eGaN® FET DATASHEET
EPC2111
EPC2111 – Enhancement-Mode GaN Power
Transistor Half-Bridge
VDS , 30 V
RDS(on) , 19 mΩ (Q1), 8 mΩ (Q2)
ID , 16 A (Q1), 16 A (Q2)
EFFICIENT POWER CONVERSION
HAL
Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very
low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG
and zero QRR. The end result is a device that can handle tasks where very high switching frequency,
and low on-time are beneficial as well as those where on-state losses dominate.
Maximum Ratings
DEVICE
PARAMETER
VDS
ID
Q1
VGS
VALUE
Drain-to-Source Voltage (Continuous)
30
Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)
36
Continuous (TA = 25°C, RθJA = 15°C/W)
16
Pulsed (25°C, TPULSE = 300 µs)
50
Gate-to-Source Voltage
6
Gate-to-Source Voltage
-4
TJ
Operating Temperature
–40 to 150
TSTG
Storage Temperature
–40 to 150
VDS
ID
Q2
Drain-to-Source Voltage (Continuous)
30
Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)
36
Continuous (TA = 25°C, RθJA = 36°C/W)
16
Pulsed (25°C, TPULSE = 300 µs)
140
Gate-to-Source Voltage
6
Gate-to-Source Voltage
-4
TJ
Operating Temperature
–40 to 150
TSTG
Storage Temperature
–40 to 150
VGS
V
EPC2111 eGaN® ICs are supplied only in
passivated die form with solder bumps
Die Size: 3.5 mm x 1.5 mm
A
Applications
UNIT
V
• High Frequency DC-DC
• Point-of-Load (POL) Converters
°C
Benefits
V
• High Frequency Operation
(up to 10 MHz)
A
• Low Inductance Package
V
• High Density Footprint
°C
Thermal Characteristics
PARAMETER
TYP
RθJC
Thermal Resistance, Junction-to-Case
1.3
RθJB
Thermal Resistance, Junction-to-Board
6.6
RθJA
Thermal Resistance, Junction-to-Ambient (Note 1)
58
UNIT
°C/W
Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.
See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 1
eGaN® FET DATASHEET
EPC2111
Static Characteristics
DEVICE
PARAMETER
UNIT
VDS = 24 V, VGS = 0 V
0.002
0.15
mA
Gate-to-Source Forward Leakage
VGS = 5 V
0.004
2
mA
Gate-to-Source Reverse Leakage
VGS = -4 V
0.002
0.15
mA
Drain-to-Source Voltage
Drain-Source Leakage
MIN
VGS = 0 V, ID = 0.25 mA
30
V
VGS(TH)
Gate Threshold Voltage
VDS = VGS, ID = 2 mA
1.4
2.5
V
RDS(on)
Drain-Source On Resistance
VGS = 5 V, ID = 15 A
14
19
mΩ
VSD
Source-Drain Forward Voltage
IS = 0.5 A, VGS = 0 V
1.8
BVDSS
Drain-to-Source Voltage
VGS = 0 V, ID = 0.4 mA
IDSS
Drain-Source Leakage
IGSS
Q2
MAX
IDSS
IGSS
Q1
TYP
BVDSS
TEST CONDITIONS
0.8
V
30
V
VDS = 24 V, VGS = 0 V
0.005
0.3
mA
Gate-to-Source Forward Leakage
VGS = 5 V
0.01
4.5
mA
Gate-to-Source Reverse Leakage
VGS = -4 V
0.005
0.3
mA
VGS(TH)
Gate Threshold Voltage
VDS = VGS, ID = 5 mA
1.4
2.5
V
RDS(on)
Drain-Source On Resistance
VGS = 5 V, ID = 15 A
6
8
mΩ
VSD
Source-Drain Forward Voltage
IS = 0.5 A, VGS = 0 V
1.8
0.8
V
Dynamic Characteristics
DEVICE
Q1
Q2
PARAMETER
CISS
Input Capacitance
CRSS
Reverse Transfer Capacitance
COSS
Output Capacitance
COSS(ER)
Effective Output Capacitance, Energy Related (Note 2)
COSS(TR)
Effective Output Capacitance, Time Related (Note 3)
RG
Gate Resistance
QG
Total Gate Charge
QGS
Gate-to-Source Charge
QGD
Gate-to-Drain Charge
QG(TH)
Gate Charge at Threshold
QOSS
Output Charge
QRR
Source-Drain Recovery Charge
CISS
Input Capacitance
CRSS
Reverse Transfer Capacitance
COSS
Output Capacitance
COSS(ER)
Effective Output Capacitance, Energy Related (Note 2)
COSS(TR)
Effective Output Capacitance, Time Related (Note 3)
RG
Gate Resistance
QG
Total Gate Charge
QGS
Gate-to-Source Charge
QGD
Gate-to-Drain Charge
QG(TH)
Gate Charge at Threshold
QOSS
Output Charge
QRR
Source-Drain Recovery Charge
TEST CONDITIONS
VDS = 15 V, VGS = 0 V
MIN
TYP
MAX
190
230
8
170
VDS = 0 to 15 V, VGS = 0 V
UNIT
255
pF
204
217
0.5
VDS = 15 V, VGS = 5 V, ID = 15 A
1.7
2.2
0.6
VDS = 15 V, ID = 15 A
0.3
nC
0.4
VDS = 15 V, VGS = 0 V
3.3
5
0
495
VDS = 15 V, VGS = 0 V
21
490
VDS = 0 to 15 V, VGS = 0 V
595
735
pF
590
637
0.4
VDS = 15 V, VGS = 5 V, ID = 15 A
4.5
5.8
1.4
VDS = 15 V, ID = 15 A
0.8
nC
1
VDS = 15 V, VGS = 0 V
9.6
15
0
Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS.
Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 2
eGaN® FET DATASHEET
EPC2111
Figure 1a (Q1): Typical Output Characteristics at 25°C
Figure 1b (Q2): Typical Output Characteristics at 25°C
50
VGS = 5 V
120
VGS = 4 V
ID – Drain Current (A)
ID – Drain Current (A)
40
30
VGS = 5 V
20
VGS = 4 V
VGS = 3 V
VGS = 2 V
80
40
VGS = 2 V
10
0
VGS = 3 V
0
0.5
1.0
1.5
2.0
2.5
VDS – Drain-to-Source Voltage (V)
0
3.0
Figure 2a (Q1): Transfer Characteristics
0
0.5
1.0
1.5
2.0
2.5
VDS – Drain-to-Source Voltage (V)
3.0
Figure 2b (Q2): Transfer Characteristics
50
120
25˚C
125˚C
ID – Drain Current (A)
ID – Drain Current (A)
40
VDS = 3 V
30
20
25˚C
125˚C
VDS = 3 V
80
40
10
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VGS – Gate-to-Source Voltage (V)
4.0
4.5
0
0.5
5.0
RDS(on) – Drain-to-Source Resistance (mΩ)
RDS(on) – Drain-to-Source Resistance (mΩ)
50
ID = 5 A
ID = 10 A
ID = 15 A
ID = 20 A
30
20
10
0
2.5
3.0
3.5
4.0
4.5
1.5
2.0
2.5
3.0
3.5
VGS – Gate-to-Source Voltage (V)
4.0
4.5
5.0
Figure 3b (Q2): RDS(on) vs. VGS for Various Drain Currents
Figure 3a (Q1): RDS(on) vs. VGS for Various Drain Currents
40
1.0
5.0
VGS – Gate-to-Source Voltage (V)
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
20
ID = 5 A
ID = 10 A
ID = 15 A
ID = 20 A
15
10
5
0
2.5
3.0
3.5
4.0
4.5
5.0
VGS – Gate-to-Source Voltage (V)
| 3
eGaN® FET DATASHEET
EPC2111
Figure 4a (Q1): RDS(on) vs. VGS for Various Temperatures
Figure 4b (Q2): RDS(on) vs. VGS for Various Temperatures
RDS(on) – Drain-to-Source Resistance (mΩ)
RDS(on) – Drain-to-Source Resistance (mΩ)
50
25˚C
125˚C
40
ID = 15 A
30
20
10
0
2.5
3.0
3.5
4.0
VGS – Gate-to-Source Voltage (V)
4.5
20
ID = 15 A
15
10
5
0
5.0
25˚C
125˚C
Figure 5a (Q1): Capacitance (Linear Scale)
2.5
3.0
3.5
4.0
VGS – Gate-to-Source Voltage (V)
4.5
5.0
Figure 5b (Q2): Capacitance (Linear Scale)
1000
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
COSS = CGD + CSD
CISS = CGD + CGS
CRSS = CGD
800
Capacitance (pF)
Capacitance (pF)
300
200
600
400
100
200
0
5
10
15
20
25
0
30
VDS – Drain-to-Source Voltage (V)
Figure
Output
Charge
COSS Stored Energy
Figure 6a
6a:(Q1):
Output
Charge
and Cand
OSS Stored Energy
70
60
5
50
4
40
3
30
2
20
1
10
0
5
10
15
20
25
30
20
0
VDS – Drain-to-Source Voltage (V)
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
QOSS – Output Charge (nC)
6
0
5
10
15
20
25
30
VDS – Drain-to-Source Voltage (V)
EOSS – COSS Stored Energy (nJ)
QOSS – Output Charge (nC)
7
0
Figure
Output
Charge
COSS Stored Energy
Figure 6b
6a:(Q2):
Output
Charge
and Cand
OSS Stored Energy
200
15
150
10
100
5
50
0
0
5
10
15
20
25
EOSS – COSS Stored Energy (nJ)
0
0
30
VDS – Drain-to-Source Voltage (V)
| 4
eGaN® FET DATASHEET
EPC2111
Figure 7b (Q2): Gate Charge
Figure 7a (Q1): Gate Charge
5
ID = 15 A
VDS = 15 V
4
VGS – Gate-to-Source Voltage (V)
VGS – Gate-to-Source Voltage (V)
5
3
2
1
0
0
0.5
1.0
1.5
QG – Gate Charge (nC)
3
2
1
0
2.0
ID = 15 A
VDS = 15 V
4
0
Figure 8a (Q1): Reverse Drain-Source Characteristics
1
2
3
4
QG – Gate Charge (nC)
5
Figure 8b (Q2): Reverse Drain-Source Characteristics
120
25˚C
125˚C
40
ISD – Source-to-Drain Current (A)
ISD – Source-to-Drain Current (A)
50
VGSDS = 03 V
30
20
10
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VSD – Source-to-Drain Voltage (V)
4.5
Normalized On-State Resistance RDS(on)
Normalized On-State Resistance RDS(on)
1.8
ID = 15 A
VGS = 5 V
1.4
1.2
1.0
0
25
50
75
100
TJ – Junction Temperature (°C)
125
40
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VSD – Source-to-Drain Voltage (V)
4.5
5.0
2.0
2.0
0.8
80
Figure 9b (Q2):
Normalized On-State Resistance vs. Temperature
Figure 9a (Q1):
Normalized On-State Resistance vs. Temperature
1.6
VGS = 0 V
0
5.0
25˚C
125˚C
150
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
1.8
ID = 15 A
VGS = 5 V
1.6
1.4
1.2
1.0
0.8
0
25
50
75
100
TJ – Junction Temperature (°C)
125
150
| 5
eGaN® FET DATASHEET
EPC2111
Figure 10b (Q2):
Normalized Threshold Voltage vs. Temperature
1.4
1.4
1.3
1.3
1.2
Normalized Threshold Voltage
Normalized Threshold Voltage
Figure 10a (Q1):
Normalized Threshold Voltage vs. Temperature
ID = 2 mA
1.1
1.0
0.9
0.8
1.2
1.1
1.0
0.9
0.8
0.7
0.7
0.6
0
25
50
75
100
TJ – Junction Temperature (°C)
125
0.6
150
Figure 11a (Q1): Safe Operating Area
0
25
50
75
100
TJ – Junction Temperature (°C)
125
150
Figure 11b (Q2): Safe Operating Area
100
1000
100
10
I D – Drain Current (A)
I D – Drain Current (A)
ID = 5 mA
Limited by RDS(on)
ms
Pulse100
Width
10 ms
1
ms
1 ms
250 µs
1
10
Limited by RDS(on)
1
Pulse Width
1 ms
250 µs
100 µs
100 µs
0.1
0.1
1
10
0.1
0.1
100
VDS – Drain-Source Voltage (V)
TJ = Max Rated, TC = +25°C, Single Pulse
1
10
100
VDS – Drain-Source Voltage (V)
TJ = Max Rated, TC = +25°C, Single Pulse
Positive
G1
Q1
SW
G2
Q2
Ground
Figure 12
Typical Application Circuit
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 6
eGaN® FET DATASHEET
(Q1 & Q2) Junction-to-Board
1
ZθJB, Normalized Thermal Impedance
Figure 13a
Transient Thermal
Response Curves
EPC2111
Duty Cycle:
0.5
0.2
0.1
0.1
0.05
PDM
0.02
t1
0.01 0.01
Notes:
Duty Factor: D = t1/t2
Peak TJ = PDM x ZθJB x RθJB + TB
Single Pulse
0.001
10-5
t2
10-4
10-3
10-2
10-1
1
101
tp, Rectangular Pulse Duration, seconds
(Q1 & Q2) Junction-to-Case
ZθJC, Normalized Thermal Impedance
Figure 13b
Transient Thermal
Response Curves
1 Duty Cycle:
0.5
0.2
0.1
0.1
0.05
PDM
t1
0.02
0.01 0.01
Notes:
Duty Factor: D = t1/t2
Peak TJ = PDM x ZθJC x RθJC + TC
Single Pulse
0.001
10-6
10-5
10-4
10-3
10-2
10-1
1
tp, Rectangular Pulse Duration, seconds
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 7
eGaN® FET DATASHEET
EPC2111
TAPE AND REEL CONFIGURATION
4mm pitch, 12mm wide tape on 7” reel
7” reel
d
e
f
g
Loaded Tape Feed Direction
Gate bumps are along this edge of the die
b
c
ZZZZ
YYYY
a
Die
orientation
dot
2111
DIM
EPC2111 (Note 1)
a
b
c (Note 2)
d
e
f (Note 2)
g
Dimension (mm)
Target MIN MAX
12.00 11.90 12.30
1.75
1.65 1.85
5.50
5.45 5.55
4.00
3.90 4.10
4.00
3.90 4.10
2.00
1.95 2.05
1.50
1.50 1.60
Die is placed into pocket
solder ball side down
(face side down)
Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/
JEDEC industry standard.
Note 2: Pocket position is relative to the sprocket hole measured as
true position of the pocket, not the pocket hole.
DIE MARKINGS
2111
YYYY
ZZZZ
Die orientation dot
Part
Number
EPC2111
Laser Markings
Part #
Marking Line 1
Lot_Date Code
Marking Line 2
Lot_Date Code
Marking Line 3
2111
YYYY
ZZZZ
Pin 1 is under this corner
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
| 8
eGaN® FET DATASHEET
EPC2111
DIE OUTLINE
Solder Bump View
A
6
9
2
5
8
12
15
18
21
11
14
17
20
4
7
10
13
16
19
Side View
A
B
c
d
e
3470
1470
500
500
238
3500
1500
500
500
264
3530
1530
500
500
290
200+/−20
Seating plane
MAX
Pad 1 is G1; Pad 3 is G2;
Pads 4, 7, 10, 13, 16, 19 are VIN;
Pads 2, 5, 8, 11, 14, 17, 20 are SN;
Pads 6, 9, 12, 15, 18, 21 are GND
d
(685)
1
Nominal
(885)
e
MIN
B
c
3
DIM
RECOMMENDED LAND PATTERN
(measurements in µm)
A
4
7
2
5
8
10
13
16
19
14
17
20
15
18
21
11
500
230
3
B
500
1
The land pattern is solder mask defined.
Solder mask is10 µm smaller per side than bump.
6
9
12
RECOMMENDED STENCIL DRAWING
(measurements in µm)
Recommended stencil should be 4 mil (100 µm)
thick, must be laser cut, openings per drawing.
The corner has a radius of R60.
3500
1
4
7
10
13
16
19
5
8
11
6
17
9
12
20
R60
500
275
3
14
1500
2
275
Intended for use with SAC305 Type 4 solder,
reference 88.5% metals content.
15
18
21
Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
eGaN® is a registered trademark of Efficient Power Conversion Corporation.
EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx
EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 |
Additional assembly resources available at:
https://epc-co.com/epc/DesignSupport/
AssemblyBasics.aspx
Information subject to
change without notice.
Revised June, 2020
| 9