eGaN® FET DATASHEET
EPC2110
EPC2110 – Dual Common-Source
Enhancement-Mode GaN Power Transistor
VDS , 120 V
RDS(on) , 110 mΩ
ID , 3.4 A
EFFICIENT POWER CONVERSION
HAL
Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very
low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG
and zero QRR. The end result is a device that can handle tasks where very high switching frequency,
and low on-time are beneficial as well as those where on-state losses dominate.
Maximum Ratings of Q1 & Q2
VDS
ID
PARAMETER
VALUE
UNIT
Drain-to-Source Voltage (Continuous)
120
V
Continuous (TA = 25°C, RθJA = 52°C/W)
3.4
Pulsed (25°C, TPULSE = 300 µs)
20
Gate-to-Source Voltage
6
Gate-to-Source Voltage
–4
TJ
Operating Temperature
–40 to 150
TSTG
Storage Temperature
–40 to 150
VGS
EPC2110 eGaN® FETs are supplied only in
passivated die form with solder bumps
Die Size: 1.35 mm x 1.35 mm
A
V
Applications
• Ultra High Frequency DC-DC Conversion
• Wireless Power Transfer
• Synchronous Rectification
°C
Benefits
• Ultra High Efficiency
• Ultra Low RDS(on)
• Ultra Low QG
• Ultra Small Footprint
Thermal Characteristics of Q1 & Q2
PARAMETER
TYP
RθJC
Thermal Resistance, Junction-to-Case
3
RθJB
Thermal Resistance, Junction-to-Board
25
RθJA
Thermal Resistance, Junction-to-Ambient (Note 1)
81
UNIT
°C/W
Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.
See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details
PARAMETER
BVDSS
IDSS
IGSS
www.epc-co.com/epc/Products/eGaNFETsandICs/EPC2110.aspx
Static Characteristics of Q1 & Q2 (TJ= 25˚C unless otherwise stated)
TEST CONDITIONS
MIN
TYP
MAX
VGS = 0 V, ID = 0.3 mA
Drain-Source Leakage
VDS = 96 V, VGS = 0 V
0.01
0.25
mA
VGS = 5 V
0.05
1
mA
0.01
0.25
mA
1.4
2.5
V
VGS = 5 V, ID = 4 A
80
110
mΩ
IS = 0.5 A, VGS = 0 V
1.9
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
VGS(TH)
Gate Threshold Voltage
RDS(on)
Drain-Source On Resistance
VSD
Source-Drain Forward Voltage
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
120
UNIT
Drain-to-Source Voltage
VGS = -4 V
VDS = VGS, ID = 0.7 mA
0.8
V
V
| 1
eGaN® FET DATASHEET
EPC2110
3
2
9
8
D1
D2
Q1
1
Q2
G1
G2
7
S
4
5
6
EPC2110 – Detailed Schematic
Note: The EPC2110 can be connected in parallel or used as independent FETs with common source.
Dynamic Characteristics of Q1 & Q2 (TJ= 25˚C unless otherwise stated)
PARAMETER
TEST CONDITIONS
CISS
Input Capacitance
CRSS
Reverse Transfer Capacitance
COSS
Output Capacitance
COSS(ER)
Effective Output Capacitance, Energy Related (Note 2)
COSS(TR)
Effective Output Capacitance, Time Related (Note 3)
RG
Gate Resistance
QG
Total Gate Charge
QGS
Gate to Source Charge
QGD
Gate to Drain Charge
QG(TH)
Gate Charge at Threshold
QOSS
Output Charge
QRR
Source-Drain Recovery Charge
VDS = 60 V, VGS = 0 V
MIN
TYP
MAX
85
100
1
45
VDS = 0 to 60 V, VGS = 0 V
UNIT
70
pF
54
67
0.6
VDS = 60 V, VGS = 5 V, ID = 4 A
0.8
VDS = 60 V, ID = 4 A
0.18
Ω
1.1
0.25
nC
0.16
VDS = 60 V, VGS = 0 V
4
6
0
Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS.
Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 2
eGaN® FET DATASHEET
EPC2110
Figure 2 (Q1 & Q2): Transfer Characteristics
20
20
15
15
ID – Drain Current (A)
ID – Drain Current (A)
Figure 1 (Q1 & Q2): Typical Output Characteristics at 25°C
10
VGS = 5 V
VGS = 4 V
VGS = 3 V
5
25˚C
125˚C
VDS = 3 V
10
5
VGS = 2 V
0
0
0.5
1.0
1.5
2.0
VDS – Drain-to-Source Voltage (V)
2.5
0
3.0
0.5
Figure 3 (Q1 & Q2): RDS(on) vs. VGS for Various Drain Currents
2.0
2.5
3.0
3.5
VGS – Gate-to-Source Voltage (V)
4.0
4.5
5.0
300
RDS(on) – Drain-to-Source Resistance (mΩ)
RDS(on) – Drain-to-Source Resistance (mΩ)
1.5
Figure 4 (Q1 & Q2): RDS(on) vs. VGS for Various Temperatures
300
ID = 1 A
ID = 2A
ID = 4 A
ID = 8 A
200
100
0
1.0
2.0
2.5
3.0
3.5
4.0
4.5
25˚C
125˚C
ID = 4 A
200
100
0
5.0
VGS – Gate-to-Source Voltage (V)
2.0
2.5
3.0
3.5
4.0
VGS – Gate-to-Source Voltage (V)
4.5
5.0
Figure 5b (Q1 & Q2): Capacitance (Log Scale)
Figure 5a (Q1 & Q2): Capacitance (Linear Scale)
150
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
100
Capacitance (pF)
Capacitance (pF)
100
50
0
10
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
1
0
20
40
60
80
100
120
VDS – Drain-to-Source Voltage (V)
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
0.1
0
20
40
60
80
100
120
VDS – Drain-to-Source Voltage (V)
| 3
eGaN® FET DATASHEET
Figure 7 (Q1 & Q2): Gate Charge
Figure 66a:(Q1
Output
& Q2):Charge
Outputand
Charge
COSS Stored
and COSSEnergy
Stored Energy
0.35
QOSS – Output Charge (nC)
5
0.25
4
0.20
3
0.15
2
0.10
1
0.05
0
20
40
60
80
VGS – Gate-to-Source Voltage (V)
0.30
6
0
5
EOSS – COSS Stored Energy (μJ)
7
EPC2110
0.00
120
100
ID = 4 A
VDS = 60 V
4
3
2
1
0
VDS – Drain-to-Source Voltage (V)
0
Figure 8: Reverse Drain-Source Characteristics
2.0
Normalized On-State Resistance RDS(on)
ISD – Source-to-Drain Current (A)
20
25˚C
125˚C
15
VGSDS = 03 V
10
5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VSD – Source-to-Drain Voltage (V)
4.5
0.2
0.6
0.8
1
Figure 9 (Q1 & Q2):
Normalized On-State Resistance vs. Temperature
1.8
ID = 4 A
VGS = 5 V
1.6
1.4
1.2
1.0
0.8
5.0
0.4
QG – Gate Charge (pC)
0
25
50
75
100
TJ – Junction Temperature (°C)
125
150
Figure 10 (Q1 & Q2):
Normalized Threshold Voltage vs. Temperature
1.40
Normalized Threshold Voltage
1.30
1.20
ID = 0.7 mA
1.10
1.00
0.90
0.80
0.70
0.60
0
25
50
75
100
TJ – Junction Temperature (°C)
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
125
150
| 4
eGaN® FET DATASHEET
EPC2110
ZθJB, Normalized Thermal Impedance
Figure 11a (Q1 & Q2): Transient Thermal Response Curves (Junction-to-Board)
1 Duty Cycle:
0.5
0.1 0.1
0.05
PDM
t1
0.02
0.01 0.01
t2
Notes:
Single
Duty Factor:
D Pulse
= t1/t2
Peak TJ = PDM x ZθJB x RθJB + TB
Single Pulse
0.001
10-5
10-4
10-3
10-2
10-1
1
101
tp, Rectangular Pulse Duration, seconds
ZθJC, Normalized Thermal Impedance
Figure 11b (Q1 & Q2): Transient Thermal Response Curves (Junction-to-Case)
1 Duty Cycle:
0.5
0.2
0.1 0.1
0.05
PDM
t1
0.02
0.01 0.01
Notes:
Single
Duty Factor:
D =Pulse
t1/t2
Peak TJ = PDM x ZθJC x RθJC + TC
Single Pulse
0.001
10-6
t2
10-4
10-5
10-3
10-2
10-1
1
tp, Rectangular Pulse Duration, seconds
Figure 12 (Q1 & Q2): Safe Operating Area
I D – Drain Current (A)
100
10
Limited by RDS(on)
1
0.1
0.1
Pulse Width
1100
ms µs
100 µs
10 µs
1
10
100
1000
VDS – Drain-Source Voltage (V)
TJ = Max rated, TC = +25°C, Single pulse
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 5
eGaN® FET DATASHEET
EPC2110
TAPE AND REEL CONFIGURATION
4mm pitch, 8mm wide tape on 7”reel
d
e
f
Loaded Tape Feed Direction
g
7” reel
b
2110
YYYY
ZZZZ
a
c
8.00
1.75
3.50
4.00
4.00
2.00
1.5
7.90
1.65
3.45
3.90
3.90
1.95
1.5
P1 is under
this corner
Die is placed into pocket
solder bump side down
(face side down)
EPC2110 (note 1)
Dimension (mm) target min
a
b
c (see note)
d
e
f (see note)
g
Die
orientation
dot
max
8.30
1.85
3.55
4.10
4.10
2.05
1.6
Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.
Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket,
not the pocket hole.
DIE MARKINGS
Die orientation dot
Pin 1 is under
this corner
2110
YYYY
ZZZZ
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
Part
Number
EPC2110
Laser Markings
Part #
Marking Line 1
Lot_Date Code
Marking Line 2
2110
YYYY
Lot_Date Code
Marking Line 3
ZZZZ
| 6
eGaN® FET DATASHEET
EPC2110
A
DIE OUTLINE
Solder Bump View
e
6
9
2
5
8
1
4
7
c
B
c
3
Pad 1 is Gate 1;
Pad 7 is Gate 2;
Pads 2, 3 are Drain 1;
Pads 8, 9 are Drain 2;
Pads 4, 6 are Source;
Pad 5 is Substrate*
c
MAX
A
B
c
d
e
1320
1320
450
210
187
1350
1350
450
225
208
1380
1380
450
240
229
165 +/- 17
Side View
Seating Plane
RECOMMENDED
LAND PATTERN
Nominal
815 Max
(625)
c
MIN
d
d
*Substrate pin should be
connected to Source
Micrometers
DIM
1350
The land pattern is solder mask defined
Solder mask is 10 μm smaller per side than bump
200 +20 / - 10 (*)
(measurements in µm)
X9
4
7
2
5
8
3
6
9
225
450
225
450
1350
450
1
450
* minimum 190
RECOMMENDED
STENCIL DRAWING
1350
Recommended stencil should be 4 mil (100 µm) thick, must be
laser cut, openings per drawing.
250
225
450
450
Intended for use with SAC305 Type 4 solder, reference 88.5%
metals content.
Additional assembly resources available at
https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx
225
450
1350
450
R6
0
(measurements in µm)
Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
eGaN® is a registered trademark of Efficient Power Conversion Corporation.
EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
Information subject to
change without notice.
Revised May, 2020
| 7
很抱歉,暂时无法提供与“EPC2110”相匹配的价格&库存,您可以联系我们找货
免费人工找货