . 49 DS3 Pulse Shape at the Cross Connect Point (450 ft.) . . . . . . . . . . . . 50 STS-1 Pulse Shape at the Cross Connect Point (450 ft.) . . . . . . . . . . 52 Thermal Behavior of Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Input/Output Waveforms for AC Testing . . . . . . . . . . . . . . . . . . . . . . . 55 DS3 Cable Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Preliminary Data Sheet 2001-12-05 PEF 3452 TE3-LIU V1.3 List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Page Interface Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Control Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Test Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Hardware Control Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Hardware Indication Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 External Component Values for Receiver . . . . . . . . . . . . . . . . . . . . . . 21 External Component Values for DS Line Monitoring . . . . . . . . . . . . . . 22 E3 Receive Return Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Input Jitter Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 External Component Values for Transmitter . . . . . . . . . . . . . . . . . . . . 29 E3 Transmit Return Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Jitter Attenuation PLL Operation Frequencies . . . . . . . . . . . . . . . . . . . 31 Transmit Output Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Power Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Reset Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 REFCLK Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 XTAL Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 XTAL Crystal Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chip Select Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . 46 XCLK Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 RCLK Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 E3 Pulse Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 DS3 Pulse Mask (ANSI T1.404, GR-499-CORE) . . . . . . . . . . . . . . . . 50 DS3 Pulse Mask (ANSI T1.404) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 DS3 Pulse Mask (GR-499-CORE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 STS-1 Pulse Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 STS-1 Pulse Mask (ANSI T1.102) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Package Characteristic Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Preliminary Data Sheet 2001-12-05 PEF 3452 TE3-LIU V1.3 PRELIMINARY Preface The PEF 3452 (TE3-LIU™) is a flexible line interface unit for a wide area of telecommunication and data communication applications. The device is addressed to fulfill all requirements to build a DS3, STS-1 or E3 line interface. Organization of this Document This Preliminary Data Sheet is organized as follows: • Overview Gives a general description of the product, lists the key features, and presents some typical applications. • Pin Descriptions Lists pin locations with associated signals, categorizes signals according to function, and describes signals. • Functional Description Describes the functional blocks and principle operation modes. • Interface Description Describes the device interfaces. • Operational Description Shows the operation modes and how their initialization. • Electrical Characteristics Specifies maximum ratings, DC and AC characteristics. • Package Outlines Shows the mechanical values of the device package. • Appendix • Index Preliminary Data Sheet 2001-12-05 PEF 3452 TE3-LIU V1.3 PRELIMINARY Related Documentation This document refers to the following international standards (in alphabetical/numerical order): ACA TS016 (general requirements for Australia) CTR-24/TBR-24 (E3 requirements) ETS 300 166 (E3 transmit return loss) ITU-T G.703 (E3 pulse mask, B3ZS/HDB3 code, E3 receive return loss) ITU-T G.751 (jitter requirements E3) ITU-T G.775 (loss of signal definition) ITU-T G.823 (jitter requirements E3) ITU-T G.824 (jitter requirements DS3) ITU-T O.151 (pseudo random binary sequence (PRBS) definition) GR-253-CORE (STS-1 jitter requirements) GR-499-CORE (DS3 pulse mask, DS3 jitter requirements) ANSI T1.102 (STS-1 pulse mask) ANSI T1.102 Annex B (DS3 monitoring) ANSI T1.231 (maintenance functions, defect definitions) ANSI T1.404 (DS3 pulse mask) MIL-STD 883D (ESD requirements) Your Comments We welcome your comments on this document. We are continuously trying improving our documentation. Please send your remarks and suggestions by e-mail to com.docu_comments@infineon.com Please provide in the subject of your e-mail: device name (TE3-LIU™), device number (PEF 3452), device version (Version 1.3), and in the body of your e-mail: document type (Preliminary Data Sheet), issue date (2001-12-05) and document revision number (DS1). Preliminary Data Sheet 2001-12-05 PEF 3452 TE3-LIU V1.3 Overview PRELIMINARY 1 Overview The TE3-LIU™ PEF 3452 Line Interface Unit is used to connect a DS3/STS-1 or E3 framer device to an analog transmission line. The line interface fulfills the relevant standards for DS3 (44.736 Mbit/s), STS-1 (51.840 Mbit/s) and E3 (34.368 Mbit/s) systems. The TE3-LIU™ comes in a P-MQFP-44-2 package (SMD) to save a significant amount of board space. The integrated jitter attenuation further reduces overall system complexity and cost. This CMOS 3.3 V low power device contains an integrated pulse shaper to drive any line length within the range of up to 1100 ft. without the need for external length selection (Line Build Out). The hardware configuration mode allows low cost systems with flexible device setting without the need for a microprocessor. An optional microprocessor mode allows the connection to a standard microprocessor bus to control hardware settings. Preliminary Data Sheet 1 2001-12-05 PRELIMINARY Line Interface Unit for DS3, STS1 and E3 TE3-LIU™ PEF 3452 Version 1.3 1.1 Features • Generic analog interface for all DS3/STS-1/E3 applications • Single chip solution for receive and transmit direction • 3.3 V low power device • Integrated receive equalization network • Integrated noise and crosstalk filter • Clock and data recovery using an integrated PLL P-MQFP-44-2 with ultra-low intrinsic jitter • Transmit clock duty cycle correction PLL • No external components required for clock and data recovery and receive equalizer • DSX receive line monitor (additional 20 dB gain according to ANSI T1.102) • Low transmitter output impedances for high transmit return loss • Disable function of the analog transmit line outputs • Transmit pulse shaper to fulfill requirements of ANSI T1.404, Telcordia GR-499-CORE, ANSI T1.102 and ITU-T G.703 (E3) • Maximum line length up to 1100 ft. (using standard coaxial cable, for example AT&T 728A, 734A or 734D) • External line length selection (LBO) is not required • Jitter specifications of GR-499-CORE and ITU-T G.823 are met • Integrated jitter attenuation PLL and buffer in transmit direction • Dual or single rail digital inputs and outputs from/to the framer interface • Selectable line codes (HDB3 (E3), B3ZS (DS3/STS-1), AMI) • Analog and digital loss of signal detection and indication • Automatic RDOP/RDON blanking option in case of LOS • Bipolar violation indication • Local loop and remote loop for diagnostic purposes • Insertion of alarm indication signal ("all ones") • Flexible hardware or software controlled device configuration • Device power down function Type Package PEF 3452 H V1.3 P-MQFP-44-2 Preliminary Data Sheet 2 2001-12-05 PEF 3452 TE3-LIU V1.3 Overview PRELIMINARY Hardware Interface Mode • • • • • • • • • • • • • • • DS3/STS-1 or E3 Line Coding (E3: HDB3 or AMI; DS3/STS-1: B3ZS or AMI) Transmitter disable Power down Remote loop Local loop Single/dual rail operation Receive clock edge selection Transmit clock edge selection Transmit "all ones" Receive line monitoring mode Automatic RDOP/RDON blanking option Jitter attenuation Loss of signal indication Bipolar violation indication Microprocessor Interface Mode • Microprocessor bus compatible interface • Hardware control lines directly accessible General • • • • • • CMOS device P-MQFP-44-2 package (body size 10 mm × 10 mm, lead pitch 0.8 mm) Single power supply: 3.3 V ± 5% 5V-tolerant digital input lines Temperature range of -40°C to +85°C Low power device Applications • • • • • • Interface for SONET/DS3 and E3 network equipment WAN gateways CSU/DSU Multiplexers Digital crossconnect systems DS3/STS-1/E3 Test Equipment Preliminary Data Sheet 3 2001-12-05 PEF 3452 TE3-LIU V1.3 Overview PRELIMINARY TMS TCK TDI TRS TDO REFCLK VDD VSS VDDRP VSSRP Logic Symbol VDDR VSSR 1.2 RDOP RDON/BPV RCLK RL1 RL2 PEF 3452 TE3-LIUTM XTAL1 XTAL2 LOS XL1 XDIP XDIN XCLK XL2 Figure 1 DR/SR XPE RPE MON RL LL LCODE XAIS XLT BLE CS JATT DS3/STS-1 DS3/E3 RES VDDXP VSSXP VDDX VSSX HW + µP Access F0229 Logic Symbol Preliminary Data Sheet 4 2001-12-05 PEF 3452 TE3-LIU V1.3 Overview PRELIMINARY 1.3 Typical Applications Figure 2 to Figure 4 show typical applications using the TE3-LIU™. 28 x DS1 digital QuadLIUTM #1 DS1 #1 analog QuadLIUTM #7 DS1 #28 analog DS3 digital DS3 analog TE3_LIUTM TE3-MUXTM F0087 Figure 2 T3/T1 Multiplexer Application DS3 analog TE3CHATTTM TE3-LIUTM F0217 Figure 3 Channelized T3 Link Layer Application DS3 analog TE3-LIUTM TE3-MUXTM DSCC4 F0140 Figure 4 Unchannelized T3 Link Layer Application Preliminary Data Sheet 5 2001-12-05 PEF 3452 TE3-LIU V1.3 Overview PRELIMINARY Note: TE3-MUX ™ (PEB 3445) is an M13 MUltipleXer/demultiplexer with an integrated DS3 framer QuadLIU™ (PEB 22504) is a 4-channel Line Interface Unit for E1/T1/J1 DSCC4™ (PEB 20534) is a 4-channel Serial Communication Controller TE3-CHATT™ (PEB 3456) is a CHAnnelized T3 Termination with DS3 Framer, M13 Multiplexer, T1/E1 Framers and 256 Channel HDLC/PPP controller Preliminary Data Sheet 6 2001-12-05 PEF 3452 TE3-LIU V1.3 Pin Descriptions PRELIMINARY 2 Pin Descriptions 2.1 Pin Diagram TRS 33 34 31 29 27 25 CS RDON/BPV RDOP RCLK VDD VSS REFCLK XCLK XDIP XDIN RES P-MQFP-44-2 (top view) 23 22 TDI TMS XLT 36 20 38 18 VDDXP XTAL2 PEF 3452 TE3-LIUTM 40 XAIS BLE 14 42 JATT MON LCODE DR/SR VDDR RL2 RL1 XPE 12 11 9 VSSR 7 RPE 5 DS3/STS1 XL2 VSSX 3 DS3/E3 44 1 XL1 VDDX VDDRP VSSRP 16 TCK TDO RL LL XTAL1 VSSXP LOS F0230 Figure 5 Pin Configuration Preliminary Data Sheet 7 2001-12-05 PEF 3452 TE3-LIU V1.3 Pin Descriptions PRELIMINARY 2.2 Table 1 Pin Definitions and Functions Interface Pin Functions Function Pin No. Symbol Input (I) Output (O) Supply (S) 9 RL1 I (analog) Line Receiver 1 Analog input from the external transformer (receive bipolar ring). The signal at RL1 must be coded according to B3ZS or HDB3. 10 RL2 I (analog) Line Receiver 2 Analog input from the external transformer (receive bipolar tip). The signal at RL1 must be coded according to B3ZS or HDB3. 25 RDOP O Receive Data Output/Positive Received data at RL1/2 is sent on RDOP/ RDON to the framer interface. Data is clocked with the rising or falling edge of RCLK, depending on RPE. In single rail mode (DR/SR=0), data is sent in NRZ format. 24 RDON O Receive Data Output/Negative If dual rail data format is selected, the negative data signal is output on RDON/ BPV. Receive Direction BPV 26 RCLK Preliminary Data Sheet Bipolar Violation If single rail data format is selected, the bipolar violation indication signal is output on RDON/BPV. BPV is synchronized on RCLK. O Receive Clock Receive Clock extracted from the incoming data pulses. The active clock edge is determined by RPE. During LOS, a clock signal is generated internally and driven on RCLK (derived from REFCLK). 8 2001-12-05 PEF 3452 TE3-LIU V1.3 Pin Descriptions PRELIMINARY Table 1 Interface Pin Functions (cont’d) Function Pin No. Symbol Input (I) Output (O) Supply (S) 1 XL1 O (analog) Transmit Line 1 (transmit bipolar ring) Analog output to the external transformer. XL1 can be switched into inactive mode. 3 XL2 O (analog) Transmit Line 2 (transmit bipolar tip) Analog output to the external transformer. XL2 can be switched into inactive mode. 31 XDIP I + PU Transmit Data In/Positive Transmit data received from the framer interface to be output on XL1/2. NRZ or dual rail positive data has to be provided at XDIP. Latching of data is done with the rising or falling transitions of XCLK, depending on XPE. 32 XDIN I + PU Transmit Data In/Negative If dual rail format is selected, negative data signal is read from XDIN. If single rail data format is selected, data on XDIN is ignored. Latching of data is done with the rising or falling transitions of XCLK, depending on XPE. 30 XCLK I + PU Transmit Clock Input of the working clock for the transmitter. The active clock edge is determined by XPE. DS3: 44.736 MHz STS-1: 51.840 MHz E3: 34.368 MHz To fulfill e.g. ITU-T G.832 a clock accuracy of 20 ppm is required. For correct function a clock signal has always to be supplied to XCLK. Transmit Direction Preliminary Data Sheet 9 2001-12-05 PEF 3452 TE3-LIU V1.3 Pin Descriptions PRELIMINARY Table 1 Interface Pin Functions (cont’d) Pin No. Symbol Input (I) Output (O) Supply (S) 29 REFCLK I Function Global Clock Reference Reference Clock REFCLK is the basic internal clock. It must be stable during reset and operation. This clock is also used to synchronize the receive PLL in case of no signal. The clock frequency depends on the target application: DS3: 44.736 MHz STS-1: 51.840 MHz E3: 34.368 MHz To fulfill e.g., ITU-T G.832 a clock accuracy of 20 ppm is required. 39 XTAL1 I 38 XTAL2 O Jitter Attenuation Reference Connection for an external pullable crystal. DS3: 14.912 MHz STS-1: 17.280 MHz E3: 11.456 MHz If jitter attenuation is disabled (default), XTAL1 is internally driven to a fixed level (not floating). Preliminary Data Sheet 10 2001-12-05 PEF 3452 TE3-LIU V1.3 Pin Descriptions PRELIMINARY Table 2 Control Pin Functions Pin No. Symbol Input (I) Output (O) Supply (S) Function 33 RES I Hardware Reset A low signal at this pin forces the device into reset state. 23 CS I + PU Chip Select 0 = hardware control signals are switched through 1 = hardware control signals are ignored 5 DS3/E3 I + PU DS3/STS-1 or E3 Select Primary mode selection. This signal has to be stable during reset and may not change afterwards. It must not be connected to a µP bus. 0 = E3 1 = DS3 or STS-1 (see DS3/STS-1) 4 DS3/STS-1 I + PU DS3 or STS-1 Select Primary mode selection. This signal has to be stable during reset and may not change afterwards. It must not be connected to a µP bus. 0 = STS-1 1 = DS3 13 LCODE I + PU Line Code Select for receive and transmit direction E3: 0 = AMI 1 = HDB3 DS3/STS-1: 0 = AMI 1 = B3ZS 16 XAIS Preliminary Data Sheet I + PU Transmit Alarm Indication 0 = no AIS 1 = AIS all-ones insertion 11 2001-12-05 PEF 3452 TE3-LIU V1.3 Pin Descriptions PRELIMINARY Table 2 Control Pin Functions (cont’d) Pin No. Symbol Input (I) Output (O) Supply (S) Function 20 RL I + PU Remote Loop Switching 0 = no loop 1 = Remote Loop 1) 19 LL I + PU Local Loop Switching 0 = no loop 1 = Local Loop1) 21 XLT I + PU Transmitter inactive 0 = transmitter enabled 1 = transmitter disabled (outputs 1.5 V common mode voltage) 14 MON I + PU Line Monitoring Mode 0 = additional 20 dB gain at RL1/RL2 1 = normal 15 BLE I + PU Blanking Enable 0 = detected signal is switched through even in case of LOS 1 = all-zero signal is sent on RDOP/RDON in case of LOS, REFCLK is used to drive RCLK 12 DR/SR I + PU Dual Rail/Single Rail Select The framer interface is operated either in dual rail or single rail mode. In single rail mode, the BPV signal is output on RDON/ BPV and input on XDIN is ignored. 0 = single rail 1 = dual rail 6 RPE I + PU RCLK Positive Edge Selection 0 = RDOP, RDON are clocked with negative (falling) edge of RCLK 1 = RDOP, RDON are clocked with positive (rising) edge of RCLK 7 XPE I + PU XCLK Positive Edge Selection 0 = XDIP, XDIN are clocked with negative (falling) edge of XCLK 1 = XDIP, XDIN are clocked with positive (rising) edge of XCLK Preliminary Data Sheet 12 2001-12-05 PEF 3452 TE3-LIU V1.3 Pin Descriptions PRELIMINARY Table 2 Control Pin Functions (cont’d) Pin No. Symbol Input (I) Output (O) Supply (S) Function 43 JATT I + PD Jitter Attenuation Enable This signal has to be stable during reset and may not change afterwards. It must not be connected to a µP bus. 0 = no jitter attenuation (default if left open) 1 = jitter attenuation in transmit direction 22 LOS O Loss of Signal Indication 0 = correct signal 1 = loss of signal LOS is synchronized on RCLK. During LOS, a clock signal is generated internally and driven on RCLK. 1) If RL=LL=1, the device is set into power down mode. Preliminary Data Sheet 13 2001-12-05 PEF 3452 TE3-LIU V1.3 Pin Descriptions PRELIMINARY Table 3 Power Supply Pins Pin No. Symbol Input (I) Output (O) Supply (S) Function 11 VDDR S (analog) Positive Power Supply for the analog receiver 8 VSSR S (analog) Power Supply Ground for the analog receiver 44 VDDX S (analog) Positive Power Supply for the analog transmitter 2 VSSX S (analog) Power Supply Ground for the analog transmitter 18 VDDRP S (analog) Positive Power Supply for the analog receiver PLL 17 VSSRP S (analog) Power Supply Ground for the analog receiver PLL 37 VDDXP S (analog) Positive Power Supply for the analog transmitter PLL 40 VSSXP S (analog) Power Supply Ground for the analog transmitter PLL 27 VDD S Positive Power Supply for digital subcircuits and the digital receiver output 28 VSS S Power Supply Ground for digital subcircuits and the digital receiver output Preliminary Data Sheet 14 2001-12-05 PEF 3452 TE3-LIU V1.3 Pin Descriptions PRELIMINARY Table 4 Test Pins 1) Pin No. Symbol Input (I) Output (O) Supply (S) Function 34 TRS I + PU TAP Controller Reset Active low test controller reset; this pin must be connected to RST or VSS 35 TDI I + PU Test Data Input 36 TMS I + PU Test Mode Select 41 TCK I + PU Test Clock TDO O Test Data Output 42 1) These pins are used for factory test only; boundary scan mode is not provided. Note: PU = input or input/output comprising an internal pullup device PD = input or input/output comprising an internal pulldown device To override the internal pullup (pulldown) by an external pulldown (pullup), a resistor value of 47 kΩ is recommended. Unused pins containing pullups or pulldowns can be left open. Preliminary Data Sheet 15 2001-12-05 PEF 3452 TE3-LIU V1.3 Functional Description PRELIMINARY 3 Functional Description 3.1 Functional Overview The TE3-LIU™ device contains analog and digital functional blocks, which are configured and controlled by direct hardware or microprocessor control. The main interfaces are • • • • Receive Line Interface Transmit Line Interface Framer Interface Hardware Interface The main internal functional blocks are • Analog line receiver with noise & crosstalk filter, equalizer network and clock/data recovery • Analog line driver with programmable pulse shaper • Central clock generation module • Jitter attenuator • Maintenance functions (e.g., loop switching local or remote) • Hardware/microprocessor control interface Preliminary Data Sheet 16 2001-12-05 Level Detection ALOS Detection Block Diagram RL1 20 dB Gain Stage RL2 Noise Filter Var. Gain Amplifier Clock & Data Recovery Equalizer MON Line Driver & LBO XL2 Decoder RCLK RDOP RDON/BPV Remote Loop LL Transmit PLL Jitter Attenuator PLL Pulse Shaper Jitter Attenuator Buffer 17 XL1 LOS DR/SR LCODE DS3/STS1/E3 REFCLK Local Loop LOS Detection XLT AIS Insertion Encoder XAIS Mode Control General Control Test Mode Control RL XCLK XDIP XDIN DR/SR LCODE DS3/STS1/E3 PEF 3452 TE3-LIU V1.3 TRS TCK TMS TDI TDO RES REFCLK DS3/E3 DS3/STS-1 JATT LOS XAIS LCODE XPE RPE XLT MON LL RL DR/SR BLE CS 2001-12-05 F0231 Functional Description Hardware/µP Interface XTAL1 XTAL2 JATT Block Diagram LOS, BLE PRELIMINARY 3.2 Figure 6 Preliminary Data Sheet Autom. Gain Control PEF 3452 TE3-LIU V1.3 Functional Description PRELIMINARY 3.3 Functional Blocks 3.3.1 Hardware Control Unit All hardware control signals except DS3/E3, DS3/STS-1 and JATT are gated by CS. All other control signals are gated by CS to allow an easy connection to a microprocessor (µP) data bus. DS3/E3, DS3/STS-1 and JATT may not be connected to a data bus. If direct hardware control without µP is intended, CS has to be connected to V SS. After reset all control input values are cleared. The default control values (driven by internal pullups) are activated after CS = low is applied for the first time after reset. Table 5 Hardware Control Functions Device Function Control Signal Selection of E3 or DS3/STS-1 mode1) DS3/E3 0 = E3 1 = DS3 or STS-12) Selection of DS3 or STS-1 mode1) DS3/STS-1 0 = STS-1 1 = DS32) This pin is ignored, if E3 mode is selected by DS3/E3 = 0 Dual rail select DR/SR 0 = single rail data on RDOP and XDIP 1 = dual rail data on RDOP/RDON and XDIP/XDIN2) Receive clock edge selection RPE 0 = data change on negative edge 1 = data change on positive edge2) Transmit clock edge selection XPE 0 = data change on negative edge 1 = data change on positive edge2) Selection of line coding LCODE 0 = AMI 1 = HDB3 (E3)2) 1 = B3ZS (DS3/STS-1)2) Send AIS (all-ones alarm indication signal) XAIS 0 = no insertion 1 = AIS insertion2) Preliminary Data Sheet 18 2001-12-05 PEF 3452 TE3-LIU V1.3 Functional Description PRELIMINARY Table 5 Hardware Control Functions (cont’d) Device Function Control Signal Select remote loop RL 0 = normal operation 1 = remote loop Select local loop LL 0 = normal operation 1 = local loop Select power down mode LL 00 01 10 11 Blanking enable BLE 0 = data signal is switched through even in case of LOS 1 = all-zero signal is transmitted on RDOP/RDON in case of LOS using RCLK derived from REFCLK2) Line monitoring mode MON 0 = additional 20 dB gain stage activated 1 = normal amplifier setting2) Transmitter inactive mode XLT 0 = normal operation 1 = inactive2)3)4) Jitter attenuation enable JATT 0 = jitter attenuation disabled2) 1 = jitter attenuation enabled & RL = normal operation = remote loop operation = local loop operation = power down2) 1) to be selected while reset is active (RST = 0) 2) default, if pin is left open and CS has been asserted at least once 3) outputs 1.5 V common mode voltage 4) connecting of CS to VSS or asserting CS in parallel to RES suppresses spurious output on XL1/2 Preliminary Data Sheet 19 2001-12-05 PEF 3452 TE3-LIU V1.3 Functional Description PRELIMINARY Table 6 Hardware Indication Signals Device Function Indication Signal Indicate LOS (loss of signal) LOS 0 = normal signal 1 = loss of signal Indicate BPV (bipolar violation) BPV 0 = no violation 1 = bipolar violation Available in single rail mode only on pin RDON/BPV. Preliminary Data Sheet 20 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4 Interface Description 4.1 Receiver 4.1.1 Standard Receiver Application 1:1 75 Ω RL1 C1 R1 TE3-LIUTM RL2 F0080 Figure 7 Receiver Configuration Table 7 External Component Values for Receiver Parameter Characteristic Line Impedance [Ω] DS3 STS-1 E3 75 R1 (± 1 %) [Ω] C1 (± 20 %) [nF] t2 : t1 75 100 1:1 The external components are the same for DS3, STS-1 and E3 applications. Preliminary Data Sheet 21 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.1.2 Line Monitoring Application DSX cross connect point 75 Ω 75 Ω 1:1 RL1 C1 R1 TE3-LIUTM Receiver Mode RL2 MON=1 R3 1:1 RL1 C1 R2 TE3-LIUTM Monitor Mode RL2 MON=0 F0081 Figure 8 DS3 Line Monitoring Table 8 External Component Values for DS Line Monitoring Parameter Values R1 (± 1 %) [Ω] R2 (± 1 %) [Ω] R3 (± 1 %) [Ω] C1 (± 20 %) [nF] t2 : t1 75 47 470 100 1:1 The external components are according to ANSI T1.102 Annex B. The dimensions given above lead to a signal level at the monitor device input of approximately -20 dB below the level at the receiver device. Similar configurations using the line monitoring mode are possible in STS-1 or E3 applications. Preliminary Data Sheet 22 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.1.3 Receive Line Interface The receive line interface consists of a pre-amplifier, a noise and crosstalk filter, a variable gain amplifier and an equalizer followed by the clock and data recovery. The noise and crosstalk filter reduces distortions within the incoming analog signal. The VGA amplifies the analog signal and the equalizer compensates the frequency dependent line attenuation. Digital signal levels are formed within the retiming block of the clock and data recovery. Receive return loss requirements of ITU-T G.703 are fulfilled as required for E3 operation. Table 9 E3 Receive Return Loss Frequency Range Return Loss from [kHz] to [kHz] [dB] 860 1720 12 1720 34368 18 34368 51550 14 The equalizer contains an additional 20 dB gain stage, which is used in line monitoring mode to amplify resistively attenuated signals. Reference Clock RL1 RL2 20 dB Gain Stage Noise & Crosstalk Filter Automatic Gain Control Level Detection False Lock Detection Variable Gain Amplifier Equalizer Receive PLL Receive Clock Retiming Dual Rail Receive Data MON F0094 V1.3 Figure 9 Receive Clock System Preliminary Data Sheet 23 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.1.4 Receive Clock and Data Recovery The receive clock and data recovery extracts the route clock RCLK from the digital data stream and converts the data stream into a dual rail bit stream. The clock and data recovery needs a reference clock to keep the PLL stable during times without data signal at RL1/RL2. The clock that is output on pin RCLK is the recovered clock of the signal provided on RL1/RL2 and has a duty cycle close to 50 %. The intrinsic jitter generated in the absence of any input jitter is defined in Chapter 4.1.8. The PLL reference clock is generated internally without the need for external components. 4.1.5 Receive Line Coding In E3 applications the HDB3 and the AMI coding is provided for the data received from the ternary interface. In DS3/STS-1 mode the B3ZS and AMI code is supported. In B3ZS or AMI code all code violations are detected and indicated. 4.1.5.1 AMI Code The AMI code is defined as a dual rail data signal, where the combinations 00 ("0"), 10 ("+1") and 01 ("-1") are valid. No subsequent "+1" or "-1" bits are allowed, these will be detected as bipolar violations and indicated on pin RDON/BPV, if single rail mode is selected (according to ANSI T1.231 chapter 7.1). The received AMI data stream is either switched transparently to the framer interface as dual rail data or converted into a single rail data stream. 4.1.5.2 B3ZS Code In the B3ZS line code each block of three consecutive zeros is replaced by either of two replacements codes which are B0V and 00V, where B represents a pulse which applies to the bipolar rule ("+1" or "-1") and V represents a bipolar violation (two consecutive "+1" or "-1" bits). The replacement code is chosen in a way that there is an odd number of valid B pulses between consecutive V pulses to avoid the introduction of a DC component into the analog signal. The receive line decoder decodes the incoming B3ZS data signal and changes the replacement patterns to the original three-zeros pattern. Pattern sequences violation these rules are reported as bipolar violation errors. Data output to the framer interface can be selected to be either dual rail or single rail. Preliminary Data Sheet 24 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.1.5.3 HDB3 Code In the HDB3 line code each block of four consecutive zeros is replaced by either of two replacements codes which are B00V and 000V, where B represents a pulse which applies to the bipolar rule ("+1" or "-1") and V represents a bipolar violation (two consecutive "+1" or "-1" bits). The replacement code is chosen in a way that there is an odd number of valid B pulses between consecutive V pulses to avoid the introduction of a DC component into the analog signal. The receive line decoder decodes the incoming HDB3 data signal and changes the replacement patterns to the original three-zeros pattern. Pattern sequences violation these rules are reported as bipolar violation errors. Data output to the framer interface can be selected to be either dual rail or single rail. 4.1.6 Alarm Handling The receive line interface includes the alarm detection for loss of signal (LOS). LOS is indicated either if an analog or a digital loss of signal condition is detected. During LOS a clock signal is sent on RCLK. The clock is internally derived from REFCLK. 4.1.6.1 DS3 LOS Definition Detection and recovery of digital LOS defects in DS3 mode is done according to ANSI T1.231: An LOS defect occurs when 175 contiguous pulse positions with no pulses of either positive or negative polarity at the line interface are detected. An LOS defect is terminated upon detecting an average pulse density of at least 33% over a period of 175 contiguous pulse positions following the receipt of a pulse. An LOS defect shall not be terminated if, at the end of the pulse-position interval, any subintervals of 100 pulse positions contain no pulses of either polarity. 4.1.6.2 STS-1 LOS Definition Detection and recovery of digital LOS defects in STS-1 mode is defined in ANSI T1.231 (chapter 8.1.2.1.1) as follows: An LOS defect occurs upon detection of no transitions on the incoming signal (before descrambling) for time T, where 2.3 ≤ T ≤ 100 µs. The LOS defect is terminated after a time period equal to the greater of 125 µs or 2.5×T’ containing no transition-free interval of length T’, where 2.3 ≤ T’ ≤ 100 µs. Preliminary Data Sheet 25 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.1.6.3 E3 LOS Definition Analog LOS is detected, if the signal level on pins RL1/2 drops below a fixed level ("B") for a certain period. Loss of signal level "B" is defined to be between 15 and 35 dB below normal signal level "A". If the signal exceeds 35 dB for 175 contiguous pulse periods, analog LOS defect is indicated. Analog LOS defect is cleared, if the signal exceeds a threshold of 15 dB below nominal level for 175 contiguous pulse periods (10 ≤ N ≤ 255). See ITU-T G.775 for reference. A B see ITU-T G.775 page 4 0 dB 3 dB Level below Nominal Maximum cable loss Nominal value "transition condition" must be detected 15 dB Tolerance range, "no transition condition" or "transition condition" may be declared "no transition condition" must be detected 35 dB F0101 V1.2 Figure 10 E3 Loss of Signal Definition Preliminary Data Sheet 26 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.1.7 Jitter Tolerance Input Jitter Amplitude The TE3-LIU™ receiver’s tolerance to input jitter complies to and exceeds the relevant international standards. Especially the requirements of Telcordia GR-499-CORE (DS3), ITU-T G.824 (DS3), GR-253-CORE (STS-1) and ITU-T G.823 (E3) are fulfilled and exceeded. Figure 11 and Table 10 show the different input jitter specifications. Low frequency jitter is called "wander", where the defined border between jitter and wander is 10 Hz for DS3/E3 and 100 Hz for STS-1. A1 pass A2 fail A3 F1 F2 F3 Jitter Frequency Figure 11 Jitter Tolerance Principle Table 10 Input Jitter Requirements Reference A1 A2 GR-499-CORE, Category I 5 GR-499-CORE, Category II F4 F5 F6 F0085 A3 F1 F2 F3 0.1 not def. 10 2300 60 × 103 300 × not def. 103 not def. 10 0.3 not def. 10 669 22.3 × 103 300 × not def. 103 not def. GR-253-CORE, Category II 15 1.5 0.15 10 30 300 2× 103 not def. ITU-T G.823 & ETSI TBR24 1.5 0.15 not def. 100 1000 10 × 103 800 × not def. 103 ITU-T G.824 18 µs 5 0.1 not def. 1.2 × 10-5 10 600 [UIPP] Preliminary Data Sheet F4 F5 F6 [Hz] 27 20 × 103 30 × 103 not def. 400 × 103 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 100 10 Jitter Amplitude [UI] pass area 1 fail area 0,1 0,01 0,10 1,00 10,00 100,00 1000,00 10000,00 100000,00 1000000,00 Jitter Frequency [Hz] GR-499-CORE Cat. 1 Figure 12 GR-499-CORE Cat. 2 ITU-T G.823 ITU-T G.824 GR-253-CORE Cat. 2 TE3-LIU TE3-LIU PUCCINI F0104 F0104 Jitter Tolerance GR-499-CORE Jitter Tolerance Requirements (DS3) The input jitter tolerance is defined as the minimum amplitude of sinusodial jitter at a given frequency that when modulating the signal at an equipment input port results in more than 2 errored seconds in a 30-second measurement interval. Requirements on input jitter tolerances are then given in terms of a jitter tolerance mask, which represents the minimum acceptable jitter tolerances for a specified range of jitter frequencies. There are two different jitter tolerance masks defined for Category I (SONET interfaces) and Category II (non-SONET interfaces) equipment. GR-253-CORE Jitter Tolerance Requirements (STS-1) For Category I interfaces, the same requirements are used as defined in GR-499-CORE. For Category II interfaces that are specified as having reduced jitter tolerance, shall tolerate, as a minimum, input jitter applied according to the mask given in Table 10. 4.1.8 Receive Output Jitter The intrinsic jitter of the receiver output signal RDOP/RDON/RCLK (if no input jitter is applied) is • E3: • DS3: • STS-1: < 0.06 UI < 0.08 UI < 0.10 UI Preliminary Data Sheet 28 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.2 Transmitter The serial bit stream is then processed by the transmitter which has the following functions: • generation of AMI, B3ZS (DS3/STS-1) or HDB3 (E3) coded signals • all-ones generation (alarm indication signal) 4.2.1 Transmit Line Interface The received data stream on pins XDIP (single rail data) or XDIP/XDIN (dual rail data) is converted into a ternary signal which is output on pins XL1 and XL2. In E3 mode the HDB3 and AMI line code are supported, in DS3/STS-1 mode the B3ZS and AMI is supported. R1 t1 : t2 75 Ω XL1 TE3-LIUTM CP R1 XL2 F0079 Figure 13 Transmitter Configuration Table 11 External Component Values for Transmitter Parameter Characteristic Line Impedance [Ω] DS3 STS-1 E3 75 37.51) R1 (± 1 %) [Ω] Cp [pF] 372) t2 : t1 1:1 1) This value refers to an ideal transformer without any parasitics. Any transformer resistance or other parasitic resistances have to be taken into account when calculating the final value for the output serial resistors. 2) This value includes all parasitic capacitances on the secondary side of the transformer. The external components are the same for DS3, STS-1 and E3 applications. Transmit return loss requirements for E3 defined in ETS 300 166 are fulfilled. Pulse mask Preliminary Data Sheet 29 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY requirements according to ANSI T1.102 (at cross connect point, up to 450 ft.) are fulfilled. Note: An additional capacitor on the primary or secondary side of the transformer may be required in some applications to improve the pulse mask, if the parasitic capacitances of the PCB are very small. Table 12 E3 Transmit Return Loss Return Loss 1) Frequency Range from [kHz] to [kHz] [dB] 860 1720 6 51550 8 1720 1) 15 measured with an unframed PRBS 2 -1 pattern 4.2.2 Transmit Clock System The supplied transmit clock XCLK is duty-cycle corrected by an internal PLL circuit to provide a 50% clock signal to the internal line driver unit. The pulse shaper working frequency is fourfold of the XCLK frequency. If the transmit clock XCLK is failing, an all-zero signal is generated automatically. If AIS insertion is selected, the output signal is referenced to REFCLK. XAIS fnom REFCLK XTAL1 XTAL2 XCLK XDIP XDIN Transmit PLL fnom : 3 JATT Jitter Attenuator PLL disable testmode XAIS Encoder AIS Insertion fnom fnom x 4 fnom Jitter Attenuator Buffer Pulse Shaper Line Driver XL1 XL2 F0232 Figure 14 Transmit Clock System Preliminary Data Sheet 30 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.2.3 Jitter Attenuation Jitter is reduced in transmit direction, if the jitter attenuator is activated (JATT = 1). The JATT control signal enables/disables the jitter attenuation PLL and activates/bypasses the buffer. The jitter attenuator consists of a buffer and a PLL. The jitter attenuation PLL delivers a "jitter free" clock (nominal frequency divided by 3, see Table 13) to the transmit PLL which generates the buffer read clock. The jitter attenuation PLL uses a pullable crystal and supports a tuning range of ± 150 ppm. The jitter attenuator uses a 64-bit dual rail buffer and fulfills the requirements of GR-499CORE and GR-253-CORE as shown in Figure 15. This covers the requirements of ITUT G.751, G.752 and G.755 as well. To avoid the need for a high frequency crystal, the reference clock for the jitter attenuation PLL is only one third of the nominal frequency. A detailed block diagram of the transmit clocking is given in Figure 14. Table 13 Jitter Attenuation PLL Operation Frequencies Jitter Attenuation PLL Input Frequency Jitter Attenuation PLL Output Frequency Crystal Frequency DS3 44.736 MHz 14.912 MHz 14.912 MHz STS-1 51.840 MHz 17.280 MHz 17.280 MHz E3 34.368 MHz 11.456 MHz 11.456 MHz Operation mode Further requirements for the external crystal are found in Table 21 on page 45. Preliminary Data Sheet 31 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 20 dB/decade Jitter Gain 0.5 dB 0.1 dB ITU-T G.755 & GR-499-CORE ITU-T G.751 - 20 dB TE3-LIU ITU-T G.752 - 40 dB GR-253-CORE 10 40 100 300 1000 Jitter Frequency Figure 15 4.2.4 10000 100000 15000 F0141 Jitter Attenuation Characteristic Intrinsic Jitter The TE3-LIU™ transmit PLL generates an output jitter which fulfills the requirements as specified in Table 14 below. Table 14 Transmit Output Jitter Specification Measurement Filter Bandwidth Output Jitter1) Lower Cutoff Upper Cutoff GR-499-CORE (DS3) 10 Hz 300 kHz ANSI T1.404 (DS3) 10 Hz 400 kHz < 0.5 UIPP 30 kHz 400 kHz < 0.05 UIPP 12 kHz 400 kHz GR-253-CORE (STS-1) ETSI TBR24 (E3) 1) < 1.0 UIPP < 0.3 UIrms < 1.0 UIPP < 0.3 UIrms 100 Hz 800 kHz < 0.4 UIPP 10 kHz 800 kHz < 0.15 UIPP Measured with maximum input jitter applied (see Figure 12). Preliminary Data Sheet 32 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.2.5 Pulse Shaper The internal pulse shaper generates the required pulse shapes for E3, DS3 and STS-1 signals according to ANSI T1.102, T1.404, Telcordia GR-499-CORE and ITU-T G.703). The specific pulse mask is fulfilled at the crossconnect point at a distance of 0 to 450 ft. to the transmitter (DS3 requirement). The maximum line length between a TE3-LIU™ transmitter and TE3-LIU™ receiver is 1100 ft. for a coaxial cable of AT&T type 728A, 734A or 734D. 4.2.6 Transmit Line Coding 4.2.6.1 AMI Code The AMI code is defined as a dual rail data signal, where the combinations 00 ("0"), 10 ("+1") and 01 ("-1") are valid. Additionally no subsequent "+1" or "-1" bits are allowed (bipolar violations). A dual rail data stream is passed transparently, even if it contains bipolar violations. A single rail data stream is encoded to a correct AMI coded bipolar data stream without zero code suppression. 4.2.6.2 B3ZS Code In the B3ZS line code each block of three consecutive zeros is replaced by either of two replacements codes which are B0V and 00V, where B represents a pulse which applies to the bipolar rule ("+1" or "-1") and V represents a bipolar violation (two consecutive "+1" or "-1" bits). The replacement code is chosen in a way that there is an odd number of valid B pulses between consecutive V pulses to avoid the introduction of a DC component into the analog signal. The transmit line encoder detects three-zeros pattern sequences and changes them to the appropriate replacement pattern. Although B3ZS coding is normally used with single rail NRZ data, the transmit line encoder accepts either dual rail or single rail data. Bipolar violations in an incoming dual rail data stream are converted to valid data pulses. 4.2.6.3 HDB3 Code In the HDB3 line code each block of four consecutive zeros is replaced by either of two replacements codes which are B00V and 000V, where B represents a pulse which applies to the bipolar rule ("+1" or "-1") and V represents a bipolar violation (two consecutive "+1" or "-1" bits). The replacement code is chosen in a way that there is an odd number of valid B pulses between consecutive V pulses to avoid the introduction of a DC component into the analog signal. The transmit line encoder detects three-zeros pattern sequences and changes them to the appropriate replacement pattern. Preliminary Data Sheet 33 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY Although HDB3 coding is normally used with single rail NRZ data, the transmit line encoder accepts either dual rail or single rail data. Bipolar violations in an incoming dual rail data stream are converted to valid data pulses. 4.2.7 AIS Insertion An unframed all-ones signal can be inserted into the transmitted data stream. To fulfill the required accuracy, a reference clock of ± 20 ppm is needed on pin REFCLK. If local loop configuration and AIS insertion is selected together, the AIS signal is looped back to RDOP/RDON. 4.3 Framer Interface The interface to the receive framer is realized by RDOP, RDON and RCLK. Data at RDOP/N are clocked off with either the rising (RPE=1) or falling edge (RPE=0) of RCLK. Alternatively a single rail signal can be selected to be output on pin RDOP (DR/SR=0). Bipolar violation indications are output on pin RDON/BPV in this case. Data from the framer interface are sampled at XDIP and XDIN on the active edge of the XCLK. The active edge can be the rising (XPE=1) or falling edge (XPE=0) of XCLK. Alternatively a single rail signal can be used on pin XDIP (DR/SR=0). Note: Selection of dual rail/single rail mode is common to receive and transmit direction. See Figure 24 on page 47 and Figure 25 on page 48 for details. Preliminary Data Sheet 34 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.4 Maintenance Functions 4.4.1 Remote Loop In the remote loopback mode the clock and data recovered from the line inputs RL1/2 are routed back to the line outputs XL1/2. As in normal mode they are also processed by the synchronizer and then sent to the framer interface. Data passes the decoder and encoder circuit. The recovered receive clock is used to drive the transmit pulse shaper. RL1 RL2 Noise & Crosstalk Filter Equalizer Clock & Data Recovery RDON RDOP RCLK Decoder Remote Loop XL1 XL2 Line Driver Pulse Shaper Jitter Attenuator Encoder XDIN XDIP XCLK F0083 Figure 16 Remote Loop Signal Flow Note: If remote loop and local loop are selected simultaneously, the device will be set into power down mode. Note: The jitter attenuator can be switched off optionally. Preliminary Data Sheet 35 2001-12-05 PEF 3452 TE3-LIU V1.3 Interface Description PRELIMINARY 4.4.2 Local Loop The local loopback mode disconnects the receive lines RL1/2 from the receiver. Instead of the signals coming from the line data provided by system interface is routed through the analog receiver back to the framer interface. The transmit bit stream is sent to the transmit line unchanged. If XAIS=1 is selected, the transmit data stream is replaced by an all-ones signal and looped back. RL1 RL2 Noise & Crosstalk Filter Equalizer Clock & Data Recovery Decoder RDON RDOP RCLK Line Driver Pulse Shaper Jitter Attenuator Encoder XDIN XDIP XCLK Local Loop XL1 XL2 F0084 Figure 17 Local Loop Signal Flow Note: If remote loop and local loop are selected simultaneously, the device will be set into power down mode. Note: The jitter attenuator can be switched off optionally. Preliminary Data Sheet 36 2001-12-05 PEF 3452 TE3-LIU V1.3 Operational Description PRELIMINARY 5 Operational Description 5.1 Operational Overview The TE3-LIU™ can be operated in three principle modes, which are either E3, DS3 or STS-1 mode. This basic operation mode selection has to be stable before the reset signal goes inactive. The device is programmable by pin selection. Direct connection to a microprocessor data bus is possible by using the chip select pin (CS) as a write strobe. 5.2 Device Reset The TE3-LIU™ is forced to the reset state if a low signal is input on pin RES (for minimum period see page 42). During reset, all output stages are in a high impedance state, all internal flip-flops are reset. The basic device mode (DS3, STS-1 or E3, jitter attenuation) has to be selected during reset to enable the internal PLLs to adjust. After reset all control input values are cleared. The default control values (driven by internal pullups) are activated after CS = low is applied for the first time after reset. 5.3 Device Power Down The TE3-LIU™ can be set into power down state to reduce power consumption, if not active. Power down mode is selected by setting RL=LL=1. Receive and transmit circuits are switched off including internal PLLs and transmit line driver. Recovery from power down mode is achieved by clearing either of RL or LL (RL = 0 and/or LL = 0). After recovery from power down, the internal PLLs need to stabilize again. REFCLK must be active to recover from power down mode. Internal pullup resistors are not switched off during power down to prevent open input lines from floating. Note: If switching directly from local loop to remote loop or vice versa, make sure that there is no signal overlap, which would set the device into power down mode unintentionally. 5.4 Transmit Line Inactive If the transmitter is not used, it can be switched into inactive mode by setting XLT=1. During inactive state the common mode voltage of 1.5 V is output on XL1 and XL2. The transmit PLL is not stopped and output can be enabled again by XLT=0 without wait time. Preliminary Data Sheet 37 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6 Electrical Characteristics 6.1 Absolute Maximum Ratings Table 15 Maximum Ratings Parameter Symbol Ambient temperature under bias TA Tstg VDD VDDR VDDX VSO – 40 to 85 °C – 65 to 150 °C – 0.4 to 4.5 V – 0.4 to 4.5 V – 0.4 to 4.5 V – 0.4 to 4.5 V Voltage on any input pin with respect to ground VSI – 0.4 to 5.5 V ESD robustness1) HBM: 1.5 kΩ, 100 pF VESD,HBM 2000 Storage temperature IC supply voltage (digital) IC supply voltage receive (analog) IC supply voltage transmit (analog) Voltage on any output pin with respect to ground 1) Limit Values Unit V According to MIL-Std 883D, method 3015.7 and ESD Ass. Standard EOS/ESD-5.1-1993. Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Preliminary Data Sheet 38 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.2 Table 16 Operating Range Power Supply Range Parameter Symbol Limit Values min. Ambient temperature Supply voltage Digital input voltages Ground TA VDD VDDR VDDX VDDRP VDDXP VID VSS VSSR VSSX VSSRP VSSXP Unit Condition max. -40 85 °C 3.13 3.46 V 3.3 V ± 5% 0 5.25 V 5.0 V + 5% 0 0 V Note: In the operating range, the functions given in the circuit description are fulfilled. All VDD pins have to be connected to the same voltage level, All VSS pins have to be connected to ground level. Note: Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at TA = 25 °C and 3.3V supply voltage. Preliminary Data Sheet 39 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.3 Table 17 DC Characteristics DC Parameters Parameter Symbol Limit Values min. Input low voltage Input high voltage Output low voltage Output high voltage Average power supply current VIL VIH VOL VOH IDD Unit Notes max. – 0.4 0.8 V 2.0 5.25 V 0.45 V 2.4 V 110 (typ.) mA 155 (typ.) Input leakage current Input leakage current Input pullup current IIL11 IIL12 IIPU 2 IOL = + 4 mA1) IOH = – 4 mA 1) typical (DS3, PRBS, JATT enabled, 3.3 V) worst case (STS-1, JATT enabled, AIS, 3.46 V) 1 µA 1 µA 25 µA VIN = VDD2) VIN = VSS2) VIN = VSS µA VIN = VDD 1 mA XL1/2 = VDDX, XLT = 1 1 mA XL1/2 = VSSX, XLT = 1 200 µA XL1/2 = 1.50 V3), XLT = 1 applies to XL1and XL24) 5 (typ.) Input pulldown current IIPU Transmitter leakage current ITL –2 – 25 -5 (typ.) RX 5 (typ.) Ω Differential peak voltage of VX a mark (at XL1/XL2) 2.0 V VDDR+0. 3 V RL1, RL2 kΩ 3) Transmitter output impedance Receiver differential peak voltage of a mark (at RL1/RL2) VR Receiver input impedance ZR Preliminary Data Sheet tbd. 40 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY Table 17 DC Parameters (cont’d) Parameter (cont’d) Symbol Receiver sensitivity SRSH VLOS3 Analog loss of Signal threshold E3 Limit Values min. max. 0 tbd. -35 – 15 Unit Notes dB RL1, RL2 dB 1) applies to all output pins except analog pins XL1/XL2 2) Input leakage currents of pins containing internal pullup devices are measured in a testmode which switches off the pullups. 3) test against common mode voltage, parameter not tested in production 4) parameter not tested in production Preliminary Data Sheet 41 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.4 AC Characteristics 6.4.1 Reset 1 RES 2 DS3/E3 DS3/STS-1 JATT 3 (PLLs tuned) F0095 Figure 18 Reset Timing Table 18 Reset Timing Parameter Values No. Parameter Limit Values 1 RES pulse width low 10 µs 2 DS3/E3, DS3/STS-1, JATT to RES setup time 5 ns 3 PLL startup time min. Unit max. 1000 µs Note: REFCLK must be active during reset. Preliminary Data Sheet 42 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.4.2 Reference Clock 1 2 3 REFCLK 4 5 F0107 Figure 19 Reference Clock Timing Table 19 REFCLK Timing Parameter Values No. Parameter Limit Values 1 REFCLK period E3 29.1 ns REFCLK period DS3 22.4 ns REFCLK period STS-1 19.3 ns min. 2 typ. Unit max. REFCLK high 20 3 REFCLK low 20 4 REFCLK rise time REFCLK fall time 41) ns Clock accuracy 202) ppm 5 80 % 80 % 41) ns 1) not tested in production 2) if DS3-AIS function is not required, 200 ppm is sufficient to guarantee correct receive PLL function Preliminary Data Sheet 43 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.4.3 Jitter Attenuator Reference Clock 1 2 3 XTAL1 4 5 F0164 Figure 20 XTAL Clock Timing • Table 20 No. XTAL Timing Parameter Values Parameter Limit Values min. 1 XTAL1/2 period E3 typ. Unit max. 87.29 ns XTAL1/2 period DS3 67.06 ns XTAL1/2 period STS-1 57.87 ns CL XTAL1 TE3-LIUTM CL XTAL2 DS3: 14.912 MHz STS-1: 17.280 MHz E3: 11.456 MHz F0245 Figure 21 Recommended Crystal Circuit Preliminary Data Sheet 44 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY +200 +150 [ppm] +100 pulling range f - f0 f0 nominal value +50 0 -50 -100 -150 -200 10 15 20 Load Capacitance CLeff [pF] F0259 Figure 22 Crystal Pulling Range Table 21 XTAL Crystal Parameter Values No. Parameter Limit Values 1 Crystal nominal frequency DS3 14.912 MHz Crystal nominal frequency STS-1 17.280 MHz Crystal nominal frequency E3 11.456 MHz min. typ. Unit max. 2 Crystal motional capacitance C1 25 fF 3 Crystal shunt capacitance C0 7 pF 1) 4 Crystal load capacitance CLeff 5 Crystal resonance resistance Rr 6 Internal parasitic load capacitance CLint 1) 15 pF 30 7.5 Ω pF This value includes the capacitance of the external capacitors (CLext) plus all internal (CLint) and external parasitic capacitances (CLpara). The value of the external capacitor has to be chosen depending on the printed circuit board layout. A typical value for CL is 0 to 10 pF, CL should be adapted to the parasitics to achieve a symmetrical pulling range. Note: C Leff = C Lext + CLint + CLpara C Lext = 0.5 x CL Preliminary Data Sheet 45 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.4.4 Microprocessor Control 1 2 CS 3 4 Control Signal F0097 Figure 23 Chip Select Timing Table 22 Chip Select Timing Parameter Values No. Parameter Limit Values min. 1 2 Unit max. 2.5 × TRCLK CS pulse width low E1 73 ns DS3 56 ns STS-1 50 ns 2.5 × TRCLK CS pulse width high E1 73 ns DS3 56 ns STS-1 50 ns 3 Control Signal Setup Time 10 ns 4 Control Signal Hold Time 10 ns Preliminary Data Sheet 46 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.4.5 Transmit Input Timing 1 2 3 XCLK (XPE=0) 6 7 XCLK (XPE=1) data change edge 4 5 XDIP, XDIN F0090 Figure 24 XCLK Input Timing Table 23 XCLK Timing Parameter Values No. Parameter Limit Values min. 1 XCLK period E3 typ. Unit max. 29.1 ns XCLK period DS3 22.4 ns XCLK period STS-1 19.3 ns 2 XCLK high 30 70 3 XCLK low 30 70 4 XDIP, XDIN setup time 2 5 XDIP, XDIN hold time 2 6 XDIP, XDIN, XCLK rise time 11) ns 7 XDIP, XDIN, XCLK fall time 11) ns Clock accuracy 202) ppm 8 1) not tested in production 2) if DS3-AIS function is not required, 200 ppm is sufficient to guarantee correct PLL function Preliminary Data Sheet 47 % % ns ns 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.4.6 Receive Output Timing 1 2 3 RCLK (RPE=0) 5 6 RCLK (RPE=1) 4 RDOP, RDON data change edge F0108 Figure 25 RCLK Output Timing Table 24 RCLK Timing Parameter Values No. Parameter Limit Values min. 1 typ. Unit max. RCLK period E3 29.11) ns RCLK period DS3 22.41) ns RCLK period STS-1 19.31) ns 2 RCLK high 40 50 60 % 3 RCLK low 40 50 60 % 1 22) ns 2 52) ns 2 52) ns 4 RDOP, RDON delay time 5 RDOP, RDON, RCLK rise time 6 0 RDOP, RDON, RCLK fall time 1) applies only while the receiver PLL is locked to a valid signal on RL1/RL2, e.g., not in case of LOS 2) not tested in production Preliminary Data Sheet 48 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.4.7 Pulse Templates 6.4.7.1 Pulse Template E3 17 ns (14.55 + 2.45) 0.1 1.0 0.2 8.65 ns (14.55 – 5.90) 0.2 0.1 V Nominal pulse 14.55 ns 0.5 12.1 ns (14.55 – 2.45) 0.1 0.1 (14.55 + 9.95) 0.2 0.1 0.1 24.5 ns 0 29.1 ns T1818860-92 (14.55 + 14.55) FIGURE 17/G.703 Pulse mask at the 34 368-kbit/s interface Figure 26 E3 Pulse Shape at Transmitter Output Table 25 E3 Pulse Mask1) No. Parameter F0076 Limit Values min. Nominal peak voltage of a mark (pulse) Peak voltage of a space (no pulse) typ. Unit max. 1.0 - 0.1 Nominal pulse width V 0.1 14.55 ns Amplitude ratio of positive to negative pulses2) 0.95 1.05 Pulse width ratio of positive to negative pulses3) 0.95 1.05 1) measured at the output port without transmission line and 75Ω load; bit sequence: 0000000(+1)0000000(-1)0000000(+1)0000000(-1)... 2) at the center of a pulse interval 3) at the nominal half amplitude Preliminary Data Sheet 49 V 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.4.7.2 Pulse Template DS3 1.2 1.0 Normalized Amplitude 0.8 0.6 GR-499-CORE 0.4 0.2 ANSI T1.404 0 -0.2 -1.0 -0.5 0 0.5 1.0 Time [unit intervals] 1.5 F0077 Figure 27 DS3 Pulse Shape at the Cross Connect Point (450 ft.) Table 26 DS3 Pulse Mask (ANSI T1.404, GR-499-CORE)1) Absolute Voltage Level (100 % Value) 1) min. max. 0.36 V 0.85 V bit sequence: 0000000(+1)0000000(-1)0000000(+1)0000000(-1)... Preliminary Data Sheet 50 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY Table 27 DS3 Pulse Mask (ANSI T1.404) Lower Curve Time Equation T ≤ -0.36 -0.03 -0.36 ≤ T ≤ +0.36 π T 0.5 1 + sin --- æ 1 + -----------ö – 0.03 2è 0.18ø T ≥ +0.36 -0.03 Upper Curve Time Equation T ≤ -0.68 +0.03 -0.68 ≤ T ≤ +0.36 π T -ö + 0.03 0.5 1 + sin --- æ 1 + ---------2è 0.34ø T ≥ +0.36 Table 28 0.05 + 0.407 × e -1.84 [ T – 0.36 ] DS3 Pulse Mask (GR-499-CORE) Lower Curve Time Equation -0.85 ≤ T ≤ -0.36 -0.03 -0.36 ≤ T ≤ +0.36 π T 0.5 1 + sin --- æ 1 + -----------ö – 0.03 2è 0.18ø +0.36 ≤ T ≤ +1.4 -0.03 Upper Curve Time Equation -0.85 ≤ T ≤ -0.68 +0.03 -0.68 ≤ T ≤ +0.36 π T -ö + 0.03 0.5 1 + sin --- æ 1 + ---------2è 0.34ø +0.36 ≤ T ≤ +1.4 Preliminary Data Sheet 0.08 + 0.407 × e -1.84 [ T – 0.36 ] 51 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.4.7.3 Pulse Template STS-1 1.2 1.0 Normalized Amplitude 0.8 0.6 0.4 0.2 0 -0.2 -1.0 -0.5 0 0.5 1.0 1.5 Time [unit intervals] F0109 Figure 28 STS-1 Pulse Shape at the Cross Connect Point (450 ft.) Table 29 STS-1 Pulse Mask 1) Signal Power 1) min. max. - 2.7 dBm + 4.7 dBm bit sequence: (+1)0(-1)0(+1)0(-1)... Table 30 STS-1 Pulse Mask (ANSI T1.102) Lower Curve Time Equation -0.85 ≤ T ≤ -0.38 -0.03 -0.38 ≤ T ≤ +0.36 π T 0.5 1 + sin --- æ 1 + -----------ö – 0.03 2è 0.18ø +0.36 ≤ T ≤ +1.4 -0.03 Preliminary Data Sheet 52 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY Upper Curve Time Equation -0.85 ≤ T ≤ -0.68 +0.03 -0.68 ≤ T ≤ +0.26 π T -ö + 0.03 0.5 1 + sin --- æ 1 + ---------2è 0.34ø +0.26 ≤ T ≤ +1.4 Preliminary Data Sheet 0.1 + 0.61 × e -2.4 [ T – 0.26 ] 53 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.5 Capacitances Table 31 Pin Capacitances Parameter Input Symbol capacitance1) Limit Values min. max. Unit Notes CIN 5 10 pF Output capacitance1) COUT 8 15 pF all except XL1, XL2 capacitance1) COUT 8 20 pF XL1, XL2 Output 1) not tested in production 6.6 Package Characteristics F0051 Figure 29 Thermal Behavior of Package Table 32 Package Characteristic Values Parameter Symbol Limit Values Thermal Resistance1) Junction to Ambient RthJA 63 Thermal Resistance2) Junction to Case RthJC 15 Junction Temperature Rj min. 1) RthJA = (T junction - Tambient)/Power not tested in production 2) RthJC = (Tjunction - Tcase)/Power not tested in production Preliminary Data Sheet typ. max. K/W single layer PCB, 30%/11 µm K/W metallization, 1W, no convection 125 54 Unit Notes °C 2001-12-05 PEF 3452 TE3-LIU V1.3 Electrical Characteristics PRELIMINARY 6.7 Test Configuration AC Test Level External Load Device under Test VT Drive Levels CL Timing Test Points VIH F0206 VIL Figure 30 Input/Output Waveforms for AC Testing Table 33 AC Test Conditions Parameter Symbol Test Values Unit Notes Load Capacitance 1 CL1 50 pF digital outputs except RDOP, RDON, RCLK Load Capacitance 2 CL2 15 pF digital outputs RDOP, RDON and RCLK Load Capacitance 3 CL3 50 pF analog line output XL1, XL2 Input Voltage high VIH 2.4 V all except RL1, RL2 Input Voltage low VIL 0.4 V all except RL1, RL2 Test Voltage VT VDD/2 V all except XL1, XL2 Output Test Load RL 75 ± 5% Ω XL1, XL2 Rise Times TR 10 - 90 % Fall Times TF 90 - 10 % not tested in production Note: Typical characteristics are mean values expected over the production spread. If not specified otherwise, typical characteristics apply at TA = 25 °C and VDD = 3.3V. Note: Capacitance values include all parasitics caused by board layout, transformer etc. Preliminary Data Sheet 55 2001-12-05 PEF 3452 TE3-LIU V1.3 Package Outlines PRELIMINARY 7 Package Outlines GPM05622 P-MQFP-44-2 (Plastic Metric Quad Flat Package) Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book “Package Information”. SMD = Surface Mounted Device Preliminary Data Sheet 56 Dimensions in mm 2001-12-05 PEF 3452 TE3-LIU V1.3 Appendix PRELIMINARY 8 Appendix 8.1 Cable Characteristics Cable characteristics are defined in ANSI T1.102 as shown below. Office Cable Loss (450 ft. coaxial) 14 12 Insertion Loss [dB] 10 8 6 4 2 0 1 10 100 Frequency [MHz] Office Cable Insertion Phase (450 ft. coaxial) 90 80 Insertion Phase [deg] 70 60 50 40 30 20 10 0 1 10 100 Frequency [MHz] F0105 V1.1 Figure 31 DS3 Cable Characteristics Preliminary Data Sheet 57 2001-12-05 PEF 3452 TE3-LIU V1.3 Appendix PRELIMINARY 8.2 Application Example The following picture shows a typical application circuit (excluding surge protection). Jitter Attenuation Reference CL CL XTAL1/2 VDDRP/VSSRP VDDR/VSSR DS3/STS-1/E3 Receive Line Interface RL1/2 Receive Path RDOP RDON RCLK LOS DS3/STS-1/E3 Framer/Mapper Receive Interface XDIP XDIN XCLK DS3/STS-1/E3 Framer/Mapper Transmit Interface TE3-LIUTM V1.3 DS3/STS-1/E3 Transmit Line Interface Transmit Path XL1/2 VDDXP/VSSXP VDDX/VSSX VDD/VSS REFCLK Reference Clock Figure 32 TEST N.C. Control Interface F0233 Application Circuit Preliminary Data Sheet 58 2001-12-05 PEF 3452 TE3-LIU V1.3 PRELIMINARY Index Loss of Signal A M AIS 11 Ambient temperature AMI 24 ANSI 10, 57 Applications 3, 5 MIL-Std 883D 38 Operating Range Output Jitter 28 39 P Package 54, 56 PLL 42 P-MQFP-44-2 56 Power Down 37 Power Supply 14, 38 Pulse Shaper 33 Pulse Template DS3 50 Pulse Template E3 49 Pulse Template STS-1 52 24 31 C Cable 57 Clock 8, 10 Clock and Data Recovery crystal 31, 44 24 E Edge Selection 12 ESD 38 External Component Values R RCLK 48 Receive Clock 8 Receive Data 8 Receive Line Interface 8, 23 Receive Return Loss 23 Receiver 21 Reference Clock 10, 43 Remote Loop 12, 35 Reset 11, 37, 42, 46 21, 22 H HDB3 38 O B B3ZS buffer 13 25 I Input Jitter 27 international standards intrinsic jitter 24 ITU-T 10 10 S Supply voltage J T JATT 31 Jitter Attenuation 10, 13, 31, 32 Jitter Tolerance 27, 28 TAP Controller 15 Temperature 3 Thermal Behaviour 54 Transmit Clock 9 Transmit Data 9 Transmit Line 37 Transmit Line Interface 9, 29 L Line Coding 11, 24 Line Monitoring 12, 22 Local Loop 12, 36 Preliminary Data Sheet 39 59 2001-12-05 PEF 3452 TE3-LIU V1.3 PRELIMINARY W wander 27 X XCLK XTAL 47 44 Preliminary Data Sheet 60 2001-12-05 Infineon goes for Business Excellence “Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results. Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction.” Dr. Ulrich Schumacher http://www.infineon.com Published by Infineon Technologies AG
PEF3452HV1.3 价格&库存

很抱歉,暂时无法提供与“PEF3452HV1.3”相匹配的价格&库存,您可以联系我们找货

免费人工找货