eGaN® FET DATASHEET
EPC2103
EPC2103 – Enhancement-Mode GaN Power
Transistor Half-Bridge
VDS , 80 V
RDS(on) , 5.5 mΩ
ID , 30 A
EFFICIENT POWER CONVERSION
HAL
Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very
low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG
and zero QRR. The end result is a device that can handle tasks where very high switching frequency,
and low on-time are beneficial as well as those where on-state losses dominate.
Maximum Ratings
DEVICE
PARAMETER
VDS
Q1
&
Q2
ID
VALUE
Drain-to-Source Voltage (Continuous)
80
Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)
96
Continuous (TA = 25˚C, RθJA = 13°C/W)
30
Pulsed (25°C, TPULSE = 300 µs)
195
UNIT
V
A
Gate-to-Source Voltage
6
Gate-to-Source Voltage
-4
TJ
Operating Temperature
–40 to 150
TSTG
Storage Temperature
–40 to 150
VGS
V
Applications
• High Frequency DC-DC
• Motor Drive
°C
Benefits
• Ultra High Efficiency
Thermal Characteristics
PARAMETER
EPC2103 eGaN® ICs are supplied only in
passivated die form with solder bumps
Die Size: 6.05 mm x 2.3 mm
TYP
RθJC
Thermal Resistance, Junction-to-Case
0.3
RθJB
Thermal Resistance, Junction-to-Board
2.2
RθJA
Thermal Resistance, Junction-to-Ambient (Note 1)
42
UNIT
°C/W
• High Frequency Operation
• High Density Footprint
Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.
See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details
Static Characteristics (TJ = 25°C unless otherwise stated)
DEVICE
Q1 & Q2
PARAMETER
TEST CONDITIONS
MIN
80
BVDSS
Drain-to-Source Voltage
VGS = 0 V, ID = 0.5 mA
IDSS
Drain-Source Leakage
IGSS
TYP
MAX
UNIT
V
VDS = 64 V, VGS = 0 V
0.007
0.4
mA
Gate-to-Source Forward Leakage
VGS = 5 V
0.013
6.5
mA
Gate-to-Source Reverse Leakage
VGS = -4 V
0.007
0.4
mA
1.3
2.5
V
5.5
mΩ
VGS(TH)
Gate Threshold Voltage
RDS(on)
Drain-Source On Resistance
VGS = 5 V, ID = 20 A
4
VSD
Source-Drain Forward Voltage
IS = 0.5 A, VGS = 0 V
1.8
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
VDS = VGS, ID = 7 mA
0.8
V
| 1
eGaN® FET DATASHEET
EPC2103
Dynamic Characteristics (TJ = 25°C unless otherwise stated)
DEVICE
Q1
Q2
PARAMETER
CISS
Input Capacitance
CRSS
Reverse Transfer Capacitance
COSS
Output Capacitance
COSS(ER)
Effective Output Capacitance, Energy Related (Note 2)
COSS(TR)
Effective Output Capacitance, Time Related (Note 3)
QG
Total Gate Charge
QGS
Gate-to-Source Charge
QGD
Gate-to-Drain Charge
QG(TH)
Gate Charge at Threshold
QOSS
Output Charge
QRR
Source-Drain Recovery Charge
CISS
Input Capacitance
CRSS
Reverse Transfer Capacitance
COSS
Output Capacitance
COSS(ER)
Effective Output Capacitance, Energy Related (Note 2)
COSS(TR)
Effective Output Capacitance, Time Related (Note 3)
QG
Total Gate Charge
QGS
Gate-to-Source Charge
QGD
Gate-to-Drain Charge
QG(TH)
Gate Charge at Threshold
QOSS
Output Charge
QRR
Source-Drain Recovery Charge
TEST CONDITIONS
VDS = 40 V, VGS = 0 V
MIN
TYP
MAX
730
880
7
445
VDS = 0 to 40 V, VGS = 0 V
VDS = 40 V, VGS = 5 V, ID = 20 A
UNIT
670
pF
573
733
6.5
8
2.2
VDS = 40 V, ID = 20 A
1.1
nC
1.5
VDS = 40 V, VGS = 0 V
30
45
0
730
VDS = 40 V, VGS = 0 V
7
525
VDS = 0 to 40 V, VGS = 0 V
VDS = 40 V, VGS = 5 V, ID = 20 A
880
790
pF
668
855
6.5
8
2.2
VDS = 40 V, ID = 20 A
1.1
nC
1.5
VDS = 40 V, VGS = 0 V
34
51
0
Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS.
Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 2
eGaN® FET DATASHEET
EPC2103
Figure 1 (Q1 & Q2): Typical Output Characteristics at 25°C
Figure 2 (Q1 & Q2): Transfer Characteristics
VGS = 5 V
VGS = 4 V
VGS = 3 V
VGS = 2 V
100
50
0
VDS = 3 V
100
50
0
0.5
1.0
1.5
2.0
VDS – Drain-to-Source Voltage (V)
2.5
0
0.5
3.0
Figure 3 (Q1 & Q2): RDS(on) vs. VGS for Various Drain Currents
1.5
2.0
2.5
3.0
3.5
VGS – Gate-to-Source Voltage (V)
4.0
4.5
5.0
16
RDS(on) – Drain-to-Source Resistance (mΩ)
RDS(on) – Drain-to-Source Resistance (mΩ)
1.0
Figure 4 (Q1 & Q2): RDS(on) vs. VGS for Various Temperatures
16
ID = 10 A
ID = 20 A
ID = 30 A
ID = 40 A
12
8
4
0
25˚C
125˚C
150
ID – Drain Current (A)
ID – Drain Current (A)
150
2.5
3.0
3.5
4.0
4.5
25˚C
125˚C
12
ID = 20 A
8
4
0
5.0
VGS – Gate-to-Source Voltage (V)
2.5
3.0
3.5
4.0
VGS – Gate-to-Source Voltage (V)
4.5
5.0
Figure 5b (Q1): Capacitance (Log Scale)
Figure 5a (Q1): Capacitance (Linear Scale)
2000
1000
Capacitance (pF)
Capacitance (pF)
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
1500
1000
100
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
10
500
0
0
20
40
60
80
VDS – Drain-to-Source Voltage (V)
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
1
0
20
40
60
80
VDS – Drain-to-Source Voltage (V)
| 3
eGaN® FET DATASHEET
EPC2103
Figure 5c (Q2): Capacitance (Linear Scale)
Figure 5d (Q2): Capacitance (Log Scale)
2000
1000
Capacitance (pF)
Capacitance (pF)
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
1500
1000
100
10
500
0
20
40
60
1
80
0
20
40
VDS – Drain-to-Source Voltage (V)
80
Figure
Output
Charge
COSS Stored Energy
Figure 6a
6a:(Q1):
Output
Charge
and Cand
OSS Stored Energy
Figure
Output
Charge
COSS Stored Energy
Figure 6b
6a:(Q2):
Output
Charge
and Cand
OSS Stored Energy
40
1.6
50
2.0
40
1.6
30
1.2
30
1.2
20
0.8
10
0.4
20
0.8
10
0
QOSS – Output Charge (nC)
60
EOSS – COSS Stored Energy (μJ)
2.0
50
QOSS – Output Charge (nC)
60
VDS – Drain-to-Source Voltage (V)
0.4
0
20
40
60
80
0
0.0
0
20
40
60
2.4
80
0.0
VDS – Drain-to-Source Voltage (V)
VDS – Drain-to-Source Voltage (V)
Figure 8 (Q1 & Q2): Reverse Drain-Source Characteristics
Figure 7 (Q1 & Q2): Gate Charge
ID = 20 A
VDS = 40 V
4
ISD – Source-to-Drain Current (A)
VGS – Gate-to-Source Voltage (V)
5
3
2
1
0
0
2
4
QG – Gate Charge (nC)
6
8
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
25˚C
125˚C
150
VGSDS = 03 V
100
50
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VSD – Source-to-Drain Voltage (V)
4.0
4.5
5.0
| 4
EOSS – COSS Stored Energy (μJ)
0
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
eGaN® FET DATASHEET
EPC2103
Figure 9 (Q1 & Q2):
Normalized On-State Resistance vs. Temperature
Figure 10 (Q1 & Q2):
Normalized Threshold Voltage vs. Temperature
1.400
1.300
Normalized Threshold Voltage
1.8
ID = 20 A
VGS = 5 V
1.6
1.4
1.2
1.0
0.8
1.200
ID = 7 mA
1.100
1.000
0.900
0.800
0.700
0
25
50
75
100
TJ – Junction Temperature (°C)
Figure 11a
Transient Thermal
Response Curves
125
0.600
150
0
25
50
75
100
TJ – Junction Temperature (°C)
125
150
(Q1 & Q2) Junction-to-Board
ZθJB, Normalized Thermal Impedance
Normalized On-State Resistance RDS(on)
2.0
1 Duty Cycle:
0.5
0.2
0.1
0.1
0.05
PDM
0.02
t1
0.01 0.01
Notes:
Single
Pulse
Duty Factor:
D=
t1/t2
Peak TJ = PDM x ZθJB x RθJB + TB
Single Pulse
0.001
10-5
t2
10-4
10-3
10-2
10-1
1
101
tp, Rectangular Pulse Duration, seconds
(Q1 & Q2) Junction-to-Case
ZθJC, Normalized Thermal Impedance
Figure 11b
Transient Thermal
Response Curves
1 Duty Cycle:
0.5
0.2
0.1
0.1
0.05
PDM
0.02
t1
0.01 0.01
Notes:
Duty Factor: D = t1/t2
Peak TJ = PDM x ZθJC x RθJC + TC
Single Pulse
0.001
10-6
10-5
10-4
10-3
10-2
10-1
1
tp, Rectangular Pulse Duration, seconds
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 5
eGaN® FET DATASHEET
EPC2103
Figure 12 (Q1 & Q2): Safe Operating Area
Figure 13: Typical Application Circuit
1000
I D – Drain Current (A)
eGaNIC
Gate driver/
controller
100
VIN
VB
10
0.1
0.1
1
GR1
VS
Pulse Width
1 ms
250 µs
100 µs
1
Gate 1
HO
Limited by RDS(on)
VCC
GND
VIN
+
Q1
VSW
Gate 2
LO
_
VOUT
+
RLoad
Q2
PGND
_
10
100
VDS – Drain-Source Voltage (V)
TJ = Max Rated, TC = +25°C, Single Pulse
TAPE AND REEL CONFIGURATION
e
8 mm pitch, 12 mm wide tape on 7” reel
d
7” inch reel
g
f
Loaded Tape Feed Direction
Gate solder bump
is under this
corner
a b c
Die
orientation
dot
YYYY
ZZZZ
2103
h
DIM
EPC2103 (Note 1)
a
b
c (Note 2)
d
e
f (Note 2)
g
h
Dimension (mm)
Target MIN MAX
12.00 11.90 12.30
1.75
1.65 1.85
5.50
5.45 5.55
4.00
3.90 4.10
8.00
7.90 8.10
2.00
1.95 2.05
1.50
1.50 1.60
1.50
1.50 1.75
Die is placed into pocket
solder bump side down
(face side down)
Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/
JEDEC industry standard.
Note 2: Pocket position is relative to the sprocket hole measured as
true position of the pocket, not the pocket hole.
DIE MARKINGS
2103
YYYY
ZZZZ
Die orientation dot
Part
Number
EPC2103
Laser Markings
Part #
Marking Line 1
Lot_Date Code
Marking Line 2
Lot_Date Code
Marking Line 3
2103
YYYY
ZZZZ
Gate bumps are along this edge of the die
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 6
eGaN® FET DATASHEET
EPC2103
DIE OUTLINE
Solder Bump View
A
10
15
20
25
30
35
40
45
50
55
60
65
70
75
4
9
14
19
24
29
34
39
44
49
54
59
64
69
74
3
8
13
18
23
28
33
38
43
48
53
58
63
68
73
2
7
12
17
22
27
32
37
42
47
52
57
62
67
72
1
6
11
16
21
26
31
36
41
46
51
56
61
66
71
e
e
Nominal
MAX
A
B
c
d
e
f
6020
2270
400
450
210
187
6050
2300
400
450
225
208
6080
2330
400
450
240
229
Pad 2 is Gate 1 (high side); Pad 3 is HS Gate Return;
Pad 4 is G2;
Pads 1, 11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 51,
52, 61, 62, 71, 72 are VIN ;
f
c
MIN
B
d
5
DIM
Side View
(785)
160+/−16
(625)
Pads 5, 14, 15, 24, 25, 34, 35, 43, 44, 45, 53, 54, 55,
63, 64, 65, 73, 74, 75 Ground;
Seating plane
Pads 6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 26, 27, 28, 29,
30, 36, 37, 38, 39, 40, 46, 47, 48, 49, 50, 56, 57, 58,
59, 60, 66, 67, 68, 69, 70 are Switch Node
RECOMMENDED LAND PATTERN
(measurements in µm)
6050
6
11
16
21
26
31
36
41
46
51
56
61
66
71
2
7
12
17
22
27
32
37
42
47
52
57
62
67
72
3
8
13
18
23
28
33
38
43
48
53
58
63
68
73
4
9
14
19
24
29
34
39
44
49
54
59
64
69
74
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
The land pattern is solder mask defined.
Suggest SMD Pads at 200 +20/–10 µm.
190 µm minimum.
2300
450
1
400
RECOMMENDED STENCIL DRAWING
(measurements in µm)
6050
Recommended stencil should be 4 mil (100 µm)
thick, must be laser cut, openings per drawing.
Intended for use with SAC305 Type 4 solder,
reference 88.5% metals content.
2300
275
450
225
Additional assembly resources available at:
https://epc-co.com/epc/DesignSupport/
AssemblyBasics.aspx
400
Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
eGaN® is a registered trademark of Efficient Power Conversion Corporation.
EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
Information subject to
change without notice.
Revised June, 2020
| 7