eGaN® FET DATASHEET
EPC2104
EPC2104 – Enhancement-Mode GaN Power
Transistor Half-Bridge
VDS , 100 V
RDS(on) , 6.8 mΩ
ID , 30 A
EFFICIENT POWER CONVERSION
HAL
Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very
low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG
and zero QRR. The end result is a device that can handle tasks where very high switching frequency,
and low on-time are beneficial as well as those where on-state losses dominate.
Maximum Ratings
DEVICE
PARAMETER
VDS
Q1
&
Q2
ID
VGS
VALUE
Drain-to-Source Voltage (Continuous)
100
Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)
120
Continuous (TA = 25°C, RθJA = 10°C/W)
30
Pulsed (25°C, TPULSE = 300 µs)
180
Gate-to-Source Voltage
UNIT
V
A
6
V
Gate-to-Source Voltage
-4
TJ
Operating Temperature
–40 to 150
TSTG
Storage Temperature
–40 to 150
EPC2104 eGaN® ICs are supplied only in
passivated die form with solder bumps
Die Size: 6.05 mm x 2.3 mm
Applications
• High Frequency DC-DC
• Motor Drive
°C
Benefits
• Ultra High Efficiency
Thermal Characteristics
PARAMETER
Q1
&
Q2
• High Frequency Operation
TYP
RθJC
Thermal Resistance, Junction-to-Case
0.3
RθJB
Thermal Resistance, Junction-to-Board
2.2
RθJA
Thermal Resistance, Junction-to-Ambient (Note 1)
42
UNIT
• High Density Footprint
°C/W
Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.
See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details
Static Characteristics (TJ = 25°C unless otherwise stated)
DEVICE
Q1
&
Q2
TEST CONDITIONS
MIN
BVDSS
Drain-to-Source Voltage
PARAMETER
VGS = 0 V, ID = 0.5 mA
100
IDSS
Drain-Source Leakage
VDS = 80 V, VGS = 0 V
0.006
0.4
mA
Gate-to-Source Forward Leakage
VGS = 5 V
0.012
5.5
mA
Gate-to-Source Reverse Leakage
VGS = -4 V
0.006
0.4
mA
1.3
2.5
V
6.8
mΩ
IGSS
TYP
Gate Threshold Voltage
VDS = VGS, ID = 6 mA
RDS(on)
Drain-Source On Resistance
VGS = 5 V, ID = 20 A
5
VSD
Source-Drain Forward Voltage
IS = 0.5 A, VGS = 0 V
1.9
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
UNIT
V
VGS(TH)
0.8
MAX
V
| 1
eGaN® FET DATASHEET
EPC2104
Dynamic Characteristics (TJ = 25°C unless otherwise stated)
DEVICE
PARAMETER
Q1
Q2
TEST CONDITIONS
CISS
Input Capacitance
CRSS
Reverse Transfer Capacitance
COSS
Output Capacitance
COSS(ER)
Effective Output Capacitance, Energy Related (Note 2)
COSS(TR)
Effective Output Capacitance, Time Related (Note 3)
QG
Total Gate Charge
QGS
Gate-to-Source Charge
QGD
Gate-to-Drain Charge
QG(TH)
Gate Charge at Threshold
QOSS
Output Charge
QRR
Source-Drain Recovery Charge
CISS
Input Capacitance
CRSS
Reverse Transfer Capacitance
COSS
Output Capacitance
COSS(ER)
Effective Output Capacitance, Energy Related (Note 2)
COSS(TR)
Effective Output Capacitance, Time Related (Note 3)
QG
Total Gate Charge
QGS
Gate-to-Source Charge
QGD
Gate-to-Drain Charge
QG(TH)
Gate Charge at Threshold
QOSS
Output Charge
QRR
Source-Drain Recovery Charge
MIN
VDS = 50 V, VGS = 0 V
TYP
MAX
730
880
UNIT
5
430
pF
645
545
VDS = 0 to 50 V, VGS = 0 V
699
VDS = 50 V, VGS = 5 V, ID = 20 A
6.8
8.7
2.3
VDS = 50 V, ID = 20 A
1.4
nC
1.6
VDS = 50 V, VGS = 0 V
35
53
0
730
VDS = 50 V, VGS = 0 V
880
5
500
pF
750
631
VDS = 0 to 50 V, VGS = 0 V
812
VDS = 50 V, VGS = 5 V, ID = 20 A
6.8
8.7
2.3
VDS = 50 V, ID = 20 A
1.4
nC
1.6
VDS = 50 V, VGS = 0 V
41
62
0
Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS.
Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.
Figure 1 (Q1 & Q2): Typical Output Characteristics at 25°C
VGS = 5 V
150
25˚C
125˚C
VGS = 4 V
ID – Drain Current (A)
ID – Drain Current (A)
150
Figure 2 (Q1 & Q2): Transfer Characteristics
VGS = 3 V
VGS = 2 V
100
50
0
0
0.5
1.0
1.5
2.0
VDS – Drain-to-Source Voltage (V)
2.5
3.0
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
VDS = 3 V
100
50
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VGS – Gate-to-Source Voltage (V)
4.0
4.5
5.0
| 2
eGaN® FET DATASHEET
EPC2104
Figure 4 (Q1 & Q2): RDS(on) vs. VGS for Various Temperatures
Figure 3 (Q1 & Q2): RDS(on) vs. VGS for Various Drain Currents
20
RDS(on) – Drain-to-Source Resistance (mΩ)
RDS(on) – Drain-to-Source Resistance (mΩ)
20
ID = 10 A
ID = 20 A
ID = 30 A
ID = 40 A
15
10
5
0
2.5
3.0
3.5
4.0
4.5
ID = 20 A
10
5
0
5.0
25˚C
125˚C
15
2.5
3.0
3.5
Figure 5a (Q1): Capacitance (Linear Scale)
4.0
4.5
VGS – Gate-to-Source Voltage (V)
VGS – Gate-to-Source Voltage (V)
5.0
Figure 5b (Q1): Capacitance (Log Scale)
2000
1000
Capacitance (pF)
1500
Capacitance (pF)
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
1000
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
10
500
0
100
0
25
50
75
1
100
VDS – Drain-to-Source Voltage (V)
0
25
50
75
100
VDS – Drain-to-Source Voltage (V)
Figure 5c (Q2): Capacitance (Linear Scale)
Figure 5d (Q2): Capacitance (Log Scale)
2000
1000
Capacitance (pF)
Capacitance (pF)
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
1500
1000
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
10
500
0
100
0
25
50
75
100
VDS – Drain-to-Source Voltage (V)
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
1
0
25
50
75
100
VDS – Drain-to-Source Voltage (V)
| 3
eGaN® FET DATASHEET
EPC2104
Figure 6b (Q2): Output Charge and COSS Stored Energy
2.8
50
2.5
60
2.4
40
2.0
50
2.0
40
1.6
30
1.5
30
1.2
20
0.8
10
0.4
1.0
20
0.5
10
0
0
25
50
75
100
0
0
VDS – Drain-to-Source Voltage (V)
EOSS – COSS Stored Energy (μJ)
70
QOSS – Output Charge (nC)
3.0
EOSS – COSS Stored Energy (μJ)
QOSS – Output Charge (nC)
Figure 6a (Q1): Output Charge and COSS Stored Energy
60
0
25
50
75
0
100
VDS – Drain-to-Source Voltage (V)
Figure 7 (Q1 & Q2): Gate Charge
Figure 8 (Q1 & Q2): Reverse Drain-Source Characteristics
ID = 20 A
VDS = 50 V
4
ISD – Source-to-Drain Current (A)
VGS – Gate-to-Source Voltage (V)
5
3
2
1
0
0
2
4
QG – Gate Charge (nC)
6
150
25˚C
125˚C
50
0
8
Figure 9 (Q1 & Q2):
Normalized On-State Resistance vs. Temperature
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VSD – Source-to-Drain Voltage (V)
4.5
5.0
1.4
1.3
1.8
Normalized Threshold Voltage
Normalized On-State Resistance RDS(on)
0
Figure 10 (Q1 & Q2):
Normalized Threshold Voltage vs. Temperature
2.0
ID = 20 A
VGS = 5 V
1.6
1.4
1.2
1.0
0.8
VGSDS = 03 V
100
1.2
ID = 6 mA
1.1
1.0
0.9
0.8
0.7
0
25
50
75
100
TJ – Junction Temperature (°C)
125
150
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
0.6
0
25
50
75
100
TJ – Junction Temperature (°C)
125
150
| 4
eGaN® FET DATASHEET
Transient Thermal Response Curves (Junction-to-Board)
1
Duty Cycle:
0.5
0.2
0.1
0.1
0.05
ZθJB, Normalized Thermal Impedance
Figure 11a
Transient Thermal
Response Curves
EPC2104
PDM
0.02
t1
0.01 0.01
Notes:
Duty Factor: D = t1/t2
Peak TJ = PDM x ZθJB x RθJB + TB
Single Pulse
0.001
10-5
t2
10-4
10-3
10-2
10-1
1
101
tp, Rectangular Pulse Duration, seconds
Transient Thermal Response Curves (Junction-to-Case)
1 Duty Cycle:
0.5
0.2
0.1
0.1
0.05
ZθJC, Normalized Thermal Impedance
Figure 11b
Transient Thermal
Response Curves
PDM
0.02
t1
0.01 0.01
Notes:
Duty Factor: D = t1/t2
Peak TJ = PDM x ZθJC x RθJC + TC
Single Pulse
0.001
10-6
10-5
10-4
10-3
10-2
10-1
1
tp, Rectangular Pulse Duration, seconds
Figure 12 (Q1 & Q2): Safe Operating Area
Figure 13: Typical Application Circuit
1000
I D – Drain Current (A)
10
VB
Limited by RDS(on)
HO
VS
Pulse Width
1 ms
100 µs
10 µs
1
0.1
0.1
eGaNIC
Gate driver/
controller
100
1
VCC
GND
10
100
1000
VIN
+
LO
VIN
Gate 1
GR1
Gate 2
_
Q1
VSW
Q2
VOUT
+
RLoad
PGND
_
VDS – Drain-Source Voltage (V)
TJ = Max Rated, TC = +25°C, Single Pulse
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 5
eGaN® FET DATASHEET
EPC2104
TAPE AND REEL CONFIGURATION
e
8 mm pitch, 12 mm wide tape on 7” reel
d
7” inch reel
g
f
Loaded Tape Feed Direction
Gate solder bump
is under this
corner
a b c
Die
orientation
dot
YYYY
ZZZZ
2104
h
DIM
EPC2104 (Note 1)
a
b
c (Note 2)
d
e
f (Note 2)
g
h
Dimension (mm)
Target MIN MAX
12.00 11.90 12.30
1.75
1.65 1.85
5.50
5.45 5.55
4.00
3.90 4.10
8.00
7.90 8.10
2.00
1.95 2.05
1.50
1.50 1.60
1.50
1.50 1.75
Die is placed into pocket
solder bump side down
(face side down)
Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/
JEDEC industry standard.
Note 2: Pocket position is relative to the sprocket hole measured as
true position of the pocket, not the pocket hole.
DIE MARKINGS
2104
YYYY
ZZZZ
Die orientation dot
Part
Number
EPC2104
Laser Markings
Part #
Marking Line 1
Lot_Date Code
Marking Line 2
Lot_Date Code
Marking Line 3
2104
YYYY
ZZZZ
Gate bumps are along this edge of the die
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 6
eGaN® FET DATASHEET
EPC2104
DIE OUTLINE
Solder Bump View
A
10
15
20
25
30
35
40
45
50
55
60
65
70
75
4
9
14
19
24
29
34
39
44
49
54
59
64
69
74
3
8
13
18
23
28
33
38
43
48
53
58
63
68
73
2
7
12
17
22
27
32
37
42
47
52
57
62
67
72
1
6
11
16
21
26
31
36
41
46
51
56
61
66
71
e
A
B
c
d
e
f
6020
2270
400
450
210
187
6050
2300
400
450
225
208
6080
2330
400
450
240
229
B
MAX
(625)
Pads 5, 14, 15, 24, 25, 34, 35, 43, 44, 45, 53, 54, 55,
63, 64, 65, 73, 74, 75 Ground;
Pads 6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 26, 27, 28, 29, 30,
36, 37, 38, 39, 40, 46, 47, 48, 49, 50, 56, 57, 58, 59, 60,
66, 67, 68, 69, 70 are Switch Node
160+/−16
Side View
Nominal
Pads 1, 11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 51, 52,
61, 62, 71, 72 are VIN;
f
c
MIN
Pad 2 is G1; Pad 3 is Q1 Gate Return; Pad 4 is G2;
(785)
e
d
5
DIM
Seating plane
RECOMMENDED LAND PATTERN
(measurements in µm)
6050
6
11
16
21
26
31
36
41
46
51
56
61
66
71
2
7
12
17
22
27
32
37
42
47
52
57
62
67
72
3
8
13
18
23
28
33
38
43
48
53
58
63
68
73
4
9
14
19
24
29
34
39
44
49
54
59
64
69
74
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
The land pattern is solder mask defined.
Suggest SMD Pads at 200 +20/–10 µm.
190 µm minimum.
2300
450
1
400
RECOMMENDED STENCIL DRAWING
(measurements in µm)
6050
Recommended stencil should be 4 mil (100 µm)
thick, must be laser cut, openings per drawing.
Intended for use with SAC305 Type 4 solder,
reference 88.5% metals content.
2300
275
450
225
Additional assembly resources available at:
https://epc-co.com/epc/DesignSupport/
AssemblyBasics.aspx
400
Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
eGaN® is a registered trademark of Efficient Power Conversion Corporation.
EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
Information subject to
change without notice.
Revised June, 2020
| 7