eGaN® FET DATASHEET
EPC2107
EPC2107 – Enhancement-Mode GaN Power
Transistor Half-Bridge with Integrated
Synchronous Bootstrap
VDS , 100 V
RDS(on) , 390 mΩ
ID , 1.7 A
EFFICIENT POWER CONVERSION
HAL
Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very
low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG
and zero QRR. The end result is a device that can handle tasks where very high switching frequency,
and low on-time are beneficial as well as those where on-state losses dominate.
Maximum Ratings
DEVICE
PARAMETER
VDS
Q1
&
Q2
ID
VALUE
Drain-to-Source Voltage (Continuous)
100
Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)
120
Continuous (TA = 25˚C, RθJA = 60°C/W)
1.7
Pulsed (25°C, TPULSE = 300 µs)
3.8
Gate-to-Source Voltage
6
Gate-to-Source Voltage
–4
TJ
Operating Temperature
–40 to 150
TSTG
Storage Temperature
–40 to 150
VGS
VDS
ID
Q3
Drain-to-Source Voltage (Continuous)
100
Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)
120
Continuous (TA = 25˚C, RθJA= 100°C/W)
0.5
Pulsed (25°C, TPULSE = 300 µs)
0.5
Gate-to-Source Voltage
6
Operating Temperature
–40 to 150
TJ
Storage Temperature
–40 to 150
TSTG
Storage Temperature
–40 to 150
VGS
UNIT
EPC2107 eGaN® ICs are supplied only in
passivated die form with solder bumps
Die Size: 1.35 mm x 1.35 mm
V
A
Applications
• High Frequency DC-DC Conversion
• Class-D Audio
• Wireless Power
(Highly Resonant and Inductive)
V
°C
V
Benefits
• Ultra High Efficiency
• Ultra Low RDS(on)
• Ultra Low QG
• Ultra Small Footprint
A
V
°C
DBTST
6
Gupper
Positive
7
1
Thermal Characteristics
PARAMETER
RθJC
TYP
Thermal Resistance, Junction-to-Case
UNIT
6
RθJB
Thermal Resistance, Junction-to-Board
33
RθJA
Thermal Resistance, Junction-to-Ambient (Note 1)
81
°C/W
Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.
See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details
SBTST
Q1
9
Q3
4
Out1
5
Out2
DGrev
Q2
3
GBTST
2
Glower
8
Ground
EPC2107 – Detailed Schematic
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 1
eGaN® FET DATASHEET
Static Characteristics (TJ= 25˚C unless otherwise stated)
PARAMETER
TEST CONDITIONS
DEVICE
BVDSS
IDSS
Q1 & Q2
Q3
IGSS
VGS(TH)
RDS(on)
VSD
BVDSS
IDSS
IGSS
VF
VGS(TH)
RDS(on)
VSD
Q2
Q3
Drain-to-Source Voltage
Drain-Source Leakage
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Threshold Voltage
Drain-Source On Resistance
Source-Drain Forward Voltage
Drain-to-Source Voltage
Drain-Source Leakage
Gate-to-Source Forward Leakage
Source-Gate Forward Voltage
Gate Threshold Voltage
Drain-Source On Resistance
Source-Drain Forward Voltage
VGS = 0 V, ID = 0.3 mA
VDS = 80 V, VGS = 0 V
VGS = 5 V
VGS = -4 V
VDS = VGS, ID = 0.1 mA
VGS = 5 V, ID = 2 A
IS = 0.5 A, VGS = 0 V
VGS = 0 V, ID = 0.125 mA
VDS = 80 V, VGS = 0 V
VGS = 5 V
IF = 0.2 mA, VDS = 0 V
VDS = VGS, ID = 0.1 mA
VGS = 5 V, ID = 0.05 A
IS = 0.1 A, VGS = 0 V
MIN
CISS
CRSS
COSS
COSS(ER)
COSS(TR)
Input Capacitance
Reverse Transfer Capacitance
Output Capacitance
Effective Output Capacitance, Energy Related (Note 2)
Effective Output Capacitance, Time Related (Note 3)
RG
QG
QGS
QGD
QG(TH)
QOSS
QRR
CISS
CRSS
COSS
COSS(ER)
COSS(TR)
Gate Resistance
Total Gate Charge
Gate to Source Charge
Gate to Drain Charge
Gate Charge at Threshold
Output Charge
Source-Drain Recovery Charge
Input Capacitance
Reverse Transfer Capacitance
Output Capacitance
Effective Output Capacitance, Energy Related (Note 2)
Effective Output Capacitance, Time Related (Note 3)
RG
QG
QGS
QGD
QG(TH)
QOSS
QRR
CISS
CRSS
COSS
COSS(ER)
COSS(TR)
Total Gate Charge
Gate to Source Charge
Gate to Drain Charge
Gate Charge at Threshold
Output Charge
Source-Drain Recovery Charge
Input Capacitance
Reverse Transfer Capacitance
Output Capacitance
Effective Output Capacitance, Energy Related (Note 2)
Effective Output Capacitance, Time Related (Note 3)
RG
QG
QGS
QGD
QG(TH)
QOSS
QRR
Total Gate Charge
Gate to Source Charge
Gate to Drain Charge
Gate Charge at Threshold
Output Charge
Source-Drain Recovery Charge
TYP
MAX
UNIT
0.05
0.1
0.05
1.6
250
2.5
0.25
1
0.25
2.5
390
0.02
0.1
0.1
1
2.7
2.5
3300
100
0.8
V
mA
mA
mA
V
mΩ
V
V
mA
mA
V
V
mΩ
V
100
0.8
Dynamic Characteristics (TJ= 25˚C unless otherwise stated)
PARAMETER
TEST CONDITIONS
DEVICE
Q1
EPC2107
VDS = 50 V, VGS = 0 V
VDS = 0 to 50 V, VGS = 0 V
1.7
2100
2.9
MIN
TYP
MAX
21
0.2
9.2
13
18
25
14
0.7
VDS = 50 V, VGS = 5 V, ID = 2 A
VDS = 50 V, ID = 2 A
VDS = 50 V, VGS = 0 V
VDS = 50 V, VGS = 0 V
VDS = 0 to 50 V, VGS = 0 V
Gate Resistance
190
77
41
49
900
0
21
0.2
14
19
25
VDS = 50 V, ID = 2 A
VDS = 50 V, VGS = 0 V
VDS = 50 V, VGS = 0 V
VDS = 0 to 50 V, VGS = 0 V
Gate Resistance
190
77
41
49
1250
0
7
0.02
1.6
2.2
2.7
230
pC
1350
25
21
VDS = 50 V, ID = 0.05 A
VDS = 50 V, VGS = 0 V
44
20
4
18
134
0
pF
Ω
230
pC
1875
8.4
2.4
4.8
VDS = 50 V, VGS = 5 V, ID = 0.05 A
pF
Ω
0.7
VDS = 50 V, VGS = 5 V, ID = 2 A
UNIT
pF
Ω
55
pC
200
Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS.
Note 3: COSS(ER) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 2
eGaN® FET DATASHEET
EPC2107
Figure 1a (Q1 & Q2): Typical Output Characteristics at 25°C
Figure 1b (Q3): Typical Output Characteristics at 25°C
0.5
VGS = 5 V
3
VGS = 3 V
ID – Drain Current (A)
ID – Drain Current (A)
0.4
VGS = 4 V
VGS = 2 V
2
VGS = 5 V
VGS = 4 V
VGS = 3 V
0.3
VGS = 2 V
0.2
1
0.1
0
0
0.5
1.0
1.5
2.0
2.5
VDS – Drain-to-Source Voltage (V)
00
3.0
Figure 2a (Q1 & Q2): Transfer Characteristics
0.5
1.0
1.5
2.0
2.5
VDS – Drain-to-Source Voltage (V)
3.0
Figure 2b (Q3): Transfer Characteristics
0.5
25˚C
125˚C
VDS = 3 V
2
1
0
VDS = 3 V
0.3
0.2
0.1
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VGS – Gate-to-Source Voltage (V)
4.0
4.5
0
5.0
1.0
1.5
2.0
2.5
3.0
3.5
VGS – Gate-to-Source Voltage (V)
4.0
4.5
5.0
RDS(on) – Drain-to-Source Resistance (mΩ)
8000
ID = 1.0 A
ID = 1.5 A
ID = 2.0 A
ID = 2.5 A
750
500
250
0
0.5
Figure 3b (Q3): RDS(on) vs. VGS for Various Drain Currents
Figure 3a (Q1 & Q2): RDS(on) vs. VGS for Various Drain Currents
1000
RDS(on) – Drain-to-Source Resistance (mΩ)
25˚C
125˚C
0.4
ID – Drain Current (A)
ID – Drain Current (A)
3
2.5
3.0
3.5
4.0
4.5
5.0
VGS – Gate-to-Source Voltage (V)
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
ID = 0.05 A
ID = 0.10 A
ID = 0.15 A
ID = 0.20 A
6000
4000
2000
0
2.5
3.0
3.5
4.0
4.5
5.0
VGS – Gate-to-Source Voltage (V)
| 3
eGaN® FET DATASHEET
EPC2107
Figure 4a (Q1 & Q2): RDS(on) vs. VGS for Various Temperatures
Figure 4b (Q3): RDS(on) vs. VGS for Various Temperatures
8000
RDS(on) – Drain-to-Source Resistance (mΩ)
RDS(on) – Drain-to-Source Resistance (mΩ)
1000
25˚C
125˚C
750
ID = 2 A
500
250
0
2.5
3.0
3.5
4.0
4.5
VGS – Gate-to-Source Voltage (V)
6000
ID = 0.05 A
4000
2000
0
5.0
Figure 5a (Q1): Capacitance (Linear Scale)
2.5
3.0
3.5
4.0
Capacitance (pF)
20
10
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
1
10
0
25
50
75
0.1
100
VDS – Drain-to-Source Voltage (V)
0
25
50
VDS – Drain-to-Source Voltage (V)
75
100
Figure 5d (Q2): Capacitance (Log Scale)
Figure 5c (Q2): Capacitance (Linear Scale)
100
60
50
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
40
Capacitance (pF)
Capacitance (pF)
5.0
Figure 5b (Q1): Capacitance (Log Scale)
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
30
0
4.5
VGS – Gate-to-Source Voltage (V)
100
40
Capacitance (pF)
25˚C
125˚C
30
20
10
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
1
10
0
0
25
50
75
100
VDS – Drain-to-Source Voltage (V)
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
0.1
0
25
50
VDS – Drain-to-Source Voltage (V)
75
100
| 4
eGaN® FET DATASHEET
EPC2107
Figure 5e (Q3): Capacitance (Linear Scale)
Figure 5f (Q3): Capacitance (Log Scale)
100
8
7
10
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
5
Capacitance (pF)
Capacitance (pF)
6
4
3
2
1
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
0.1
0.01
1
0
20
40
60
80
0.001
100
0
20
VDS – Drain-to-Source Voltage (V)
Figure 6a
6a:(Q1):
Output
Output
Charge
Charge
and Cand
COSS Stored
Energy
Energy
OSS Stored
50
30
0.8
0.6
20
0.4
10
0.2
Figure 6b
6a:(Q2):
Output
Output
Charge
Charge
and Cand
COSS Stored
Energy
Energy
OSS Stored
70
60
50
1.4
1.2
40
1.0
30
0.8
0.6
20
0.4
10
0
25
50
75
100
0
0
8
0.15
6
0.10
4
0.05
2
40
60
40
60
80
100
0
10
0.20
20
20
VDS – Drain-to-Source Voltage (V)
Figure 6c
6a:(Q3):
Output
Output
Charge
Charge
and and
COSS Stored
COSS Stored
Energy
Energy
0
0
80
EOSS – COSS Stored Energy (μJ)
QOSS – Output Charge (nC)
100
0.2
VDS – Drain-to-Source Voltage (V)
0.00
80
1.6
QOSS – Output Charge (nC)
QOSS – Output Charge (nC)
40
1.0
0.25
60
1.8
1.2
0
2.0
EOSS – COSS Stored Energy (μJ)
1.4
40
VDS – Drain-to-Source Voltage (V)
EOSS – COSS Stored Energy (μJ)
0
0
100
VDS – Drain-to-Source Voltage (V)
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 5
eGaN® FET DATASHEET
EPC2107
Figure 7a (Q1 & Q2): Gate Charge
Figure 7b (Q3): Gate Charge
5
ID = 2 A
VDS = 50 V
4
VGS – Gate-to-Source Voltage (V)
VGS – Gate-to-Source Voltage (V)
5
3
2
1
0
0
50
100
150
QG – Gate Charge (pC)
3
2
1
0
200
ID = 0.05 A
VDS = 50 V
4
Figure 8a (Q1 & Q2): Reverse Drain-Source Characteristics
0
10
20
30
40
QG – Gate Charge (pC)
50
Figure 8b (Q3): Reverse Drain-Source Characteristics
ISD – Source-to-Drain Current (A)
VGSDS = 03 V
2
1
0
2.0
Normalized On-State Resistance RDS(on)
25˚C
125˚C
3
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VSD – Source-to-Drain Voltage (V)
4.5
Figure 9a (Q1 & Q2):
Normalized On-State Resistance vs. Temperature
1.8
1.6
1.4
1.2
1.0
0.8
VGSDS = 03 V
0.3
0.2
0.1
2.2
ID = 2 A
VGS = 5 V
25˚C
125˚C
0.4
0
5.0
Normalized On-State Resistance RDS(on)
ISD – Source-to-Drain Current (A)
0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VSD – Source-to-Drain Voltage (V)
4.5
5.0
Figure 9b (Q3):
Normalized On-State Resistance vs. Temperature
2.0
ID = 0.05 A
VGS = 5 V
1.8
1.6
1.4
1.2
1.0
0.8
0
25
50
75
100
TJ – Junction Temperature (°C)
125
150
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
0.6
0
25
50
75
100
125
150
TJ – Junction Temperature (°C)
| 6
eGaN® FET DATASHEET
EPC2107
Figure 10b (Q3):
Normalized Threshold Voltage vs. Temperature
1.40
1.40
1.30
1.30
1.20
Normalized Threshold Voltage
Normalized Threshold Voltage
Figure 10a (Q1 & Q2):
Normalized Threshold Voltage vs. Temperature
ID = 0.1 mA
1.10
1.00
0.90
0.80
ID = 0.1 mA
1.10
1.00
0.90
0.80
0.70
0.70
0
25
50
75
100
TJ – Junction Temperature (°C)
Figure 11a
Transient Thermal
Response Curves
125
0.60
150
0
25
50
75
100
TJ – Junction Temperature (°C)
125
150
(Q1/Q2/Q3) Junction-to-Board
ZθJB, Normalized Thermal Impedance
0.60
1.20
1 Duty Cycle:
0.5
0.1
0.01
0.1
0.05
0.02
0.01
PDM
t1
Single Pulse
0.001
10-5
t2
Notes:
Single
Pulse
Duty Factor:
D=
t1/t2
Peak TJ = PDM x ZθJB x RθJB + TB
10-4
10-3
10-2
10-1
1
101
tp, Rectangular Pulse Duration, seconds
(Q1/Q2/Q3) Junction-to-Case
ZθJC, Normalized Thermal Impedance
Figure 11b
Transient Thermal
Response Curves
1 Duty Cycle:
0.5
0.2
0.1
0.1
0.05
PDM
0.02
0.01
t1
0.01
Single Pulse
0.001
10-6
t2
Notes:
Duty Factor: D = t1/t2
Peak TJ = PDM x ZθJC x RθJC + TC
10-5
10-4
10-3
10-2
10-1
1
tp, Rectangular Pulse Duration, seconds
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 7
eGaN® FET DATASHEET
EPC2107
Figure 13 (Q3): Gate-Source Characteristics
Figure 12 (Q1 & Q2): Safe Operating Area
0.08
10
25˚C
125˚C
0.04
IG – Gate Current (mA)
I D – Drain Current (A)
0.06
Limited by RDS(on)
1
Pulse Width
100 ms
10 ms 100 µs
1 ms 50 µs
100 µs
25 µs
0.1
0.1
1
0.02
0.00
-0.5
-1.0
10
100
VDS – Drain-Source Voltage (V)
TJ = Max Rated, TC = +25°C, Single Pulse
-1.5
-2.0
-2
-1
0
1
2
3
VGS – Gate-to-Source Voltage (V)
4
5
6
Figure 14: Typical Application Circuit
Q3
Q1
Level Shift
5V
Output
C Bus
Q2
Gate
Driver
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 8
eGaN® FET DATASHEET
EPC2107
TAPE AND REEL CONFIGURATION
4mm pitch, 8mm wide tape on 7”reel
d
e
f
Loaded Tape Feed Direction
g
7” reel
b
2107
YYYY
ZZZZ
a
c
8.00
1.75
3.50
4.00
4.00
2.00
1.5
7.90
1.65
3.45
3.90
3.90
1.95
1.5
8.30
1.85
3.55
4.10
4.10
2.05
1.6
Pin 1 is
under this
corner
Die is placed into pocket
solder bump side down
(face side down)
EPC2107 (note 1)
Dimension (mm) target min max
a
b
c (see note)
d
e
f (see note)
g
Die
orientation
dot
Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.
Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket,
not the pocket hole.
DIE MARKINGS
Die orientation dot
Pin 1 is under
this corner
2107
YYYY
ZZZZ
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
Part
Number
EPC2107
Laser Markings
Part #
Marking Line 1
Lot_Date Code
Marking Line 2
2107
YYYY
Lot_Date Code
Marking Line 3
ZZZZ
| 9
eGaN® FET DATASHEET
EPC2107
A
DIE OUTLINE
Solder Bump View
Micrometers
9
5
8
c
B
2
1
4
7
c
(625)
c
d
d
Pad 1 is Gate1 (Q1)
Pad 2 is Gate2 (Q2)
Pad 3 is Gate 3 (Q3)
Pad 7 is Drain1 (Q1)
Pad 5 is Drain2 (Q2)
Pad 6 is Drain3 (Q3)
Pad 4 is Source1 (Q1)
Pad 8 is Source2 (Q2)
Pad 9 is Source3 (Q3)
Seating Plane
RECOMMENDED
LAND PATTERN
Nominal
MAX
A
B
c
d
e
1320
1320
450
210
187
1350
1350
450
225
208
1380
1380
450
240
229
165 +/- 17
Side View
MIN
815 Max
6
c
3
DIM
1350
The land pattern is solder mask defined
Solder mask is 10 μm smaller per side than bump
200 +20 / - 10 (*)
(measurements in µm)
X9
4
7
2
5
8
3
6
9
225
450
225
450
1350
450
1
450
* minimum 190
1350
RECOMMENDED
STENCIL DRAWING
Recommended stencil should be 4 mil (100 µm) thick, must be
laser cut, openings per drawing.
250
225
450
450
Intended for use with SAC305 Type 4 solder, reference 88.5%
metals content.
Additional assembly resources available at
https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx
225
450
1350
450
R6
0
(measurements in µm)
Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
eGaN® is a registered trademark of Efficient Power Conversion Corporation.
EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
Information subject to
change without notice.
Revised May, 2020
| 10