0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EPC2203

EPC2203

  • 厂商:

    EPC(宜普)

  • 封装:

    Die

  • 描述:

    GANFET N-CH 80V 1.7A DIE

  • 数据手册
  • 价格&库存
EPC2203 数据手册
eGaN® FET DATASHEET EPC2203 EPC2203 – Automotive 80 V (D-S) Enhancement Mode Power Transistor VDS , 80 V RDS(on) , 80 mΩ ID , 1.7 A AEC-Q101 D EFFICIENT POWER CONVERSION G HAL S Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG and zero QRR. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate. Maximum Ratings PARAMETER VDS ID VALUE UNIT Drain-to-Source Voltage (Continuous) 80 V Continuous (TA = 25°C, RθJA = 314°C/W) 1.7 Pulsed (25°C, TPULSE = 300 µs) 17 A Gate-to-Source Voltage 5.75 Gate-to-Source Voltage -4 TJ Operating Temperature –40 to 150 TSTG Storage Temperature –40 to 150 VGS V °C Thermal Characteristics PARAMETER TYP RθJC Thermal Resistance, Junction-to-Case 6.5 RθJB Thermal Resistance, Junction-to-Board 65 RθJA Thermal Resistance, Junction-to-Ambient (Note 1) 100 EPC2203 eGaN® FETs are supplied only in passivated die form with solder bumps. Die Size: 0.9 mm x 0.9 mm Applications • Lidar/Pulsed Power Applications • High Power Density DC-DC Converters • Wireless Power • Class-D Audio Benefits • Ultra High Efficiency • Ultra Low RDS(on) • Ultra Low QG • Ultra Small Footprint UNIT °C/W Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details. Static Characteristics (TJ = 25°C unless otherwise stated) PARAMETER TEST CONDITIONS MIN 80 BVDSS Drain-to-Source Voltage VGS = 0 V, ID = 300 μA IDSS Drain-Source Leakage IGSS TYP MAX UNIT V VDS = 64 V, VGS = 0 V 5 250 μA Gate-to-Source Forward Leakage VGS = 5 V 0.01 0.9 mA Gate-to-Source Reverse Leakage VGS = -4 V 2 250 μA VGS(TH) Gate Threshold Voltage RDS(on) Drain-Source On Resistance VSD Source-Drain Forward Voltage VDS = VGS, ID = 0.6 mA 1.5 2.5 V VGS = 5 V, ID = 1 A 0.8 53 80 mΩ IS = 0.35 A, VGS = 0 V 2.2 V All measurements were done with substrate connected to source. EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 1 eGaN® FET DATASHEET EPC2203 Dynamic Characteristics (TJ = 25°C unless otherwise stated) PARAMETER CISS Input Capacitance TEST CONDITIONS MIN VDS = 50 V, VGS = 0 V CRSS Reverse Transfer Capacitance COSS Output Capacitance COSS(ER) Effective Output Capacitance, Energy Related (Note 2) COSS(TR) Effective Output Capacitance, Time Related (Note 3) RG Gate Resistance QG Total Gate Charge QGS Gate-to-Source Charge TYP MAX 73 88 UNIT 0.5 47 pF 71 57 VDS = 0 to 50 V, VGS = 0 V 72 0.6 VDS = 50 V, VGS = 5 V, ID = 1 A Ω 670 830 220 VDS = 50 V, ID = 1 A QGD Gate-to-Drain Charge QG(TH) Gate Charge at Threshold QOSS Output Charge QRR Source-Drain Recovery Charge 120 pC 154 VDS = 50 V, VGS = 0 V 3600 5400 0 All measurements were done with substrate connected to source. Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS. Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS. Figure 2: Transfer Characteristics 15 15 12 12 ID – Drain Current (A) ID – Drain Current (A) Figure 1: Typical Output Characteristics at 25°C 9 VGS = 5 V VGS = 4 V VGS = 3 V VGS = 2 V 6 3 0 VDS = 3 V 9 6 3 0 0.5 1.0 1.5 2.0 2.5 VDS – Drain-to-Source Voltage (V) 0 3.0 RDS(on) – Drain-to-Source Resistance (mΩ) RDS(on) – Drain-to-Source Resistance (mΩ) ID = 0.5 A ID = 1.0 A ID = 1.5 A ID = 2.0 A 200 150 100 50 2.5 3.0 3.5 4.0 VGS – Gate-to-Source Voltage (V) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VGS – Gate-to-Source Voltage (V) 4.0 4.5 5.0 Figure 4: RDS(on) vs. VGS for Various Temperatures Figure 3: RDS(on) vs. VGS for Various Drain Currents 0 25˚C 125˚C 4.5 5.0 EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | 25˚C 125˚C 200 ID = 1 A 150 100 50 0 2.5 3.0 3.5 4.0 VGS – Gate-to-Source Voltage (V) 4.5 5.0 | 2 eGaN® FET DATASHEET EPC2203 Figure 5b: Capacitance (Log Scale) Figure 5a: Capacitance (Linear Scale) 140 100 120 COSS = CGD + CSD CISS = CGD + CGS CRSS = CGD Capacitance (pF) Capacitance (pF) 100 80 60 10 COSS = CGD + CSD CISS = CGD + CGS CRSS = CGD 1 40 20 0 0 20 40 60 0.1 80 0 20 0.18 5 0.15 4 0.12 3 0.09 2 0.06 1 0.03 0 0 20 40 60 80 60 80 0.6 0.8 Figure 6: Gate Charge 5 VGS – Gate-to-Source Voltage (V) 6 EOSS — COSS Stored Energy (µJ) QOSS — Output charge (nC) Figure 5c: Output Charge and COSS Stored Energy 40 VDS – Drain-to-Source Voltage (V) VDS – Drain-to-Source Voltage (V) 3 2 1 0 0.00 ID = 1 A VDS = 50 V 4 0 0.2 0.4 QG – Gate Charge (nC) VDS – Drain-to-Source Voltage (V) Figure 7: Reverse Drain-Source Characteristics Figure 8: Normalized On-State Resistance vs. Temperature 2.0 Normalized On-State Resistance RDS(on) ISD – Source-to-Drain Current (A) 15 25˚C 125˚C 12 9 6 3 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VSD – Source-to-Drain Voltage (V) 4.0 4.5 5.0 ID = 1 A VGS = 5 V 1.8 1.6 1.4 1.2 1.0 0.8 0 25 50 75 100 TJ – Junction Temperature (°C) 125 150 All measurements were done with substrate shortened to source. EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 3 eGaN® FET DATASHEET EPC2203 Figure 9: Normalized Threshold Voltage vs. Temperature Figure 9: Normalized Threshold Voltage vs. Temperature 1.40 Normalized Threshold Voltage 1.30 ID = 0.6 mA 1.20 1.10 1.00 0.90 0.80 0.70 0.60 0 25 50 75 100 TJ – Junction Temperature (°C) 125 150 Figure 10: Transient Thermal Response Curves Junction-to-Case Junction-to-Board 1 Duty Cycle: 0.5 ZθJC, Normalized Thermal Impedance ZθJB, Normalized Thermal Impedance 1 0.1 0.1 0.05 0.02 0.01 0.01 PDM t1 0.001 Notes: Duty Factor: D = t1/t2 Peak TJ = PDM x ZθJB x RθJB + TB Single Pulse 0.0001 10-5 t2 10-4 10-3 10-2 10-1 1 10+1 Duty Cycle: 0.5 0.2 0.1 0.05 0.02 0.01 0.01 0.1 PDM t1 0.001 Single Pulse 0.0001 10-6 tp, Rectangular Pulse Duration, seconds t2 Notes: Duty Factor: D = t1/t2 Peak TJ = PDM x ZθJC x RθJC + TC 10-5 10-4 10-3 10-2 10-1 1 tp, Rectangular Pulse Duration, seconds Figure 11: Safe Operating Area I D – Drain Current (A) 10 Limited by RDS(on) Pulse Width 1 ms 100 ms 10 ms250 µs 1 ms 100 µs 100 µs 1 0.1 0.1 1 10 100 VDS - Drain-Source Voltage (V) EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 4 eGaN® FET DATASHEET EPC2203 TAPE AND REEL CONFIGURATION 4mm pitch, 8mm wide tape on 7”reel 7” reel d e f g Loaded Tape Feed Direction b AE YYY a c DIM EPC2203 (Note 1) a b c (Note 2) d e f (Note 2) g Dimension (mm) Target MIN MAX 8.00 7.90 8.30 1.75 1.65 1.85 3.50 3.45 3.55 4.00 3.90 4.10 4.00 3.90 4.10 2.00 1.95 2.05 1.50 1.50 1.60 Die orientation dot Gate solder bar is under this corner Die is placed into pocket solder bar side down (face side down) Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole. DIE MARKINGS Die orientation dot Gate Pad bump is under this corner AE YYY EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | Part Number EPC2203 Laser Markings Part # Marking Line 1 Lot_Date Code Marking Line 2 AE YYY | 5 eGaN® FET DATASHEET EPC2203 A DIE OUTLINE Solder Bump View g 2 d B 4 1 3 c MIN Nominal MAX A B c d e f g 870 870 450 450 210 210 187 900 900 450 450 225 225 208 930 930 450 450 240 240 229 f e Pads 1 is Gate; Pad 3 is Drain; Pads 2, 4 are Source DIM 165+/- 17 685 +/-25 Side View Seating Plane RECOMMENDED LAND PATTERN The land pattern is solder mask defined Solder mask is 10 μm smaller per side than bump 900 (measurements in µm) Pads 1 is Gate; 3 Pad 3 is Drain; Pads 2, 4 are Source X4 2 225 450 200 +20 / - 10 (*) 242 4 225 900 1 450 * minimum 190 RECOMMENDED STENCIL DRAWING 900 Recommended stencil should be 4mil (100 µm) thick, must be laser cut, openings per drawing. 250 0 (measurements in µm) 225 450 Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx 225 450 900 R6 Intended for use with SAC305 Type 4 solder, reference 88.5% metals content. Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. eGaN® is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | Information subject to change without notice. Revised January, 2021 | 6
EPC2203 价格&库存

很抱歉,暂时无法提供与“EPC2203”相匹配的价格&库存,您可以联系我们找货

免费人工找货