0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
S1D13715B00B200

S1D13715B00B200

  • 厂商:

    EPSONTOYOCOM(爱普生)

  • 封装:

    TFBGA160

  • 描述:

    IC GRAPHIC LCD CTRLR 160BGA

  • 数据手册
  • 价格&库存
S1D13715B00B200 数据手册
S1D13715 Mobile Graphics Engine with Megapixel Support Hardware Functional Specification Document Number: X52A-A-001-07.4 Rev. 7.4 NOTICE No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes. All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies. ©SEIKO EPSON CORPORATION 2002-2018. All rights reserved. 2 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Table of Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Scope . . . . . . . . . . . . . . . . . . . . . 1.2 General Description . . . . . . . . . . . . . . . 1.3 Internal Memory . . . . . . . . . . . . . . . . 1.4 Host CPU Interface . . . . . . . . . . . . . . . 1.4.1 Direct Addressing Host Interfaces . . . . . . . . . 1.4.2 Indirect Addressing Host Interfaces . . . . . . . . . 1.4.3 Serial Port Interface for Serial LCD Control . . . . 1.5 LCD Controller . . . . . . . . . . . . . . . . . 1.5.1 RGB LCD Interface . . . . . . . . . . . . . . . . . 1.5.2 Parallel LCD Interface . . . . . . . . . . . . . . . 1.5.3 Serial LCD Interface . . . . . . . . . . . . . . . . 1.6 Display Features . . . . . . . . . . . . . . . . 1.7 Camera Interface . . . . . . . . . . . . . . . . 1.8 Resizers and YUV/RGB Converter . . . . . . . . . 1.9 JPEG Encoder / Decoder . . . . . . . . . . . . . 1.9.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . 1.9.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . 1.10 2D BitBLT Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 11 12 13 14 14 14 15 16 16 16 17 17 18 19 19 19 20 2 Features . . . . . . . . . . . . . . 2.1 Internal Memory . . . . . . 2.2 Host CPU Interface . . . . . 2.3 Display Support . . . . . . . 2.4 Display Modes . . . . . . . 2.5 Display Features . . . . . . 2.6 Camera Interface . . . . . . 2.7 Digital Video Features . . . . 2.8 Picture Input / Output Functions 2.9 2D BitBLT Acceleration . . . 2.10 Clock . . . . . . . . . . . 2.11 Power Save . . . . . . . . 2.12 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 21 22 22 23 23 23 24 24 24 24 3 System Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.1 S1D13715 Pinout Diagram (PFBGA-160) . . . . . . . . . . . . . . . . . . . 30 S1D13715 Hardware Functional Specification Rev. 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seiko Epson Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5.2 5.3 5.4 5.5 5.6 5.7 4 S1D13715 Pinout Diagram (QFP21-176) Pin Descriptions . . . . . . . . . . 5.3.1 Host Interface . . . . . . . . . . . 5.3.2 LCD Interface . . . . . . . . . . . 5.3.3 Camera Interface . . . . . . . . . . 5.3.4 Clock Input . . . . . . . . . . . . 5.3.5 Miscellaneous . . . . . . . . . . . 5.3.6 Power And Ground . . . . . . . . Summary of Configuration Options . . Host Interface Pin Mapping . . . . . . LCD Interface Pin Mapping . . . . . Camera Interface Pin Mapping . . . . 5.7.1 Camera1 Interface Pin Mapping . . 5.7.2 Camera2 Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 . .32 . . 33 . . 36 . . 39 . . 40 . . 41 . . 42 . .43 . .44 . .46 . .52 . . 52 . . 52 6 D.C. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 7 A.C. Characteristics . . . . . . . . . . 7.1 Clock Timing . . . . . . . . . . 7.1.1 Input Clocks . . . . . . . . . . . 7.1.2 PLL Clock . . . . . . . . . . . . 7.1.3 Internal Clocks . . . . . . . . . . 7.2 Power Supply Sequence . . . . . . 7.2.1 Power-On Sequence . . . . . . . 7.2.2 Power-Off Sequence . . . . . . . 7.3 Host Interface Timing . . . . . . . 7.3.1 Direct 80 Type 1 . . . . . . . . . 7.3.2 Direct 80 Type 2 . . . . . . . . . 7.3.3 Direct 80 Type 3 . . . . . . . . . 7.3.4 Direct 68 . . . . . . . . . . . . . 7.3.5 Indirect 80 Type 1 . . . . . . . . 7.3.6 Indirect 80 Type 2 . . . . . . . . 7.3.7 Indirect 80 Type 3 . . . . . . . . 7.3.8 Indirect 68 . . . . . . . . . . . . 7.3.9 WAIT Length . . . . . . . . . . 7.4 Panel Interface Timing . . . . . . 7.4.1 Generic TFT Panel Timing . . . 7.4.2 HR-TFT Panel Timing . . . . . . 7.4.3 Casio TFT Panel Timing . . . . 7.4.4 a-TFT Panel Timing . . . . . . . 7.4.5 TFT Type 2 Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seiko Epson Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 . . .55 . . . 55 . . . 57 . . . 58 . . .59 . . . 59 . . . 59 . . .60 . . . 60 . . . 64 . . . 67 . . . 71 . . . 75 . . . 79 . . . 83 . . . 87 . . . 91 . . .92 . . . 92 . . . 96 . . . 99 . . .102 . . .105 S1D13715 Hardware Functional Specification Rev. 7.4 7.4.6 LCD1 ND-TFD, LCD2 8-Bit Serial Interface Timing 7.4.7 LCD1 ND-TFD, LCD2 9-Bit Serial Interface Timing 7.4.8 LCD1 a-Si TFT Serial Interface Timing . . . . . . . 7.4.9 LCD1 uWIRE Serial Interface Timing . . . . . . . . 7.4.10 LCD1, LCD2 Parallel Interface Timing (80) . . . . . 7.4.11 LCD1, LCD2 Parallel Interface Timing (68) . . . . . 7.5 Camera Interface Timing . . . . . . . . . . . . . . 7.5.1 S1D13715B00B Camera Interface Timing . . . . . . 7.5.2 S1D13715F01A Camera Interface Timing . . . . . . 7.5.3 MPEG Codec Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 Main Window Case 1 . . . . . . . . . . . . . . . . . . . . 8.1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Main Window Case 2 . . . . . . . . . . . . . . . . . . . . 8.2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Main Window, PIP+ Window, and Overlay Display . . . . . . . . 8.3.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 Main Window, PIP+ Window, Overlay, and YUV . . . . . . . . . 8.4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 Main Window, PIP+ Window, Overlay, and JPEG . . . . . . . . . 8.5.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6 Main Window, PIP+ Window, Overlay, RGB/YUV Converter and JPEG 8.6.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 . . . . 118 . . . . . 118 . . . . 120 . . . . . 120 . . . . 122 . . . . . 122 . . . . 124 . . . . . 124 . . . . 126 . . . . . 126 . . . . 128 . . . . . 128 9 Clocks . . . . . . . . . . 9.1 Clock Diagram . . . 9.2 Clocks . . . . . . 9.2.1 System Clock . 9.2.2 Pixel Clock . . 9.2.3 Serial Clock . . 9.2.4 Camera1 Clock 9.2.5 Camera2 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 . 110 . 111 . 112 . 113 . 114 . 115 . 115 . 116 . 117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 . . . . 130 . . . . 131 . . . . . 131 . . . . . 131 . . . . . 131 . . . . . 131 . . . . . 131 10 Registers . . . . . . . . . . . . . . . . . . 10.1 Register Mapping . . . . . . . . . . 10.2 Register Set . . . . . . . . . . . . 10.3 Register Restrictions . . . . . . . . . 10.4 Register Description . . . . . . . . . 10.4.1 System Configuration Registers . . . 10.4.2 Clock Setting Registers . . . . . . . 10.4.3 Indirect Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 . . . . 132 . . . . 133 . . . . 137 . . . . 137 . . . . . 137 . . . . . 139 . . . . . 147 S1D13715 Hardware Functional Specification Rev. 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seiko Epson Corporation 5 10.4.4 LCD Panel Interface Generic Setting Register 10.4.5 LCD1 Setting Register . . . . . . . . . . . . . 10.4.6 LCD2 Setting Registers . . . . . . . . . . . . 10.4.7 Extended Panel Registers . . . . . . . . . . . 10.4.8 Camera Interface Setting Register . . . . . . . 10.4.9 Display Mode Setting Register . . . . . . . . 10.4.10 GPIO Registers . . . . . . . . . . . . . . . . 10.4.11 Overlay Registers . . . . . . . . . . . . . . . 10.4.12 LUT1 (Main Window) . . . . . . . . . . . . . 10.4.13 LUT2 (PIP+ Window) . . . . . . . . . . . . . 10.4.14 Resizer Operation Registers . . . . . . . . . . 10.4.15 JPEG Module Registers . . . . . . . . . . . . 10.4.16 JPEG FIFO Setting Register . . . . . . . . . . 10.4.17 JPEG Line Buffer Setting Register . . . . . . 10.4.18 Interrupt Control Registers . . . . . . . . . . 10.4.19 JPEG Encode Performance Register . . . . . 10.4.20 JPEG Codec Registers . . . . . . . . . . . . . 10.4.21 2D BitBLT Registers . . . . . . . . . . . . . 11 Power Save Modes . . . . . . . . . . . 11.1 Power-On/Power-Off Sequence . . . 11.1.1 Power-On . . . . . . . . . . . . 11.1.2 Reset . . . . . . . . . . . . . . . 11.1.3 Standby Mode . . . . . . . . . . 11.1.4 Power Save Mode . . . . . . . . 11.1.5 Normal Mode . . . . . . . . . . 11.1.6 Power-Off . . . . . . . . . . . . 11.2 Power Save Mode Function . . . . . 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 LUT Architecture . . . . . . . . . . . . . . . . 12.1 LUT1 (Main Window) for 8 bpp . . . . . . 12.2 LUT2 (PIP+ Window) for 8 Bpp Architecture 12.3 LUT1 (Main Window) for 16 Bpp Architecture 12.4 LUT2 (PIP+ Window) for 16 Bpp Architecture . . . . . 13 Display Data Formats . . . . . . . . . 13.1 Display Data for LUT Mode . . . . 13.1.1 8 Bpp Mode . . . . . . . . . . . 13.1.2 16 Bpp Mode . . . . . . . . . . 13.1.3 32 bppMode . . . . . . . . . . . 13.2 Display Data for LUT Bypass Mode . 13.2.1 8 Bpp Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seiko Epson Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 . . 308 . . .310 . . .310 . . .310 . . .310 . . .311 . . .311 . . 311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 .157 .165 .169 .181 .195 .223 .225 .234 .235 .236 .249 .264 .270 .276 .283 .284 .300 . 312 . 312 . 313 . 314 . 315 . . 316 . . 316 . . .316 . . .317 . . .317 . . 318 . . .318 S1D13715 Hardware Functional Specification Rev. 7.4 13.2.2 16 Bpp Mode . . . . . . . . . . . . . 13.2.3 32 Bpp Mode . . . . . . . . . . . . . 13.3 Display Data Flow . . . . . . . . . . 13.3.1 Display Buffer Data . . . . . . . . . . 13.3.2 Bit Cover When LUT Bypassed . . . 13.3.3 Overlay . . . . . . . . . . . . . . . . 13.4 Parallel Data Format . . . . . . . . . . 13.4.1 8-Bit Parallel, RGB=3:3:2 . . . . . . . 13.4.2 8-Bit Parallel, RGB=4:4:4 . . . . . . . 13.4.3 8-Bit Parallel, RGB=8:8:8 . . . . . . . 13.4.4 16-Bit Parallel, RGB=4:4:4 . . . . . . 13.4.5 16-Bit Parallel, RGB=5:6:5 . . . . . . 13.4.6 18-Bit Parallel, RGB=6:6:6 . . . . . . 13.4.7 16-Bit Parallel, RGB=8:8:8 . . . . . . 13.4.8 24-Bit Parallel, RGB=8:8:8 . . . . . . 13.5 Serial Data Format . . . . . . . . . . 13.5.1 8-Bit Serial, RGB=3:3:2 . . . . . . . . 13.5.2 8-Bit Serial, RGB=4:4:4 . . . . . . . . 13.6 YUV Input / Output Data Format . . . . . 13.6.1 YUV 4:2:2 Data Input / Output Format 13.6.2 YUV 4:2:0 Data Input / Output Format 13.7 YUV/RGB Conversion . . . . . . . . . 13.8 RGB/YUV Conversion . . . . . . . . . 14 SwivelView™ . . . . . . . . . . . . 14.1 SwivelView Modes . . . . . . 14.1.1 90° SwivelView . . . . . . . 14.1.2 180° SwivelView . . . . . . 14.1.3 270° SwivelView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 . 318 . 319 . 319 . 319 . 319 . 320 . 320 . 321 . 321 . 322 . 323 . 324 . 325 . 326 . 327 . 327 . 327 . 328 . 328 . 329 . 331 . 332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 . . . . 334 . . . . . 334 . . . . . 336 . . . . . 337 15 Picture-in-Picture Plus (PIP+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 15.1 Overlay Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 15.1.1 Overlay Display Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 16 2D BitBLT Engine . . . . . . . . . . 16.1 Overview . . . . . . . . . . 16.2 BitBLTs . . . . . . . . . . . 16.2.1 Read BitBLT . . . . . . . . 16.2.2 Move BitBLT . . . . . . . . 16.2.3 Pattern Fill BitBLT . . . . . 16.2.4 Solid Fill BitBLT . . . . . . 16.2.5 BitBLT Terms . . . . . . . . S1D13715 Hardware Functional Specification Rev. 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seiko Epson Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 . . . . 344 . . . . 345 . . . . . 345 . . . . . 345 . . . . . 346 . . . . . 346 . . . . . 347 7 16.2.6 Source and Destination . 16.3 Data Functions . . . . . . . 16.3.1 ROP . . . . . . . . . . . 16.3.2 Transparency . . . . . . 16.4 Linear / Rectangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 . . 353 . . 354 . . .354 . . .355 . . .355 . . .356 . . .356 . . .357 . . .357 . . 358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 JPEG Encode/Decode Operation . . . . . . . . . . . . . . . . . . . . . 19.1 JPEG Features . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.1 JPEG FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.2 JPEG Codec Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.3 JPEG Bypass Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2 Example Sequences . . . . . . . . . . . . . . . . . . . . . . . 19.2.1 JPEG Encoding Process . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.2 Memory Image JPEG Encoding Process . . . . . . . . . . . . . . . . 19.2.3 Memory Image JPEG Encoding Process from Host I/F (RGB format) . 19.2.4 JPEG Decoding Process . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.5 YUV Data Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.6 YUV Data Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.7 Exit Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 . . 367 . . .367 . . .368 . . .369 . . 370 . . .370 . . .377 . . .381 . . .385 . . .392 . . .393 . . .394 20 Camera Interface . . . . . . . . . . . . 20.1 Camera1/2 Type 1 Camera . . . . . 20.2 Strobe Control Signal . . . . . . . 20.2.1 Generating a Strobe Pulse . . . . 20.2.2 Strobe Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 . . 395 . . 396 . . .396 . . .397 17 Resizers . . . . . . . . . . 17.1 Trimming Function . . 17.2 Scaling Function . . . 17.2.1 1/2 Scaling . . . . 17.2.2 1/3 Scaling . . . . 17.2.3 1/4 Scaling . . . . 17.2.4 1/5 Scaling . . . . 17.2.5 1/6 Scaling . . . . 17.2.6 1/7 Scaling . . . . 17.2.7 1/8 Scaling . . . . 17.3 Resizer Restrictions . . . . . . . . . . . . . . . . . . 18 Digital Video Functions . . . . . . . . . . . . 18.1 Display Image Data from the Camera Interface 18.2 JPEG Encode and Camera Data to the Host . 18.3 JPEG Decode and Display Data from the Host 18.4 JPEG 180° Rotate Encode Diagram . . . . 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seiko Epson Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348 . 348 . .349 . .350 . 351 . 361 . 362 . 363 . 364 . 365 S1D13715 Hardware Functional Specification Rev. 7.4 20.3 MPEG Codec Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 398 21 Indirect Host Interface . . . . . . . . . . . . . . . 21.1 Using the Indirect Interface . . . . . . . . . . 21.2 Example Sequences . . . . . . . . . . . . . 21.2.1 Register Read/Write Example Sequence . . . 21.2.2 Memory Write Example Sequence . . . . . . 21.2.3 Memory Read Example Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 . . . . 399 . . . . 399 . . . . . 400 . . . . . 401 . . . . . 403 22 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 23 Change Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 24 Sales and Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 9 10 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Introduction 1 Introduction 1.1 Scope This is the Hardware Functional Specification for the S1D13715 Mobile Graphics Engine. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers. This document is updated as appropriate. Please check for the latest revision of this document before beginning any development. The latest revision can be downloaded at vdc.epson.com. We appreciate your comments on our documentation. Please contact us via email at vdc-documentation@ea.epson.com. 1.2 General Description The S1D13715 is an Mobile Graphics Engine solution designed with support for the digital video revolution in mobile products. The S1D13715 contains an integrated dual port camera interface, hardware JPEG encoder/decoder and can be interfaced to an external MPEG codec. Seamlessly connecting to both direct and indirect CPU interfaces, it provides support for up to two LCD panels. The Mobile Graphics Engine supports all standard TFT panel types and many extended TFT types, eliminating the need for an external timing control IC. The S1D13715, with it’s 320K bytes of embedded SRAM and rich feature set, provides a low cost, low power, single chip solution to meet the demands of embedded markets requiring Digital Video, such as Mobile Communications devices and Palm-size PDAs. Additionally, products requiring a rotated display can take advantage of the SwivelView TM feature which provides hardware rotation of the display memory, transparent to the software application. The S1D13715 also provides support for “Picture-in-Picture Plus” (a variable size window with overlay functions). Higher performance is provided by the Hardware Acceleration Engine which provides 2D BitBLT functions. The S1D13715 provides impressive support for cellular and other mobile solutions requiring Digital Video support. However, its impartiality to CPU type or operating system makes it an ideal display solution for a wide variety of applications. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 11 Introduction 1.3 Internal Memory The S1D13715 contains 320K bytes of internal SRAM memory. This internal memory is divided into three physical SRAM banks that contain independent arbitration logic. The boundaries between the memory banks are transparent to the user. Memory Bank1 is 64K bytes, Bank2 is 128K bytes, and Bank3 is 128K bytes. The internal memory can be used in 5 main ways: 1. Main Window Display Only: 320K bytes available. If the JPEG functions and the PIP+ window are not required (therefore disabled), the entire 320K bytes of memory is available for main window image storage. In this case, the image written to the main display window can either come from the Host (RGB data) over the host interface, and/or input by the camera (YUV or RGB data) through the camera interface. The Main Window Display Start Address registers (REG[0212h]-[0214h]) determines where the main window image is stored in memory. Additionally, if the main window image is being updated by a camera, the YUV/RGB Converter Write Start Address registers (REG[0242h]-[0244h]) determines where the camera data is written and typically equals the address of the Main Window Display Start Address. 2. Main Window and PIP+ Window Display Only: 320K bytes available. If the JPEG functions are not required (therefore disabled), the entire 320K bytes of memory is available for image storage and must be shared between the Main Window Display Image and the PIP+ Window Display Image. It is recommended that the Main Window and the PIP+ Window be located in different memory banks for improved performance. Since the PIP+ Window is typically smaller than the Main Window, it is recommended that the PIP+ Window Display Image be set to Bank1 using the PIP+ Display Start Address registers (REG[0218h]-[021Ah]), and the Main Window Display Image be set to Bank2 and/or Bank3 using the Main Window Display Start Address registers (REG[0212h]-[0214h]). As in option 1, the image data for either of these windows can come from the Host or from the camera. Typically, in this setup the camera will input image data to the PIP+ Window and the YUV/RGB Converter Write Start Address registers (REG[0242h]-[0244h]) will equal the PIP+ Display Start Address. 3. JPEG Functions Enabled: 288K bytes - JPEG FIFO size available. If either the JPEG Encoder or Decoder is used, segments of Bank1 and Bank3 are automatically reserved for JPEG use only. The JPEG FIFO uses Bank1 and its size is configurable from 4K bytes to 64K bytes using the JPEG FIFO Size bits (REG[09A4h] bits 3-0). The JPEG FIFO starts at address 0 of Bank1 and is accessed using the JPEG FIFO Read/Write register (REG[09A6h]). The JPEG FIFO is used as an interface between the JPEG module and the HOST. When the S1D13715 is encoding a JPEG image, the JPEG FIFO stores JPEG data for the HOST to read. When the S1D13715 is decoding a JPEG file, the JPEG FIFO stores incoming JPEG data from the HOST. The size of the JPEG FIFO should be set to optimize performance based on the HOST operating speed, S1D13715 operating speed, and the size of the JPEG image. The JPEG Line Buffer uses the upper 32K bytes of Bank3, from 48000h - 4FFFFh. During an encode operation, the JPEG Line Buffer is used to organize incoming YUV data from the 12 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Introduction camera and send it to the JPEG Encoder. During a decode operation, the JPEG Line Buffer organizes the YUV data output of the JPEG decoder to be sent to the View Resizer and YUV/RGB Converter for display on the LCD panel. 4. YUV Data Output: 288K bytes - JPEG FIFO size available. If YUV data from the camera is directly sent to the HOST, the JPEG Codec is bypassed, however the JPEG FIFO and JPEG Line Buffer are still utilized. The JPEG FIFO and JPEG Line Buffer are used as described for the decode operation in option 3 (JPEG Functions Enabled). 5. YUV Data Input: 288K bytes available. If YUV data from the Host is sent directly to the S1D13715, the JPEG Codec and JPEG FIFO are bypassed. YUV data is written directly to the JPEG Line Buffer. In this mode, the JPEG Line Buffer is accessed using the JPEG Line Buffer Write Port register (REG[09E0h]). The JPEG Line Buffer then sends the YUV data to the View Resizer and the YUV/RGB Converter for display on the LCD panel. All data stored in the internal memory that is intended for display on the LCD panel, must be stored in RGB format. YUV data from the camera interface or from the HOST must be converted to RGB by the YUV/RGB Converter. Color depth data formats of 8/16/32 bitper-pixel are supported. 1.4 Host CPU Interface The S1D13715 supports four CPU Host interfaces with 16-bit wide data buses. Each interface can support little or big endian data formats, direct or indirect addressing, and the option to use a wait signal or not. See Section 5.4, “Summary of Configuration Options” on page 43 for a description on how to configure the S1D13715 for these various options. In addition to these four CPU Host interfaces, the S1D13715 also has a serial CPU port which allows the CPU Host to directly control a serial LCD panel connected to the S1D13715. The Host CPU that is used to connect to the S1D13715 must meet all specified timing parameters for the Host interface being used, as shown in Section 7.3, “Host Interface Timing” on page 60. It is recommended that the WAIT# signal be used for all host interfaces as this will ensure that the highest performance is achieved when accessing the S1D13715. When this mode is selected, the WAIT# signal is only asserted when needed (i.e. the S1D13715 cannot accept or present data immediately). If the WAIT# signal is not used, the CPU must guarantee that all cycles meet the maximum cycle length as shown in Table 7-46: “Wait Length,” on page 91. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 13 Introduction 1.4.1 Direct Addressing Host Interfaces The direct addressing host interfaces (Direct 80 Type 1, Direct 80 Type 2, Direct 80 Type 3, and Direct 68) are generic asynchronous CPU interfaces that provide addressing along with the data in one transfer. These interfaces only differ in the signals used to interpret the read/write and byte enable command signals. Typically, these interfaces are used to connect to the external memory bus of the host CPU and offer the highest performance when accessing the S1D13715. The direct addressing host interfaces also have the ability to combine the S1D13715 registers and internal memory into one contiguous memory segment or into separate memory segments. In the contiguous mode (1 CS# mode), only one chip select is used to select the S1D13715 on the host bus. Memory and register accesses are differentiated by the M/R# pin which is typically connected to address pin A19 of the host CPU bus. In the separate memory mode (2 CS# mode), two chip selects select the S1D13715. One chip select is used for memory accesses and the other is used for register accesses. In this mode, the host CPU can be programmed to assign different memory spaces for the memory and registers of the S1D13715. 1.4.2 Indirect Addressing Host Interfaces The indirect addressing host interfaces (Indirect 80 Type 1, Indirect 80 Type 2, Indirect 80 Type 3, and Indirect 68) are generic asynchronous CPU interfaces that provide addressing and data in two separate transfers. These interfaces only differ in the signals used to interpret the read/write and byte enable command signals. Typically, these interfaces are used when the address and data lines of the host CPU are multiplexed together and two transfers are needed to complete a data transfer. 1.4.3 Serial Port Interface for Serial LCD Control The S1D13715 also supports a Serial Host Interface that is used to directly control a serial LCD panel connected to the S1D13715. This bypass mode is controlled by the Serial Port Bypass Enable bit (REG[0032h] bit 8). Typically, this interface is used when the S1D13715 is in power save mode and a serial LCD panel is required to show an image such as a status display. 14 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Introduction 1.5 LCD Controller The S1D13715 Mobile Graphics Engine contains a versatile LCD controller which supports many LCD panel types and offers a rich feature set. The S1D13715 has three LCD interface modes where either one or two LCD panels (referred to as LCD1 and LCD2) can be connected to the S1D13715. These modes are selected using the Panel Interface bits (REG[0032h] bits 1-0). LCD1 and LCD2 each have their own vertical and horizontal LCD panel size setting and other specific features, in order to easily switch from the LCD1 panel display to the LCD2 panel display or vice versa. In Mode 1, LCD1 is defined as a TFT RGB type LCD panel. The various TFT LCD panel types supported are listed in Table 10-12: “RGB Panel Type Selection,” on page 151 and are selected using the RGB Panel Type bits (REG[0032h] bits 15-10). LCD2 is defined as a serial interface type LCD panel with integrated RAM to store the image data. In Mode 2, LCD1 is defined as a parallel interface LCD panel with integrated RAM to store the image data. LCD2 is defined as a serial interface type LCD panel with integrated RAM to store the image data. In Mode 3, LCD1 and LCD2 are both defined as parallel interface LCD panels with integrated RAM to store the image data. In Mode 4, LCD1 is defined as a TFT RGB type LCD panel. The various LCD panel types supported are listed in Table 10-12: “RGB Panel Type Selection,” on page 151 and are selected using the RGB Panel Type bits (REG[0032h] bits 15-10). LCD2 is defined as a parallel interface LCD panel with integrated RAM to store the image data. In each mode, only one display (LCD1 or LCD2) at a time can be the active display. A typical application for using two separate LCD panels would be a clamshell type cellular phone where there is a main display and a smaller status display on the outside of the phone. LCD1 would be the main display and LCD2 would be the small status display, typically a serial interface LCD panel. Two images would be stored in the internal memory of the S1D13715 for each LCD display. When each display is selected as active, (LCD1 when the cellular phone is open and LCD2 when the cellular phone is closed) the correct image to be displayed is selected using the Main Window Display Start Address registers (REG[0210h]-[0212h]). For LCD Interface Pin Mapping refer to Table 5-12: “LCD Interface Pin Mapping for Mode 1,” on page 46 and Table 5-13: “LCD Interface Pin Mapping for Modes 2/3,” on page 47. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 15 Introduction 1.5.1 RGB LCD Interface The RGB LCD interface supports a wide range of TFT panels. TFT panels that can be programmed via various serial type interface are also supported and are selected with the LCD1 Serial Data Type bits (REG[0054h] bits 7-5). If this type of panel is connected to LCD1, the RGB Panel Type must be set to the General TFT, ND-TFT setting. The RGB LCD panel data bus width is selectable to support 9/12/16/24-bit panels using the RGB Interface Panel Data Bus Width bits (REG[0032h] bits 6-4). Other configurable options include non-display period times and polarity, width, and position of control signals. 1.5.2 Parallel LCD Interface The Parallel LCD Interface supports multiple output data formats, providing the flexibility to support various RAM integrated Parallel Interface LCD panels. If a parallel panel is connected to LCD1, the LCD1 Parallel Data Format bits (REG[0056h] bits 2-0) are used to program the output data format, otherwise the LCD2 Parallel Data Format bits (REG[005Eh] bits 2-0) are used. The LCD panel image can be updated in three different ways. Manual Transfer is accomplished by setting REG[003Ah] bit 1 = 1 which sends one frame of panel data to the Parallel LCD panel. LCD Module VSYNC Manual Transfer mode synchronizes a manual frame transfer to an external VSYNC signal sent by the parallel LCD panel. The VSYNC Input Enable bit for either LCD1 or LCD2 (REG[0056h] bit 7 or REG[005Eh] bit 7) must be set to enable this mode. The last transfer method is Automatic Transfer which sends frames to the LCD panel whenever a camera vertical sync signal is detected. If the VYSNC Input mode is also enabled, an external LCD panel VSYNC must also be detected. Automatic Transfer mode is enabled by setting REG[003Ch] bit 1 = 1. Automatic Transfer mode is intended for displaying a camera image on a serial or parallel interface LCD panel without the need to manually update the panel display. 1.5.3 Serial LCD Interface The Serial LCD Interface supports serial type LCD panels only on LCD2. Serial Data Type, Data Direction, Data Format, and Serial Clock Phase and Polarity are all selectable and are controlled in the LCD2 Serial Interface Setting register (REG[005Ch]). Serial Interface Panels are updated with image data as described in Section 1.5.2, “Parallel LCD Interface” on page 16. 16 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Introduction 1.6 Display Features The S1D13715 contains display features that enhance the functionality of the Mobile Graphics Engine. These features are Picture-in-Picture Plus (PIP+), Overlay, SwivelView, Mirror, and Pixel Doubling. PIP+ is a sub-window within the Main Window and typically is used to display the camera image or a decoded JPEG image. PIP+ can be used with the overlay functions so that only the part of the PIP+ window that overlaps the overlay color in the Main Window is displayed (according to the overlay function selected). Various overlay functions can be employed such as transparency, averaging, ANDing, ORing, and Inverting. Multiple overlay functions can be enabled, but only the overlay function with the highest priority is processed. SwivelView is a hardware rotation of the display image by either 90, 180, or 270 degrees. By processing the rotation of the image in hardware, SwivelView offers a performance advantage over software rotation. SwivelView can be used to support portrait sized panels mounted in a landscape orientation or vice versa. Mirror can be used to mirror the image in either the PIP+ window display, Main Window display, or both. A typical application for mirroring is to support swivelling on a clamshell phone. When the large display is on the outside of the phone and the camera is pointing at the user, mirroring allows the camera image to be displayed properly. Pixel Doubling is a feature that can be used to double the size of an image in either the PIP+ window display, Main Window display or both. Typical applications for pixel doubling include increasing the displayed size of a decoded JPEG image or using a larger panel size than is supported natively by an operating system. For example, if a 320x320 resolution panel is used with an OS that supports only a main display of 160x160 (such as in many PDAs), pixel doubling can be enabled to utilize the whole display. 1.7 Camera Interface The S1D13715 supports two 8-bit parallel Camera Interfaces. Only one camera interface can be active at a given time. The input data format supported is YUV 4:2:2. Embedded sync signals, as defined by the ITU-R BT656 standard, are also supported. A clock is supplied to the camera from the camera interface (CM1CLKOUT or CM2CLKOUT) and the camera in turn outputs YUV data, horizontal and vertical sync signals, and a pixel clock that the S1D13715 camera interface uses to sample the incoming YUV data. The CMxCLKOUT frequencies are controlled by the Camera1 Clock Divide Select bits (REG[0100h] bits 3-0) and Camera2 Clock Divide Select bits (REG[0104h] bits 3-0). The output control of these two clocks is controlled by REG[0110h] bit 0. The camera interface supports various types of YUV cameras by allowing the selection of different formats of YUV 4:2:2 signals. Features such as YUV Data Format, YUV Data Range, HSYNC and VSYNC polarity, and Camera Pixel Clock Input Polarity are all selectable. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 17 Introduction Since the Camera Pixel Clock can be, at most, 1/3 the S1D13715 System Clock , the frames per second of the camera image displayed on the LCD display is dependant on the internal speed of the S1D13715. For example, a setting of 54MHz for the System Clock results in the camera returning a Pixel Clock of 6.5MHz when the S1D13715 Camera Clock Out Divide is set to a divide of 4 (typical cameras use a divide by 2 of the input clock to generate the pixel clock). For CIF resolutions (352x288), this translates into 29 fps. For a Camera Clock Out Divide of 2 and VGA resolutions (640x480), 21 fps is achieved. In addition to the main function of the two camera interfaces, other video functions are supported. For the Camera Interface Pin Mappings refer to Section 5.7.1, “Camera1 Interface Pin Mapping” on page 52 and Section 5.7.2, “Camera2 Interface Pin Mapping” on page 52. 1.8 Resizers and YUV/RGB Converter There are two resizers in the S1D13715: the view resizer and the capture resizer. Both resizers can be used to resize (crop) and/or scale incoming YUV data from the camera interface, from the JPEG Decoder, or from the Host CPU in YUV bypass mode. Once the YUV data has been resized and scaled, it gets converted to RGB data by the YUV/RGB Converter (YRC), so that it can be displayed on the LCD panel. The location in memory where the YRC writes the RGB data is defined by the YUV/RGB Converter Write Start Address registers (REG[0242h]-[0244h]). The output bpp of the YRC must match either the Main Window color depth (bpp) or the PIP+ Window color depth (bpp) setting, depending on which window the image is being displayed in. The YRC color depth (bpp) output is controlled by the YRC Output Bpp Select bits (REG[0240h] bits 11-10). The resizers can support a maximum image size up to 2048 x 2048 pixels. Although each resizer can be configured to be the source for the YRC using the Output Source Select bit (REG[0940h] bit 3), typically the view resizer is set as the source since only the capture resizer can be the source for the JPEG Encoder or for YUV bypass mode to the Host CPU. A typical application has the view resizer resizing the camera data and has the YRC converting it for display on the LCD panel, while the capture resizer is used to send camera YUV data for JPEG encoding or for raw storage by the Host CPU. When the desired viewed camera image is the same dimensions as the desired captured JPEG or YUV image, only the capture resizer needs to be used. Note Only the view resizer can be used to resize YUV data from the JPEG Decoder or from the Host CPU. 18 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Introduction 1.9 JPEG Encoder / Decoder The S1D13715 contains a full JPEG Codec capable of encoding an incoming camera data stream or decoding a JPEG image sent from the Host CPU. 1.9.1 Encoder Either the YUV data stream from the camera interface or the display buffer memory via the RGB to YUV Converter can be encoded into a JPEG image. The YUV data from the capture resizer is organized into 8 x 8 blocks in the JPEG Line Buffer, as required for JPEG processing, and then sent to the JPEG Encoder. As the JPEG Encoder is encoding the YUV data, it starts filling up the JPEG FIFO with JPEG data. This data must be read by the Host CPU before the JPEG FIFO overflows. Status flags and interrupts can be used to determine how full the JPEG FIFO is becoming. The JPEG FIFO is accessed through the JPEG FIFO Read/Write register (REG[09A6h]). The JPEG FIFO can be set as large as 128K bytes and typically this will be large enough to contain the whole JPEG image. A smaller JPEG file size can be achieved using the capture resizer’s trimming and scaling functions or a higher JPEG compression ratio can be achieved by using different Quantization and Huffman Tables. As mentioned in Section 1.3, “Internal Memory” on page 12, when the JPEG functions are enabled, 32K bytes of the internal memory is used for the JPEG Line Buffer and from 4K bytes to 64K bytes is used for the JPEG FIFO. The JPEG Encoder can encode YUV 4:2:2, YUV 4:2:0, and YUV 4:1:1 data formats and will convert the incoming YUV data to the desired format. This encoding option is set by the YUV Format Select bits (REG[1000h] bits 1-0). The JPEG file size can be reduced if a smaller UV:Y ratio format is used. The intended use of the JPEG Encoder is to “take a snapshot” of the currently viewed camera image or display image, or to encode YUV data sent by the Host CPU. This JPEG image is then downloaded to the Host CPU through the JPEG FIFO and stored as a JPEG file. 1.9.2 Decoder The S1D13715 contains a JPEG Decoder which allows the Host CPU to send a JPEG image file for conversion and display on the LCD panel, or to send the resulting YUV decoded data back to the Host CPU. The incoming JPEG data is written to the JPEP FIFO and then goes to the JPEG Decoder for decoding into YUV format. The YUV format output is based on the original format the JPEG file was encoded from and is reported in the YUV Format Select bits (REG[1000h] bits 1-0). The output of the JPEG Decoder goes to the JPEG Line Buffer which then organizes the 8 x 8 blocks of YUV data into the correct YUV format and sends this data to the view resizer. The view resizer can trim and scale the image and then it is converted by the YRC to be displayed on the LCD panel or sent to the Host CPU. While writing the JPEG data to the JPEG FIFO, the Host CPU may be interrupted. When this happens, the JPEG Decoder completes decoding the data stored in the JPEG FIFO and the waits for more data from the Host CPU. The decode operation will continue until the S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 19 Introduction JPEG Decoder detects the End-of-File Marker. The JPEG FIFO must not be overflowed by the Host CPU. Status flags and interrupts can be used to determine how full the JPEG FIFO is becoming. The JPEG FIFO is accessed through the JPEG FIFO Read/Write register (REG[09A6h]). As mentioned in Section 1.3, “Internal Memory” on page 12, when the JPEG functions are enabled, 32K bytes of the internal memory is used for the JPEG Line Buffer and from 4K bytes to 64K bytes is used for the JPEG FIFO. The JPEG Decoder can decode YUV 4:4:4, YUV 4:2:2, YUV 4:2:0, and YUV 4:1:1 data formats. 1.10 2D BitBLT Engine The purpose of the 2D BitBLT Engine is to improve the overall system performance by offloading the work of the Host CPU in moving display data between the CPU and display memory. There are five BitBLTs (Bit Block Load Transfer) that can move display data from one location to another. Additionally, data functions can be performed that manipulate the source and/or destination data. For more information on the 2D BitBLT Engine, see Section 16, “2D BitBLT Engine” on page 344. 20 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Features 2 Features 2.1 Internal Memory • Embedded 320K byte SRAM memory used for: • Display Buffer • JPEG FIFO • JPEG Line Buffer 2.2 Host CPU Interface • Four generic asynchronous CPU interfaces • 16-bit data bus • 16-bit register and FIFO access • 8/16-bit display buffer access • Direct / Indirect addressing • Little / Big endian support • Registers are memory-mapped • M/R# input selects between memory and register address space • M/R# and CS# inputs select between memory and register address space in 2 CS# mode • CPU serial port for direct control of a serial LCD • CPU parallel port for direct control of a parallel LCD 2.3 Display Support • Active Matrix TFT displays: 9/12/18/24-bit interface • Extended TFT interface (Type 2 and Type 5) • TFT with u-Wire interface • a-Si TFT interface • Epson ND-TFD interface • ‘Direct’ support for the Casio TFT LCD (or compatible interfaces) • ‘Direct’ support for a-TFT Samsung TFT LCD (or compatible interfaces) • ‘Direct’ support for the Sharp HR-TFT LCD (or compatible interfaces) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 21 Features • ‘Direct’ support for Toshiba low power LCDs. Contact your Epson sales representative for details. • 8/9-bit serial interface LCDs with integrated RAM • 8/16/18/24-bit MPU parallel interface LCDs with integrated RAM • Supports a maximum of 2 panels (LCD1 and LCD2 can’t be refreshed simultaneously) 2.4 Display Modes • Supports three panel interface modes which each allow two LCDs (LCD1 and LCD2) to be connected to the S1D13715. Only one LCD can be active at a time. • Mode 1: • LCD1: RGB type panel • LCD2: Serial interface panel • Mode 2: • LCD1: Parallel interface panel • LCD2: Serial interface panel • Mode 3: • LCD1: Parallel interface panel • LCD2: Parallel interface panel • Mode 4: • LCD1: RGB type panel • LCD2: Parallel interface panel • Host CPU can directly control serial interface panels on LCD2 • Host CPU can directly control parallel interface panels on LCD1 or LCD2 • 8/16/32 bit-per-pixel (bpp) color depths • Separate Look-up Tables (LUTs) for the Main Window and the PIP+ Window • LUTs can be bypassed 2.5 Display Features • Overlay functions • SwivelView™: 90°, 180°, 270° counter-clockwise hardware rotation of display image • Mirror Display: provides a “mirror” image of the display • Virtual display support: displays images larger than the panel size through the use of panning and scrolling • Picture-in-Picture Plus (PIP+): displays a variable size window overlaid over background image • Pixel Doubling • Video Invert: Data output to the LCD is inverted 22 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Features 2.6 Camera Interface • 2-port Camera Interface (only one camera interface can be used at a time) • Supports YUV 4:2:2 format • Supports ITU-R BT.656 format • 8-bit data bus (YUV Multi Out) • MPU type interface camera support on Camera1 interface • MPEG Codec input interface support on Camera2 interface • Strobe control function 2.7 Digital Video Features • Hardware JPEG codec based on the JPEG baseline standard • JPEG Encode supports YUV 4:2:2, YUV 4:2:0, YUV4:1:1 formats • JPEG Decode supports YUV 4:4:4, YUV 4:2:2, YUV 4:2:0, YUV4:1:1 formats • Arithmetic accuracy satisfies the compatibility test of JPEG Part-2 • Software control of image size • Maximum horizontal image size for JPEG encoding (YUV 4:2:2 format: up to 2880 pixels) • Two resizers: View resizer receives YUV data from the camera interface, or from the JPEG decoder, or from the Host CPU. Capture resizer receives YUV data only from the camera interface. • YUV Data can be resized (trimmed and scaled) then: • Converted to RGB data for display on the LCD • Converted to JPEG data and read by the CPU Host via the JPEG FIFO • Read by the Host CPU directly (YUV format) • YUV to RGB Converter (YRC): YUV data from the View Resizer or Capture Resizer is converted to RGB format to be displayed on the LCD. 2.8 Picture Input / Output Functions • The YUV data (YUV 4:2:2 format) from Camera Interface can be: • Stored in the display buffer after resizing and conversion to RGB format. • Transferred to the Host CPU via the JPEG FIFO after resizing and encoding to JPEG format. • Transferred to the Host CPU via the JPEG FIFO after resizing and conversion to YUV (format 4:2:2 or 4:2:0). S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 23 Features • The JPEG file downloaded from the Host CPU can be: • Decoded by the internal JPEG decoder, resized, scaled, converted to RGB and stored in the display buffer memory for display on the LCD. • Decoded by the internal JPEG decoder, resized, scaled, and downloaded to the Host CPU via the JPEG FIFO. • YUV data (format 4:2:2 or 4:2:0) downloaded from the Host CPU can be: • Resized, scaled, converted to RGB and stored in the display buffer memory for display on the LCD. • Encoded by the internal JPEG encoder, resized, scaled, and downloaded to the Host CPU via the JPEG FIFO. • RGB data in the display buffer can be: • Converted to YUV, then transferred to the Host CPU via the JPEG FIFO after resizing and encoding to JPEG format. 2.9 2D BitBLT Acceleration • 2D BitBLT engine including: (this function does not support 32bpp modes) Move BitBLT Transparent Move BitBLT Solid Fill BitBLT Read BitBLT Pattern Fill BitBLT 2.10 Clock • Internal PLL driven by a single external reference clock, 32.768KHz • 40 - 55MHz PLL output • PLL bypass mode for external clock input 2.11 Power Save • Software initiated power save mode • Software initiated display blank 2.12 Miscellaneous • General Purpose Input/Output pins are available 24 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 System Diagrams 3 System Diagrams Direct 68 CLKI 32.768kHz Camera1 CM1CLKOUT MCLK M/R# CM1VREF VREF A[18:1] AB[18:1] CM1HREF HREF D[15:0] DB[15:0] CM1CLKIN PCLK CS# CS# A19 R/W# WE# UDS# BE1# LDS# BE0# WAIT# CM1DAT[7:0] YUV[7:0] CM2CLKOUT MCLK Camera2 WAIT# INT INT RESET# RESET# HIOVDD RD# CSn SCS# SCKLCD SCLK A0LCD SA0 SOLCD SI CM2VREF VREF CM2HREF HREF CM2CLKIN PCLK CM2DAT[7:0] YUV[7:0] LCD1 (Generic TFT) S1D13715 FPFRAME VSYNC FPLINE HSYNC R5~R0 G5~G0 B5~B0 DCLK FPDAT[17:0] FPSHIFT DRDY ENAB LCD2 (Serial) FPCS2# FPA0 FPSCLK FPSO XCS A0 SCK SI Figure 3-1: S1D13715 System Diagram 1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 25 System Diagrams 32.768kHz MCLK CM1VREF VREF AB[18:1] CM1HREF HREF DB[15:0] CM1CLKIN PCLK CS# A19 M/R# A[18:1] RD# RD# WE# WE# UBE# BE1# LBE# BE0# WAIT# INT RESET# YUV[7:0] MPEG Codec INT CM2VREF DISPVSYNC RESET# CM2HREF DISPHSYNC CM2CLKIN DISPBLK SCS# SCKLCD SCLK SOLCD CM1DAT[7:0] WAIT# CSn A0LCD Camera1 CM1CLKOUT CS# D[15:0] CLKI Direct 80 (Type 1) SA0 S1D13715 SI CM2DAT[7:0] DISPPXL[7:0] CM2CLKOUT DISPCLK LCD1(ND-TFD) FPFRAME VSYNC FPLINE HSYNC R5~R0 G5~G0 B5~B0 DCK FPDAT[17:0] FPSHIFT DRDY FPCS1# FPA0 FPSCLK FPSO ENAB XCS A0 SCK SI LCD2(Serial) FPCS2# XCS A0 SCK SI Figure 3-2: S1D13715 System Diagram 2 26 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 System Diagrams 32.768kHz CS# CS# A19 CLKI Direct 80 (Type 2) Camera1 CM1CLKOUT MCLK M/R# CM1VREF VREF A[18:1] AB[18:1] CM1HREF HREF D[15:0] DB[15:0] CM1CLKIN PCLK RD# RD# WEU# BE1# WEL# BE0# WAIT# WAIT# INT RESET# HIOVDD WE# CSn SCS# SCKLCD SCLK A0LCD SOLCD YUV[7:0] CM2CLKOUT MCLK CM2VREF VREF CM2HREF HREF CM2CLKIN PCLK Camera2 INT RESET# CM1DAT[7:0] CM2DAT[7:0] YUV[7:0] LCD1(Parallel) SA0 SI S1D13715 XCS FPCS1# VDD XRD FPFRAME FPLINE XWR A0 FPDAT[15:0] D[15:0] FPVIN1 VSYNC LCD2(Serial) FPCS2# FPA0 FPSCLK FPSO XCS A0 SCK SI Figure 3-3: S1D13715 System Diagram 3 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 27 System Diagrams 32.768kHz CS# CS# A19 CLKI Direct 80 (Type 3) Camera1 CM1CLKOUT MCLK M/R# CM1VREF VREF A[18:1] AB[18:1] CM1HREF HREF D[15:0] DB[15:0] CM1CLKIN PCLK RDL# RD# WEL# WE# CM1DAT[7:0] YUV[7:0] CM2CLKOUT MCLK INT CM2VREF VREF RESET# CM2HREF HREF CM2CLKIN PCLK RDU# BE1# WEU# BE0# WAIT# WAIT# INT RESET# Camera2 CM2DAT[7:0] S1D13715 YUV[7:0] LCD1(Parallel) XCS FPCS1# VDD XRD FPFRAME XWR FPLINE A0 FPDAT[15:0] D[15:0] FPVIN1 VSYNC LCD2(Parallel) FPCS2# XCS VDD XRD XWR A0 D[15:0] FPVIN2 VSYNC Figure 3-4: S1D13715 System Diagram 4 28 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Block Diagram 4 Block Diagram System Clock (PLL) Camera1 Clock Capture Resizer Camera1 Interface Camera1 View Resizer Camera2 Interface Camera2 or MPEG Camera2 Clock JPEG Line Buffer JPEG Codec JPEG FIFO YUV/RGB 2D BitBLT Display Buffer LUT2 CPU Bus LUT1 Host I/F Embedded SRAM Pixel Clock Display FIFO RGB Interface LCD1 (RGB) or LCD1 and LCD2 (Parallel) RGB/YUV Parallel Input Parallel Interface Serial Clock P/S Serial Input Serial Interface GPIO LCD2 (Serial) LCD Bias, LED etc. Figure 4-1: S1D13715 Block Diagram S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 29 Pins 5 Pins 5.1 S1D13715 Pinout Diagram (PFBGA-160) P N M L K J H G F E D C B A This mark is for reference only and does not appear on the bottom of the package. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 BOTTOM VIEW Figure 5-1: S1D13715 PFBGA-160 Pin Mapping Table 5-1: S1D13715 PFBGA-160 Pin Mapping P NC DB2 M/R# BE1# INT RESET# TESTEN GPIO19 GPIO6 GPIO21 GPIO17 FPDAT0 FPLINE NC N AB15 VSS DB1 WE# WAIT# RD# VSS GPIO0 GPIO8 DRDY GPIO20 FPDAT1 FPDAT15 FPFRAME M AB17 AB16 DB0 CS# BE0# AB2 HIOVDD FPVIN1 GPIO15 FPDAT8 GPIO18 GPIO16 SCANEN COREVDD L DB9 DB7 AB18 HIOVDD SCLK SA0 SI FPVIN2 CNF3 FPCS2# PIOVDD FPDAT6 FPDAT5 FPDAT4 K DB10 DB12 DB11 DB8 CNF5 FPDAT3 FPDAT2 GPIO14 J DB15 DB14 HIOVDD DB13 CNF4 GPIO13 PIOVDD FPSHIFT H Reserved Reserved VSS SCS# CNF0 VSS FPCS1# FPDAT7 G AB1 AB3 AB4 AB6 FPSCLK FPDAT9 FPDAT17 COREVDD F AB5 AB7 AB8 AB12 FPA0 FPDAT16 FPDAT12 FPDAT14 E AB9 AB10 AB11 COREVDD FPSO FPDAT11 FPDAT13 FPDAT10 D AB13 AB14 DB4 VSS CM2DAT3 CM2DAT7 CM1DAT2 CM1DAT6 CNF6 CNF2 CNF1 GPIO12 PIOVDD GPIO11 C DB3 DB5 VCP CM2DAT1 CM2DAT5 CM2VREF CM1HREF CM1DAT1 CM1DAT3 CM1DAT7 CIOVDD GPIO7 GPIO10 GPIO9 B DB6 CLKI PLLVDD CM2DAT2 CM2DAT6 VSS CM2CLKIN CM1CLKOUT CM1DAT0 CM1DAT5 PIOVDD GPIO3 GPIO2 GPIO5 A NC PLLVSS HIOVDD CM2DAT0 CM2DAT4 CM2HREF CM2CLKOUT CM1VREF CM1CLKIN CM1DAT4 VSS GPIO1 GPIO4 NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 30 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins 5.2 S1D13715 Pinout Diagram (QFP21-176) 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 VSS GPIO5 GPIO4 GPIO3 GPIO2 GPIO1 CNF6 PIOVDD CIOVDD VSS CM1DAT7 CM1DAT6 CM1DAT5 CM1DAT3 CM1DAT4 CM1DAT2 CM1DAT0 CM1DAT1 CM1CLKIN CM1CLKOUT CM1VREF CIOVDD CM1HREF CM2CLKIN VSS CM2VREF VSS CM2CLKOUT CM2DAT7 CM2HREF CIOVDD CM2DAT6 CM2DAT4 CM2DAT5 CM2DAT2 CM2DAT3 CM2DAT1 CM2DAT0 VSS COREVDD PLLVDD COREVDD HIOVDD VCP PLLVSS 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 VSS CLKI GPIO7 VSS CNF1 DB6 CNF2 DB5 GPIO9 DB4 GPIO10 DB3 GPIO11 COREVDD GPIO12 PIOPVDD AB14 AB13 FPSO AB12 FPDAT10 AB11 FPDAT11 AB10 FPDAT12 AB9 FPDAT13 AB8 FPDAT14 AB7 FPA0 AB6 FPDAT16 AB5 FPDAT17 AB4 VSS S1D13715 AB3 SCS# COREVDD FPDAT9 AB1 FPSCLK VSS FPDAT7 Reserved FPCS1# CNF0 Reserved FPSHIFT VSS VSS HIOVDD DB15 PIOVDD DB14 GPIO13 DB13 GPIO14 DB12 CNF4 DB11 FPDAT2 DB10 FPDAT3 DB9 FPDAT4 DB8 CNF5 DB7 FPDAT5 FPDAT6 AB18 VSS COREVDD AB17 FPDAT15 AB16 SCANEN FPLINE AB15 HIOVDD FPFRAME HIOVDD VSS VSS VSS 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 VSS PIOVDD PIOVDD FPDAT0 PIOVDD GPIO16 FPDAT1 GPIO17 GPIO18 GPIO20 GPIO21 FPCS2# DRDY FPDAT8 GPIO6 CNF3 GPIO8 GPIO15 GPIO0 GPIO19 FPVIN1 FPVIN2 VSS TESTEN PIOVDD SI HIOVDD RD# RESET# INT AB2 SA0 COREVDD BE0# WAIT# WE# BE1# CS# SCLK M/R# DB0 DB1 VSS DB2 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Figure 5-2: S1D13715 QFP21-176 Pin Mapping (Top View) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 31 Pins 5.3 Pin Descriptions Key: I O IO P Hi-Z = = = = = Input Output Bi-Directional (Input/Output) Power pin High Impedance Table 5-2: Cell Descriptions Item 1. 32 Description 1 IC LVCMOS input ICU LVCMOS input with pull-up resistor (60K@3.0V) ICD LVCMOS input with pull-down resistor (60K@3.0V) IHCS H System LVCMOS level Schmitt input ILCS L System LVCMOS level Schmitt input OLN35 Low noise output buffer (3.5mA/-3.5mA@3.0V) OLN35T Low noise Tri-state output buffer (3.5mA/-3.5mA@3.0V) BLNC35 Low noise LVCMOS IO buffer (3.5mA/-3.5mA@3.0V) BLNC35D Low noise LVCMOS IO buffer (3.5mA/-3.5mA@3.0V) with pull-down resistor (60K@3.0V) BLNC35DS Low noise LVCMOS Schmitt IO buffer (3.5mA/-3.5mA@3.0V) with pull-down resistor (60K@3.0V) ITD Test mode control input with pull-down resistor (60K@3.0V) ILTR Low Voltage Transparent Input IHTR High Voltage Transparent Input OHTR High Voltage Transparent Output LVCMOS is Low Voltage CMOS (see Section 6, “D.C. Characteristics” on page 53). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins 5.3.1 Host Interface Many of the host interface pins have different functions depending on the selection of the host bus interface (see configuration of CNF[4:2] pins in Table 5-9: “Summary of PowerOn/Reset Options,” on page 43). For a summary of host interface pins, see Table 5-10: “Host Interface Pin Mapping (1 CS# mode),” on page 44 and Table 5-11: “Host Interface Pin Mapping (2 CS# mode),” on page 45. Table 5-3: Host Interface Pin Descriptions Pin Name AB[18:1] DB[15:0] PFBGA Pin# QFP Pin# Cell Power RESET# State I L3,M1,M2, N1,D2,D1, F4,E3,E2, E1,F3,F2, G4,F1,G3, G2,M6,G1 169, 171, 172, 173, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 15, 154 IC HIOVDD — IO J1,J2,J4, K2,K3,K1, L1,K4,L2, B1,C2,D3, C1,P2,N3, M3 HIOVDD Hi-Z Type Description System address bits 18:1. 160, 161, 162, 163, 164, 165, 166, 167, BLNC35 168, 136, 137, 138, 139, 1, 2, 4 • For Indirect Host Bus Interfaces, these pins must be connected to VSS. System data bus. This input pin has multiple functions. CS# I M4 5 IC HIOVDD — • For 1 CS# mode, this pin inputs the chip select signal (CS#). • For 2 CS# mode, this pin inputs the memory chip select signal (CSM#). This input pin has multiple functions. M/R# I P3 6 IC HIOVDD — • For 1 CS# mode, this pin selects between the display buffer and register address spaces. When M/R# is set high, the display buffer is accessed and when M/R# is set low the registers are accessed. • For 2 CS# mode, this pin inputs the register chip select (CSR#). • For Indirect Host Bus Interfaces, this pin must be connected to VSS. This input pin has multiple functions. • For Indirect and Direct 68, this pin must be connected to HIOVDD. RD# I N6 16 IC HIOVDD — • For Indirect and Direct 80 Type 1 and Type 2, this pin is the read enable signal (RD#). • For Indirect and Direct 80 Type 3, this pin is the DB[7:0] lower byte read enable signal (RDL#). S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 33 Pins Table 5-3: Host Interface Pin Descriptions (Continued) Pin Name Type PFBGA Pin# QFP Pin# Cell Power RESET# State Description This input pin has multiple functions. • For Indirect and Direct 68, this pin is the read/write signal (R/W#). WE# I N4 8 IC HIOVDD — • For Indirect and Direct 80 Type 1, this pin is the write enable signal (WE#). • For Indirect and Direct 80 Type 2, this pin must be connected to HIOV DD. • For Indirect and Direct 80 Type 3, this pin is the DB[7:0] lower byte write enable signal (WEL#). This input pin has multiple functions. • For Indirect and Direct 68, this pin is the D[15:8] upper data strobe (UDS#). BE1# I P4 9 IC HIOVDD — • For Indirect and Direct 80 Type 1, this pin is the D[15:8] upper byte enable signal (UBE#). • For Indirect and Direct 80 Type 2, this pin is the DB[15:8] upper byte write enable signal (WEU#). • For Indirect and Direct 80 Type 3, this pin is the DB[15:8] upper byte read enable signal (RDU#). This input pin has multiple functions. • For Indirect and Direct 68, this pin is the D[7:0] lower data strobe (LDS#). • For Indirect and Direct 80 Type 1, this pin is the D[7:0] lower byte enable signal (LBE#). BE0# I M5 10 IC HIOVDD — • For Indirect and Direct 80 Type 2, this pin is the DB[7:0] lower byte write enable signal (WEL#). • For Indirect and Direct 80 Type 3, this pin is the DB[15:8] upper byte write enable signal (WEU#). WAIT# 34 O N5 11 OLN35T HIOVDD Hi-Z During a data transfer, WAIT# is driven active (low) to force the system to insert wait states. It is driven inactive to indicate the completion of a data transfer. WAIT# is released to a high impedance state after the data transfer is complete. This pin can be masked using the CNF0 pin. INT O P5 14 OLN35 HIOVDD 0 Interrupt output. When an internal interrupt occurs, this output pin is driven high. If the Host CPU clears the internal interrupt, this pin is driven low. RESET# I P6 17 IHCS HIOVDD — This active low input sets all internal registers to their default state and forces all signals to their inactive states. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins Table 5-3: Host Interface Pin Descriptions (Continued) Pin Name Type PFBGA Pin# QFP Pin# Cell Power RESET# State Description This input pin has multiple functions. SCS# I H4 153 ICU HIOVDD — • For Serial Bypass Mode, this pin is the serial chip select input for the Host CPU serial interface. When Serial Bypass Mode is enabled, the Host CPU can directly control the LCD2 serial interface LCD. • For Parallel Bypass Mode, this pin is the LCD2 parallel chip select input for the Host CPU parallel interface. When Parallel Bypass Mode is enabled, the Host CPU can directly control the LCD1 or LCD2 parallel interface LCD. This input pin has multiple functions. SCLK I L5 7 ICD HIOVDD — • For Serial Bypass Mode, this pin is the serial clock input for the Host CPU serial interface. When Serial Bypass Mode is enabled, the Host CPU can directly control the LCD2 serial interface LCD. • For Parallel Bypass Mode, this pin is the write command input. When Parallel Bypass Mode is enabled, the Host CPU can directly control the LCD1 or LCD2 parallel interface LCD. This input pin has multiple functions. SA0 I L6 12 ICD HIOVDD — • For Serial Bypass Mode, this pin is the serial A0 command input for the Host CPU serial interface. When Serial Bypass Mode is enabled, the Host CPU can directly control the LCD2 serial interface LCD. • For Parallel Bypass Mode, this pin is the parallel A0 command input. When Parallel Bypass Mode is enabled, the Host CPU can directly control the LCD1 or LCD2 parallel interface LCD. This input pin has multiple functions. SI I L7 S1D13715 Hardware Functional Specification Rev. 7.4 18 ICD HIOVDD — Seiko Epson Corporation • For Serial Bypass Mode, this pin is the serial data input for the Host CPU serial interface. When Serial Bypass Mode is enabled, the Host CPU can directly control the LCD2 serial interface LCD. • For Parallel Bypass Mode, this pin is the LCD1 parallel chip select input for the Host CPU parallel interface. When Parallel Bypass Mode is enabled, the Host CPU can directly control the LCD1 or LCD2 parallel interface LCD. 35 Pins 5.3.2 LCD Interface Many of the LCD Interface pins have different functions depending on the configured panel interface mode. See Table 5-12: “LCD Interface Pin Mapping for Mode 1,” on page 46 and Table 5-13: “LCD Interface Pin Mapping for Modes 2/3,” on page 47 for more details on the pin functions. • Mode 1 is LCD1: RGB, LCD2: Serial • Mode 2 is LCD1: Parallel, LCD2: Serial • Mode 3 is LCD1: Parallel, LCD2: Parallel • Mode 4 is LCD1: RGB, LCD2: Parallel For further information on the three panel interface modes, see the bit description for REG[0032h] bits 1-0. Table 5-4: LCD Interface Pin Descriptions Pin Name Type PFBGA Pin# O G13,F12, N13,F14, E13,F13, E12,E14, G12,M10, H14,L12, L13,L14, K12,K13, N12,P12 QFP Pin# Cell Power RESET# State Description These output pins have multiple functions. FPDAT[17:0] 71, 72, 50, 74, 75, 76, 77, 78, 68, OLN35T 32, 66, 52, 53, 55, 56, 57, 39, 40 PIOVDD 0 • For Mode 1 and Mode 4 RGB interfaces, these pins are the LCD1 RGB data outputs. • For Mode 2, Mode 3 and Mode 4 parallel interfaces, FPDAT[17:0] are the parallel interface data outputs. • When REG[0056h] bit 13 = 1 or REG[005Eh] bit 13 = 1, these pins are controlled with tri-state. • For Parallel Bypass Mode, these pins output the Host CPU data. See Table 5-15: “Serial/Parallel Bypass Pin Mapping,” on page 49. This output pin has multiple functions. FPFRAME O N14 47 OLN35 PIOVDD 0 • For Mode 1 and Mode 4 RGB interfaces, this pin is the LCD1 frame pulse output. • For Mode 2, Mode 3 and Mode 4 parallel interfaces, this pin is the write command output. • For Parallel Bypass Mode, this pin outputs the Host CPU XWR signal. This output pin has multiple functions. FPLINE O P13 48 OLN35 PIOVDD 0 FPSHIFT O J14 63 OLN35 PIOVDD 0 DRDY O N10 31 OLN35 PIOVDD 0 • For Mode 1 and Mode 4 RGB interfaces, this pin is the LCD1 line pulse output. • For Mode 2, Mode 3 and Mode 4 parallel interfaces, this pin is the A0 output. • For Parallel Bypass Mode, this pin outputs the Host CPU A0 signal. This output pin has multiple functions. • For Mode 1 and Mode 4, this pin is the LCD1 pixel clock output. • For all other cases, this pin is not used. This output pin has multiple functions. 36 Seiko Epson Corporation • For Mode 1 and Mode 4, this pin is the LCD1 DRDY output. • For all other cases, this pin is not used. S1D13715 Hardware Functional Specification Rev. 7.4 Pins Table 5-4: LCD Interface Pin Descriptions (Continued) Pin Name Type PFBGA Pin# QFP Pin# Cell Power RESET# State Description This output pin has multiple functions. FPCS1# O H13 65 OLN35 PIOVDD 1 • For Mode 1 and Mode 4, this pin is the LCD1 serial interface chip select output. • For Mode 2 and Mode 3, this pin is the LCD1 parallel interface chip select output. • For Parallel Bypass Mode, this pin outputs the Host CPU NCS1 signal. This output pin has multiple functions. FPCS2# O L10 33 OLN35 PIOVDD 1 • For Mode 1, this pin is the LCD2 serial interface chip select output. When power save is enabled or when Serial Bypass Mode is enabled, this pin outputs the state of the SCS# pin. • For Mode 2, this pin is the LCD2 serial interface chip select output. When power save is enabled or when Serial Bypass Mode is enabled, this pin outputs the state of the SCS# pin. • For Mode 3 and 4, this pin is the LCD2 parallel interface chip select output. • For Serial or Parallel Bypass Mode, this pin outputs the Host CPU NCS2 signal. This output pin has multiple functions. FPSCLK O G11 67 OLN35 PIOVDD 0 • For Mode 1, this pin is the LCD1 and LCD2 serial interface clock output. For Mode 4, this pin is the LCD1 serial interface clock output. For LCD2, when power save is enabled or when Serial Bypass Mode is enabled, this pin outputs the state of the SCLK pin. • For Mode 2, this pin is the LCD2 serial interface clock output. When power save is enabled or when Serial Bypass Mode is enabled, this pin outputs the state of the SCLK pin. • For Mode 3, this pin is not used. • For Serial Bypass Mode, this pin outputs the Host CPU SCK signal. This output pin has multiple functions. FPA0 O F11 S1D13715 Hardware Functional Specification Rev. 7.4 73 OLN35 PIOVDD 0 Seiko Epson Corporation • For Mode 1, this pin is the LCD1 and LCD2 serial interface A0 output. For Mode 4, this pin is the LCD1 serial interface A0 output. For LCD2, when power save is enabled or when Serial Bypass Mode is enabled, this pin outputs the state of the SA0 pin. • For Mode 2, this pin is the LCD2 serial interface A0 output. When power save is enabled or when Serial Bypass Mode is enabled, this pin outputs the state of the SA0 pin. • For Mode 3, this pin is not used. • For Serial Bypass Mode, this pin outputs the Host CPU A0 signal. 37 Pins Table 5-4: LCD Interface Pin Descriptions (Continued) Pin Name Type PFBGA Pin# QFP Pin# Cell Power RESET# State Description This output pin has multiple functions. FPSO O E11 79 OLN35 PIOVDD 0 • For Mode 1, this pin is the LCD1 and LCD2 serial interface data output. For Mode 4, this pin is the LCD1 serial interface data output. For LCD2, when power save is enabled or when Serial Bypass Mode is enabled, this pin outputs the state of the SI pin. • For Mode 2, this pin is the LCD2 serial interface data output. When power save is enabled or when Serial Bypass Mode is enabled, this pin outputs the state of the SI pin. • For Mode 3, this pin is not used. • For Serial Bypass Mode, this pin outputs the Host CPU SI signal. This input pin has multiple functions. FPVIN1 I M8 24 IC PIOVDD — • For Mode 2, Mode 3 and Mode 4, this pin is the parallel interface LCD1 vertical sync input from the LCD panel. If this pin is not used, it must be connected to ground (VSS). This input pin has multiple functions. • For Mode 2, this pin is the LCD2 serial interface vertical sync input from the LCD panel. FPVIN2 I L8 23 IC PIOVDD — • For Mode 3 and Mode 4, this pin is the LCD2 parallel interface vertical sync input from the LCD panel. If this pin is not used, it must be connected to ground (VSS). 38 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins 5.3.3 Camera Interface Many of the pins for the 2 Camera Interfaces have different functions depending on the settings for these interfaces. See Table 5-18: “Camera1 Interface Pin Mapping,” on page 52 for details on the connections for the Camera1 Interface. See Table 5-19: “Camera2 Interface Pin Mapping,” on page 52 for details on the connections for the Camera2 Interface. The Camera1 Interface supports a Type 1, 8/16-bit bus Camera interface. The Camera2 Interface supports a Type 1, 8-bit bus Camera interface. It also supports input from an external MPEG codec. Table 5-5: Camera Interface Pin Descriptions Pin Name Type PFBGA Pin# QFP Pin# Cell Power RESET# State Description These input/output pins have multiple functions. 99, 100, 101, 102, 103, 104, 105, 106 BLNC35D CIOVDD 0 • For the Camera1 8-bit interface (REG[0102h] bit 6 = 0), these pins are the 8-bit data input (CAMDAT[7:0]). • For the Camera1 16-bit interface (REG[0102h] bit 6 = 1), these pins are the 8-bit luminance (Y) or chrominance (Cb/Cr) data input (CAMDAT[7:0]). The data type must be set using REG[0102h] bits 4-3. CM1DAT[7:0] IO C10,D8, B10,A10, C9,D7, C8,B9 CM1VREF IO A8 110 BLNC35D CIOVDD 0 For the Camera1 interface, this pin is the vertical sync input (VREF). CM1HREF IO C7 111 BLNC35D CIOVDD 0 For the Camera1 interface, this pin is the horizontal sync input (HREF). CM1CLKOUT O B8 108 OLN35 CIOVDD 0 For the Camera1 interface, this pin is the Master clock output (CAMMCLK). CM1CLKIN IO A9 107 BLNC35DS CIOVDD 0 For the Camera1 interface, this pin is the camera pixel clock input (CAMPCLK). These input/output pins have multiple functions. CM2DAT[7:0] IO D6,B5, C5,A5, D5,B4, C4,A4 117, 119, 120, 121, 122, 123, 124, 125 S1D13715 Hardware Functional Specification Rev. 7.4 BLNC35D CIOVDD Seiko Epson Corporation 0 • For the Camera1 16-bit interface (REG[0102h] bit 6 = 1), these pins are the 8-bit chrominance (Cb/Cr) or luminance (Y) data input (CAMDAT[15:8]). The data type must be set using REG[0102h] bits 4-3. • For the Camera2 interface, these pins are the 8-bit data input (CAMDAT[7:0]). • For the Camera2 MPEG codec interface, these pins are the 8-bit data input (PXL[7:0]). 39 Pins Table 5-5: Camera Interface Pin Descriptions (Continued) Pin Name Type PFBGA Pin# QFP Pin# Cell Power RESET# State Description This input/output pin has multiple functions. CM2VREF IO C6 115 BLNC35D CIOVDD 0 • For the Camera2 interface, this pin is the vertical sync input (VREF). • For the Camera2 MPEG codec interface, this pin is the vertical sync input (nDISPVSYNC). This input/output pin has multiple functions. CM2HREF IO A6 116 BLNC35D CIOVDD 0 • For the Camera2 interface, this pin is the horizontal sync input (HREF). • For the Camera2 MPEG codec interface, this pin is the horizontal sync input (nDISPHSYNC). This output pin has multiple functions. CM2CLKOUT O A7 114 OLN35 CIOVDD 0 • For the Camera2 interface, this pin is the master clock output (CAMMCLK). • For the Camera2 MPEG codec interface, this pin is the clock output (DISPCLK). This input/output pin has multiple functions. CM2CLKIN IO B7 112 BLNC35DS CIOVDD 0 • For the Camera2 interface, this pin is the camera pixel clock input (CAMPCLK). • For the Camera2 MPEG codec interface, this pin is the blanking input (DISPBLK). 5.3.4 Clock Input Table 5-6: Clock Input Pin Descriptions Pin Name Typ e PFBGA Pin# QFP Pin# Cell Power RESET# State Description This input pin has multiple functions. CLKI I B2 134 ILCS HIOVDD • When the internal PLL is used, this pin is the input reference clock for the internal PLL (32.768KHz). — • When the PLL is bypassed, this pin is the digital clock input for the system clock (SYSCLK). 40 Reserved — H1 156 — — — Reserved. This pin must be connected to GND. Reserved — H2 157 — — — Reserved. This pin must be left unconnected. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins 5.3.5 Miscellaneous Table 5-7: Miscellaneous Pin Descriptions Pin Name CNF[6:0] Type PFBGA Pin# I D9,K11, J11,L9, D10,D11, H11 QFP Pin# 95, 54, 58, 28, 85, 86, 64 Cell IC Power PIOVDD RESET# State — Description These inputs are used for configuring the S1D13715 and must be connected to either PIOVDD or VSS. The states of these pins are latched at RESET#. For more information, see Table 5-9: “Summary of Power-On/Reset Options,” on page 43. These pins are general purpose input/output pins. Their default configuration (input or output) is controlled using CNF1. GPIO[21:0] IO P10,N11, P8,M11, P11,M12, M9,K14, J12,D12, D14,C13, C14,N9, C12,P9, B14,A13, B12,B13, A12,N8 34, 35, 26, 36, 37, 38, 27, 59, 60, 81, 82, 83, BLNC35D 84, 29, 87, 30, 90, 91, 92, 93, 94, 25 PIOVDD see note • For various LCD panel settings, GPIO[13:0] are used to output LCD interface signals. See Table 5-12: “LCD Interface Pin Mapping for Mode 1,” on page 46 and Table 5-13: “LCD Interface Pin Mapping for Modes 2/3,” on page 47 for which GPIO pins are available for use as GPIOs for a given LCD panel setting. • In serial bypass mode or in power-save mode, GPIO19 inputs the Host CPU serial interface chip select signal (CMCSI#). • GPIO20 outputs the strobe control signal when the strobe function is enabled (REG[0124h] bit 3 = 1). TESTEN I P7 22 ITD PIOVDD 0 Test Enable input used for production test only. This pin should be left unconnected for normal operation. SCANEN I M13 49 ICD PIOVDD 0 Scan Enable input used for production test only. This pin should be left unconnected for normal operation. VCP IO C3 131 ILTR COREVDD PLL output monitor pin used for production test only. This pin should be left unconnected for normal operation. Note When CNF1 = 0 (GPIO pins are outputs), the reset state of GPIO[21:3, 0] is 0. When CNF1 = 1 (GPIO pins default to inputs), the reset state of GPIO[21:3, 0] is 0. When REG[0056h] bit 13 = 1, or REG[005Eh] bit 13 = 1, the reset state of GPIO[2:1] is always Hi-Z. When REG[0056h] bit 13 = 0 and REG[005Eh] bit 13 = 0, the reset state of GPIO[2:1] depends on CNF1 as above. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 41 Pins 5.3.6 Power And Ground Table 5-8: Power And Ground Pin Descriptions 42 Pin Name Type PFBGA Pin# QFP Pin# Cell RESET# State HIOVDD P A3, J3, L4, M7 19, 130, 159, 174, 175 P — IO power supply for the host interface PIOVDD P B11, D13, J13, L11 20, 41, 42, 43, 61, 80, 96 P — IO power supply for the panel interface CIOVDD P C11 97, 109, 118 P — IO power supply for the camera interface COREVDD P E4, G14, M14 13, 51, 69, 127, 128, 140, P — Core power supply 21, 44, 45, 46, 62, 70, 88, 89, 98, 113, 126, 133, 135, 155, 158, 170, 176 P — GND for HIOVDD, PIOVDD, CIOVDD and COREVDD Description VSS P A11, B6, D4, H3, H12, N2, N7 PLLVDD P B3 129 P — PLL power supply PLLVSS P A2 132 P — GND for PLLVDD Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins 5.4 Summary of Configuration Options These pins are used for configuration of the chip and must be connected directly to PIOVDD or VSS. The state of CNF[6:0] are latched on the rising edge of RESET#. Changing state at any other time has no effect. Table 5-9: Summary of Power-On/Reset Options Power-On/Reset State Configuration Input 1 (connected to PIOVDD) 0 (connected to VSS) CNF6 2 CS# mode 1 CS# mode CNF5 Big Endian Little Endian CNF[4:2] CNF1 Select host bus interface as follows: CNF4 CNF3 CNF2 Host Bus 0 0 0 Direct 80 Type 2 0 0 1 Direct 80 Type 3 0 1 0 Indirect 80 Type 2 0 1 1 Indirect 80 Type 3 1 0 0 Direct 80 Type 1 1 0 1 Direct 68 1 1 0 Indirect 80 Type 1 1 1 1 Indirect 68 All GPIO pins (GPIO[21:0]) are configured as inputs. All GPIO pins (GPIO[21:0] are configured as outputs. Note: When CNF1=1 at RESET#, REG[0300h]REG[0302h] can be used to change individual GPIO pins between inputs/outputs. Note: When CNF1=0 at RESET#, REG[0300h]REG[0302h] are ignored and the GPIO pins are always outputs. For Direct Host Bus Interface Types (see CNF[4:2]) WAIT# is used. The setup/hold time of A[19:1], UBE#, LBE# from the RD# edge is not 0 and the setup time of CS# edge from RD# is not 0 (Direct 80 Types, see Section 7.3, “Host Interface Timing” on page 60 for the signal names for other Direct host bus interfaces). CNF0 Note: When WAIT# is used (CNF0 = 1), WAIT# may not be asserted for all cycles. WAIT# is only asserted when needed. WAIT# is not used. The setup/hold time of A[19:1], UBE#, LBE# from the RD# edge is 0 and the setup time of CS# edge from RD# is 0 (Direct 80 Types, see Section 7.3, “Host Interface Timing” on page 60 for the signal names for other Direct host bus interfaces). Note: When WAIT# is not used (CNF0 = 0), WAIT# is never asserted for any cycles and the Host CPU must insert software wait states as needed to guarantee cycle length as outlined in Section 7.3.9, “WAIT Length” on page 91. For Indirect Host Bus Interface Types (see CNF[4:2]) WAIT# is not used. WAIT# is not used. The setup/hold time of A[2:1], UBE#, LBE# from the RD# edge is not 0 and the setup time of CS# edge from RD# is not 0 (Indirect 80 Types, see Section 7.3, “Host Interface Timing” on page 60 for the signal names for other Indirect host bus interfaces). S1D13715 Hardware Functional Specification Rev. 7.4 The setup/hold time of A[2:1], UBE#, LBE# from the RD# edge is 0 and the setup time of CS# edge from RD# is 0 (Indirect 80 Types, see Section 7.3, “Host Interface Timing” on page 60 for the signal names for other Indirect host bus interfaces). Seiko Epson Corporation 43 Pins Note When WAIT# is used (CNF0 = 1), WAIT# may not be asserted for all cycles. WAIT# is only asserted when needed. When WAIT# is not used (CNF0 = 0), WAIT# is never asserted for any cycles and the Host CPU must insert software wait states as needed to guarantee cycle length as outlined in Section 7.3.9, “WAIT Length” on page 91. 5.5 Host Interface Pin Mapping Table 5-10: Host Interface Pin Mapping (1 CS# mode) Pin Name Direct 68 Direct 80 Direct 80 Direct 80 Type 1 Type 2 Type 3 Indirect 68 Indirect Indirect Indirect 80 Type 1 80 Type 2 80 Type 3 Parallel AB[18:2] A[18:2] A[18:2] A[18:2] A[18:2] — — AB1 A1 A1 A1 A1 A1 A1 A1 A1 — — DB[15:0] D[15:0] D[15:0] D[15:0] D[15:0] D[15:0] D[15:0] D[15:0] D[15:0] — — CS# CS# CS# CS# CS# CS# CS# CS# CS# — — M/R# Low Serial — — RD# High External Decode RD# RD# RDL# High RD# Low RD# RDL# — — WE# R/W# WE# High WEL# R/W# WE# High WEL# — — BE#[1] UDS# UBE# WEU# RDU# UDS# UBE# WEU# RDU# — — BE#[0] LDS# LBE# WEL# WEU# LDS# LBE# WEL# WEU# — — WAIT# WAIT# WAIT# WAIT# WAIT# WAIT# WAIT# WAIT# WAIT# — — INT — — — — — — — — — — RESET# RESET# RESET# RESET# RESET# RESET# RESET# RESET# RESET# — — SCS# — — — — — — — — CS# PCS2# or PCS# SCLK — — — — — — — — Serial Clock PWR# SA0 — — — — — — — — A0 PA0 PCS# or PCS1# — SI — — — — — — — — Serial Data CMCSI# CMCSI# CMCSI# CMCSI# CMCSI# CMCSI# CMCSI# CMCSI# — GPIO19 (REG[0102h] bit 6=1) 44 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins Table 5-11: Host Interface Pin Mapping (2 CS# mode) Pin Name Direct 68 Direct 80 Direct 80 Direct 80 Type 1 Type 2 Type 3 Indirect 68 Indirect Indirect Indirect 80 Type 1 80 Type 2 80 Type 3 AB[18:2] A[18:2] A[18:2] A[18:2] A[18:2] AB1 A1 A1 A1 A1 A1 A1 A1 DB[15:0] D[15:0] D[15:0] D[15:0] D[15:0] D[15:0] D[15:0] CS# CSM# CSM# CSM# CSM# CS# CS# M/R# CSR# CSR# CSR# CSR# RD# High RD# RD# RDL# Serial Parallel — — A1 — — D[15:0] D[15:0] — — CS# CS# — — — — — — Low High High RD# RD# RDL# WE# R/W# WE# High WEL# R/W# WE# High WEL# — — BE#[1] UDS# UBE# WEU# RDU# UDS# UBE# WEU# RDU# — — BE#[0] LDS# LBE# WEL# WEU# LDS# LBE# WEL# WEU# — — WAIT# WAIT# WAIT# WAIT# WAIT# WAIT# WAIT# WAIT# WAIT# — — INT — — — — — — — — — — RESET# RESET# RESET# RESET# RESET# RESET# RESET# RESET# RESET# — — SCS# — — — — — — — — CS# PCS2# or PCS# SCLK — — — — — — — — Serial Clock PWR# SA0 — — — — — — — — A0 PA0 SI — — — — — — — — Serial Data PCS# or PCS1# CMCSI# CMCSI# CMCSI# CMCSI# CMCSI# CMCSI# CMCSI# CMCSI# — — GPIO19 (REG[0102h ] bit 6=1) Note 2 CS# mode (CNF6=1) has no effect for Indirect Host Bus Interfaces. Indirect Host Bus Interfaces always function in 1 CS# mode. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 45 Pins 5.6 LCD Interface Pin Mapping Table 5-12: LCD Interface Pin Mapping for Mode 1 Mode 1 Pin Name LCD1 General TFT ND-TFD a-Si TFT LCD2 TFT with uWIRE I/F Sharp HR-TFT Casio TFT Samsung -TFT Type 2 TFT FPFRAME VSYNC VSYNC VSYNC VSYNC SPS GSRT STV STV FPLINE HSYNC HSYNC HSYNC HSYNC LP GPCK STH STB FPSHIFT DCK DCK DCLK CLK DCLK CLK HCLK CLK DRDY ENAB ENAB ENAB ENAB no connect no connect no connect INV FPDAT0 R7 R7 R7 R7 R7 R7 R5 R7 FPDAT1 R6 R6 R6 R6 R6 R6 R4 R6 FPDAT2 R5 R5 R5 R5 R5 R5 R3 R5 FPDAT3 G7 G7 G7 G7 G7 G7 G5 G7 FPDAT4 G6 G6 G6 G6 G6 G6 G4 G6 FPDAT5 G5 G5 G5 G5 G5 G5 G3 G5 FPDAT6 B7 B7 B7 B7 B7 B7 B5 B7 FPDAT7 B6 B6 B6 B6 B6 B6 B4 B6 FPDAT8 B5 B5 B5 B5 B5 B5 B3 B5 FPDAT9 R4 R4 R4 R4 R4 R4 R2 R4 FPDAT10 R3 R3 R3 R3 R3 R3 R1 R3 FPDAT11 R2 R2 R2 R2 R2 R2 R0 R2 FPDAT12 G4 G4 G4 G4 G4 G4 G2 G4 FPDAT13 G3 G3 G3 G3 G3 G3 G1 G3 FPDAT14 G2 G2 G2 G2 G2 G2 G0 G2 FPDAT15 B4 B4 B4 B4 B4 B4 B2 B4 FPDAT16 B3 B3 B3 B3 B3 B3 B1 B3 FPDAT17 B2 B2 B2 B2 B2 B2 B0 B2 XCS SSTB LCDCS SPR FPSCLK SCK SCLK SCLK FPA0 A0 FPSO SI SDATA SDO FPCS1# FPCS2# Serial I/F NCS2 SCK A0 SI FPVIN1 FPVIN2 VIN2 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 PS POL GPIO1 GPIO1 GPIO1 GPIO1 GPIO2 GPIO2 GPIO2 GPIO2 GPIO1 CLS GRES GPIO2 REV FRP GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 SPL STH GPIO4 R1 R1 R1 R1 R1 GPIO5 R0 R0 R0 R0 GPIO6 G1 G1 G1 GPIO7 G0 G0 GPIO8 B1 GPIO9 VCLK GPIO0 LD AP GPIO1 INV POL GPIO2 VCOM STH GPIO3 R1 GPIO4 R1 GPIO4 R0 R0 GPIO5 R0 GPIO5 G1 G1 G1 GPIO6 G1 GPIO6 G0 G0 G0 G0 GPIO7 G0 GPIO7 B1 B1 B1 B1 B1 GPIO8 B1 GPIO8 B0 B0 B0 B0 B0 B0 GPIO9 B0 GPIO9 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO1421 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 46 CKV Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins Table 5-13: LCD Interface Pin Mapping for Modes 2/3 Pin Name FPFRAME FPLINE FPSHIFT Mode 2 LCD1 LCD2 Parallel I/F Serial I/F Mode 3 LCD1 LCD2 Parallel I/F Parallel I/F XWR A0 XWR A0 XWR A0 DRDY FPDAT0 FPDAT1 FPDAT2 FPDAT3 D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 D2 D3 FPDAT4 FPDAT5 FPDAT6 FPDAT7 FPDAT8 FPDAT9 D4 D5 D6 D7 D8 D9 D4 D5 D6 D7 D8 D9 D4 D5 D6 D7 D8 D9 FPDAT10 FPDAT11 FPDAT12 FPDAT13 FPDAT14 FPDAT15 D10 D11 D12 D13 D14 D15 D10 D11 D12 D13 D14 D15 D10 D11 D12 D13 D14 D15 FPDAT16 FPDAT17 FPCS1# FPCS2# FPSCLK FPA0 D16 D17 NCS1 D16 D17 NCS1 D16 D17 FPSO FPVIN1 FPVIN2 GPIO0 GPIO1 GPIO2 NCS2 SCK A0 NCS2 SI VIN1 VIN1 GPIO0 GPIO1 GPIO2 VIN2 GPIO0 GPIO1 GPIO2 GPIO0 GPIO1 GPIO2 VIN2 GPIO0 GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 GPIO8 GPIO3 GPIO4 GPIO5 D18 D19 D20 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 GPIO8 GPIO3 GPIO4 GPIO5 D18 D19 D20 GPIO3 GPIO4 GPIO5 D18 D19 D20 GPIO9 GPIO10 GPIO11 GPIO12 GPIO13 GPIO14-21 D21 D22 D23 GPIO12 GPIO13 GPIO14-21 GPIO9 GPIO10 GPIO11 GPIO12 GPIO13 GPIO14-21 D21 D22 D23 GPIO12 GPIO13 GPIO14-21 D21 D22 D23 GPIO12 GPIO13 GPIO14-21 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 47 Pins Table 5-14: LCD Interface Pin Mapping for Mode 4 Mode 4 Pin Name LCD1 General TFT ND-TFD FPFRAME VSYNC VSYNC FPLINE HSYNC FPSHIFT LCD2 a-Si TFT TFT with uWIRE I/F Sharp HRTFT Casio TFT Samsung -TFT Type 2 TFT Parallel I/F VSYNC VSYNC SPS GSRT STV STV XWR HSYNC HSYNC HSYNC LP GPCK STH STB A0 DCK DCK DCLK CLK DCLK CLK HCLK CLK DRDY ENAB ENAB ENAB ENAB no connect no connect no connect INV FPDAT0 R7 R7 R7 R7 R7 R7 R5 R7 D0 FPDAT1 R6 R6 R6 R6 R6 R6 R4 R6 D1 FPDAT2 R5 R5 R5 R5 R5 R5 R3 R5 D2 FPDAT3 G7 G7 G7 G7 G7 G7 G5 G7 D3 FPDAT4 G6 G6 G6 G6 G6 G6 G4 G6 D4 FPDAT5 G5 G5 G5 G5 G5 G5 G3 G5 D5 FPDAT6 B7 B7 B7 B7 B7 B7 B5 B7 D6 FPDAT7 B6 B6 B6 B6 B6 B6 B4 B6 D7 FPDAT8 B5 B5 B5 B5 B5 B5 B3 B5 D81 FPDAT9 R4 R4 R4 R4 R4 R4 R2 R4 D91 FPDAT10 R3 R3 R3 R3 R3 R3 R1 R3 D101 FPDAT11 R2 R2 R2 R2 R2 R2 R0 R2 D111 FPDAT12 G4 G4 G4 G4 G4 G4 G2 G4 D121 FPDAT13 G3 G3 G3 G3 G3 G3 G1 G3 D131 FPDAT14 G2 G2 G2 G2 G2 G2 G0 G2 D141 FPDAT15 B4 B4 B4 B4 B4 B4 B2 B4 D151 FPDAT16 B3 B3 B3 B3 B3 B3 B1 B3 D161 FPDAT17 B2 B2 B2 B2 B2 B2 B0 B2 D171 XCS SSTB LCDCS SPR FPSCLK SCK SCLK SCLK FPA0 A0 FPSO SI SDATA SDO FPCS1# FPCS2# NCS2 FPVIN1 FPVIN2 VIN2 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 PS POL GPIO1 GPIO1 GPIO1 GPIO1 GPIO2 GPIO2 GPIO2 GPIO2 GPIO1 CLS GRES GPIO2 REV FRP GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 SPL STH GPIO4 R1 R1 R1 R1 R1 GPIO5 R0 R0 R0 R0 GPIO6 G1 G1 G1 GPIO7 G0 G0 GPIO8 B1 B1 GPIO9 B0 GPIO10 GPIO11 VCLK GPIO0 LD AP GPIO1 INV POL GPIO2 VCOM STH GPIO3 R1 GPIO4 R1 GPIO4 R0 R0 GPIO5 R0 GPIO5 G1 G1 G1 GPIO6 G1 D181 or GPIO6 G0 G0 G0 G0 GPIO7 G0 D191 or GPIO7 B1 B1 B1 B1 GPIO8 B1 D20 1 or GPIO8 B0 B0 B0 B0 B0 GPIO9 B0 D21 1 or GPIO9 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 GPIO10 D221 or GPIO10 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 GPIO11 D231 or GPIO11 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO12 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO13 GPIO14-21 CKV GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO14-21 GPIO13 GPIO14-21 Note 1 Mode 4 supports 24-bit parallel panels if LCD Bypass Mode is not required. If LCD Bypass Mode is required, the bypass data is only 8-bit. 48 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins Table 5-15: Serial/Parallel Bypass Pin Mapping REG[0032h] bits 1-0 REG[0014h] bits 10-8 LCD1, LCD2 Panel Types Pin Name Type SCS# SCLK SA0 SI GPIO0 GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 GPIO8 GPIO9 GPIO10 GPIO11 GPIO12 GPIO13 GPIO14 GPIO15 GPIO16 GPIO17 GPIO18 GPIO19 GPIO20 GPIO21 FPFRAME FPLINE FPSHIFT DRDY FPDAT0 FPDAT1 FPDAT2 FPDAT3 FPDAT4 FPDAT5 FPDAT6 FPDAT7 FPDAT8 FPDAT9 FPDAT10 FPDAT11 FPDAT12 FPDAT13 FPDAT14 FPDAT15 FPDAT16 FPDAT17 FPCS1# FPCS2# FPSCLK FPA0 FPSO FPVIN1 FPVIN2 I I I I IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO O O O O O O O O O O O O O O O O O O O O O O O O O O O I I LCD I/F Mode 1 LCD I/F Mode 2 00 10 010 000 001 010 000 LCD1: RGB LCD1: Parallel (16/18-bit) LCD2: Serial LCD2: Serial Bypass Parallel Serial Bypass Serial Bypass Disabled Bypass Bypass Disabled SCS# SCS# SCLK PWR# SCLK SA0 PA0 SA0 SI PCS# SI RGB or GPIO0 RGB or GPIO0 GPIO0 GPIO0 GPIO0 RGB or GPIO1 RGB or GPIO1 GPIO1 GPIO1 GPIO1 RGB or GPIO2 RGB or GPIO2 GPIO2 GPIO2 GPIO2 RGB or GPIO3 RGB or GPIO3 GPIO3 GPIO3 GPIO3 RGB RGB PI0 GPIO4 GPIO4 RGB RGB PI1 GPIO5 GPIO5 RGB RGB PI2 D18 D18 RGB RGB PI3 D19 D19 RGB RGB PI4 D20 D20 RGB or GPIO9 RGB or GPIO9 PI5 D21 D21 GPIO10 GPIO10 PI6 D22 D22 GPIO11 GPIO11 PI7 D23 D23 GPIO12 GPIO12 PI8 GPIO12 GPIO12 GPIO13 GPIO13 PI9 GPIO13 GPIO13 GPIO14 GPIO14 PI10 GPIO14 GPIO14 GPIO15 GPIO15 PI11 GPIO15 GPIO15 GPIO16 GPIO16 PI12 GPIO16 GPIO16 GPIO17 GPIO17 PI13 GPIO17 GPIO17 GPIO18 GPIO18 PI14 GPIO18 GPIO18 GPIO19 GPIO19 PI15 GPIO19 GPIO19 GPIO20 GPIO20 PI16 or GPIO20 GPIO20 GPIO20 GPIO21 GPIO21 PI17 or GPIO21 GPIO21 GPIO21 RGB RGB XWR XWR XWR RGB RGB A0 A0 A0 RGB RGB    RGB RGB    RGB RGB D0 D0 D0 RGB RGB D1 D1 D1 RGB RGB D2 D2 D2 RGB RGB D3 D3 D3 RGB RGB D4 D4 D4 RGB RGB D5 D5 D5 RGB RGB D6 D6 D6 RGB RGB D7 D7 D7 RGB RGB D8 D8 D8 RGB RGB D9 D9 D9 RGB RGB D10 D10 D10 RGB RGB D11 D11 D11 RGB RGB D12 D12 D12 RGB RGB D13 D13 D13 RGB RGB D14 D14 D14 RGB RGB D15 D15 D15 RGB RGB D16 D16 D16 RGB RGB D17 D17 D17 RGB RGB NCS1 NCS1 NCS1 NCS2 NCS2 NCS2 NCS2 NCS2 RGB or SCK RGB SCK SCK SCK RGB or A0 RGB A0 A0 A0 RGB or SI RGB SI SI SI RGB RGB VIN1 VIN1 VIN1 VIN2 VIN2 VIN2 VIN2 VIN2 LCD I/F Mode 3 11 011 000 LCD1: Parallel (16/18-bit) LCD2: Parallel (16/18-bit) Parallel Bypass Bypass Disabled PCS2# PWR# PA0 PCS1# GPIO0 GPIO0 GPIO1 GPIO1 GPIO2 GPIO2 GPIO3 GPIO3 PI0 GPIO4 PI1 GPIO5 PI2 D18 PI3 D19 PI4 D20 PI5 D21 PI6 D22 PI7 D23 PI8 GPIO12 PI9 GPIO13 PI10 GPIO14 PI11 GPIO15 PI12 GPIO16 PI13 GPIO17 PI14 GPIO18 PI15 GPIO19 PI16 or GPIO20 GPIO20 PI17 or GPIO21 GPIO21 XWR XWR A0 A0     D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 NCS1 NCS2 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 NCS2 VIN1 VIN2 VIN1 VIN2        LCD I/F Mode 4 01 100 000 LCD1: RGB LCD2: Parallel (8-bit) Parallel Bypass Bypass Disabled PCS# PWR# PA0 RGB or GPIO0 RGB or GPIO1 RGB or GPIO2 RGB or GPIO3 RGB RGB RGB RGB RGB RGB or GPIO9 GPIO10 GPIO11 GPIO12 GPIO13 PI0 PI1 PI2 PI3 PI4 PI5 PI6 PI7 RGB or XWR RGB or A0 RGB RGB RGB or D0 RGB or D1 RGB or D2 RGB or D3 RGB or D4 RGB or D5 RGB or D6 RGB or D7 RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB NCS2 RGB RGB RGB RGB VIN2 RGB or GPIO0 RGB or GPIO1 RGB or GPIO2 RGB or GPIO3 RGB RGB RGB RGB RGB RGB or GPIO9 GPIO10 GPIO11 GPIO12 GPIO13 GPIO14 GPIO15 GPIO16 GPIO17 GPIO18 GPIO19 GPIO20 GPIO21 RGB or XWR RGB or A0 RGB RGB RGB or D0 RGB or D1 RGB or D2 RGB or D3 RGB or D4 RGB or D5 RGB or D6 RGB or D7 RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB RGB NCS2 RGB RGB RGB RGB VIN2 Input port when bypass is used Output port when bypass is used When bypass is not used, pull-up/pull-down resistors can be set using REG[0014h] bit 4 1. RGB refers to the signals used for RGB panels. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 49 Pins Table 5-16: LCD Interface Mode 1/2 Bypass Endian/Data Width Pin Mapping Panel Mode LCD I/F Mode1 Bypass Mode Serial Bypass REG[0014h] bits 12-11 - Input/Output Pin Mapping 50 LCD I/F Mode2 Parallel Bypass 00 Input 01 Output Input Serial Bypass 10 Output Input 11 Input Output SCS# FPCS2# Output Input SCLK FPSCLK SCLK FPFRAME SCLK FPFRAME SCLK FPFRAME SCLK SA0 FPA0 SA0 FPLINE SA0 FPLINE SA0 FPLINE SA0 SI FPSO Output Input Output SCS# FPCS2# FPFRAME SCLK FPSCLK FPLINE SA0 FPA0 SI FPSO SI FPCS1# SI FPCS1# SI FPCS1# SI FPCS1# GPIO4 FPDAT0 GPIO4 FPDAT17 GPIO4 FPDAT0 GPIO4 FPDAT17 GPIO5 FPDAT1 GPIO5 FPDAT16 GPIO5 FPDAT1 GPIO5 FPDAT16 GPIO6 FPDAT2 GPIO6 FPDAT15 GPIO6 FPDAT2 GPIO6 FPDAT15 GPIO7 FPDAT3 GPIO7 FPDAT14 GPIO7 FPDAT3 GPIO7 FPDAT14 GPIO8 FPDAT4 GPIO8 FPDAT13 GPIO8 FPDAT4 GPIO8 FPDAT13 GPIO9 FPDAT5 GPIO9 FPDAT12 GPIO9 FPDAT5 GPIO9 FPDAT12 GPIO10 FPDAT6 GPIO10 FPDAT11 GPIO10 FPDAT6 GPIO10 FPDAT11 GPIO11 FPDAT7 GPIO11 FPDAT10 GPIO11 FPDAT7 GPIO11 FPDAT10 GPIO12 FPDAT8 GPIO12 FPDAT9 GPIO12 FPDAT8 GPIO12 FPDAT9 GPIO13 FPDAT9 GPIO13 FPDAT8 GPIO13 FPDAT9 GPIO13 FPDAT8 GPIO14 FPDAT10 GPIO14 FPDAT7 GPIO14 FPDAT10 GPIO14 FPDAT7 GPIO15 FPDAT11 GPIO15 FPDAT6 GPIO15 FPDAT11 GPIO15 FPDAT6 GPIO16 FPDAT12 GPIO16 FPDAT5 GPIO16 FPDAT12 GPIO16 FPDAT5 GPIO17 FPDAT13 GPIO17 FPDAT4 GPIO17 FPDAT13 GPIO17 FPDAT4 GPIO18 FPDAT14 GPIO18 FPDAT3 GPIO18 FPDAT14 GPIO18 FPDAT3 GPIO19 FPDAT15 GPIO19 FPDAT2 GPIO19 FPDAT15 GPIO19 FPDAT2 GPIO20 FPDAT16 GPIO20 FPDAT1 GPIO21 FPDAT17 GPIO21 FPDAT0 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Pins Table 5-17: LCD Interface Mode 3/4 Bypass Endian/Data Width Pin Mapping Panel Mode LCD I/F Mode3 LCD I/F Mode4 Bypass Mode Parallel Bypass Parallel Bypass REG[0014h] bits 12-11 Input/Output Pin Mapping 00 Input 01 Output Input SCS# FPCS2# SCLK FPFRAME SA0 FPLINE SI FPCS1# GPIO4 GPIO5 10 Output Input SCS# FPCS2# SCLK FPFRAME SA0 FPLINE SI FPCS1# FPDAT0 GPIO4 FPDAT1 GPIO5 GPIO6 FPDAT2 GPIO7 11 Output Input SCS# FPCS2# SCLK FPFRAME SA0 FPLINE SI FPCS1# FPDAT17 GPIO4 FPDAT16 GPIO5 GPIO6 FPDAT15 FPDAT3 GPIO7 GPIO8 FPDAT4 GPIO9 FPDAT5 GPIO10 Output Input SCS# FPCS2# SCS# FPCS2# SCLK FPFRAME SCLK FPFRAME SA0 FPLINE SA0 FPLINE SI FPCS1# FPDAT0 GPIO4 FPDAT17 FPDAT1 GPIO5 FPDAT16 GPIO6 FPDAT2 GPIO6 FPDAT15 FPDAT14 GPIO7 FPDAT3 GPIO7 FPDAT14 GPIO8 FPDAT13 GPIO8 FPDAT4 GPIO8 FPDAT13 GPIO9 FPDAT12 GPIO9 FPDAT5 GPIO9 FPDAT12 FPDAT6 GPIO10 FPDAT11 GPIO10 FPDAT6 GPIO10 FPDAT11 GPIO11 FPDAT7 GPIO11 FPDAT10 GPIO11 FPDAT7 GPIO11 FPDAT10 GPIO12 FPDAT8 GPIO12 FPDAT9 GPIO12 FPDAT8 GPIO12 FPDAT9 GPIO13 FPDAT9 GPIO13 FPDAT8 GPIO13 FPDAT9 GPIO13 FPDAT8 GPIO14 FPDAT10 GPIO14 FPDAT7 GPIO14 FPDAT10 GPIO14 FPDAT7 GPIO14 FPDAT0 GPIO15 FPDAT11 GPIO15 FPDAT6 GPIO15 FPDAT11 GPIO15 FPDAT6 GPIO15 FPDAT1 GPIO16 FPDAT12 GPIO16 FPDAT5 GPIO16 FPDAT12 GPIO16 FPDAT5 GPIO16 FPDAT2 GPIO17 FPDAT13 GPIO17 FPDAT4 GPIO17 FPDAT13 GPIO17 FPDAT4 GPIO17 FPDAT3 GPIO18 FPDAT14 GPIO18 FPDAT3 GPIO18 FPDAT14 GPIO18 FPDAT3 GPIO18 FPDAT4 GPIO19 FPDAT15 GPIO19 FPDAT2 GPIO19 FPDAT15 GPIO19 FPDAT2 GPIO19 FPDAT5 GPIO20 FPDAT16 GPIO20 FPDAT1 GPIO20 FPDAT6 GPIO21 FPDAT17 GPIO21 FPDAT0 GPIO21 FPDAT7 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation Output 51 Pins 5.7 Camera Interface Pin Mapping 5.7.1 Camera1 Interface Pin Mapping Table 5-18: Camera1 Interface Pin Mapping Pin Name Type 1 Camera CM1DAT[7:0] CAMDAT[7:0] CM1VREF VREF CM1HREF HREF CM1CLKOUT CAMMCLK CM1CLKIN CAMPCLK GPIO21 GPIO21 GPIO20 GPIO20 5.7.2 Camera2 Interface Pin Mapping Table 5-19: Camera2 Interface Pin Mapping 52 Pin Name Camera MPEG Codec Interface CM2DAT[7:0] CAMDAT[7:0] DISPPXL[7:0] CM2VREF VREF DISPVSYNC CM2HREF HREF DISPHSYNC CM2CLKOUT CAMMCLK DISPCLK CM2CLKIN CMCLKIN DISPBLK Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 D.C. Characteristics 6 D.C. Characteristics Table 6-1: Absolute Maximum Ratings Symbol Parameter Rating Units Core VDD Supply Voltage VSS - 0.3 ~ 2.5 V PLL VDD Supply Voltage VSS - 0.3 ~ 2.1 V IO VDD Supply Voltage VSS - 0.3 ~ 4.0 V VIN Input Voltage VSS - 0.3 ~ IO VDD + 0.5 V VOUT Output Voltage VSS - 0.3 ~ IO VDD + 0.5 V Table 6-2: Recommended Operating Conditions Symbol Parameter Condition Min Typ Max Units Core VDD Supply Voltage VSS = 0 V 1.65 1.8 1.95 V PLL VDD Supply Voltage VSS = 0 V 1.65 1.8 1.95 V HIO VDD Supply Voltage VSS = 0 V 2.75 3.0 3.25 V PIO VDD Supply Voltage VSS = 0 V 2.75 3.0 3.25 V CIO VDD Supply Voltage VSS = 0 V 2.75 3.0 3.25 V VSS VIN TOPR Input Voltage Operating Temperature S1D13715 Hardware Functional Specification Rev. 7.4 VSS PIO VDD VSS CIO VDD -40 Seiko Epson Corporation HIO VDD 25 85 V C 53 D.C. Characteristics Table 6-3: Electrical Characteristics for VDD = 3.0V typical Symbol IDDSH IDDSL IIZ IOZ Parameter IO Quiescent Current CORE Quiescent Current Input Leakage Current Output Leakage Current HIOVOH High Level Output Voltage CIOVOH High Level Output Voltage PIOVOH High Level Output Voltage HIOVOL Low Level Output Voltage CIOVOL Low Level Output Voltage PIOVOL Low Level Output Voltage HIOVIH High Level Input Voltage CIOVIH High Level Input Voltage PIOVIH High Level Input Voltage HIOVIL Low Level Input Voltage CIOVIL Low Level Input Voltage PIOVIL Low Level Input Voltage HIOVT+ CIOVT+ PIOVT+ HIOVTCIOVTPIOVTRPD RPU CI CO CIO Positive Trigger Voltage Positive Trigger Voltage Positive Trigger Voltage Negative Trigger Voltage Negative Trigger Voltage Negative Trigger Voltage Pull Down Resistance Pull Up Resistance Input Pin Capacitance Output Pin Capacitance Bi-Directional Pin Capacitance 54 Condition Quiescent Conditions Quiescent Conditions Min Typ -5 -5 HIOVDD = min IOH = -3.6mA CIOVDD = min IOH = -3.6mA PIOVDD = min IOH = -3.6mA HIOVDD = min IOL = 3.6mA CIOVDD = min IOL = 3.6mA PIOVDD = min IOL = 3.6mA LVCMOS Level, VDD = max LVCMOS Level, VDD = max LVCMOS Level, VDD = max LVCMOS Level, VDD = min LVCMOS Level, VDD = min LVCMOS Level, VDD = min LVCMOS Schmitt LVCMOS Schmitt LVCMOS Schmitt LVCMOS Schmitt LVCMOS Schmitt LVCMOS Schmitt VIN = VDD VIN = VDD f = 1MHz, VDD = 0V f = 1MHz, VDD = 0V f = 1MHz, VDD = 0V Seiko Epson Corporation Max 10 10 5 5 Units A A A A HIOVDD - 0.4 V CIOVDD - 0.4 V PIOVDD - 0.4 V 0.4 V 0.4 V 0.4 V 1.95 V 1.95 V 1.95 V 1.35 1.35 1.35 0.7 0.7 0.7 30 30 - 60 60 - 0.85 V 0.85 V 0.85 V 2.5 2.5 2.5 1.6 1.6 1.6 144 144 8 8 8 V V V V V V k k pF pF pF S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7 A.C. Characteristics Conditions: IO VDD = 3.0V ± 0.25V TA = -40 C to 85 C Trise and Tfall for all inputs except CLKI must be < 50 ns (10% ~ 90%) CL = 15pF (Host Interface) CL = 15pF (Camera Interface) CL = 30pF (LCD Panel/GPIO Interface) 7.1 Clock Timing 7.1.1 Input Clocks tPWH tPWL 90% VIH VIL 10% tf tr TOSC tcycle1 tCJper tcycle2 Figure 7-1: Clock Input Requirements (PLL) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 55 A.C. Characteristics Table 7-1: Clock Input Requirements (PLL) Symbol Parameter Max Units 30 32.768 64 KHz Input clock frequency TOSC Input clock period tPWH Input clock pulse width high 5 us tPWL Input clock pulse width low 5 us 1/fOSC tr Input clock rising time (10% - 90%) tf Input clock falling time (10% - 90%) us 5 Input clock period jitter (see notes 2 and 4) tCJcycle Input clock cycle jitter (see notes 3 and 4) (see note 1) 3. 4. Typ fOSC tCJper 1. 2. Min us 5 us -100 100 ns -100 100 ns tCJcycle = tcycle1 - tcycle2 The input clock period jitter is the displacement relative to the center period (reciprocal of the center frequency). The input clock cycle jitter is the difference in period between adjacent cycles. The jitter characteristics must satisfy both the tCJper and tCJcycle characteristics. Clock Input Waveform t t PWH PWL 90% V IH VIL 10% t tr f TOSC Figure 7-2: Clock Input Requirements (PLL bypassed) Table 7-2: Clock Input Requirements (PLL bypassed) Symbol 56 Parameter fOSC Input Clock Frequency (CLKI) TOSC Input Clock period (CLKI) tPWH Min Max Units 55 MHz 1/fOSC ns Input Clock Pulse Width High (CLKI) 0.4TOSC ns tPWL Input Clock Pulse Width Low (CLKI) 0.4TOSC ns tr Input clock rising time (10% - 90%) 5 ns tf Input clock falling time (10% - 90%) 5 ns Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.1.2 PLL Clock The PLL circuit is an analog circuit and is very sensitive to noise on the input clock waveform or the power supply. Noise on the clock or the supplied power may cause the operation of the PLL circuit to become unstable or increase the jitter. Due to these noise constraints, it is highly recommended that the power supply traces or the power plane for the PLL be isolated from those of other power supplies. Filtering should also be used to keep the power as clean as possible. The jitter of the input clock waveform should be as small as possible. For example, if noise with a 2KHz frequency modulation is added on PLLVDD, the jitter on the PLL clock output may fluctuate. Measures must be taken to avoid noise within the range of 1KHz to 3KHz. The specific design should be confirmed to determine the jitter value of a clock. This is because the actual jitter characteristics are affected by a combination of factors, such as the jitter frequency spectrum of CLKI, and amplitude and frequency of the noise on the supplied power. If the jitter of a clock exceeds the requirement of a module, an external oscillator should be used instead of using the internal PLL circuitry. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 57 A.C. Characteristics PLL Enable 100 ms Lock In Time PLL Stable 32KHz Reference Clock PLL xxMHz Output (xx = 40-55MHz) Jitter (ns) Lock in time 100 ms Specification (2%) Time (ms) The PLL frequency will ramp between the OFF state and the programmed frequency. To guarantee the lowest possible clock jitter, 100ms is required for stabilization. Note: PLL minimum frequency = 40MHz PLL maximum frequency = 55MHz Figure 7-3: PLL Start-Up Time 7.1.3 Internal Clocks Table 7-3: Internal Clock Requirements Symbol fSYS 58 Parameter Internal Clock Frequency (System Clock) Seiko Epson Corporation Min Max Units 55 MHz S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.2 Power Supply Sequence 7.2.1 Power-On Sequence COREVDD PLLVDD t1 HIOVDD PIOVDD CIOVDD t2 RESET# Figure 7-4: Power-On Sequence Table 7-4: Power-On Sequence Symbol Parameter Min Max Units t1 IOVDD on delay from COREVDD / PLLVDD on 0 ns t2 RESET# width period 1 CLKI 7.2.2 Power-Off Sequence COREVDD PLLVDD t1 HIOVDD PIOVDD CIOVDD Figure 7-5: Power-Off Sequence Table 7-5: Power-Off Sequence Symbol t1 Parameter COREVDD / PLLVDD off delay from IOVDD off S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation Min 0 Max Units ns 59 A.C. Characteristics 7.3 Host Interface Timing 7.3.1 Direct 80 Type 1 t0101 t0105 t0102 t0106 CS# A[18:1] M/R# UBE#, LBE# t0109 WE# t0103 WAIT# (No Wait Mode: Hi-Z) t0107 t0104 D[15:0] (write) t0108 valid Figure 7-6: Direct 80 Type 1 Interface Write Cycle Timing (Wait/No Wait Mode) Table 7-6: Direct 80 Type 1 Interface Write Cycle Timing (Wait/No Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t0101 CS# setup time 5 ns t0102 A[18:1], M/R#, UBE#, LBE# setup time 5 ns t0103 WE# falling edge to WAIT# driven low t0104 D[15:0] setup time to WE# rising edge 15 ns t0105 CS# hold time from WE# rising edge 3 ns t0106 A[18:1], M/R#, UBE#, LBE# hold time from WE# rising edge 3 ns t0107 WE# rising edge to WAIT# high impedance t0108 D[15:0] hold time from WE# rising edge t0109 Cycle time (No wait mode only) 12 7 ns ns 5 ns Note2,3 Ts 1. Ts = System clock period. 2. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 3. t0109min= WAIT Length + 3 Ts 60 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t0121 t0125 t0122 t0126 CS# A[18:1] M/R# UBE#, LBE# RD# t0127 t0123 WAIT# t0128 t0129 t0124 D[15:0] (read) valid t0130 Figure 7-7: Direct 80 Type 1 Interface Read Cycle Timing (Wait Mode) Table 7-7: Direct 80 Type 1 Interface Read Cycle Timing (Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t0121 CS# setup time 5 ns t0122 A[18:1], M/R#, UBE#, LBE# setup time 5 ns t0123 RD# falling edge to WAIT# driven low t0124 RD# falling edge to D[15:0] driven 4 ns t0125 CS# hold time from RD# rising edge 2 ns t0126 A[18:1], M/R#, UBE#, LBE# hold time from RD# rising edge 2 ns t0127 RD# rising edge to WAIT# high impedance t0128 D[15:0] hold time from RD# rising edge. 8 ns t0129 WAIT# rising edge to valid Data if WAIT# is asserted 10 ns t0130 RD# falling edge to valid Data if WAIT# is NOT asserted 17 ns S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 12 7 2 ns ns 61 A.C. Characteristics t0141 t0144 t0142 t0145 CS# A[18:1] M/R# UBE#, LBE# t0148 t0148 RD# t0146 t0143 D[15:0] (read) valid t0147 Figure 7-8: Direct 80 Type 1 Interface Read Cycle Timing (No Wait Mode) Table 7-8: Direct 80 Type 1 Interface Read Cycle Timing (No Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t0141 CS# setup time 0 ns t0142 A[18:1], M/R#, UBE#, LBE# setup time 0 ns t0143 RD# falling edge to D[15:0] driven 4 ns t0144 CS# hold time from RD# rising edge 0 ns t0145 A[18:1], M/R#, UBE#, LBE# hold time from RD# rising edge 0 ns t0146 D[15:0] hold time from RD# rising edge 2 t0147 RD# falling edge to valid Data if there are no internal delayed cycles t0148 RD# pulse width high 8 8 ns Note1,2 ns ns 1. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 2. t0147max= WAIT Length + 25 ns 62 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics Table 7-9: Direct 80 Type 1 Host Interface Truth Table for Little Endian WE# RD# UBE# LBE# D[15:8] D[7:0] 0 1 0 0 valid valid 16-bit write Comments 0 1 1 0 - valid 8-bit write; data on low byte (even byte address1) 0 1 0 1 valid - 8-bit write; data on high byte (odd byte address1) 1 0 0 0 valid valid 16-bit read 1 0 1 0 - valid 8-bit read; data on low byte (even byte address1) 1 0 0 1 valid - 8-bit read; data on high byte (odd byte address1) Table 7-10: Direct 80 Type 1 Host Interface Truth Table for Big Endian 1. WE# RD# UBE# LBE# D[15:8] D[7:0] 0 1 0 0 valid valid 16-bit write Comments 0 1 1 0 - valid 8-bit write; data on low byte (odd byte address1) 0 1 0 1 valid - 1 0 0 0 valid valid 16-bit read 1 0 1 0 - valid 8-bit read; data on low byte (odd byte address1) 1 0 0 1 valid - 8-bit write; data on high byte (even byte address1) 8-bit read; data on high byte (even byte address1) Because A0 is not used, all addresses are seen by the S1D13715 as even addresses (16-bit word address aligned on even byte addresses). S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 63 A.C. Characteristics 7.3.2 Direct 80 Type 2 t0201 t0205 t0202 t0206 CS# A[18:1] M/R# t0209 WEU#,WEL# t0203 WAIT# (No Wait Mode: Hi-Z) t0207 t0204 D[15:0] (write) t0208 valid Figure 7-9: Direct 80 Type 2 Interface Write Cycle Timing (Wait/No Wait Mode) Table 7-11: Direct 80 Type 2 Interface Write Cycle Timing (Wait/No Wait Mode) Symbol Parameter 3.0 Volt Min t0201 CS# setup time 5 t0202 A[18:1], M/R# setup time 5 t0203 WEU#,WEL# falling edge to WAIT# driven low t0204 D[15:0] setup time to WEU#,WEL# rising edge t0205 Max Units ns ns 12 ns 15 ns CS# hold time from WEU#,WEL# rising edge 3 ns t0206 A[18:1], M/R# hold time from WEU#,WEL# rising edge 3 t0207 WEU#,WEL# rising edge to WAIT# high impedance t0208 D[15:0] hold time from WEU#,WEL# rising edge t0209 Cycle time (No wait mode only) ns 7 ns 5 ns Note2,3 Ts 1. Ts = System clock period. 2. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 3. t0209min= WAIT Length + 3 Ts 64 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t0221 t0225 t0222 t0226 CS# A[18:1] M/R# RD# t0223 t0227 WAIT# t0229 t0224 D[15:0] (read) t0228 valid t0230 Figure 7-10: Direct 80 Type 2 Interface Read Cycle Timing (Wait Mode) Table 7-12: Direct 80 Type 2 Interface Read Cycle Timing (Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t0221 CS# setup time 5 ns t0222 A[18:1], M/R# setup time 5 ns t0223 RD# falling edge to WAIT# driven low t0224 RD# falling edge to D[15:0] driven 4 ns t0225 CS# hold time from RD# rising edge 2 ns t0226 A[18:1], M/R# hold time from RD# rising edge 2 ns t0227 RD# rising edge to WAIT# high impedance t0228 D[15:0] hold time from RD# rising edge. t0229 t0230 12 ns 7 ns 8 ns WAIT# rising edge to valid Data if WAIT# is asserted 10 ns RD# falling edge to valid Data if WAIT# is NOT asserted 17 ns S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 2 65 A.C. Characteristics t0241 t0244 t0242 t0245 CS# A[18:1] M/R# t0248 t0248 RD# t0243 t0246 D[15:0] (read) valid t0247 Figure 7-11: Direct 80 Type 2 Interface Read Cycle Timing (No Wait Mode) Table 7-13: Direct 80 Type 2 Interface Read Cycle Timing (No Wait Mode) Symbol 3.0 Volt Parameter Min Max Units t0241 CS# setup time 0 ns t0242 A[18:1], M/R# setup time 0 ns t0243 RD# falling edge to D[15:0] driven 4 ns t0244 CS# hold time from RD# rising edge 0 ns t0245 A[18:1], M/R# hold time from RD# rising edge 0 ns t0246 D[15:0] hold time from RD# rising edge 2 t0247 RD# falling edge to valid Data if there are no internal delayed cycles t0248 RD# pulse width high 8 ns Note1,2 ns 8 ns 1. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 2. t0247max= WAIT Length + 25 ns Table 7-14: Direct 80 Type 2 Host Interface Truth Table for Little Endian 1. 66 RD# WEU# WEL# D[15:8] D[7:0] 1 0 0 valid valid 16-bit write Comments 1 1 0 - valid 8-bit write; data on low byte (even byte address1) 1 0 1 valid - 8-bit write; data on high byte (odd byte address1) 0 1 1 valid valid 16-bit read Because A0 is not used, all addresses are seen by the S1D13715 as even addresses (16-bit word address aligned on even byte addresses). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.3.3 Direct 80 Type 3 t0301 t0305 t0302 t0306 CS# A[18:1] M/R# t0309 WEU#,WEL# t0303 WAIT# (No Wait Mode: Hi-Z) t0307 t0304 D[15:0] (write) t0308 valid Figure 7-12: Direct 80 Type 3 Interface Write Cycle Timing (Wait/No Wait Mode) Table 7-15: Direct 80 Type 3 Interface Write Cycle Timing (Wait/No Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t0301 CS# setup time 5 ns t0302 A[18:1], M/R# setup time 5 t0303 WEU#,WEL# falling edge to WAIT# driven low t0304 D[15:0] setup time to WEU#,WEL# rising edge 15 ns t0305 CS# hold time from WEU#,WEL# rising edge 3 ns t0306 A[18:1], M/R# hold time from WEU#,WEL# rising edge 3 t0307 WEU#,WEL# rising edge to WAIT# high impedance t0308 D[15:0] hold time from WEU#,WEL# rising edge t0309 Cycle time (No wait mode only) ns 12 ns ns 7 ns 5 ns Note2,3 Ts 1. Ts = System clock period. 2. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 3. t0309min= WAIT Length + 3 Ts S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 67 A.C. Characteristics t0325 t0321 CS# t0326 t0322 A[18:1] M/R# RDU#,RDL# t0327 t0323 WAIT# t0329 t0324 D[15:0] (read) t0328 valid t0330 Figure 7-13: Direct 80 Type 3 Interface Read Cycle Timing (Wait Mode) Table 7-16: Direct 80 Type 3 Interface Read Cycle Timing (Wait Mode) Symbol 68 Parameter 3.0 Volt Min Max Units t0321 CS# setup time 5 ns t0322 A[18:1], M/R# setup time 5 t0323 RDU#,RDL# falling edge to WAIT# driven low t0324 RDU#,RDL# falling edge to D[15:0] driven 4 ns t0325 CS# hold time from RDU#,RDL# rising edge 2 ns t0326 A[18:1], M/R# hold time from RDU#,RDL# rising edge 2 t0327 RDU#,RDL# rising edge to WAIT# high impedance t0328 D[15:0] hold time from RDU#,RDL# rising edge. t0329 t0330 ns 12 ns ns 7 ns 8 ns WAIT# rising edge to valid Data if WAIT# is asserted 10 ns RDU#,RDL# falling edge to valid Data if WAIT# is NOT asserted 17 ns Seiko Epson Corporation 2 S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t0344 t0341 CS# t0345 t0342 A[18:1] M/R# t0348 t0348 RDU#,RDL# t0343 t0346 D[15:0] (read) valid t0347 Figure 7-14: Direct 80 Type 3 Interface Read Cycle Timing (No Wait Mode) Table 7-17: Direct 80 Type 3 Interface Read Cycle Timing (No Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t0341 CS# setup time 0 ns t0342 A[18:1], M/R# setup time 0 ns t0343 RDU#,RDL# falling edge to D[15:0] driven 4 ns t0344 CS# hold time from RDU#,RDL# rising edge 0 ns t0345 A[18:1], M/R# hold time from RDU#,RDL# rising edge 0 t0346 D[15:0] hold time from RDU#,RDL# rising edge 2 t0347 RDU#,RDL# falling edge to valid Data if there are no internal delayed cycles t0348 RDU#, RDL# pulse width high 8 ns 8 ns Note1,2 ns ns 1. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 2. t0347max= WAIT Length + 25 ns S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 69 A.C. Characteristics Table 7-18: Direct 80 Type 3 Host Interface Truth Table for Little Endian WEU# WEL# RDU# RDL# D[15:8] D[7:0] 0 0 1 1 valid valid 16-bit write Comments 1 0 1 1 - valid 8-bit write; data on low byte (even byte address1) 0 1 1 1 valid - 8-bit write; data on high byte (odd byte address1) 1 1 0 0 valid valid 16-bit read 1 1 1 0 - valid 8-bit read; data on low byte (even byte address1) 1 1 0 1 valid - 8-bit read; data on high byte (odd byte address 1) Table 7-19: Direct 80 Type 3 Host Interface Truth Table for Big Endian WEU# WEL# RDU# RDL# D[15:8] D[7:0] 0 0 1 1 valid valid 16-bit write 1 0 1 1 - valid 8-bit write; data on low byte (odd byte address 1) 0 1 1 1 valid - 1 1 0 0 valid valid 16-bit read 1 1 1 0 - valid 8-bit read; data on low byte (odd byte address1) 1 1 0 1 valid - 1. 70 Comments 8-bit write; data on high byte (even byte address1) 8-bit read; data on high byte (even byte address1) Because A0 is not used, all addresses are seen by the S1D13715 as even addresses (16-bit word address aligned on even byte addresses). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.3.4 Direct 68 t0401 t0405 t0402 t0406 CS# A[18:1] R/W# M/R# t0409 UDS#, LDS# t0403 WAIT# (No Wait Mode: Hi-Z) t0407 t0404 D[15:0] (write) t0408 valid Figure 7-15: Direct 68 Interface Write Cycle Timing (Wait/No Wait Mode) Table 7-20: Direct 68 Interface Write Cycle Timing (Wait/No Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t0401 CS# setup time 5 ns t0402 AB[18:1], R/W#, M/R# setup time 5 t0403 UDS#, LDS# falling edge to WAIT# driven low t0404 D[15:0] setup time to UDS#, LDS# rising edge 15 ns t0405 CS# hold time from UDS#, LDS# rising edge 3 ns t0406 A[18:1], R/W#, M/R# hold time from UDS#, LDS# rising edge 3 t0407 UDS#, LDS# rising edge to WAIT# high impedance t0408 D[15:0] hold time from UDS#, LDS# rising edge t0409 Cycle time (No wait mode only) ns 12 ns ns 7 ns 5 ns Note2,3 Ts 1. Ts = System clock period 2. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 3. t0409min= WAIT Length + 3 Ts S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 71 A.C. Characteristics t0421 t0425 t0422 t0426 CS# A[18:1] R/W# M/R# UDS#, LDS# t0423 t0427 WAIT# t0429 t0424 D[15:0] (read) t0428 valid t0430 Figure 7-16: Direct 68 Interface Read Cycle Timing (Wait Mode) Table 7-21: Direct 68 Interface Read Cycle Timing (Wait Mode) Symbol 72 Parameter 3.0 Volt Min Max Units t0421 CS# setup time 5 ns t0422 AB[18:1], R/W#, M/R# setup time 5 ns t0423 UDS#, LDS# falling edge to WAIT# driven low t0424 UDS#, LDS# falling edge to D[15:0] driven 4 ns t0425 CS# hold time from UDS#, LDS# rising edge 2 ns t0426 A[18:1], R/W#, M/R# hold time from UDS#, LDS# rising edge 2 ns t0427 UDS#, LDS# rising edge to WAIT# high impedance t0428 D[15:0] hold time from UDS#, LDS# rising edge t0429 t0430 12 ns 7 ns 8 ns WAIT# rising edge to valid Data if WAIT# is asserted 10 ns UDS#, LDS# falling edge to valid Data if WAIT# is NOT asserted 17 ns Seiko Epson Corporation 2 S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t0441 t0444 t0442 t0445 t0449 t0450 CS# A[18:1] M/R# R/W# t0448 t0448 UDS#, LDS# t0446 t0443 valid D[15:0] (read) t0447 Figure 7-17: Direct 68 Interface Read Cycle Timing (No Wait Mode) Table 7-22: Direct 68 Interface Read Cycle Timing (No Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t0441 CS# setup time 0 ns t0442 A[18:1], M/R# setup time 0 ns t0443 UDS#, LDS# falling edge to D[15:0] driven 4 ns t0444 CS# hold time from UDS#, LDS# rising edge 0 ns t0445 A[18:1], M/R# hold time from UDS#, LDS# rising edge 0 ns t0446 D[15:0] hold time from UDS#, LDS# rising edge 2 t0447 UDS#, LDS# falling edge to valid Data if there are no internal delayed cycles t0448 UDS#, LDS# pulse width high 8 ns t0449 R/W# setup time 5 ns t0450 R/W# hold time from UDS#, LDS# rising edge 2 ns 8 ns Note1,2 ns 1. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 2. t0447max= WAIT Length + 25 ns S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 73 A.C. Characteristics Table 7-23: Direct 68 Host Interface Truth Table for Little Endian 1. 74 R/W# UDS# LDS# D[15:8] D[7:0] 0 0 0 valid valid 16-bit write Comments 0 1 0 - valid 8-bit write; data on low byte (even byte address1) 0 0 1 valid - 8-bit write; data on high byte (odd byte address1) 1 0 0 valid valid 16-bit read 1 1 0 - valid 8-bit read; data on low byte (even byte address1) 1 0 1 valid - 8-bit read; data on high byte (odd byte address 1) Because A0 is not used, all addresses are seen by the S1D13715 as even addresses (16-bit word address aligned on even byte addresses). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.3.5 Indirect 80 Type 1 t1101 t1105 t1102 t1106 CS# A1 UBE#, LBE# t1109 WE# t1103 t1107 WAIT# (No Wait Mode: Hi-Z) t1104 D[15:0] (write) t1108 valid Figure 7-18: Indirect 80 Type 1 Interface Write Cycle Timing (Wait/No Wait Mode) Table 7-24: Indirect 80 Type 1 Interface Write Cycle Timing (Wait/No Wait Mode) Symbol t1101 Parameter 3.0 Volt Min Max Units CS# setup time 5 ns t1102 A1, UBE#, LBE# setup time 5 t1103 WE# falling edge to WAIT# driven low t1104 D[15:0] setup time to WE# rising edge 15 ns t1105 CS# hold time from WE# rising edge 3 ns t1106 A1, UBE#, LBE# hold time from WE# rising edge 3 t1107 WE# rising edge to WAIT# high impedance t1108 D[15:0] hold time from WE# rising edge t1109 Cycle time (No wait mode only) ns 12 ns ns 7 ns 5 ns Note2,3 Ts 1. Ts = System clock period. 2. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 3. t1109min= WAIT Length + 3 Ts S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 75 A.C. Characteristics t1121 t1125 t1122 t1126 CS# A1 UBE#, LBE# RD# t1127 t1123 WAIT# t1129 t1124 D[15:0] (read) t1128 valid t1130 Figure 7-19: Indirect 80 Type 1 Interface Read Cycle Timing (Wait Mode) Table 7-25: Indirect 80 Type 1 Interface Read Cycle Timing (Wait Mode) Symbol 76 Parameter 3.0 Volt Min Max Units t1121 CS# setup time 5 ns t1122 A1, UBE#, LBE# setup time 5 ns t1123 RD# falling edge to WAIT# driven low t1124 RD# falling edge to D[15:0] driven 4 ns t1125 CS# hold time from RD# rising edge 2 ns t1126 A1, UBE#, LBE# hold time from RD# rising edge 2 ns t1127 RD# rising edge to WAIT# high impedance t1128 D[15:0] hold time from RD# rising edge. t1129 WAIT# rising edge to valid Data if WAIT# is asserted t1130 RD# falling edge to valid Data if WAIT# is NOT asserted 17 ns Seiko Epson Corporation 12 2 ns 7 ns 8 ns 10 ns S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t1141 t1144 t1142 t1145 CS# A1 UBE#, LBE# t1148 t1148 RD# t1143 t1146 D[15:0] (read) valid t1147 Figure 7-20: Indirect 80 Type 1 Interface Read Cycle Timing (No Wait Mode) Table 7-26: Indirect 80 Type 1 Interface Read Cycle Timing (No Wait Mode) Symbol t1141 Parameter 3.0 Volt Min Max Units CS# setup time 0 ns t1142 A1, UBE#, LBE# setup time 0 ns t1143 RD# falling edge to D[15:0] driven 4 ns t1144 CS# hold time from RD# rising edge 0 ns t1145 A1, UBE#, LBE# hold time from RD# rising edge 0 ns t1146 D[15:0] hold time from RD# rising edge 2 t1147 RD# falling edge to valid Data if there are no internal delayed cycles t1148 RD# pulse width high 8 8 ns Note1,2 ns ns 1. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 2. t1147max= WAIT Length + 25 ns S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 77 A.C. Characteristics Table 7-27: Indirect 80 Type 1 Host Interface Truth Table for Little Endian WE# RD# UBE# LBE# D[15:8] D[7:0] 0 1 0 0 valid valid 16-bit command write or data write Comments 0 1 1 0 - valid 8-bit data write (memory); data on low byte (even byte address1) 0 1 0 1 valid - 8-bit data write (memory); data on high byte (odd byte address1) 1 0 0 0 valid valid 16-bit data read 1 0 1 0 - valid 8-bit data read (memory); data on low byte (even byte address1) 1 0 0 1 valid - 8-bit data read (memory); data on high byte (odd byte address1) Table 7-28: Indirect 80 Type 1 Host Interface Truth Table for Big Endian WE# RD# UBE# LBE# D[15:8] D[7:0] Comments 0 1 0 0 valid valid 16-bit command write or data write 0 1 1 0 - valid 8-bit data write (memory); data on low byte (odd byte address1) 0 1 0 1 valid - 1 0 0 0 valid valid 16-bit data read 1 0 1 0 - valid 8-bit data read (memory); data on low byte (odd byte address1) 1 0 0 1 valid - 8-bit data write (memory); data on high byte (even byte address1) 8-bit data read (memory); data on high byte (even byte address1) Table 7-29: Indirect 80 Type 1 Host Interface Function Selection 1. 78 A1 WE# RD# 0 0 1 16-bit Command Write (register address) Comments 1 0 1 Data Write (16-bit register data or 8/16-bit memory data) 1 1 0 Data Read (16-bit register data or 8/16-bit memory data) Because A0 is not used, all addresses are seen by the S1D13715 as even addresses (16-bit word address aligned on even byte addresses). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.3.6 Indirect 80 Type 2 t1201 t1205 t1202 t1206 CS# A1 t1209 WEU#,WEL# t1203 WAIT# (No Wait Mode: Hi-Z) t1207 t1204 D[15:0] (write) t1208 valid Figure 7-21: Indirect 80 Type 2 Interface Write Cycle Timing (Wait/No Wait Mode) Table 7-30: Indirect 80 Type 2 Interface Write Cycle Timing (Wait/No Wait Mode) Symbol t1201 Parameter 3.0 Volt Min Max Units CS# setup time 5 ns t1202 A1 setup time 5 t1203 WEU#,WEL# falling edge to WAIT# driven low t1204 D[15:0] setup time to WEU#,WEL# rising edge 15 ns t1205 CS# hold time from WEU#,WEL# rising edge 3 ns t1206 A1 hold time from WEU#,WEL# rising edge 3 t1207 WEU#,WEL# rising edge to WAIT# high impedance t1208 D[15:0] hold time from WEU#,WEL# rising edge t1209 Cycle time (No wait mode only) ns 12 ns ns 7 ns 5 ns Note2,3 Ts 1. Ts = System clock period. 2. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 3. t1209min= WAIT Length + 3 Ts S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 79 A.C. Characteristics t1221 t1225 CS# t1226 t1222 A1 RD# t1223 t1227 WAIT# t1229 t1224 D[15:0] (read) t1228 valid t1230 Figure 7-22: Indirect 80 Type 2 Interface Read Cycle Timing (Wait Mode) Table 7-31: Indirect 80 Type 2 Interface Read Cycle Timing (Wait Mode) Symbol 80 Parameter 3.0 Volt Min Max Units t1221 CS# setup time 5 ns t1222 A1 setup time 5 ns t1223 RD# falling edge to WAIT# driven low t1224 RD# falling edge to D[15:0] driven 4 ns t1225 CS# hold time from RD# rising edge 2 ns t1226 A1 hold time from RD# rising edge 2 ns t1227 RD# rising edge to WAIT# high impedance t1228 D[15:0] hold time from RD# rising edge. t1229 t1230 12 ns 7 ns 8 ns WAIT# rising edge to valid Data if WAIT# is asserted 10 ns RD# falling edge to valid Data if WAIT# is NOT asserted 17 ns Seiko Epson Corporation 2 S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t1241 t1244 t1242 t1245 CS# A1 t1248 t1248 RD# t1246 t1243 D[15:0] (read) valid t1247 Figure 7-23: Indirect 80 Type 2 Interface Read Cycle Timing (No Wait Mode) Table 7-32: Indirect 80 Type 2 Interface Read Cycle Timing (No Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t1241 CS# setup time 0 ns t1242 A1 setup time 0 ns t1243 RD# falling edge to D[15:0] driven 4 ns t1244 CS# hold time from RD# rising edge 0 ns t1245 A1 hold time from RD# rising edge 0 ns t1246 D[15:0] hold time from RD# rising edge 2 t1247 RD# falling edge to valid Data if there are no internal delayed cycles t1248 RD# pulse width high 8 8 ns Note1,2 ns ns 1. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 2. t1247max= WAIT Length + 25 ns S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 81 A.C. Characteristics Table 7-33: Indirect 80 Type 2 Host Interface Truth Table for Little Endian RD# WEU# WEL# D[15:8] D[7:0] 1 0 0 valid valid 16-bit command write or data write Comments 1 1 0 - valid 8-bit data write (memory); data on high byte (odd byte address 1) 1 0 1 valid - 8-bit data write (memory); data on high byte (even byte address1) 0 1 1 valid valid 16-bit data read Table 7-34: Indirect 80 Type 2 Host Interface Function Selection 1. 82 A1 WEU#/WEL# RD# Comments 0 0 1 16-bit Command Write (register address) 1 0 1 Data Write (16-bit register data or 8/16-bit memory data) 1 1 0 Data Read (16-bit register data or 16-bit memory data) Because A0 is not used, all addresses are seen by the S1D13715 as even addresses (16-bit word address aligned on even byte addresses). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.3.7 Indirect 80 Type 3 t1301 t1305 t1302 t1306 CS# A1 t1309 WEU#,WEL# t1303 WAIT# (No Wait Mode: Hi-Z) t1307 t1304 D[15:0] (write) t1308 valid Figure 7-24: Indirect 80 Type 3 Interface Write Cycle Timing (Wait/No Wait Mode) Table 7-35: Indirect 80 Type 3 Interface Write Cycle Timing (Wait/No Wait Mode) Symbol t1301 Parameter 3.0 Volt Min CS# setup time 5 t1302 A1 setup time 5 t1303 WEU#,WEL# falling edge to WAIT# driven low t1304 D[15:0] setup time to WEU#,WEL# rising edge t1305 Max Units ns ns 12 ns 15 ns CS# hold time from WEU#,WEL# rising edge 3 ns t1306 A1 hold time from WEU#,WEL# rising edge 3 t1307 WEU#,WEL# rising edge to WAIT# high impedance t1308 D[15:0] hold time from WEU#,WEL# rising edge t1309 Cycle time (No wait mode only) ns 7 ns 5 ns Note2,3 Ts 1. Ts = System clock period. 2. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 3. t1309min= WAIT Length + 3 Ts S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 83 A.C. Characteristics t1321 t1325 t1322 t1326 CS# A1 RDU#,RDL# t1323 t1327 WAIT# t1328 t1329 t1324 D[15:0] (read) valid t1330 Figure 7-25: Indirect 80 Type 3 Interface Read Cycle Timing (Wait Mode) Table 7-36: Indirect 80 Type 3 Interface Read Cycle Timing (Wait Mode) Symbol t1321 84 Parameter 3.0 Volt Min Max Units CS# setup time 5 ns t1322 A1 setup time 5 t1323 RDU#,RDL# falling edge to WAIT# driven low t1324 RDU#,RDL# falling edge to D[15:0] driven 4 ns t1325 CS# hold time from RDU#,RDL# rising edge 2 ns t1326 A1 hold time from RDU#,RDL# rising edge 2 t1327 RDU#,RDL# rising edge to WAIT# high impedance t1328 D[15:0] hold time from RDU#,RDL# rising edge. t1329 t1330 ns 12 ns ns 7 ns 8 ns WAIT# rising edge to valid Data if WAIT# is asserted 10 ns RDU#,RDL# falling edge to valid Data if WAIT# is NOT asserted 17 ns Seiko Epson Corporation 2 S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t1341 t1344 t1342 t1345 CS# A1 t1348 t1348 RDU#,RDL# t1343 t1346 D[15:0] (read) valid t1347 Figure 7-26: Indirect 80 Type 3 Interface Read Cycle Timing (No Wait Mode) Table 7-37: Indirect 80 Type 3 Interface Read Cycle Timing (No Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t1341 CS# setup time 0 ns t1342 A1 setup time 0 ns t1343 RDU#,RDL# falling edge to D[15:0] driven 4 ns t1344 CS# hold time from RDU#,RDL# rising edge 0 ns t1345 A1 hold time from RDU#,RDL# rising edge 0 t1346 D[15:0] hold time from RDU#,RDL# rising edge 2 t1347 RDU#,RDL# falling edge to valid Data if there are no internal delayed cycles t1348 RDU#, RDL# pulse width high 8 ns 8 ns Note1,2 ns ns 1. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 2. t1347max= WAIT Length + 25 ns S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 85 A.C. Characteristics Table 7-38: Indirect 80 Type 3 Host Interface Truth Table for Little Endian WEU# WEL# RDU# RDL# D[15:8] D[7:0] 0 0 1 1 valid valid 16-bit command write or data write Comments 1 0 1 1 - valid 8-bit data write (memory); data on low byte (even byte address1) 0 1 1 1 valid - 8-bit data write (memory); data on high byte (odd byte address1) 1 1 0 0 valid valid 16-bit data read 1 1 1 0 - valid 8-bit data read (memory); data on low byte (even byte address1) 1 1 0 1 valid - 8-bit data read (memory); data on high byte (odd byte address1) Table 7-39: Indirect 80 Type 3 Host Interface Truth Table for Big Endian WEU# WEL# RDU# RDL# D[15:8] D[7:0] Comments 0 0 1 1 valid valid 16-bit command write or data write 1 0 1 1 - valid 8-bit data write (memory); data on low byte (odd byte address1) 0 1 1 1 valid - 1 1 0 0 valid valid 16-bit data read 1 1 1 0 - valid 8-bit data read (memory); data on low byte (odd byte address1) 1 1 0 1 valid - 8-bit data write (memory); data on high byte (even byte address1) 8-bit data read (memory); data on high byte (even byte address1) Table 7-40: Indirect 80 Type 3 Host Interface Function Select 1. 86 A1 WEU# / WEL# RDU# / RDL# 0 0 1 16-bit Command Write (register address) Comments 1 0 1 Data Write (16-bit register data or 8/16-bit memory data) 1 1 0 Data Read (16-bit register data or 8/16-bit memory data) Because A0 is not used, all addresses are seen by the S1D13715 as even addresses (16-bit word address aligned on even byte addresses). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.3.8 Indirect 68 t1401 t1405 t1402 t1406 CS# A1 R/W# t1409 UDS#, LDS# t1403 WAIT# (No Wait Mode: Hi-Z) t1407 t1404 D[15:0] (write) t1408 valid Figure 7-27: Indirect 68 Interface Write Cycle Timing (Wait/No Wait Mode) Table 7-41: Indirect 68 Interface Write Cycle Timing (Wait/No Wait Mode) Symbol t1401 Parameter 3.0 Volt Min Max Units CS# setup time 5 ns t1402 A1, R/W# setup time 5 t1403 UDS#, LDS# falling edge to WAIT# driven low t1404 D[15:0] setup time to UDS#, LDS# rising edge 15 ns t1405 CS# hold time from UDS#, LDS# rising edge 3 ns t1406 A1, R/W# hold time from UDS#, LDS# rising edge 3 t1407 UDS#, LDS# rising edge to WAIT# high impedance t1408 D[15:0] hold time from UDS#, LDS# rising edge t1409 Cycle time (No wait mode only) ns 12 ns ns 7 ns 5 ns Note2,3 Ts 1. Ts = System clock period 2. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 3. t1409min = WAIT Length + 3 Ts S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 87 A.C. Characteristics t1425 t1421 CS# t1426 t1422 A1 R/W# UDS#, LDS# t1427 t1423 WAIT# t1429 t1424 D[15:0] (read) t1428 valid t1430 Figure 7-28: Indirect 68 Interface Read Cycle Timing (Wait Mode) Table 7-42: Indirect 68 Interface Read Cycle Timing (Wait Mode) Symbol 88 Parameter 3.0 Volt Min Max Units t1421 CS# setup time 5 ns t1422 A1, R/W# setup time 5 ns t1423 UDS#, LDS# falling edge to WAIT# driven low t1424 UDS#, LDS# falling edge to D[15:0] driven 4 ns t1425 CS# hold time from UDS#, LDS# rising edge 2 ns t1426 A1, R/W# hold time from UDS#, LDS# rising edge 2 ns t1427 UDS#, LDS# rising edge to WAIT# high impedance t1428 D[15:0] hold time from UDS#, LDS# rising edge t1429 t1430 12 ns 7 ns 8 ns WAIT# rising edge to valid Data if WAIT# is asserted 10 ns UDS#, LDS# falling edge to valid Data if WAIT# is NOT asserted 17 ns Seiko Epson Corporation 2 S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t1441 t1444 t1442 t1445 t1449 t1450 CS# A1 R/W# t1448 t1448 UDS#, LDS# t1446 t1443 t1447 Figure 7-29: Indirect 68 Interface Read Cycle Timing (No Wait Mode) Table 7-43: Indirect 68 Interface Read Cycle Timing (No Wait Mode) Symbol Parameter 3.0 Volt Min Max Units t1441 CS# setup time 0 ns t1442 A1 setup time 0 ns t1443 UDS#, LDS# falling edge to D[15:0] driven 4 ns t1444 CS# hold time from UDS#, LDS# rising edge 0 ns t1445 A1 hold time from UDS#, LDS# rising edge 0 t1446 D[15:0] hold time from UDS#, LDS# rising edge 2 t1447 UDS#, LDS# falling edge to valid Data if there are no internal delayed cycles t1448 UDS#, LDS# pulse width high 8 ns t1449 R/W# setup time 5 ns t1450 R/W# hold time from UDS#, LDS# rising edge 2 ns ns 8 ns Note1,2 ns 1. When no wait mode is selected, the same wait length cycles must be maintained as when wait mode is selected. See Section 7.3.9, “WAIT Length” on page 91. 2. t1447max= WAIT Length + 25 ns S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 89 A.C. Characteristics Table 7-44: Indirect 68 Host Interface Truth Table for Little Endian R/W# UDS# LDS# D[15:8] D[7:0] 0 0 0 valid valid 16-bit command write or data write Comments 0 1 0 - valid 8-bit data write (memory); data on low byte (even byte address1) 0 0 1 valid - 8-bit data write (memory); data on high byte (odd byte address 1) 1 0 0 valid valid 16-bit data read 1 1 0 - valid 8-bit data read (memory); data on low byte (even byte address 1) 1 0 1 valid - 8-bit data read (memory); data on high byte (odd byte address 1) Table 7-45: Indirect 68 Host Interface Function Select 1. 90 A1 R/W# 0 0 16-bit Command Write (register address) Comments 1 0 Data Write (16-bit register data or 8/16-bit memory data) 1 1 Data Read (16-bit register data or 8/16-bit memory data) Because A0 is not used, all addresses are seen by the S1D13715 as even addresses (16-bit word address aligned on even byte addresses). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.3.9 WAIT Length The Host CPU interfaces of the S1D13715 are asynchronous. However, the CPU signals are latched internally, synchronous to the system clock. The following table shows the WAIT# length based on the system clock. In the table, “Single” access means there is enough idle time between accesses. The minimum idle time to guarantee a single access is six system clocks from the rising edge of WE# of the current access to the rising edge of WE# of the next access. “Continuous” access means there is not enough idle time between accesses. If Host CPU cycles are assumed to be a minimum of x clocks in length, the actual cycle length will be “x + the value in the following table”. Table 7-46: Wait Length Description Min Max Unit Single Write to the registers, except the JPEG Codec registers 0 Ts (Note1) Continuous Write to the registers, except the JPEG Codec registers 5 Ts Single Write to the JPEG Codec registers 0 Ts Continuous Write to the JPEG Codec registers 1. 2. 3. 4. Typ (Note 4) 4 (Note 3) 6 (Note 2) Ts Single Write to the display buffer 0 Ts Continuous Write to the display buffer 4 Ts Single Write to the JPEG FIFO (REG09A6h) 0 Ts Continuous Write to the JPEG FIFO (REG09A6h) 5 Ts Single/Continuous Read from the registers, except the JPEG Codec registers 5 Ts Read from the registers after a Write, except the JPEG Codec registers 8 Ts Single/Continuous Read from the JPEG Codec registers, except the JPEG Codec Table registers 5 (Note 3) 7 (Note 2) Ts Read from the JPEG Codec registers after a Write, except the JPEG Codec Table registers 8 (Note 3) 10 (Note 2) Ts Single/Continuous Read from the display buffer 5 Ts Read from the display buffer after a Write 7 Ts 1st access of a JPEG FIFO continuous read 4 Ts Last 2 accesses of a JPEG FIFO continuous read 4 Ts Accesses of JPEG FIFO continuous read, except above 0 Ts Ts = System Clock Period Memory arbitration (Camera and JPEG modules are enabled) No memory arbitration (Camera and JPEG modules are disabled) These are typical values. Actual WAIT lengths may be larger than specified when multiple blocks of the S1D13715 are enabled. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 91 A.C. Characteristics 7.4 Panel Interface Timing 7.4.1 Generic TFT Panel Timing HT HDPS VPW VPP VDPS HPP HPW VDP VT HDP Figure 7-30: Generic TFT Panel Timing Table 7-47: Generic TFT Panel Timing Symbol HT HDP HDPS HPW HPP VT VDP VDPS VPW VPP 1. 2. 92 Description LCD1 Horizontal total LCD1 Display Period LCD1 Horizontal Display Period Start Position LCD1 FPLINE Pulse Width LCD1 FPLINE Pulse Position (see note 2) LCD1 Vertical Total LCD1 Vertical Display Period LCD1 Vertical Display Period Start Position LCD1 FPFRAME Pulse Width LCD1 FPFRAME Pulse Position (see note 2) Derived From ((REG[0040h] bits 6-0) + 1) x 8 ((REG[0042h] bits 9-1) + 1) x 2 ((REG[0044h] bits 9-0) + 9 (REG[0046h] bits 6-0) + 1 (REG[0048h] bits 9-0) + 1 (REG[004Ah] bits 9-0) + 1 (REG[004Ch] bits 9-0) + 1 REG[004Eh] bits 9-0 (REG[50h] bits 2-0) + 1 REG[0052h] bits 9-0 Units Ts Lines The following formulas must be valid for all panel timings: HDPS + HDP  HT VDPS + VDP  VT For generic TFT panel types, the HPP value must be programmed to 1 and the VPP value must be programmed to 0. These values may be used to configure extended TFT types as required. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics Generic RGB Type Interface Panel Horizontal Timing FPFRAME t1 FPLINE t2 t3 FPLINE t5 t4 t6 DRDY t7 t9 t8 t10 t11 t12 FPSHIFT t13 t14 FPDAT[17:0] Invalid 1 2 Last Invalid Figure 7-31: Generic RGB Type Interface Panel Horizontal Timing S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 93 A.C. Characteristics Table 7-48: Generic RGB Type Interface Panel Horizontal Timing Symbol 1. 2. 3. Parameter t1 FPFRAME falling edge to FPLINE falling edge t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 Horizontal total period FPLINE pulse width FPLINE falling edge to DRDY active Horizontal display period DRDY falling edge to FPLINE falling edge FPLINE setup time to FPSHIFT falling edge DRDY setup to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width high FPSHIFT pulse width low DRDY hold from FPSHIFT falling edge Data setup to FPSHIFT falling edge Data hold from FPSHIFT falling edge Min Typ HPP (note 2) HT HPW HDPS HDP note 3 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period For generic TFT panel types, the HPP value must be programmed to 1 and the VPP value must be programmed to 0. This values may be used to configure extended TFT types as required. t6typ = t2 - t4 - t5 Note The Generic TFT timings are based on the following: FPFRAME Pulse Polarity bit is active low (REG[0050h] bit 7 = 0). FPLINE Pulse Polarity bit is active low (REG[0046h] bit 7 = 0). 94 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics Generic RGB Type Interface Panel Vertical Timing t1 t2 FPFRAME FPLINE t3 FPDAT[17:0] Invalid t4 Line1 Invalid Last DRDY Figure 7-32: Generic RGB Type Interface Panel Vertical timing Table 7-49: Generic RGB Type Interface Panel Vertical Timing Symbol t1 t2 t3 t4 Parameter Vertical total period FPFRAME pulse width Vertical display start position (note 1) Vertical display period Min Typ VT VPW note 2 VDP Max Units Line Line Line Line 1. t3 is measured from the first FPLINE pulse at the start of the frame to the last FPLINE pulse before FPDAT is valid. 2. t3typ = VDPS - VPP (For generic TFT panel types, the VPP value must be programmed to 0. This value may be used to configure extended TFT types as required. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 95 A.C. Characteristics 7.4.2 HR-TFT Panel Timing t1 t2 FPSHIFT (DCLK) Ts FPDAT[17:0] (OB[5:0], OG[5:0], OR[5:0]) GPIO3 (SPL) t3 1 2 3 last t4 t5 t6 FPLINE (LP) t7 GPIO1 (CLS) t8 PS1 t10 GPIO0 (PS) t9 t9 t9 t9 t9 PS2 t11 PS3 t12 t12 GPIO2 (REV) Figure 7-33: HR-TFT Panel Horizontal Timing 96 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics Table 7-50: HR-TFT Panel Horizontal Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 1. Ts 2. t1typ 3. t2typ 4. t3typ 5. t5typ 6. t6typ 7. t7typ 8. t8typ 9. t9typ 10. t10typ 11. t11typ 12. t12typ Parameter Horizontal total period FPSHIFT active Horizontal display period GPIO3 pulse width FPLINE pulse width FPLINE falling edge to GPIO3 rising edge GPIO1 pulse width GPIO1 falling edge to GPIO0 (PS1) rising edge GPIO0 (PS2) toggle width GPIO0 (PS2) first falling edge to GPIO0 (PS2) first rising edge GPIO0 (PS3) pulse width GPIO2 (REV) toggle position to FPLINE rising edge Min 8 9 8 1 2 1 0 1 1 1 1 Typ Note 2 Note 3 Note 4 1 Note 5 Note 6 Note 7 Note 8 Note 9 Note 10 Note 11 Note 12 Max 1024 1025 1024 128 511 63 127 255 127 31 Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = [(REG[0040h] bits 6-0) + 1] * 8 = [((REG[0042h] bits 8-0) + 1) * 2] + 1 = [(REG[0042h] bits 8-0) + 1] * 2 = (REG[0046h] bits 6-0) + 1 = REG[0044h] bits 9-0 - REG[0046h] bits 6-0 + 2 = (REG[0092h] bits 8-0) > 0 = (REG[0094h] bits 5-0) = (REG[0098h] bits 6-0) > 0 = (REG[0096h] bits 7-0) > 0 = (REG[009Ah] bits 6-0) > 0 = (REG[009Eh] bits 4-0) > 0 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 97 A.C. Characteristics t1 FPFRAME (SPS) t3 t4 t3 FPLINE (LP) t2 t3 t4 t3 t5 t6 Vertical Display Period FPDAT[17:0] (OB[5:0], OG[5:0], OR[5:0]) Line 1 Last t7 Driving period for PS3 Driving period for PS1 or PS2 Driving period for PS3 Figure 7-34: HR-TFT Panel Vertical Timing Table 7-51: HR-TFT Panel Vertical Timing Symbol FPFRAME pulse width Vertical total period t3 FPFRAME rising/falling edge to FPLINE rising edge t4 FPLINE rising edge to FPFRAME rising/falling edge Vertical display start position Vertical display period Extra driving period for PS1/2 t5 t6 t7 1. Ts 2. t1typ 3. t2typ 4. t3typ 5. 6. t6typ 7. t7typ 98 Parameter t1 t2 Min 1 1 0 0 1 0 Typ Note 2 Note 3 1 (Note 4) Note 4 Note 5 Note 6 Note 7 Max 8 1024 Units Lines Lines Ts (Note 1) 1023 1023 1024 7 Ts Lines Lines Lines = pixel clock period = (REG[0050h] bits 2-0) + 1 = (REG[004Ah] bits 9-0) + 1 The FPFRAME (SPS) rising/falling edge can occur before or after FPLINE (LP) rising edge depending on the value stored in the FPLINE Pulse Start Position bits (REG[0048h] bits 9-0). To obtain the case indicated by t3, set the FPLINE Pulse Start Position bits to 0 and the FPFRAME (SPS) rising/falling edge will occur 1 Ts before the FPLINE (LP) rising edge. To obtain the case indicated by t4, set the FPLINE Pulse Start Position bits to a value between 1 and the Horizontal Total - 1. Then t4 = (Horizontal Total Period - 1) - (REG[0048h] bits 9-0) When REG[0048h] bits 9-0 > 4, t5typ = REG[004Eh] bits 9-0 - REG[0052h] bits 9-0 When 0  REG[0048h] bits 9-0  4, t5typ = REG[004Eh] bits 9-0 - REG[0052h] bits 9-0 + 1 = (REG[004Ch] bits 9-0) + 1 = (REG[00A0h] bits 2-0) Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.4.3 Casio TFT Panel Timing Vertical Timing FPFRAME (GSRT) t1 FPLINE (GPCK) Horizontal Timing t2 t3 FPLINE (GPCK) t4 FPSHIFT (CLK) t5 t6 FPDAT[17:0] t7 GPIO3 (STH) GPIO0 (POL) t9 t10 GPIO1 (GRES) t8 t11 GPIO2 (FRP) Figure 7-35: Casio TFT Horizontal Timing S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 99 A.C. Characteristics Table 7-52: Casio TFT Horizontal Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Ts t1typ t2typ t3typ t4typ t5typ t6typ t7typ t9typ t10typ t11typ Parameter Horizontal pulse start position Horizontal total Horizontal pulse width Pixel clock period Horizontal display period start position Horizontal display period FPLINE rising edge to GPIO3 rising edge GPIO3 pulse width FPLINE rising edge to GPIO1 rising edge GPOIO1 falling edge to FPLINE rising edge FPLINE falling edge to GPIO2 toggle point Min 1 8 1 4 8 0 0 1 0 Typ Note 2 Note 3 Note 4 Note 5 Note 6 Note 7 Note 8 1 Note 9 Note 10 Note 11 Max 1024 1024 128 1027 1024 63 63 64 127 Units Ts Ts Ts Ts (Note 1) Ts Ts Ts Ts Ts Ts Ts = Pixel clock period = [(REG[0048h] bits 9-0) + 1) = [(REG[0040h] bits 6-0) + 1) * 8 = [(REG[0046h] bits 6-0) + 1 = depends on the pixel clock (PCLK) = (REG[0044h] bits 9-0) + 4 = [(REG[0042h] bits 8-0) + 1] * 2 = (REG[00A6h] bits 13-8) = (REG[00A4h] bits 5-0) = (REG[00A4h] bits 13-8)+1 = (REG[00A6h] bits 6-0) Note For Casio Panels set the following: FPFRAME Pulse Polarity bit to active high (REG[0050h] bit 8 = 1). FPLINE Pulse Polarity bit to active high (REG[0046h] bit 8 = 1). 100 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t3 FPFRAME (GSRT) t2 t1 FPLINE (GPCK) GPIO1 (GRES) GPIO2 (FRP) GPIO0 (POL) t4 t5 FPDAT[17:0] Figure 7-36: Casio TFT Vertical Timing Table 7-53: Casio TFT Vertical Timing Symbol t1 t2 t3 t4 t5 1. 2. 3. 4. 5. 6. t1typ t2typ t3typ t4typ t5typ t2 < t4 Parameter Vertical total Vertical pulse start Vertical pulse width Vertical display period start position Vertical display period Min 1 0 1 1 1 Typ Note 1 Note 2 Note 3 Note 4 Note 5 Max 1024 1023 8 1024 1024 Units Lines Lines Lines Lines Lines = (REG[004Ah] bits 9-0) + 1 = (REG[0052h] bits 9-0) -1 = (REG[0050h] bits 2-0) + 1 = (REG[004Eh] bits 9-0) +1 = (REG[004Ch] bits 9-0) + 1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 101 A.C. Characteristics 7.4.4 -TFT Panel Timing t1 FPLINE (STH) DATA[17:0] t5 invalid t2 Display Data invalid t3 t6 GPIO1 (LD) t4 GPIO0 (CKV) GPIO3 (VCOM) t7 GPIO2 (INV) Figure 7-37: -TFT Panel Horizontal Timing 102 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics Table 7-54: -TFT Panel Horizontal Timing Symbol 1. 2. 3. 4. 5. 6. 7. 8. Parameter Min t1 Horizontal total period t2 Horizontal Display period t3 GPIO1 (LD) pulse width 1 t4 GPIO0 (CKV) rise edge position 0 t5 FPLINE (STH) pulse width 1 t6 GPIO1 (LD) rising edge 0 t7 GPIO3 (VCOM) rising edge position 0 Ts t1typ t2typ t3typ t4typ t5typ t6typ t7typ Typ 282 (Note 2) 240 (Note 3) 4 (Note 4) 28 (Note 5) 1 (Note 6) 1 (Note 7) 11 (Note 8) Max Units 1024 Ts (Note 1) 1014 Ts 8 Ts 127 Ts 8 Ts 3 Ts 63 Ts = pixel clock period = REG[0080h] bits 9-0 = (REG[0042h] bits 8-0 + 1) x 2 = REG[0088h] bits 10-8 + 1 = t2 + t5 + t6 - (REG[0084h] bits 9-0) + 8 = REG[0088h] bits 2-0 + 1 = (REG[0082h] bits 9-0) - t2 - t5 - 8 = t2 + t5 + t6 - (REG[0086h] bits 9-0) + 8 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 103 A.C. Characteristics t1 t3 t2 FPFRAME (STV) FPLINE (STH) D[17:0] t4 Line1 Line2 Line3 Line1 Last GPIO0 (CKV) GPIO3 (VCOM) GPIO2 (INV) Figure 7-38: TFT Panel Vertical Timing Table 7-55: TFT Panel Vertical Timing Symbol 1. 2. 3. 4. Parameter Min t1 Vertical total period t2 FPFRAME (STV) pulse width 1 t3 FPFRAME Hold Lines 1 t4 Vertical display period t1typ t2typ t3typ t4typ Typ 327 (Note 1) 2 (Note 2) 7 (Note 3) 320 (Note 4) Max Units 1024 Lines Lines Lines 1022 Lines = REG[004Ah] bits 9-0 + 1 = REG[0050h] bits 2-0 + 1 = t1 - t4 = REG[004Ch] bits 9-0 + 1 Note REG[004Eh] bits 9-0 must be set to zero when using the -TFT panel. 104 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.4.5 TFT Type 2 Panel Timing t1 t2 FPLINE (STB) t3 t4 GPIO0 (VCLK) t5 t6 GPIO3 (STH) FPSHIFT (CLK) t7 D[17:0] t8 1 DRDY (INV) 2 Last t9 t10 GPIO1 (AP) t11 t12 GPIO2 (POL) Figure 7-39: TFT Type 2 Horizontal Timing S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 105 A.C. Characteristics Table 7-56: TFT Type 2 Horizontal Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 1. 2. 3. 4. 5. 6. 7. 8. Ts t1typ t3typ t4typ t5typ t9typ t10typ t11typ Parameter Horizontal total period FPLINE pulse width GPIO0 rising edge to FPLINE rising edge FPLINE rising edge to GPIO0 falling edge FPLINE rising edge to GPIO3 rising edge GPIO3 pulse width Data setup time Data hold time Horizontal display period FPLINE rising edge to GPIO1 rising edge GPIO1 pulse width FPLINE rising edge to GPIO2 toggle position Min 16 7 7 0.5 0.5 8 40 20 Typ Note 2 5 Note 3 Note 4 Note 5 1 Max 1024 Note 6 Note 7 Note 8 10 1024 90 270 16 16 Units Ts (Note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = (REG[0040h] bits 6-0 + 1) x 8 = Selected from 7, 9, 12 or 16 Ts using REG[00A2h bits 1-0 = Selected from 7, 9, 12 or 16 Ts using REG[00A2h] bits 4-3 = REG[0044h] bits 9-0 + 3 = (REG[0042h] bits 8-0 + 1) x 2 = Selected from 40, 52, 68 or 90 Ts using REG[00A2h] bits 9-8 = Selected from 20, 40, 80, 120, 150, 190, 240 or 270 Ts using REG[00A2h] bits 13-11 Note For TFT Type 2 Panels set the following: FPFRAME Pulse Polarity bit to active high (REG[0050h] bit 7 = 1). FPLINE Pulse Polarity bit to active high (REG[0046h] bit 7 = 1). FPFRAME Pulse Position bits to zero (REG[0052h] bits 9-0 = 000h). 106 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics t1 t2 FPFRAME (STV) t3 GPIO3 (STH) t4 t5 D[17:0] Line1 Line2 Last GPIO2 (POL) (Odd Frame) GPIO2 (POL) (Even Frame) GPIO2 (POL) (Alternate Timing) Figure 7-40: TFT Type 2 Vertical Timing Table 7-57: TFT Type 2 Vertical Timing Symbol t1 t2 t3 t4 t5 1. 2. 3. 4. Ts t1typ t4typ t5typ Parameter Vertical total period FPFRAME pulse width GPIO3 rising edge to FPFRAME rising edge Vertical display start position Vertical display period Min 8 0 1 Typ Note 2 1 0 Note 3 Note 4 Max 1024 1024 1024 Units Lines Lines Ts (Note 1) Lines Ts = pixel clock period = REG[004Ah] bits 9-0 + 1 = REG[004Eh] bits 9-0 = REG[004Ch] bits 9-0 + 1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 107 A.C. Characteristics 7.4.6 LCD1 ND-TFD, LCD2 8-Bit Serial Interface Timing t8 LCD1/LCD2 Command/Parameter Transfer FPCS1# FPCS2# FPA0 t1 FPSO t7 D7 D6 D5 D4 D3 D2 D1 D0 D0 D1 D2 t2 t3 D3 D4 D5 D6 D7 (MSB first) FPSO (LSB first) FPSCLK (PHA = 1, POL = 0) (PHA = 1, POL = 1) (PHA = 0, POL = 0) (PHA = 0, POL = 1) t4 t5 t6 LCD2 Frame Transfer (Burst) t9 t10 t11 t12 t13 FPCS2# FPA0 FPSO D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 FPSCLK PHA: Serial Clock Phase (REG[0054h] bit 1 or REG[005C] bit 1) POL: Serial Clock Polarity (REG[0054h] bit 0 or REG[005C] bit 0) Figure 7-41: LCD1 ND-TFD, LCD2 8-Bit Serial Interface Timing 108 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics Table 7-58: LCD1 ND-TFD, LCD2 8-Bit Serial Interface Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 1. Ts Parameter Chip select setup time Data setup time Data hold time Serial clock pulse width low (high) Serial clock pulse width high (low) Serial clock period Chip select hold time for command/parameter transfer Chip select de-assert to reassert Chip select setup time at beginning of burst mode Chip select hold time at end of burst mode Chip select hold time during burst mode Chip select interval in burst mode Chip select setup time during burst mode Min Typ 1.5 0.5 0.5 0.5 0.5 1 Max Units Ts (Note 1) Ts Ts Ts Ts Ts 1.5 Ts 1 1.5 2.5 0.5 1 0.5 Ts Ts Ts Ts Ts = Serial clock period S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 109 A.C. Characteristics 7.4.7 LCD1 ND-TFD, LCD2 9-Bit Serial Interface Timing t8 LCD1/LCD2 Command/Parameter Transfer FPCS1# FPCS2# t7 t1 FPSO P/C D7 D6 D5 D4 D3 D2 D1 D0 (MSB first) FPSO P/C D0 D1 D2 D3 D4 D5 D6 D7 (LSB first) t2 t3 FPSCLK (PHA = 1, POL = 0) (PHA = 1, POL = 1) (PHA = 0, POL = 0) (PHA = 0, POL = 1) t4 t5 t6 LCD2 Frame Transfer (Burst) t9 t10 t12 t11 t13 FPCS2# FPSO P/C D7 D6 D5 D4 D3 D2 D1 D0 P/C D7 D6 D5 D4 D3 D2 D1 D0 FPSCLK PHA: Serial Clock Phase (REG[0054h] bit 1 or REG[005C] bit 1) POL: Serial Clock Polarity (REG[0054h] bit 0 or REG[005C] bit 0) Figure 7-42: LCD1 ND-TFD, LCD2 9-Bit Serial Interface Timing 110 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics Table 7-59: LCD1 ND-TFD, LCD2 9-Bit Serial Interface Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 1. Ts Parameter Chip select setup time Data setup time Data hold time Serial clock pulse width low (high) Serial clock pulse width high (low) Serial clock period Chip select hold time Chip select de-assert to reassert Chip select setup time at beginning of burst mode Chip select hold time at end of burst mode Chip select interval in burst mode Chip select hold time during burst mode Chip select setup time during burst mode Min Typ 1.5 0.5 0.5 0.5 0.5 1 1.5 1 1.5 1.5 1 0.5 0.5 Max Units Ts (Note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = Serial clock period 7.4.8 LCD1 a-Si TFT Serial Interface Timing t7 FPCS1# (SSTB) FPSO (SDATA) Invalid D0 FPSCLK (SCLK) D1 D2 t1 t2 D3 D4 D5 D6 D7 t6 t3 t4 t5 Figure 7-43: LCD1 a-Si TFT Serial Interface Timing Table 7-60: LCD1 a-Si TFT Serial Interface Timing Symbol t1 t2 t3 t4 t5 t6 t7 1. 2. Parameter Data Setup Time Data Hold Time Serial clock plus low period Serial clock pulse high period Serial clock period Chip select hold time Chip select de-assert to reassert Min Typ 0.5 0.5 0.5 0.5 1 1.5 Note 2 Max Units Ts (Note 1) Ts Ts Ts Ts Ts Ts Ts = Serial clock period This setting depends on software S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 111 A.C. Characteristics 7.4.9 LCD1 uWIRE Serial Interface Timing t8 FPCS1# (LCDCS) FPSCLK (SCLK) t3 t4 (PHA = 1, POL = 0) FPSO (SDI) t7 t2 t1 t5 t6 Invalid A7 A6 A0 D7 D6 D0 Figure 7-44: LCD1 uWIRE Serial Interface Timing Table 7-61: LCD1 uWIRE Serial Interface Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 1. 2. Parameter Chip select setup time Serial Clock Period Serial clock pulse width low Serial clock pulse width high Data setup time Data hold time Chip select hold time Chip select de-assert to reassert Min Typ 1 1 0.5 0.5 0.5 0.5 1 Note 2 Max Units Ts (Note 1) Ts Ts Ts Ts Ts Ts Ts Ts = Serial clock period This setting depends on software Note When a uWire panel is selected (REG[0054h] bits 7-5 = 10x), FPCS1# idles high until the first uWire transfer is started. After the first transfer, FPCS1# idles low. 112 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.4.10 LCD1, LCD2 Parallel Interface Timing (80) LCD1/LCD2 Command/Parameter Transfer t6 FPCS1# FPCS2# FPLINE (A0) t1 t2 FPFRAME (WRX) t5 t3 FPDAT[17:0] t4 Valid LCD1/LCD2 Frame Transfer (Burst) FPVIN1 FPVIN2 t7 FPCS1# FPCS2# FPLINE (A0) t1 t2 FPFRAME (WRX) t5 t8 t9 FPDAT[17:0] Data1 t4 Data2 Data3 Figure 7-45: LCD1, LCD2 Parallel Interface Timing (80) Table 7-62: LCD1, LCD2 Parallel Interface Timing (80) Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 1. Ts Parameter Chip select falling edge to FPFRAME (WRX) falling edge FPFRAME (WRX) low period Data setup time for command/parameter transfers Data hold time Write signal rising edge to chip select rising edge Chip select de-assert to reassert Vertical sync input falling edge to chip select falling edge Write signal high period in burst cycle Data setup time for frame transfers Min Typ 1 1 1 1 1 0 Max 51 1 1 Units Ts (Note 1) Ts Ts Ts Ts Ts Ts Ts Ts = Pixel clock period S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 113 A.C. Characteristics 7.4.11 LCD1, LCD2 Parallel Interface Timing (68) LCD1/LCD2 Command/Parameter Transfer t6 FPCS1# FPCS2# FPLINE(A0) FPA0 t1 t2 FPFRAME (E) t5 t3 t4 FPDAT[17:0] Valid LCD1/LCD2 Frame Transfer (Burst) FPVIN1 FPVIN2 t7 FPCS1# FPCS2# FPLINE (A0) t1 t2 FPFRAME (E) t4 t8 t9 FPDAT[17:0] Data1 t4 Data2 Data3 Figure 7-46: LCD1, LCD2 Parallel Interface Timing (68) Table 7-63: LCD1, LCD2 Parallel Interface Timing (68) Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 1. 114 Ts Parameter Chip select falling edge to FPFRAME (E) rising edge FPFRAME (E) high period Data setup time for command/parameter transfers Data hold time FPFRAME (E) falling edge to Chip select rising edge Chip select deassert to reassert Vertical sync input falling edge to chip select falling edge Enable signal low period in burst cycle Data setup time for frame transfers Min Typ 1 1 1 1 1 0 Max 51 1 1 Units Ts (Note 1) Ts Ts Ts Ts Ts Ts Ts = Pixel clock period Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.5 Camera Interface Timing 7.5.1 S1D13715B00B Camera Interface Timing t4 CMxVREF (VREF) t1 t3 t2 CMxHREF (HREF) CM1DAT[7:0] CM2DAT[7:0] Line1 Line2 Last t5 t6 t7 t8 t9 CMxCLKIN (CAMPCLK) CM1DAT[7:0] CM2DAT[7:0] t10 t11 CMxVREF CMxHREF Note: x represents either CM1 or CM2 Figure 7-47: S1D13715B00B Camera Interface Timing Table 7-64: S1D13715B00B Camera Interface Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 1. 2. Ts Tc Parameter CMxVREF rising edge to CMxHREF rising edge Horizontal blank period CMxHREF falling edge to CMxVREF falling edge Vertical blank period Camera input clock period Camera input clock pulse width low Camera input clock pulse width high Data setup time Data hold time CMxVREF, CMxHREF setup time CMxVREF, CMxHREF hold time Min 0 4 0 1 3 1.5 1.5 6 6 10 10 Max Units Tc (note 1) Tc Tc Line Ts (note 2) Ts Ts ns ns ns ns = System clock period = Camera block input clock period S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 115 A.C. Characteristics 7.5.2 S1D13715F01A Camera Interface Timing t4 CMxVREF (VREF) t1 t3 t2 CMxHREF (HREF) CM1DAT[7:0] CM2DAT[7:0] Line1 Line2 Last t5 t6 t7 t8 t9 CMxCLKIN (CAMPCLK) CM1DAT[7:0] CM2DAT[7:0] t10 t11 CMxVREF CMxHREF Note: x represents either CM1 or CM2 Figure 7-48: S1D13715F01A Camera Interface Timing Table 7-65: S1D13715F01A Camera Interface Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 1. 2. 116 Ts Tc Parameter CMxVREF rising edge to CMxHREF rising edge Horizontal blank period CMxHREF falling edge to CMxVREF falling edge Vertical blank period Camera input clock period Camera input clock pulse width low Camera input clock pulse width high Data setup time Data hold time CMxVREF, CMxHREF setup time CMxVREF, CMxHREF hold time Min 0 4 0 1 2.2 10 10 6 6 10 10 Max Units Tc (note 1) Tc Tc Line Ts (note 2) ns ns ns ns ns ns = System clock period = Camera block input clock period Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 A.C. Characteristics 7.5.3 MPEG Codec Interface Timing t5 CM2VREF (nDISPVSYNC) CM2HREF (nDISPHSYNC) CM2CLKIN (nDISPBLK) t6 VSIZE VBLANK t7 t1 CM2CLKOUT (DISPCLK) CM2HREF (nDISPHSYNC) t3 t2 CM2CLKIN (nDISPBLK) U Y V Y U Y V Y U Y V Y U Y V Y U HBLANK HSIZE t4 Figure 7-49: MPEG Codec Interface Timing Table 7-66: MPEG Codec Interface Timing Symbol t1 t2 t3 t4 t5 t6 t7 1. 2. 3. 4. 5. Parameter Camera Clock Cycle Horizontal Sync Pulse Width Horizontal Display Period Horizontal Total Vertical Sync Pulse Width Vertical Display Period Vertical Total Min 4 Typ Max 32 1 1 1024 REG[012Ah] bits 9-0 + 1 1 1 512 REG[0128h] bits 9-0 + 1 Units Ts (Note 1) Tc (Note 2) Pixel Pixel Tc Line Line Ts = System clock period Tc = Camera block input clock period Tc should be equal or more than 4Ts Tc = t1 1Pixel = 2Tc S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 117 Memory Allocation 8 Memory Allocation 8.1 Main Window Case 1 8.1.1 Environment • Resolution: QVGA (240x320) • Color Depth: 8 bpp (LUT 1)) • Data Size: 75K bytes • Image: Display Image Figure 8-1: Main Window Case 1 Image 118 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Memory Allocation • Memory Map: 00000h Bank1 (64K bytes) 07FFFh Image Data 75K bytes 0FFFFh 12BFFh 17FFFh Bank2 (128K bytes) Empty Area 245K bytes =QVGA 8 bpp x 3 pages 1FFFFh 27FFFh 2FFFFh 37FFFh Bank3 (128K bytes) 3FFFFh 47FFFh 4FFFFh Figure 8-2: Memory Map for Main Window Case 1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 119 Memory Allocation 8.2 Main Window Case 2 8.2.1 Environment • Resolution: QVGA (240x320) • Color Depth: 16 bpp (LUT 1) • Data Size: 150K bytes • Image: Display Image Figure 8-3: Main Window Case 2 Image 120 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Memory Allocation • Memory Map: 00000h Bank1 (64K bytes) 07FFFh Image Data 0FFFFh 150K bytes 17FFFh Bank2 (128K bytes) 1FFFFh 257FFh 27FFFh 2FFFFh Empty Area 37FFFh Bank3 (128K bytes) 170K bytes =QVGA 16 bpp x 1 page 3FFFFh 47FFFh 4FFFFh Figure 8-4: Memory Map for Main Window Case 2 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 121 Memory Allocation 8.3 Main Window, PIP+ Window, and Overlay Display 8.3.1 Environment • Resolution: Main Window Image PIP+ Window Image QVGA (240x320) QVGA (240x320) • Color Depth: Main Window Image PIP+ Window Image 8 bpp (LUT1) 16 bpp (LUT2) • Data Size: Main Window Image PIP+ Window Image 75K bytes 150K bytes • Image: + PIP Window Image Main Window Image Overlay Key Color Overlay PIP+ Display Image Figure 8-5: Main Window, PIP+ Window, and Overlay Display 122 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Memory Allocation • Memory Map: 00000h Bank1 (64K bytes) 07FFFh 0FFFFh PIP+ Window Area Image Data 150K bytes 17FFFh Bank2 (128K bytes) 1FFFFh 257FFh 28000h Empty Area 42K bytes 2FFFFh 37FFFh Bank3 (128K bytes) Image Data Main Window Area 75K bytes 3FFFFh 42BFFh Empty Area 53K bytes 47FFFh 4FFFFh Figure 8-6: Memory Map for Main Window, PIP+ Window, and Overlay Display S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 123 Memory Allocation 8.4 Main Window, PIP+ Window, Overlay, and YUV 8.4.1 Environment • Resolution: Main Window Image PIP+ Window Image QVGA(240x320) 240x240, from Camera interface and resized • Color Depth: Main Window Image PIP+ Window Image 8 bpp (LUT1) 16 bpp (LUT2) • Data Size: Main Window Image PIP+ Window Image 75K bytes 112.5K bytes • Image: Main Window Image PIP+ Window Image from Camera interface, resized Overlay Key Color Mail Overlay PIP+ YUV data to host Mail Display Image Figure 8-7: Main Window, PIP+ Window, Overlay, and YUV 124 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Memory Allocation • Memory Map: 00000h JPEG FIFO Area Bank1 (64K bytes) JPEG FIFO for Host reading YUV data 32K bytes (this area is adjustable from 4K bytes to 128K bytes) 07FFFh Empty Area 32K bytes 0FFFFh 17FFFh Bank2 (128K bytes) 1FFFFh PIP+ Window Area Image Data 112.5K bytes 27FFFh 2C1FFh Empty Area 15.5K bytes 2FFFFh 37FFFh Bank3 (128K bytes) Main Window Area Image Data 75K bytes 3FFFFh 42BFFh Empty Area 21K bytes 47FFFh JPEG Line Buffer Area Line Buffer for YUV bypass operation (reserved automatically) 32K bytes 4FFFFh Figure 8-8: Memory Map for Main Window, PIP+ Window, Overlay, and YUV S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 125 Memory Allocation 8.5 Main Window, PIP+ Window, Overlay, and JPEG 8.5.1 Environment • Resolution: Main Window Image PIP+ Window Image QVGA(240x320) QVGA(240x240) • Color Depth: Main Window Image PIP+ Window Image 8 bpp (LUT1) 16 bpp (LUT2) • Data Size: Main Window Image PIP+ Window Image 75K bytes 112.5K bytes • Image: Original Data from Camera Interface PIP+ Window Image (240x240) Main Window Image (240x320) View Resizer Overlay Key Color Overlay PIP+ Capture Resizer JPEG Encode Display Image To Host via JPEG FIFO Figure 8-9: Main Window, PIP+ Window, Overlay, and JPEG 126 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Memory Allocation • Memory Map: 00000h JPEG FIFO Area Bank1 (64K bytes) 07FFFh JPEG FIFO for Host reading JPEG data 32K bytes (this area is adjustable from 4K bytes to 128K bytes) Empty Area 32K bytes 0FFFFh 17FFFh Bank2 (128K bytes) 1FFFFh PIP+ Window Area Image Data 112.5K bytes 27FFFh 2C1FFh Empty Area 15.5K bytes 2FFFFh 37FFFh Bank3 (128K bytes) Main Window Area Image Data 75K bytes 3FFFFh 42BFFh Empty Area 21K bytes 47FFFh JPEG Line Buffer Area 4FFFFh Line Buffer for JPEG Operation 32K bytes (This area is reserved automatically) Figure 8-10: Memory Map for Main Window, PIP+ Window, Overlay and JPEG S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 127 Memory Allocation 8.6 Main Window, PIP+ Window, Overlay, RGB/YUV Converter and JPEG 8.6.1 Environment • Resolution: Main Window Image PIP+ Window Image QVGA(240x320) QVGA(240x240) • Color Depth: Main Window Image PIP+ Window Image 8 bpp (LUT1) 16 bpp (LUT2) • Data Size: Main Window Image PIP+ Window Image 75K bytes 112.5K bytes • Image: Original Data from Camera Interface PIP+ Window Image (240x240) Main Window Image (240x320) View Resizer Overlay Key Color Overlay PIP+ JPEG Encode Display Image RGB/YUV Converter To Host via JPEG FIFO Figure 8-11: Main Window, PIP+ Window, Overlay, RGB/YUV Converter and JPEG 128 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Memory Allocation • Memory Map: 00000h JPEG FIFO Area Bank1 (64K bytes) 07FFFh JPEG FIFO for Host reading JPEG data 32K bytes (this area is adjustable from 4K bytes to 128K bytes) Empty Area 32K bytes 0FFFFh 17FFFh Bank2 (128K bytes) 1FFFFh PIP+ Window Area Image Data 112.5K bytes 27FFFh 2C1FFh Empty Area 15.5K bytes 2FFFFh 37FFFh Bank3 (128K bytes) Main Window Area Image Data 75K bytes 3FFFFh 42BFFh Empty Area 21K bytes 47FFFh JPEG Line Buffer Area 4FFFFh Line Buffer for JPEG Operation 32K bytes (This area is reserved automatically) Figure 8-12: Memory Map for Main Window, PIP+ Window, Overlay, RGB/YUV Converter and JPEG S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 129 Clocks 9 Clocks 9.1 Clock Diagram PLL Setting Registers (REG[000Eh] bits 15-0, REG[0010h] bits 15-11) PLL CLKI System Clock 0 1 DIV PLL Disable (REG[0012h] bit 0) System Clock Divide Select (REG[0018h] bits 1-0) DIV Pixel Clock Power Save Mode (REG[0014h] bit 0) Serial Clock Pixel Clock Divide Select (REG[0030h] bits 4-0) DIV Serial Clock Divide Select (REG[0030h] bits 10-8) Camera1 Clock DIV Camera1 Clock Divide Select (REG[0100h] bits 3-0) Camera2 Clock DIV Camera2 Clock Divide Select (REG[0104h] bits 3-0) Figure 9-1: Clock Diagram 130 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Clocks 9.2 Clocks 9.2.1 System Clock System clock (SYSCLK) is used for the S1D13715 internal main clock. The system clock source can be selected (REG[0012h] bits 2 and 0) from either the internal PLL or an external clock input (CLKI). The System Clock Divide Select bits (REG[0018h] bits 1-0) control this clock division. The system clock can be a divided down version of the output of the PLL or the input of CLKI. 9.2.2 Pixel Clock Pixel clock (PCLK) is used for the LCD1 shift clock of a RGB type panel and for the LCD1/LCD2 parallel interface timing. The pixel clock source is always the system clock and can be divided using the Pixel Clock Divide Select bits (REG[0030h] bits 4-0). 9.2.3 Serial Clock Serial clock (SCLK) is used for the LCD1 and LCD2 serial interfaces. The serial clock source is always the system clock and can be divided using the Serial Clock Divide Select bits (REG[0030h] bits 10-8). 9.2.4 Camera1 Clock Camera1 clock (CAM1CLK) is used for the Camera1 interface. The camera1 clock source is always the system clock and can be divided using the Camera1 Clock Divide Select bits (REG[0100h] bits 3-0). Note This clock can be output on CM1CLKOUT to be used as the master clock of an external camera module attached to the Camera1 interface. 9.2.5 Camera2 Clock Camera2 clock (CAM2CLK) is used for the Camera2 interface. The camera2 clock source is always the system clock and can be divided using the Camera2 Clock Divide Select bits (REG[0104h] bits 3-0). CAM2CLK is also used for the MPEG Codec interface. Note This clock can be output on CM2CLKOUT to be used as the master clock of an external camera module attached to the Camera2 interface. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 131 Registers 10 Registers 10.1 Register Mapping The S1D13715 registers are memory-mapped. When the system decodes the input pins as CS# = 0 and M/R# = 0 (for 1 CS# mode), or CS# = 1 and M/R# = 0 (for 2 CS# mode), the registers may be accessed. The register space is decoded by AB[18:1] and BE#[1:0], and is mapped as follows. Table 10-1: S1D13715 Register Mapping 132 M/R# Address Function 1 00000h to 4FFFFh SRAM memory 0 0000h to 0003h System Configuration Registers 0 000Eh to 0019h Clock Setting Registers 0 0020h to 002Bh Indirect Interface Registers 0 0030h to 003Dh LCD Panel Interface Setting Registers 0 0040h to 0057h LCD1 Setting Registers 0 0058h to 005Fh LCD2 Setting Registers 0 0080h to 00F7h Extended Panel Registers 0 0100h to 012Bh Camera Interface Registers 0 0200h to 0281h Display Mode Setting Registers 0 0300h to 030Fh GPIO Registers 0 0310h to 0329h Overlay Registers 0 0400h to 08FFh Look-Up Table Registers 0 0930h to 096Fh Resizer Operation Registers 0 0980h to 098Fh JPEG Module Registers 0 09A0h to 09BEh JPEG FIFO Setting Registers 0 09C0h to 09E1h JPEG Line Buffer Setting Registers 0 0A00h to 0A11h Interrupt Control Registers 0 1000h to 17A3h JPEG Codec Registers 0 8000h to 8033h 2D BitBLT Registers 0 10000h 2D Accelerator Data Port Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.2 Register Set The S1D13715 registers are listed in the following table. Table 10-2: S1D13715 Register Set Register Pg Register Pg Read Only Registers REG[0000h] Product Information Register 137 REG[0006h] Bus Timeout Setting Register 138 REG[0002h] Configuration Pins Status Register 138 Clock Setting Registers REG[000Eh] PLL Setting Register 0 139 REG[0010h] PLL Setting Register 1 141 REG[0012h] PLL Setting Register 2 142 REG[0014h] Miscellaneous Configuration Register 143 REG[0016h] Software Reset Register 146 REG[0018h] System Clock Setting Register 146 Indirect Interface Registers REG[0020h] is Reserved 147 REG[0022h] Indirect Interface Memory Address Register 1 147 REG[0024h] Indirect Interface Memory Address Register 2 147 REG[0026h] Indirect Interface Auto Increment Register 148 148 REG[002Ah] Indirect Interface 2D BitBLT Data Read/Write Port Register 148 REG[0028h] Indirect Interface Memory Access Port Register LCD Panel Interface Setting Registers REG[0030h] LCD Interface Clock Setting Register 149 REG[0032h] LCD Module Clock Setting Register 151 REG[0034h] LCD Interface Command Register 153 REG[0036h] LCD Interface Parameter Register 154 REG[0038h] LCD Interface Status Register 154 REG[003Ah] LCD Interface Frame Transfer Register 155 REG[003Ch] LCD Interface Transfer Setting Register 155 LCD1 Setting Registers REG[0040h] LCD1 Horizontal Total Register REG[0042h] LCD1 Horizontal Display Period Register 158 REG[0044h] LCD1 Horizontal Display Period Start Position Register 158 157 REG[0046h] LCD1 FPLINE Register 159 REG[0048h] LCD1 FPLINE Pulse Position Register 159 REG[004Ah] LCD1 Vertical Total Register 160 REG[004Ch] LCD1 Vertical Display Period Register 160 REG[004Eh] LCD1 Vertical Display Period Start Position Register 160 REG[0050h] LCD1 FPFRAME Register 161 REG[0052h] LCD1 FPFRAME Pulse Position Register 161 REG[0054h] LCD1 Serial Interface Setting Register 162 REG[0056h] LCD1 Parallel Interface Setting Register 163 LCD2 Setting Registers REG[0058h] LCD2 Horizontal Display Period Register 165 REG[005Ah] LCD2 Vertical Display Period Register 165 REG[005Ch] LCD2 Serial Interface Setting Register 166 REG[005Eh] LCD2 Parallel Interface Setting Register 167 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 133 Registers Table 10-2: S1D13715 Register Set Register Pg Register Pg Extended Panel Registers REG[0070h] is Reserved 169 REG[0080h] Samsung a-TFT Horizontal Total Register 169 REG[0082h] Samsung a-TFT LD Rising Edge Register 169 REG[0084h] Samsung a-TFT CKV Toggle Point Register 170 REG[0086h] Samsung a-TFT VCOM Toggle Point Register 170 REG[0088h] Samsung a-TFT Pulse Width Register 170 REG[008Ah] through REG[008Eh] are Reserved 171 REG[0090h] HR-TFT Configuration Register 171 REG[0092h] HR-TFT CLS Width Register 171 REG[0094h] HR-TFT PS1 Rising Edge Register 172 REG[0096h] HR-TFT PS2 Rising Edge Register 172 REG[0098h] HR-TFT PS2 Toggle Width Register 172 REG[009Ah] HR-TFT PS3 Signal Width Register 173 REG[009Eh] HR-TFT REV Toggle Point Register 173 REG[00A0h] HR-TFT PS1/2 End Register 173 REG[00A2h] Type 2 TFT Configuration Register 0 174 REG[00A4h] Casio TFT Timing Register 0 175 REG[00A6h] Casio TFT Timing Register 1 176 REG[00A8h] Type 2 TFT Configuration Register 1 176 REG[00AAh] through REG[00ECh] are Reserved 176 REG[00EEh] Partial Drive Area0 Start Line Register 177 REG[00F0h] Partial Drive Area0 End Line Register 178 REG[00F2h] Partial Drive Area1 Start Line Register 178 REG[00F4h] Partial Drive Area1 End Line Register 179 REG[00F6h] through REG[00FCh] are Reserved 179 REG[00FEh] LCD Interface ID Register 180 Camera Interface Setting Registers REG[0100h] Camera1 Clock Setting Register 181 REG[0102h] Camera1 Signal Setting Register 182 REG[0104h] Camera2 Clock Divide Select Register 183 REG[0106h] Camera2 Input Signal Format Select Register 184 REG[0108h] through REG[010Eh] are Reserved 185 REG[0110h] Camera Mode Setting Register 185 REG[0112h] Camera Frame Setting Register 188 REG[0114h] Camera Control Register 189 REG[0116h] Camera Status Register 190 REG[0120h] Strobe Line Delay Register 192 REG[0122h] Strobe Pulse Width Register 192 REG[0124h] Strobe Control Register 193 REG[0128h] MPEG Interface VSYNC Width register 194 REG[012Ah] MPEG Interface HSYNC Width register 194 REG[012Ch] through REG[012Fh] are Reserved 195 Display Mode Setting Registers REG[0200h] Display Mode Setting Register 0 195 REG[0204h] Transparent Overlay Key Color Red Data Register 201 REG[0202h] Display Mode Setting Register 1 198 REG[0206h] Transparent Overlay Key Color Green Data Register 201 REG[0208h] Transparent Overlay Key Color Blue Data Register 202 REG[0210h] Main Window Display Start Address Register 0 202 REG[0212h] Main Window Display Start Address Register 1 202 REG[0214h] Main Window Start Address Status Register 203 REG[0216h] Main Window Line Address Offset Register 204 REG[0218h] PIP+ Display Start Address Register 0 206 REG[021Ah] PIP+ Display Start Address Register 1 206 REG[021Ch] PIP+ Window Start Address Status Register 206 REG[021Eh] PIP+ Window Line Address Offset Register 207 REG[0220h] PIP+ X Start Positions Register 209 REG[0222h] PIP+ Y Start Positions Register 209 REG[0224h] PIP+ X End Positions Register 210 REG[0226h] PIP+ Y End Positions Register 210 REG[0228h] is Reserved 210 REG[022Ah] Back Buffer Display Start Address Register 0 211 REG[022Ch] Back Buffer Display Start Address Register 1 211 REG[0240h] YUV/RGB Translate Mode Register 211 REG[0242h] YUV/RGB Converter Write Start Address 0 Register 0 215 REG[0244h] YUV/RGB Converter Write Start Address 0 Register 1 215 REG[0246h] YUV/RGB Converter Write Start Address 1 Register 0 216 REG[0248h] YUV/RGB Converter Write Start Address 1 Register 1 216 REG[024Ah] UV Data Fix Register 216 REG[024Ch] YRC Rectangle Pixel Width Register 216 REG[024Eh] YRC Rectangular Line Address Offset Register 217 REG[0260h] RGB/YUV Converter Configuration Register 217 REG[0262h] is Reserved 218 REG[0264h] Memory Image JPEG Encode Horizontal Display Period Register 219 REG[0266h] Memory Image JPEG Encode Vertical Display Period Register 219 REG[0268h] is Reserved REG[0270h] Host Image JPEG Encode Control Register 219 REG[0272h] Host Image JPEG Encode Horizontal Pixel Count Register 221 134 220 REG[0274h] Host Image JPEG Encode Vertical Line Count Register 221 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers Table 10-2: S1D13715 Register Set Register Pg REG[0276h] Host Image JPEG Encode RGB Data Register 0 222 REG[0280h] is Reserved Register Pg REG[0278h] Host Image JPEG Encode RGB Data Register 1 222 222 GPIO Registers REG[0300h] GPIO Status and Control Register 0 223 REG[0302h] GPIO Status and Control Register 1 223 REG[0304h] GPIO Status and Control Register 2 223 REG[0306h] GPIO Status and Control Register 3 223 REG[0308h] GPIO Pull Down Control Register 0 224 REG[030Ah] GPIO Pull Down Control Register 1 224 224 REG[030Eh] GPIO Status and Control Register 5 224 REG[030Ch] GPIO Status and Control Register 4 Overlay Registers REG[0310h] Average Overlay Key Color Red Data Register 225 REG[0312h] Average Overlay Key Color Green Data Register 226 REG[0314h] Average Overlay Key Color Blue Data Register 226 REG[0316h] AND Overlay Key Color Red Data Register 227 REG[0318h] AND Overlay Key Color Green Data Register 227 REG[031Ah] AND Overlay Key Color Blue Data Register 228 REG[031Ch] OR Overlay Key Color Red Data Register 228 REG[031Eh] OR Overlay Key Color Green Data Register 229 REG[0320h] OR Overlay Key Color Blue Data Register 229 REG[0322h] INV Overlay Key Color Red Data Register 230 REG[0324h] INV Overlay Key Color Green Data Register 230 REG[0326h] INV Overlay Key Color Blue Data Register 231 REG[0328h] Overlay Miscellaneous Register 231 LUT Registers REG[0400 - 07FCh] LUT1 Data Register 0 234 REG[0402 - 07FEh] LUT1 Data Register 1 234 REG[0800 - 08FCh] LUT2 Data Register 0 235 REG[0802 - 08FEh] LUT2 Data Register 1 235 Resizer Operation Registers REG[0930h] Global Resizer Control Register 236 REG[0932h] through REG[093Eh] are Reserved 238 REG[0940h] View Resizer Control Register 239 REG[0944h] View Resizer Start X Position Register 239 REG[0946h] View Resizer Start Y Position Register 240 REG[0948h] View Resizer End X Position Register 240 REG[094Ah] View Resizer End Y Position Register 240 REG[094Ch] View Resizer Operation Setting Register 0 240 REG[094Eh] View Resizer Operation Setting Register 1 243 REG[0960h] Capture Resizer Control Register 244 REG[0964h] Capture Resizer Start X Position Register 245 REG[0966h] Capture Resizer Start Y Position Register 245 REG[0968h] Capture Resizer End X Position Register 245 REG[096Ah] Capture Resizer End Y Position Register 246 REG[096Ch] Capture Resizer Operation Setting Register 0 246 REG[096Eh] Capture Resizer Operation Setting Register 1 248 JPEG Module Registers REG[0980h] JPEG Control Register 249 REG[0982h] JPEG Status Flag Register 254 REG[0984h] JPEG Raw Status Flag Register 258 REG[0986h] JPEG Interrupt Control Register 261 REG[0988h] is Reserved 262 REG[098Ah] JPEG Code Start/Stop Control Register 263 REG[098Ch] through REG[098Eh] are Reserved 263 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 135 Registers Table 10-2: S1D13715 Register Set Register Pg Register Pg JPEG FIFO Setting Registers REG[09A0h] JPEG FIFO Control Register 264 REG[09A2h] JPEG FIFO Status Register 265 REG[09A4h] JPEG FIFO Size Register 266 REG[09A6h] JPEG FIFO Read/Write Port Register 267 REG[09A8h] JPEG FIFO Valid Data Size Register 267 REG[09AAh] JPEG FIFO Read Pointer Register 267 REG[09ACh] JPEG FIFO Write Pointer Register 268 REG[09B0h] Encode Size Limit Register 0 268 REG[09B2h] Encode Size Limit Register 1 268 REG[09B4h] Encode Size Result Register 0 269 REG[09B6h] Encode Size Result Register 1 269 REG[09B8h] JPEG File Size Register 0 269 REG[09BAh] JPEG File Size Register 1 269 REG[09BCh] is Reserved 269 REG[09C0h] JPEG Line Buffer Status Flag Register 270 REG[09C2h] JPEG Line Buffer Raw Status Flag Register 271 REG[09C4h] JPEG Line Buffer Raw Current Status Register 272 REG[09C6h] JPEG Line Buffer Interrupt Control Register 272 REG[09C8h] through REG[09CEh] are Reserved 273 REG[09D0h] JPEG Line Buffer Configuration Register 273 REG[09D2h] JPEG Line Buffer Address Offset Register 274 REG[09D4h] through REG[09DEh] are Reserved 274 REG[09E0h] JPEG Line Buffer Read/Write Port Register 275 Interrupt Control Registers REG[0A00h] Interrupt Status Register 276 REG[0A02h] Interrupt Control Register 0 276 REG[0A04h] Interrupt Control Register 1 277 REG[0A06h] Debug Status Register 278 REG[0A08h] Interrupt Control for Debug Register 278 REG[0A0Ah] Host Cycle Interrupt Status Register 279 REG[0A0Ch] Host Cycle Interrupt Control Register 281 REG[0A0Eh] Cycle Time Out Control Register 282 REG[0A10h] is Reserved 282 REG[0A40h] Interrupt Request Status Register 283 JPEG Encode Performance Register REG[0F00h] JPEG Encode Performance Register 283 JPEG Codec Registers REG[1000h] Operation Mode Setting Register 284 REG[1002h] Command Setting Register 285 REG[1004h] JPEG Operation Status Register 286 REG[1006h] Quantization Table Number Register 286 REG[1008h] Huffman Table Number Register 286 REG[100Ah] DRI Setting Register 0 288 REG[100Ch] DRI Setting Register 1 288 REG[100Eh] Vertical Pixel Size Register 0 289 REG[1010h] Vertical Pixel Size Register 1 289 REG[1012h] Horizontal Pixel Size Register 0 290 REG[1014h] Horizontal Pixel Size Register 1 290 REG[1016h] through REG[101Ah] are Reserved 290 REG[101Ch] RST Marker Operation Setting Register 291 REG[101Eh] RST Marker Operation Status Register 292 REG[1020 - 1066h] Insertion Marker Data Register 293 REG[1200 - 127Eh] Quantization Table No. 0 Register 293 REG[1280 - 12FEh] Quantization Table No. 1 Register 293 REG[1400 - 141Eh] DC Huffman Table No. 0 Register 0 294 REG[1420 - 1436h] DC Huffman Table No. 0 Register 1 294 REG[1440 - 145Eh] AC Huffman Table No. 0 Register 0 295 REG[1460 - 15A2h] AC Huffman Table No. 0 Register 1 295 REG[1600 - 161Eh] DC Huffman Table No. 1 Register 0 297 REG[1620 - 1636h] DC Huffman Table No. 1 Register 1 297 REG[1640 - 165Eh] AC Huffman Table No. 1 Register 0 298 REG[1660 - 17A2h] AC Huffman Table No. 1 Register 1 298 2D BitBLT Registers REG[8000h] BitBLT Control Register 0 300 REG[8002h] BitBLT Control Register 1 300 REG[8004h] BitBLT Status Register 0 301 REG[8006h] BitBLT Status Register 1 302 REG[8008h] BitBLT Command Register 0 302 REG[800Ah] BitBLT Command Register 1 303 REG[800Ch] BitBLT Source Start Address Register 0 304 REG[800Eh] BitBLT Source Start Address Register 1 304 REG[8010h] BitBLT Destination Start Address Register 0 305 REG[8012h] BitBLT Destination Start Address Register 1 305 REG[8014h] BitBLT Memory Address Offset Register 305 REG[8018h] BitBLT Width Register 305 REG[801Ch] BitBLT Height Register 306 REG[8020h] BitBLT Background Color Register 306 REG[8024h] BitBLT Foreground Color Register 306 REG[8030h] BitBLT Interrupt Status Register 306 REG[8032h] BitBLT Interrupt Control Register 307 REG[10000h] 2D BitBLT Data Memory Mapped Region Register 307 136 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.3 Register Restrictions All reserved bits must be set to 0 unless otherwise specified. Writing a value to a reserved bit may produce undefined results. Bits marked as n/a have no hardware effect. Some registers are only accessible when certain conditions exist. Any attempts to read/write in-accessible registers are invalid. The following restrictions apply to all registers. • REG[0000h] - REG[0018h] and REG[0300h] - REG[030Eh] are always accessible. • REG[0000h] - REG[0018h] are not reset by a Software Reset. • When power save mode is enabled (REG[0014h] bit 0 = 1), REG[0030h] REG[0A0Eh] are not accessible. • When the JPEG Codec is disabled (REG[0980h] bit 0 = 0), REG[1000h] - REG[17A2h] are not accessible. 10.4 Register Description 10.4.1 System Configuration Registers REG[0000h] Product Information Register Default = 5058h Read Only Display Buffer Size bits 7-0 15 14 13 12 Product Code bits 5-0 11 10 9 8 Revision Code bits 1-0 7 6 5 3 2 1 bits 15-8 4 0 Display Buffer Size bits [7:0] (Read Only) These bits indicate the size of the SRAM display buffer measured in 4K byte increments. The S1D13715 display buffer is 320K bytes and these bits return a value of 80 (50h). REG[0000h] bits 15-8 = display buffer size 4K bytes = 320K bytes  4K bytes = 80 (50h) bits 7-2 Product Code bits [5:0] (Read Only) These bits indicate the product code. The product code for the S1D13715 is 010110 (16h). bits 1-0 Revision Code bits [1:0] (Read Only) These bits indicate the revision code. The revision code is 00. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 137 Registers REG[0002h] Configuration Pins Status Register Default = 0000h Read Only n/a 15 n/a 14 13 12 11 CNF[6:0] Status 10 9 8 7 6 5 4 3 2 1 0 bits 6-0 CNF[6:0] Status (Read Only) These status bits return the status of the configuration pins CNF[6:0]. CNF[6:0] are latched at the rising edge of RESET#. For a functional description of each configuration bit (CNF[6:0]), see Section 5.4, “Summary of Configuration Options” on page 43. REG[0006h] Bus Timeout Setting Register Default = 0000h Read/Write n/a 15 14 13 13 11 n/a 7 bit 2 6 5 4 3 10 Bus Timeout Reset Interrupt Status (RO) 2 9 Bus Timeout Reset Disable 8 Bus Timeout Reset Interrupt Disable 1 0 Bus Timeout Reset Interrupt Status (Read Only). This is the status bit for the bus timeout reset function. Bus timeout reset occurs when the WAIT# signal is active for 2 or 3 cycles. This is the status bit for the bus timeout function. When this bit = 1, a bus timeout has occurred. When this bit = 0, a bus timeout has not occurred. This flag is cleared by the Bus Timeout Reset Interrupt Disable bit (REG[0006h] bit 0). bit 1 Bus Timeout Reset Disable This bit controls the Bus Timeout Reset function of the S1D13715. If a bus timeout occurs, the Bus Timeout Reset Interrupt Status is set (REG[0006h] bit 2) and the chip is reset. When this bit = 0, the bus timeout reset function is enabled (default). When this bit = 1, the bus timeout reset function is disabled. Note When the internal PLL is disabled (REG[0012h] bit 0 = 1), the Bus Timeout function must be disabled (REG[0006h] bit 1 = 1). bit 0 Bus Timeout Reset Interrupt Disable This bit controls the bus timeout reset interrupt and is used to clear the Bus Timeout Reset Interrupt Status (REG[0006h] bit 2). When this bit = 0, the Bus Timeout Interrupt is enabled (default). When this bit = 1, the Bus Timeout Interrupt is disabled. When this bit is written as 1, the Bus Timeout Flag (REG[0006h] bit 2) is cleared. 138 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.2 Clock Setting Registers REG[000Eh] PLL Setting Register 0 Default = 1BE8h Read/Write N-Counter bits 3-0 15 7 14 6 L-Counter bits 9-6 13 12 L-Counter bits 5-0 11 5 3 10 9 8 V-Divider bits 1-0 4 2 1 0 Note Before setting this register, power save mode must be enabled (REG[0014h] bit 0 = 1) and the PLL must be disabled (REG[0012h] bit 0 = 1). For more information, see Figure 11-1: “Power-On/Power-Off Sequence,” on page 308 or Figure 11-2: “Power Save Modes,” on page 309. bits 15-12 bits 11-2 N-Counter bits [3:0] L-Counter bits [9:0] These bits are used together to configure the PLL Output (in MHz) and must be set according to the following formula. PLL Output = (N-Counter +1) x (L-Counter +1) x CLKI = NN x LL x CLKI Where: PLL Output is the desired PLL output frequency in MHz (55MHz max) N-Counter is the value in bits 15-12 L-Counter is the value in bits 11-2 CLKI is the PLL reference frequency (should always be 32.768kHz) Table 10-3: PLL Setting Example Target Freq. (MHz) NN LL NN x LL REG[000Eh] POUT (MHz) 40 4 305 1220 34C0h 39.98 45 6 229 1374 5390h 45.02 48.76 16 93 1488 F194h 48.76 50 15 122 1830 E1E4h 49.97 54 16 103 1648 F198h 54.00 55 2 839 1678 1D18h 54.98 Note To optimize power consumption, use the largest NN value possible. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 139 Registers bits 1-0 V-Divider bits [1:0] These bits are used to fine tune the PLL output jitter. The V-Divider bits represent a value as shown in the following table. The V-Divider bits must be set such that the following formula is valid. 100MHz  PLL Output x V-Divider  410MHz Table 10-4: V-Divider REG[000Eh] bits 1-0 V-Divider 00 see note 01 2 10 4 11 8 Where: PLL Output in MHz (55MHz max) generated by bits 15-12 (N-Counter) and bits 11-2 (L-Counter) V-Divide is the value from Table 10-4: Note Setting the V-Divider value to 00 provides the lowest possible power consumption, but the most jitter. Specific system design requirements should be considered to achieve the optimal setting. 140 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0010h] PLL Setting Register 1 Default = 0000h Read/Write VCO Kv Set bits 3-0 15 14 13 n/a 12 11 10 9 8 3 2 1 0 n/a 7 6 5 4 Note Before setting this register, power save mode must be enabled (REG[0014h] bit 0 = 1) and the PLL must be disabled (REG[0012h] bit 0 = 1). For more information, see Figure 11-1: “Power-On/Power-Off Sequence,” on page 308 or Figure 11-2: “Power Save Modes,” on page 309. bits 15-12 VCO Kv Set bits [3:0] These bits are used to fine tune the PLL output jitter. These bits should be set as follows. If 100MHz  (PLL Output x V-Divider)  200MHz, set these bits to 0010. If 200MHz < (PLL Output x V-Divider)  300MHz, set these bits to 0101. If 300MHz < (PLL Output x V-Divider)  410MHz, set these bits to 0111. All other non-zero values for these bits are reserved. Where: PLL Output is the desired PLL output frequency in MHz and is generated using REG[000Eh] bits 15-12 and REG[000Eh] bits 11-2 V-Divide is the value from Table 10-4: and is controlled by REG[000Eh] bits 1-0 Note Setting the value of these bits to 0000 provides the lowest possible power consumption, but the most jitter. Specific system design requirements should be considered to achieve the optimal setting. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 141 Registers REG[0012h] PLL Setting Register 2 Default = 0001h Read/Write n/a 15 14 13 n/a 12 11 10 Reserved 9 Reserved 8 PLL Disable 7 6 5 4 3 2 1 0 Note For more information on the PLL and clock structure, see Section 9, “Clocks” on page 130. bit 2 Reserved The default value for this bit is 0. bit 1 Reserved The default value for this bit is 0. bit 0 PLL Disable This bit controls the internal PLL. The PLL must be configured using PLL Setting Register 0 (REG[000Eh]) and PLL Setting Register 1 (REG[0010h]) before enabling this bit. When this bit = 0, the PLL is enabled. When this option is selected, the PLL output is the source for the system clock divider. When this bit = 1, the PLL is disabled (default). When this option is selected, the external clock, CLKI is the source for the system clock divider. Note There may be up to a 100ms delay before the PLL output becomes stable. The S1D13715 must not be accessed during this time. 142 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0014h] Miscellaneous Configuration Register Default = 0011h Parallel Bypass Data Bus Width Select n/a 15 14 13 VNDP Status (RO) Memory Controller Idle Status (RO) n/a 7 6 5 bit 12 12 Serial/Parallel Input Active Pull-up/Pull-down Enable 4 Read/Write Parallel Bit Order Select Bypass Mode Select bits 2-0 11 10 9 8 n/a Reserved Reserved Power Save Enable 3 2 1 0 Parallel Bypass Data Bus Width Select This bit selects the data bus width for parallel bypass in Mode 2 and Mode 3. For parallel bypass pin mapping, see Table 5-15: “Serial/Parallel Bypass Pin Mapping,” on page 49. When this bit = 0, the data bus width for parallel bypass is 16-bit. In this setting GPIO20 and GPIO21 are available as GPIOs. When this bit = 1, the data bus width for parallel bypass is 18-bit. In this setting GPIO20 and GPIO21 are used by the host cpu parallel interface and cannot be used for GPIO. GPIO register settings for these GPIOs have no effect on these signals. Note The HIOVDD and PIOVDD voltages must be compatible when using parallel bypass mode. bit 11 Parallel Bit Order Select This bit specifies the LCD data order for parallel panels when Mode 2, Mode 3, and Mode 4 are selected (see (REG[0032h] bits 1-0). However, this bit has no effect for all 24-bit parallel panels and 16/18-bit parallel panels in Mode 4. When this bit = 0, the FPDAT0 output is the MSB. When this bit = 1, the FPDAT0 output is the LSB. Table 10-5: Parallel Bit Order Selection REG[0014h] bit 11 Mode 2 Mode 3 Mode 4 0 LSB starts at FPDAT0 LSB starts at FPDAT0 LSB starts at FPDAT0 1 LSB starts at FPDAT17 LSB starts at FPDAT17 LSB starts at FPDAT7 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 143 Registers bits 10-8 Bypass Mode Select bits [2:0] These bits specify the bypass mode for both LCD1 and LCD2 displays. These bits must be configured before the Serial/Parallel Port Bypass Enable bit (REG[0032h] bit 8) is set. If REG[0032h] bit 8 is set to 1 when these bits = 000 or any Reserved setting, there is no hardware effect. For bypass mode pin mapping, see Table 5-15: “Serial/Parallel Bypass Pin Mapping,” on page 49. Table 10-6: Bypass Mode Selection REG[0014h] bits 10-8 Bypass Mode 000 Serial/Parallel Bypass is disabled for both LCD1 and LCD2 001 This option is for Mode 2 (REG[0032h] bits 1-0 = 10) only. When Mode 2 is selected, parallel bypass of LCD1 is possible but serial bypass of LCD2 is not allowed. 010 This option is for Mode 1 (REG[0032h] bits 1-0 = 00) or Mode 2 (REG[0032h] bits 1-0 = 10) only. When Mode 1 is selected, serial bypass of LCD2 is possible. When Mode 2 is selected, serial bypass of LCD2 is possible. 011 This option is for Mode 3 (REG[0032h] bits 1-0 = 11) only.When Mode 3 is selected, parallel bypass of LCD1 and LCD2 is possible. Switch between LCD1 and LCD2 using SCS# and SI. 100 This option is for Mode 4 (REG[0032h] bits 1-0 = 01) only.When Mode 4 is selected, parallel bypass of LCD2 is possible. 101 - 111 Reserved Note If the Serial/Parallel Port Bypass Enable bit (REG[0032h] bit 8) is set to 1 and the Bypass Mode Select bits are not configured correctly, some signals may still be bypassed resulting in unpredictable results. Note The HIOVDD and PIOVDD voltages must be compatible when using parallel bypass mode. bit 7 Vertical Non-Display Period Status (Read Only) If an RGB type panel is selected for LCD1 (Mode 1/Mode 4, see REG[0032h] bits 1-0), this status bit indicates whether the panel is in a Vertical Non-Display Period. This bit has no effect when Mode 2 or Mode 3 is selected. When this bit = 0, the LCD panel output is in a Vertical Display Period. When this bit = 1, the LCD panel output is in a Vertical Non-Display Period. bit 6 Memory Controller Idle Status (Read Only) This bit indicates the status of the memory controller and must be checked before enabling Power Save Mode (REG[0014h] bit 0) or disabling the PLL (REG[0012h] bit 0). For further information on using this bit, see Figure 11-1: “Power-On/Power-Off Sequence,” on page 308 or Figure 11-2: “Power Save Modes,” on page 309. When this bit = 0, the memory controller is powered up. When this bit = 1, the memory controller is idling and the system clock source can be disabled. 144 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 4 Serial/Parallel Input Active Pull-up/Pull-down Enable This bit controls the active pull-up/pull-down resistors on the host serial/parallel input pins (SCS#, SCLK, SA0, SI). When the serial/parallel input port is unused (Hi-Z), set this bit to 1. When this bit = 0, the pull-up/pull-down resistors are inactive. When this bit = 1, the pull-up/pull-down resistors are active and the pins are affected as follows (default). Table 10-7: Serial/Parallel Pull-up/Pull-down Resistors Pin Type SCS# Pull-up SCLK Pull-down SA0 Pull-down SI Pull-down Note For Panel Interface Mode 3 (REG[0032h] bits 1-0 = 11) when the parallel panel on LCD2 is bypassed (REG[0014h] bits 10-8 = 011), the SI pin (PCS1#) must be pulled-up to HIOVDD and REG[0014h] bit 4 must be set to 0 at initialization. bit 2 Reserved The default value for this bit is 0. bit 1 Reserved The default value for this bit is 0. bit 0 Power Save Mode Enable This bit controls the state of the software initiated power save mode. When power save mode is disabled, the S1D13715 is operating normally. When power save mode is enabled, the S1D13715 is in a power efficient state. For more information on the S1D13715 condition during Power Save Mode, see Section 11.2, “Power Save Mode Function” on page 311. When this bit = 0, power save mode is disabled. When this bit = 1, power save mode is enabled (default). Note For all modes except Mode 1 (see REG[0032h] bits 1-0), the LCD Output Port must be turned off (REG[0202h] bits 12-10 = 000) before enabling power save mode. For all modes, the Memory Controller Idle Status bit (REG[0014h] bit 6) must return a 1 before enabling power save mode. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 145 Registers REG[0016h] Software Reset Register Default = not applicable Write Only Software Reset bits 15-8 15 14 13 7 6 5 bits 15-0 12 11 Software Reset bits 7-0 4 3 10 9 8 2 1 0 Software Reset bits [15:0] (Write Only) When any value is written to these bits, all registers are reset to their default values. A software reset via this register does not clear the display buffer. For further information on software reset, see Section 11.1.2, “Reset” on page 310. REG[0018h] System Clock Setting Register Default = 0000h Read/Write n/a 15 14 13 12 11 10 4 3 2 n/a 7 bits 1-0 6 5 9 8 System Clock Divide Select bits 1-0 1 0 System Clock Divide Select bits [1:0] These bits determine the divide ratio for the system clock. The source is selectable, using REG[0012h] bit 0, between either the PLL output (see REG[000Eh]-REG[0012h]) or an external clock source (CLKI). Table 10-8: System Clock Divide Ratio Selection REG[0018h] bits 1-0 00 01 10 11 System Clock Divide Ratio 1:1 2:1 3:1 4:1 Note For more information on clocks, see Section 9, “Clocks” on page 130. 146 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.3 Indirect Interface Registers These registers are used for the Indirect Interface only. The indirect interface is selected at RESET# using the configuration bits CNF[4:2] (see Table 5-9: “Summary of PowerOn/Reset Options,” on page 43). For examples using the Indirect Interface, see Section 21, “Indirect Host Interface” on page 399. REG[0020h] is Reserved This register is Reserved and should not be written. REG[0022h] Indirect Interface Memory Address Register 1 Default = 0000h Read/Write Indirect Interface Memory Address bits 15-8 15 14 13 12 11 10 9 Indirect Interface Memory Address bits 7-1 7 6 5 4 3 8 n/a 2 1 REG[0024h] Indirect Interface Memory Address Register 2 Default = 0000h 0 Read/Write n/a 15 14 13 n/a 12 11 7 6 5 4 3 10 9 8 Indirect Interface Memory Address bits 18-16 2 1 0 REG[0024h] bits 2-0 REG[0022h] bits 15-1 Indirect Interface Memory Address bits [18:1] This register is used for Indirect Interface modes only. These bits determine the memory start address for each memory access. After a completed memory access, this register is incremented automatically. Note Only 16-bit memory accesses are possible when an indirect interface is selected. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 147 Registers REG[0026h] Indirect Interface Auto Increment Register Default = 0000h Read/Write n/a 15 14 13 12 11 10 4 3 2 n/a 7 6 5 bits 1-0 9 8 Indirect Interface Auto Increment bits 1-0 1 0 Indirect Interface Auto Increment bits [1:0] This register is used for Indirect Interface modes only. These bits determine the method used to auto increment the memory address stored in the Indirect Interface Memory Address registers (REG[0024h]-[0022h]). The Indirect Interface Memory Address registers must be auto incremented after each memory access based on the type of memory accesses being done (byte or word). Table 10-9: Indirect Interface Auto Increment Selection REG[0026h] bits 1-0 00 (default) Indirect Interface Auto Increment Increment when a high byte access or word access takes place Increment only when a word access takes place (no increment takes place for byte accesses) Never increment (Auto increment is disabled) Reserved 01 10 11 REG[0028h] Indirect Interface Memory Access Port Register Default = not applicable Read/Write Indirect Interface Memory Access Port bits 15-8 15 14 13 7 6 5 bits 15-0 12 11 Indirect Interface Memory Access Port bits 7-0 4 10 9 8 2 1 0 3 Indirect Interface Memory Access Port bits [15:0] This register is used for Indirect Interface modes only. These bits are the memory read/write port for the Indirect Interface. An Index Write to this register begins (or triggers) a burst read/write to memory. REG[002Ah] Indirect Interface 2D BitBLT Data Read/Write Port Register Default = not applicable Read/Write Indirect Interface 2D BitBLT Data Read/Write Port bits 15-8 15 14 13 7 6 5 bits 15-0 148 12 11 10 Indirect Interface 2D BitBLT Data Read/Write Port bits 7-0 4 3 2 9 8 1 0 Indirect Interface 2D BitBLT Data Read/Write Port bits [15:0] This register is used for Indirect Interface modes only. These bits are the read/write port for 2D BitBLT data when using the Indirect Interface (instead of REG[10000h] for direct addressing). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.4 LCD Panel Interface Generic Setting Register REG[0030h] LCD Interface Clock Setting Register Default = 0000h Read/Write n/a Serial Clock Divide Select bits 2-0 15 14 n/a 13 12 11 10 Pixel Clock Divide Select bits 4-0 9 8 7 6 5 4 3 2 1 0 bits 10-8 Serial Clock Divide Select bits[2:0] These bits specify the divide ratio for the serial clock. The clock source for the serial clock is the system clock (see Figure 9-1: “Clock Diagram,” on page 130). If LCD1 or LCD2 is not a serial interface type LCD panel (REG[0032h] bits 1-0) or if Serial Port Bypass is enabled (REG[0032h] bit 8 = 1), these bits are ignored. Table 10-10: Serial Clock Divide Ratio Selection REG[0030h] bits 10-8 000 001 010 011 100 101 110 111 S1D13715 Hardware Functional Specification Rev. 7.4 Serial Clock Divide Ratio 2:1 4:1 6:1 8:1 10:1 12:1 14:1 16:1 Seiko Epson Corporation 149 Registers bits 4-0 Pixel Clock Divide Select bits[4:0] These bits specify the divide ratio for the pixel clock. The clock source for the pixel clock is the system clock (see Figure 9-1: “Clock Diagram,” on page 130). When LCD1 is an RGB type panel (REG[0032h] bits 1-0 = 00b or 01b), the pixel clock is the same as the shift clock. When LCD1 or LCD2 is a parallel interface type panel (REG[0032h] bits 1-0 = 10b or 11b), the pixel clock is used for the parallel data output timing clock. Table 10-11: Pixel Clock Divide Selection REG[0030h] bits 4-0 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 - 11111 Pixel Clock Divide Ratio 2:1 (see Note) 4:1 6:1 8:1 10:1 12:1 14:1 16:1 18:1 20:1 22:1 24:1 26:1 28:1 30:1 32:1 34:1 36:1 38:1 40:1 42:1 44:1 46:1 48:1 Reserved Note SwivelView should not be used when the 2:1 Pixel Clock Divide Ratio is used (REG[0202h] bits 5-4 = 00b and bits 1-0 = 00b). 150 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0032h] LCD Module Clock Setting Register Default = 0000h Read/Write RGB Panel Type bits 5-0 15 FPSHIFT Polarity Select 7 bits 15-10 14 13 12 n/a 11 RGB Interface Panel Data Bus Width bits 2-0 6 5 4 10 9 8 Panel Interface bits 1-0 n/a 3 Serial/ Parallel Port Bypass Enable 2 1 0 RGB Panel Type bits [5:0] When the panel interface for LCD1 is RGB (REG[0032h] bits 1-0 = 00), these bits determine the RGB panel type. When LCD1 is not an RGB interface (REG[0032h] bits 1-0 = 10 or 11), these bit are ignored. Table 10-12: RGB Panel Type Selection REG[0032h] bits 15-10 000000 000001 000010 000011 000100 000101 - 101111 110000 110001 - 111111 S1D13715 Hardware Functional Specification Rev. 7.4 RGB Panel Type (LCD1) General TFT, ND-TFD HR-TFT Casio TFT TFT Type 2 TFT Type 3 Reserved -TFT Reserved Seiko Epson Corporation 151 Registers bit 8 Serial/Parallel Port Bypass Enable This bit controls the serial/parallel port bypass function. Before enabling Serial/Parallel Port Bypass, the Bypass Mode must be configured using the Bypass Mode Select bits (REG[0014h] bits 10-8) or there will be no hardware effect. When the serial/parallel port bypass is enabled, the host can drive the LCD2 serial/parallel interface directly via the Host serial/parallel interface. When the serial/parallel port bypass is disabled, the LCD2 serial/parallel interface is controlled by the S1D13715. For serial/parallel bypass pin mapping and input/output port assignments, see Table 5-15: “Serial/Parallel Bypass Pin Mapping,” on page 49. When this bit = 0, the serial/parallel port bypass is disabled. When this bit = 1, the serial/parallel port bypass is enabled. Note When power save mode is enabled (REG[0014h] bit 0 = 1), the host can drive the LCD2 serial interface directly via the host serial interface automatically. In this situation, the Serial/Parallel Port Bypass Enable bit does not need to be set, however, the Bypass Mode Select bits (REG[0014h] bits 10-8) must be set according to the selected mode. bit 7 FPSHIFT Polarity Select This bit sets the polarity of the shift clock for RGB type panels (inverts FPSHIFT). When this bit = 0, all panel interface signals change at the rising edge of FPSHIFT. When this bit = 1, all panel interface signals change at the falling edge of FPSHIFT. bits 6-4 RGB Interface Panel Data Bus Width bits [2:0] These bits only have an effect when a RGB interface panel is selected (REG[0032h] bits 1-0 = 00 or 01). These bits determine the RGB Interface Panel Data Bus size. Unused FPDAT[17:0] pins are forced low and unused GPIO[9:4] pins are used as GPIOs. Table 10-13: RGB Interface Panel Data Bus Width Selection REG[0032h] bits 6-4 000 001 010 011 100 101 - 111 152 RGB Interface Panel Data Bus Width (LCD1) 9-bit 12-bit 16-bit 18-bit 24-bit Reserved Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bits 1-0 Panel Interface bits[1:0] These bits determine the LCD1 and LCD2 interface types. Table 10-14: Panel Interface Selection REG[0032h] bits 1-0 Mode LCD1 Panel Interface 00 1 RGB Interface 01 4 RGB Interface 10 2 11 3 LCD2 Panel Interface Serial Interface (RAM integrated) Parallel Interface (RAM integrated) Serial Interface (RAM integrated) Parallel Interface (RAM integrated) Parallel Interface (RAM integrated) Parallel Interface (RAM integrated) REG[0034h] LCD Interface Command Register Default = 0000h Read/Write LCD Interface Command Register bits 15-8 15 14 13 7 6 5 bit 15-0 12 11 LCD Interface Command Register bits 7-0 4 3 10 9 8 2 1 0 LCD Interface Command Register bits [15:0] These bits are only for parallel/serial interface panels on LCD1 or LCD2 and have no effect for RGB type panels. These bits form the command register for the LCD1/LCD2 parallel/serial interfaces. For 8-bit parallel or serial interfaces, only the lower byte is used. When the LCD interface is busy (REG[0038h] bit 0 = 1), this register must not be written. When the LCD interface is not busy (REG[0038h] bit 0 = 0), the command transfer starts when this register is written. When the command transfer starts, the FPA0 pin is driven low or high depending on the state of the P/C Polarity Invert Enable bit (REG[003Ch] bit 7). Note If the LCD1 serial data type is set to uWIRE or TFT Type 5 (REG[0054h] bits 7-5 = 10x or 11x), the upper byte of REG[0034h] is used for A[7:0] and the lower byte is used for D[7:0]. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 153 Registers REG[0036h] LCD Interface Parameter Register Default = 0000h Read/Write LCD Interface Parameter Register bits 15-8 15 14 13 7 6 5 bit 15-0 12 11 LCD Interface Parameter Register bits 7-0 4 3 10 9 8 2 1 0 LCD Interface Parameter Register bits [15:0] These bits are only for parallel/serial interface panels on LCD1 or LCD2 and have no effect for RGB type panels. These bits form the parameter register for the LCD1/LCD2 parallel/serial interfaces. For 8-bit parallel or serial interfaces, only the lower byte is used. When the LCD interface is busy (REG[0038h] bit 0 = 1), this register must not be written. When the LCD interface is not busy (REG[0038h] bit 0 = 0), data transfer starts when this register is written. When the data transfer starts, the FPA0 pin is driven high or low depending on the state of the P/C Polarity Invert Enable bit (REG[003Ch] bit 7). Note If the LCD1 serial data type is set to uWIRE or TFT Type 5 (REG[0054h] bits 7-5 = 10x or 11x), the upper byte of REG[0036h] is used for A[7:0] and the lower byte is used for D[7:0]. REG[0038h] LCD Interface Status Register Default = 0000h Read Only n/a 15 14 13 12 11 10 9 8 LCD Interface Status 3 2 1 0 n/a 7 bit 0 154 6 5 4 LCD Interface Status (Read Only) This bit indicates the status of the LCD1 or LCD2 serial/parallel interface. When this bit = 0, the LCD1 or LCD2 serial/parallel interface is not busy (or ready). When this bit = 1, the LCD1 or LCD2 serial/parallel interface is busy. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[003Ah] LCD Interface Frame Transfer Register Default = 0000h Read/Write n/a 15 14 13 12 11 10 9 8 LCD Interface Frame Transfer Trigger 3 2 1 0 n/a 7 6 bit 0 5 4 LCD Interface Frame Transfer Trigger This bit is only for parallel/serial interface panels on LCD1 or LCD2 and has no effect for RGB type panels. This bit is the trigger to transfer 1 frame of data to the LCD interface. When this bit is set to 1 and the LCD interface status is not busy (REG[0038h] bit 0 = 0), 1 frame of data is transferred to the LCD interface. When the data transfer is finished, this bit is cleared automatically. When this bit is set to 1 and the LCD interface is busy (REG[0038h] bit 0 = 1), the frame transfer request is ignored. Once the LCD interface is no longer busy, this bit is cleared without transferring any data. Note When LCD Interface Auto Transfer is enabled (REG[003Ch] bit 0 = 1), this bit remains high (1). REG[003Ch] LCD Interface Transfer Setting Register Default = 0000h Read/Write n/a 15 14 13 12 P/C Polarity Invert Enable 7 bit 7 11 10 9 8 LCD Interface Auto Frame Transfer Enable 3 2 1 0 n/a 6 5 4 Parameter/Command Polarity Invert Enable This bit is only for parallel/serial interface panels on LCD1 or LCD2 and has no effect for RGB type panels. During an LCD Interface Command (REG[0034h]) or LCD Interface Parameter (REG[0036h]) transfer, FPA0 is driven high or low based on the setting of this bit. When LCD1 is a ND-TFD 9-bit panel (REG[0054h] bits 7-5 = 001) or LCD2 is a 9-bit serial panel (REG[005Ch] bit 5 = 1), this bit determines the MSB of the 9bit data on FPSO. Table 10-15: Parameter/Command Invert Setting REG[003Ch] bit 7 0 1 S1D13715 Hardware Functional Specification Rev. 7.4 FPA0 Signal Output Command Parameter Low High High Low Seiko Epson Corporation 155 Registers bit 0 LCD Interface Auto Frame Transfer Enable This bit is only for parallel/serial interface panels on LCD1 or LCD2 and has no effect for RGB type panels. This bit controls the automatic frame transfer of one frame of display memory to the LCD interface. The frame transfer is triggered and synchronized by the camera interface vertical sync signal (CM1VREF or CM2VREF). All camera input signals are required to trigger the frame transfer. When this bit = 0, auto frame transfer is disabled. When this bit = 1, auto frame transfer is enabled. When this bit = 1, the LCD Interface Status bit (REG[0038h] bit 0) is always busy. When busy, command/parameter and frame transfers cannot be sent manually. This bit should be disabled before camera input is disabled. Note While auto transfer is enabled, the following condition must be met or no frame transfers will take place. 1 Frame transfer cycle (time) < 1 CMVREF period (time) Note While auto transfer is enabled, do not vary the PCLK and CM1CLKOUT/CM2CLKOUT frequencies 156 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.5 LCD1 Setting Register REG[0040h] LCD1 Horizontal Total Register Default = 0001h Read/Write n/a Reserved 15 Reserved 14 13 12 11 LCD1 Horizontal Total bits 6-0 10 9 8 7 6 5 4 3 2 1 0 bits 9-7 Reserved These bits default to 0 bits 6-0 LCD1 Horizontal Total bits [6:0] These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and have no effect when a serial or parallel interface panel is selected. These bits specify the LCD1 Horizontal Total period, in 8 pixel resolution. The Horizontal Total is the sum of the Horizontal Display Period and the Horizontal Non-Display Period. The maximum Horizontal Total is 1024 pixels. These bits must not be set to 0. REG[0040h] bits 6-0 = (Horizontal Total in pixels  8) - 1 Note This register must be programmed such that the following formula is valid. HT  HDP + HNDP S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 157 Registers REG[0042h] LCD1 Horizontal Display Period Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 8-0 LCD1 HDP bit 8 12 11 LCD1 Horizontal Display Period bits 7-0 4 3 10 9 8 2 1 0 LCD1 Horizontal Display Period bits [8:0] These bits specify the LCD1 Horizontal Display Period, in 2 pixel resolution. The Horizontal Display Period must be less than the Horizontal Total to allow for a sufficient Horizontal Non-Display Period. REG[0042h] bits 8-0 = (Horizontal Display Period in pixels ÷ 2) - 1 Note For Parallel interface panels (see REG[0032h] bits 1-0), the following formula must be valid. HDP x VDP  40 pixels. REG[0044h] LCD1 Horizontal Display Period Start Position Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 9-0 158 LCD1 HDP bits 9-8 12 11 LCD1 Horizontal Display Period bits 7-0 4 3 10 9 8 2 1 0 LCD1 Horizontal Display Period Start Position bits [9:0] These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and have no effect when a serial or parallel interface panel is selected. These bits specify the LCD1 Horizontal Display Period Start Position in 1 pixel resolution. REG[0044h] bits 9-0 = Horizontal Display Period Start Position in pixels - 9 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0046h] LCD1 FPLINE Register Default = 0000h Read/Write n/a 15 FPLINE Polarity 14 13 12 11 FPLINE Pulse Width bits 6-0 10 9 8 7 6 5 4 3 2 1 0 bit 7 FPLINE Pulse Polarity This bit is for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and has no effect when a serial or parallel interface panel is selected. This bit selects the polarity of the horizontal sync signal (FPLINE). When this bit = 0, the horizontal sync signal (FPLINE) is active low. When this bit = 1, the horizontal sync signal (FPLINE) is active high. bits 6-0 FPLINE Pulse Width bits [6:0] These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and have no effect when a serial or parallel interface panel is selected. These bits specify the width of the horizontal sync signal (FPLINE), in 1 pixel resolution. REG[0046h] bits 6-0 = FPLINE Pulse Width in pixels - 1 REG[0048h] LCD1 FPLINE Pulse Position Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 9-0 FPLINE Pulse Position bits 9-8 12 11 FPLINE Pulse Position bits 7-0 4 3 10 9 8 2 1 0 FPLINE Pulse Position bits [9:0] These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and have no effect when a serial or parallel interface panel is selected. These bits specify the position of the FPLINE pulse. REG[0048h] bits 9-0 = FPFRAME edge to FPLINE edge in pixels - 1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 159 Registers REG[004Ah] LCD1 Vertical Total Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 9-0 LCD1 Vertical Total bits 9-8 12 11 LCD1 Vertical Total bits 7-0 4 3 10 9 8 2 1 0 LCD1 Vertical Total bits [9:0] These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and have no effect when a serial or parallel interface panel is selected. These bits specify the LCD1 Vertical Total period, in 1 line resolution. The Vertical Total is the sum of the Vertical Display Period and the Vertical Non-Display Period. The maximum Vertical Total is 1024 lines. REG[004Ah] bits 9-0 = Vertical Total in lines - 1 REG[004Ch] LCD1 Vertical Display Period Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 9-0 Vertical Display Period bits 9-8 12 11 Vertical Display Period bits 7-0 4 3 10 9 8 2 1 0 Vertical Display Period bits [9:0] These bits specify the LCD1 Vertical Display period, in 1 line resolution. The Vertical Display Period must be less than the Vertical Total to allow for a sufficient Vertical NonDisplay period. REG[004Ch] bits 9-0 = Vertical Display Period in lines - 1 Note For Parallel interface panels (see REG[0032h] bits 1-0), the following formula must be valid. HDP x VDP  40 pixels REG[004Eh] LCD1 Vertical Display Period Start Position Register Default = 0000h Read/Write Vertical Display Period Start Position bits 9-8 n/a 15 14 13 12 11 10 9 8 2 1 0 Vertical Display Period Start Position bits 7-0 7 bits 9-0 160 6 5 4 3 LCD1 Vertical Display Period Start Position bits [9:0] These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and have no effect when a serial or parallel interface panel is selected. These bits specify the LCD1 Vertical Display Period Start Position in 1 line resolution. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0050h] LCD1 FPFRAME Register Default = 0000h Read/Write n/a 15 FPFRAME Polarity 14 7 6 13 12 11 10 n/a 5 9 8 FPFRAME Pulse Width bits 2-0 4 3 2 1 0 bit 7 FPFRAME Pulse Polarity This bit is for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and has no effect when a serial or parallel interface panel is selected. This bit selects the polarity of the vertical sync signal (FPFRAME). When this bit = 0, the vertical sync signal (FPFRAME) is active low. When this bit = 1, the vertical sync signal (FPFRAME) is active high. bits 2-0 FPFRAME Pulse Width bits [2:0] These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and have no effect when a serial or parallel interface panel is selected. These bits specify the width of the panel vertical sync signal (FPFRAME), in 1 line resolution. REG[0050h] bits 2-0 = FPFRAME Pulse Width in lines - 1 REG[0052h] LCD1 FPFRAME Pulse Position Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 9-0 FPFRAME Pulse Position bits 9-8 12 11 FPFRAME Pulse Position bits 7-0 4 3 10 9 8 2 1 0 FPFRAME Pulse Position bits [9:0] These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00 or 01) and have no effect when a serial or parallel interface panel is selected. These bits specify the start position of the FPFRAME signal, in 1 line resolution. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 161 Registers REG[0054h] LCD1 Serial Interface Setting Register Default = 0001h Read/Write n/a 15 14 13 12 LCD1 Serial Data LCD1 Serial Data Type bits 2-0 7 bit 7-5 6 11 Direction 5 4 10 9 LCD1 Serial Clock Phase 8 LCD1 Serial Clock Polarity 2 1 0 n/a 3 LCD1 Serial Data Type bits [2:0] These bits determine the LCD1 Serial Data Type for RGB displays requiring initialization through a serial interface. Table 10-16: LCD1 Serial Data Type Selection REG[0054h] bits 7-5 000 001 01x 10x 11x LCD1 Serial Data Type ND-TFD 4 pins (8-bit Serial) ND-TFD 3 pins (9-bit Serial) a-Si TFT (8-bit Serial) uWIRE (16-bit Serial) Reserved Note For Mode 2 and Mode 3 configurations (see REG[0032h] bits 1-0), these bits must be set to 000. bit 4 LCD1 Serial Data Direction This bit determines the LCD1 serial data direction for RGB displays requiring initialization through a serial interface. When this bit = 0, the MSB is first. When this bit = 1, the LSB is first. bit 1 LCD1 Serial Clock Phase This bit specifies the serial clock phase for RGB displays requiring initialization through a serial interface. See Table 10-17: “LCD1 Serial Clock Polarity and Phase Selection”. Note For details on timing, see Section 7.4.6, “LCD1 ND-TFD, LCD2 8-Bit Serial Interface Timing” on page 108. 162 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 0 LCD1 Serial Clock Polarity This bit determines the LCD1 serial data format for RGB displays requiring initialization through a serial interface. Table 10-17: LCD1 Serial Clock Polarity and Phase Selection REG[0054h] bit 1 REG[0054h] bit 0 0 1 0 1 0 1 Serial Data Output Changes falling edge of Serial Clock rising edge of Serial Clock rising edge of Serial Clock falling edge of Serial Clock Idling Status of Clock Low High Low High Note For details on timing, see Section 7.4.6, “LCD1 ND-TFD, LCD2 8-Bit Serial Interface Timing” on page 108. REG[0056h] LCD1 Parallel Interface Setting Register Default = 0000h n/a LCD1 Pin Control 15 LCD1 VSYNC Input Enable 14 LCD1 Parallel Type Select 13 7 6 5 Read/Write LCD1 CS Control 12 n/a 11 Reserved 10 n/a 4 9 8 LCD1 Parallel Data Format bits 2-0 3 2 1 0 bit 13 LCD1 Pin Control This bit controls the parallel interface data output buffer for LCD1. When this bit = 0 and REG[005Eh] bit 13 = 0, FPDAT[17:0] are always output buffers and do not tristate. All other pins are not affected. When this bit = 1, FPDAT[17:0] are tristated, except during LCD1 control/display data output when FPDAT[17:0] become output buffers. GPIO[2:1], which are used to read 2bits of data from the LCD1 panel, are forced to inputs. bit 12 LCD1 CS Control This bit is only valid when LCD1 Pin Control is enabled (REG[0056h] bit 13 = 1). When this bit = 0, the LCD1 chip select signal, output on FPCS1#, is automatically generated by the S1D13715. When this bit = 1, the LCD1 chip select signal, output on FPCS1#, is derived from a logical AND of the original signal and GPIO0 (REG[030Ch] bit 0). GPIO0 is forced to an output. Note The panel read signal must be generated by a GPIO (i.e. GPIO3). Read data must be input from GPIO[2:1]. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 163 Registers bits 9-8 Reserved These bits are reserved and default to 0. bit 7 LCD1 VSYNC Input Enable This bit is not used for RGB type panels. This bit allows the transfer of a frame of data synced to an external VSYNC input (FPVIN1). When a manual transfer has been initiated, the LCD1 data output will occur on the next falling edge of FPVIN1. When this bit = 1, the LCD1 data output is synchronous with an external VSYNC input. When this bit = 0, the LCD1 data output is independent of an external VSYNC input. Note The FPVIN1 signal period must be longer than the time it takes to transfer a frame of data. If the FPVIN1 period is shorter than the time it takes to transfer a complete frame to the panel, the current frame transfer is interrupted at the next FPVIN1 falling edge. Note Once a manual frame transfer has been initiated (REG[003Ah] bit 0 = 1), the LCD1 VSYNC Input Enable bit must not be disabled before the next VSYNC signal has occurred or the LCD interface will always be busy and subsequent transfers will not occur. bit 6 LCD1 Parallel Type Select This bit determines the LCD1 parallel interface type. When this bit = 0, the parallel interface is type 80. When this bit = 1, the parallel interface is type 68. bit 2-0 LCD1 Parallel Data Format bits [2:0] These bits determine the LCD1 parallel data format. These bits are not used for RGB Type Panels (REG[0032h] bits 1-0 = 00 or 01). For further information on available parallel data formats, see Section 13.4, “Parallel Data Format” on page 320. Table 10-18: LCD1 Parallel Data Format Selection REG[0056h] bits 2-0 000 001 010 011 100 101 110 111 164 LCD1 Parallel Data Format Data Bus Width Data Format RGB = 3:3:2 (1 cycle/pixel) 8-bit RGB = 4:4:4 (3 cycle / 2 pixel) RGB = 8:8:8 16-bit (3 cycle/2 pixel) RGB = 8:8:8 8-bit (3 cycle/pixel) RGB = 8:8:8 24-bit (1 cycle/pixel) RGB = 4:4:4 (1 cycle/pixel) 16-bit RGB = 5:6:5 (1 cycle/pixel) RGB = 6:6:6 18-bit (1 cycle/pixel) Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.6 LCD2 Setting Registers REG[0058h] LCD2 Horizontal Display Period Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 8-0 LCD2 HDP bit 8 12 11 LCD2 Horizontal Display Period bits 7-0 4 3 10 9 8 2 1 0 LCD2 Horizontal Display Period bits [8:0] These bits specify the LCD2 Horizontal Display Period, in 2 pixel resolution. REG[0058h] bits 8-0 = (Horizontal Display Period in pixels  2) - 1 Note For Parallel and Serial interface panels (see REG[0032h] bits 1-0), the following formula must be valid. HDP x VDP  40 pixels. REG[005Ah] LCD2 Vertical Display Period Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 9-0 LCD2 Vertical Display Period bits 9-8 12 11 LCD2 Vertical Display Period bits 7-0 4 3 10 9 8 2 1 0 Vertical Display Period bits [9:0] These bits specify the LCD2 Vertical Display Period, in 1 line resolution. REG[005Ah] bits 9-0 = Vertical Display Period in lines - 1 Note For Parallel and Serial interface panels (see REG[0032h] bits 1-0), the following formula must be valid. HDP x VDP  40 pixels. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 165 Registers REG[005Ch] LCD2 Serial Interface Setting Register Default = 0001h Read/Write n/a 15 14 n/a 7 bit 5 13 LCD2 Serial Data Type 12 LCD2 Serial Data 5 4 6 Direction 11 10 LCD2 Serial Data Format bits 1-0 3 9 LCD2 Serial Clock Phase 8 LCD2 Serial Clock Polarity 1 0 2 LCD2 Serial Data Type This bit determines the LCD2 serial data type. Table 10-19: LCD2 Serial Data Type Selection REG[005Ch] bit 5 0 1 LCD2 Serial Data Type 4 pins (8-bit) 3 pins (9-bit) bit 4 LCD2 Serial Data Direction This bit determines the LCD2 serial data direction. When this bit = 0, the MSB is first. When this bit = 1, the LSB is first. bit 3-2 LCD2 Serial Data Format bits[1:0] These bits determine the LCD2 serial data format. For further information on available serial data formats, see Section 13.5, “Serial Data Format” on page 327. Table 10-20: LCD2 Serial Data Format Selection REG[005Ch] bits 3-2 00 01 LCD2 Serial Data Format Data Length Data Format RGB=3.3.2 (1 transfer / pixel) 8-bit RGB=4.4.4 (3 transfer / 2 pixel) 10 11 bit 1 Reserved LCD2 Serial Clock Phase This bit specifies the LCD2 serial clock phase. See Table 10-21: “LCD2 Serial Clock Polarity and Phase Selection”. Note For details on timing, see Section 7.4.6, “LCD1 ND-TFD, LCD2 8-Bit Serial Interface Timing” on page 108. 166 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 0 LCD2 Serial Clock Polarity This bit determines the LCD2 serial clock polarity. Table 10-21: LCD2 Serial Clock Polarity and Phase Selection REG[005Ch] bit 1 REG[005Ch] bit 0 0 1 0 1 0 1 Serial Data Output Changes falling edge of Serial Clock rising edge of Serial Clock rising edge of Serial Clock falling edge of Serial Clock Clock Idling Status Low High Low High Note For details on timing, see Section 7.4.6, “LCD1 ND-TFD, LCD2 8-Bit Serial Interface Timing” on page 108. REG[005Eh] LCD2 Parallel Interface Setting Register Default = 0000h LCD2 Pin Control LCD2 CS Control 15 LCD2 VSYNC Input Enable n/a 14 LCD2 Parallel Type Select 13 12 7 6 5 Read/Write n/a 11 10 n/a 4 9 8 LCD2 Parallel Data Format bits 2-0 3 2 1 0 bit 13 LCD2 Pin Control This bit controls the parallel interface data output buffer for LCD1. When this bit = 0 and REG[0056h] bit 13 = 0, FPDAT[17:0] are always output buffers and do not tristate. All other pins are not affected. When this bit = 1, FPDAT[17:0] are tristated, except during LCD2 control/display data output when FPDAT[17:0] become output buffers. GPIO[2:1], which are used to read 2bits of data from the LCD2 panel, are forced to inputs. bit 12 LCD2 CS Control This bit is only valid when LCD2 Pin Control is enabled (REG[005Eh] bit 13 = 1). When this bit = 0, the LCD2 chip select signal from the FPCS2 is automatically generated by the S1D13715. When this bit = 1, the LCD1 chip select signal, output on FPCS1#, is derived from a logical AND of the original signal and GPIO0 (REG[030Ch] bit 0). GPIO0 is forced to an output. Note The panel read signal must be generated by a GPIO (i.e. GPIO3). Read data must be input from GPIO[2:1]. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 167 Registers bit 7 LCD2 VSYNC Input Enable This bit allows the transfer of a frame of data synced to an external VSYNC input (FPVIN2). When a manual transfer has been initiated, the LCD1 data output will occur on the next falling edge of FPVIN1. When this bit = 1, the LCD2 data output is synchronous with an external VSYNC input. When this bit = 0, the LCD2 data output is independent of an external VSYNC input. Note The FPVIN2 signal period must be longer than the time it takes to transfer a frame of data. If the FPVIN2 period is shorter than the time it takes to transfer a complete frame to the panel, the current frame transfer is interrupted at the next FPVIN2 falling edge. bit 6 LCD2 Parallel Type Select This bit determines the LCD2 parallel interface type. When this bit = 0, the parallel interface is type 80. When this bit = 1, the parallel interface is type 68. bits 2-0 LCD2 Parallel Data Format bits[2:0] These bits determine the LCD2 Parallel Data Format. For further information on available parallel data formats, see Section 13.4, “Parallel Data Format” on page 320. Table 10-22: LCD2 Parallel Data Format Selection REG[005Eh] bits 2-0 000 001 011 101 110 111 010 100 168 LCD2 Parallel Data Format Data Bus Width Data Format RGB=3.3.2 (1 cycle/pixel) RGB=4.4.4 8-bit (3 cycle / 2 pixel) RGB=8.8.8 (3 cycle/pixel) RGB=4.4.4 (1 cycle/pixel) 16-bit RGB=5.6.5 (1 cycle/pixel) RGB=6.6.6 18-bit (1 cycle/pixel) RGB=8.8.8 16-bit (3 cycle/2 pixel) RGB=8.8.8 24-bit (1 cycle/1 pixel) Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.7 Extended Panel Registers REG[0070h] is Reserved This register is Reserved and should not be written. REG[0080h] Samsung -TFT Horizontal Total Register Default = 0000h Read/Write -TFT Horizontal Total bits 9-8 n/a 15 14 13 7 6 5 12 11 -TFT Horizontal Total bits 7-0 4 3 10 9 8 2 1 0 -TFT Horizontal Total bits [9:0] bits 9-0 These bits are for Samsung a-TFT panels only (REG[0032h] bits 15-10 = 110000) and have no effect for any other panel type. These bits specify the Horizontal Total period for Samsung a-TFT panels as follows. REG[0080] Bits [9:0] = -TFT Horizontal Total - 1 and must have a value greater than 8. REG[0082h] Samsung -TFT LD Rising Edge Register Default = 0000h Read/Write -TFT LD Rising Edge bits 9-8 n/a 15 14 13 7 6 5 bits 9-0 12 11 -TFT LD Rising Edge bits 7-0 4 3 10 9 8 2 1 0 -TFT LD Rising Edge bits [9:0] These bits are for Samsung a-TFT panels only (REG[0032h] bits 15-10 = 110000) and have no effect for any other panel type. These bits specify the LD rising edge position from the STH rising edge. LD Rising Edge Position = (STH Pulse Width + HDP + LD Rising Edge) + 8 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 169 Registers REG[0084h] Samsung -TFT CKV Toggle Point Register Default = 0000h Read/Write -TFT CKV Toggle Point bits 9-8 n/a 15 14 13 7 6 5 12 11 10 9 8 4 3 2 1 0 -TFT CKV Toggle Point bits 7-0 -TFT CKV Toggle Point bits [9:0] bits 9-0 These bits are for Samsung a-TFT panels only (REG[0032h] bits 15-10 = 110000) and have no effect for any other panel type. These bits specify the CKV toggle point from the STH rising edge. CKV Toggle Position = (STH Pulse Width + HDP + LD Rising Edge - (CKV Toggle Position to LD Rising Edge period)) + 8 Note CKV Toggle Position to LD Rising Edge period is shown in Section 7.4.4, “a-TFT Panel Timing” on page 102. REG[0086h] Samsung -TFT VCOM Toggle Point Register Default = 0000h Read/Write -TFT VCOM Toggle Point bits 9-8 n/a 15 14 13 7 6 5 12 11 -TFT VCOM Toggle Point bits 7-0 4 3 10 9 8 2 1 0 -TFT VCOM Toggle Point bits [9:0] bits 9-0 These bits are for Samsung a-TFT panels only (REG[0032h] bits 15-10 = 110000) and have no effect for any other panel type. These bits specify the VCOM toggle point from the STH rising edge. VCOM Rising Edge Position = (STH Pulse Width + HDP + LD Rising Edge - (VCOM Toggle Position to LD Rising Edge period) + 8 Note VCOM Toggle Position to LD Rising Edge period is shown in Section 7.4.4, “a-TFT Panel Timing” on page 102. REG[0088h] Samsung -TFT Pulse Width Register Default = 0000h Read/Write -TFT LD Pulse Width bits 2-0 n/a 15 14 13 n/a 12 11 10 7 6 5 4 3 2 bits 10-8 9 8 1 0 -TFT STH Pulse Width bits 2-0 -TFT LD Pulse Width bits [2:0] These bits are for Samsung a-TFT panels only (REG[0032h] bits 15-10 = 110000) and have no effect for any other panel type. These bits specify the LD pulse width. LD Pulse Width = (REG[0088h] bits 10-8) - 1 170 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers -TFT STH Pulse Width bits [2:0] bits 2-0 These bits are for Samsung a-TFT panels only (REG[0032h] bits 15-10 bits 1-0 = 110000) and have no effect for any other panel type. These bits specify the STH pulse width. STH Pulse Width = (REG[0088h] bits 2-0) - 1 REG[008Ah] through REG[008Eh] are Reserved These registers are Reserved and should not be written. REG[0090h] HR-TFT Configuration Register Default = 0000h Read/Write n/a 15 14 13 n/a 12 11 10 Reserved 9 HR-TFT PS Mode 8 Reserved 7 6 5 4 3 2 1 0 bit 2 Reserved The default value for this bit is 0. bit 1 HR-TFT PS Mode This bit is for HR-TFT panels only (REG[0032h] bits 15-10 = 000001) and has no effect for any other panel type. This bit selects the timing used for the PS signal. The alternate PS timings (PS1, PS2, PS3) result in additional power saving on the HR-TFT Panel. When this bit = 0, the PS signal uses PS1 timing. When this bit = 1, the PS signal uses PS2 timing. bit 0 Reserved The default value for this bit is 0. REG[0092h] HR-TFT CLS Width Register Default = 012Ch Read/Write CLS Pulse Width bit 8 n/a 15 14 13 7 6 5 bit 8-0 12 11 CLS Pulse Width bits 7-0 4 3 10 9 8 2 1 0 CLS Pulse Width bits [8:0] These bits are for HR-TFT panels only (REG[0032h] bits 15-10 = 000001) and have no effect for any other panel type. This register determines the width of the CLS signal in PCLKs. Note This register must be programmed such that the following formula is valid. (REG[0092h] bits 8-0) > 0 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 171 Registers REG[0094h] HR-TFT PS1 Rising Edge Register Default = 0032h Read/Write n/a 15 14 13 12 6 5 4 11 10 PS1 Rising Edge bits 5-0 n/a 7 bit 5-0 3 2 9 8 1 0 PS1 Rising Edge bits [5:0] These bits are for HR-TFT panels only (REG[0032h] bits 15-10 = 000001) and have no effect for any other panel type. This register determines the number of PCLKs between the CLS falling edge and the PS1 rising edge. REG[0096h] HR-TFT PS2 Rising Edge Register Default = 0064h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 PS2 Rising Edge bits 7-0 4 3 10 9 8 2 1 0 PS2 Rising Edge bits [7:0] These bits are for HR-TFT panels only (REG[0032h] bits 15-10 = 000001) and have no effect for any other panel type. This register determines the number of PCLKs between the LP falling edge and the first PS2 rising edge. Note This register must be programmed such that the following formula is valid. (REG[0096h] bits 7-0) > 0 REG[0098h] HR-TFT PS2 Toggle Width Register Default = 000Ah Read/Write n/a 15 n/a 14 13 12 11 PS2 Toggle Width bits 6-0 10 9 8 7 6 5 4 3 2 1 0 bit 6-0 PS2 Toggle Width bits [6:0] These bits are for HR-TFT panels only (REG[0032h] bits 15-10 = 000001) and have no effect for any other panel type. This register determines the width of the PS2 signal before toggling (in PCLKs). Note This register must be programmed such that the following formula is valid. (REG[0098h] bits 6-0) > 0 172 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[009Ah] HR-TFT PS3 Signal Width Register Default = 0064h Read/Write n/a 15 n/a 14 13 12 11 PS3 Signal Width bits 6-0 10 9 8 7 6 5 4 3 2 1 0 bit 6-0 PS3 Signal Width bits [6:0] These bits are for HR-TFT panels only (REG[0032h] bits 15-10 = 000001) and have no effect for any other panel type. This register determines the width of the PS3 signal in PCLKs. Note This register must be programmed such that the following formula is valid. (REG[009Ah] bits 6-0) > 0 REG[009Eh] HR-TFT REV Toggle Point Register Default = 000Ah Read/Write n/a 15 14 n/a 13 12 11 10 REV Toggle bits 4-0 9 8 7 6 5 4 3 2 1 0 bit 4-0 REV Toggle bits [4:0] These bits are for HR-TFT panels only (REG[0032h] bits 15-10 = 000001) and have no effect for any other panel type. This register determines the width in PCLKs to toggle the REV signal prior to the LP rising edge. REG[009E] bits[4:0] = REV toggle position in PCLKs Note This register must be programmed such that the following formula is valid. (REG[009Eh] bits 4-0) > 0 REG[00A0h] HR-TFT PS1/2 End Register Default = 0007h Read/Write n/a 15 14 13 n/a 12 11 10 9 PS1/2 End bits 2-0 8 7 6 5 4 3 2 1 0 bit 2-0 PS1/2 End bits [2:0] These bits are for HR-TFT panels only (REG[0032h] bits 15-10 = 000001) and have no effect for any other panel type. This register allows the PS signal to continue into the vertical non-display period (in lines). Note This register must be programmed such that the following formula is valid. VT > (REG[00A0h] bits 2-0) + VDP + VPS + 1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 173 Registers REG[00A2h] Type 2 TFT Configuration Register 0 Default = 0000h Read/Write POL Type n/a AP Pulse Width bits 2-0 15 14 n/a 13 12 11 VCLK Hold bits 1-0 7 6 5 4 3 n/a AP Rising Position bits 1-0 10 n/a 9 8 VCLK Setup bits 1-0 2 1 0 bit 15 POL Type This bit is for Type 2 TFT panels only (REG[0032h] bits 15-10 = 000011) and has no effect for any other panel type. This bit selects how often the POL signal is toggled. The GPIO2 pin controls the POL signal used for the TFT Type 2 Interface. When this bit = 0, the POL signal is toggled every line. When this bit = 1, the POL signal is toggled every frame. bits 13-11 AP Pulse Width bits [2:0] These bits are for Type 2 TFT panels only (REG[0032h] bits 15-10 = 000011) and have no effect for any other panel type. These bits specify the AP Pulse Width used for the TFT Type 2 Interface. The GPIO1 pin controls the AP signal for the TFT Type 2 Interface. Table 10-23: AP Pulse Width bits 9-8 REG[00A2h] bits 13-11 AP Pulse Width (in PCLKs) 000 20 001 40 010 80 011 120 100 150 101 190 110 240 111 270 AP Rising Position bits [1:0] These bits are for Type 2 TFT panels only (REG[0032h] bits 15-10 = 000011) and have no effect for any other panel type. These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE (STB) to the rising edge of GPIO1 (AP). The parameter is selected as follows. Table 10-24: AP Rising Position 174 REG[00A2h] bits 9-8 AP Rising Position (in PCLKs) 00 40 01 52 10 68 11 90 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bits 4-3 VCLK Hold bits [1:0] These bits are for Type 2 TFT panels only (REG[0032h] bits 15-10 = 000011) and have no effect for any other panel type. These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE (STB) to the falling edge of GPIO0 (VCLK). The parameter is selected as follows. Table 10-25: VCLK Hold bits 1-0 REG[00A2h] bits 4-3 VCLK Hold (in PCLKs) 00 7 01 9 10 12 11 16 VCLK Setup bits [1:0] These bits are for Type 2 TFT panels only (REG[0032h] bits 15-10 = 000011) and have no effect for any other panel type. These bits specify the TFT Type 2 AC timing parameter from the rising edge of GPIO0 (VCLK) to the rising edge of FPLINE (STB). The parameter is selected as follows. Table 10-26: VCLK Setup REG[00A2h] bits 1-0 VCLK Setup (in PCLKs) 00 7 01 9 10 12 11 16 REG[00A4h] Casio TFT Timing Register 0 Default = 0E09h Read/Write n/a 15 GRES Falling Edge to GPCK Rising Edge bits 5-0 14 13 12 6 5 4 n/a 7 11 10 GPCK Rising Edge to GRES Rising Edge bits 5-0 3 2 9 8 1 0 bits 13-8 GRES Falling Edge to GPCK Rising Edge bits[5:0] These bits are for Casio TFT panels only (REG[0032h] bits 15-10 = 000010) and have no effect for any other panel type. These bits determine the number of PCLKs from GRES falling edge to GPCK rising edge. GRES falling edge to GPCK rising edge = (REG[00A4h] bits 13-8) + 1 bits 5-0 GPCK Rising Edge to GRES Rising Edge bits[5:0] These bits are for Casio TFT panels only (REG[0032h] bits 15-10 = 000010) and have no effect for any other panel type. These bits determine the number of PCLKs from GPCK rising edge to GRES rising edge. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 175 Registers REG[00A6h] Casio TFT Timing Register 1 Default = 0918h Read/Write n/a GPCK Rising Edge to STH Pulse bits 5-0 15 n/a 14 13 7 6 5 12 11 10 GRES Falling Edge to FRP Toggle Point bits 6-0 4 3 2 9 8 1 0 bits 13-8 GPCK Rising Edge to STH Pulse bits[5:0] These bits are for Casio TFT panels only (REG[0032h] bits 15-10 = 000010) and have no effect for any other panel type. These bits determine the number of PCLKs from GPCK rising edge to STH pulse. bits 6-0 GRES Falling Edge to FRP Toggle Point bits[6:0] These bits are for Casio TFT panels only (REG[0032h] bits 15-10 = 000010) and have no effect for any other panel type. These bits determine the number of PCLKs from GRES falling edge to FRP Toggle point. REG[00A8h] Type 2 TFT Configuration Register 1 Default = 0000h Read/Write n/a 15 14 13 12 11 10 9 8 Data Compare Invert Enable 3 2 1 0 n/a 7 bit 0 6 5 4 Data Compare Invert Enable This bit can be used to lower power consumption for TFT Type 2 Interfaces. The Data Compare and Invert function reduces the amount of data toggled by counting the number of bits that are changed (1 to 0 or 0 to 1) from the previous pixel data. If more than half of the bits are changed the data is inverted and the lesser amount of bits are toggled. For all other panel interfaces it has no effect. When this bit = 0, the Data Compare and Invert functions are disabled. When this bit = 1, the Data Compare and Invert functions are enabled. REG[00AAh] through REG[00ECh] are Reserved These registers are Reserved and should not be written. 176 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[00EEh] Partial Drive Area0 Start Line Register Default = 0000h Partial Drive Enable Reserved Reserved 15 14 13 7 6 5 Reserved Read/Write n/a 12 11 Partial Drive Area0 Start Line bits 7-0 4 3 Partial Drive Area0 Enable Partial Drive Area0 Start Line bits 9-8 10 9 8 2 1 0 bit 15 Partial Drive Enable When this bit = 0, normal mode is enabled (partial drive is disabled). When this bit = 1, a Partial Drive cycle starts from the next frame. bit 14 Reserved The default value for this bit is 0. bit 13 Reserved The default value for this bit is 0. bit 12 Reserved The default value for this bit is 0. bit 10 Partial Drive Area0 Enable The Partial Drive Enable bit (REG[00EEh] bit 15) must be set to 1 before Partial Drive Area0 can be enabled. When this bit = 1, Partial Drive Area0 is enabled. When this bit = 0, Partial Drive Area0 is disabled. bits 9-0 Partial Drive Area0 Start Line bits [9:0] These bits specify the Partial Drive Area0 Start Line number in 1 line resolution. REG[00EEh] bits 9-0 = Partial Drive Start Line in lines Note Partial Drive Area0 Start Line must be set as smaller than Partial Drive Area1 Start Line Address. Note These bits must be programmed such that the following formulas are valid: REG[00EEh] bits 9-0 > REG[004Eh] bits 9-0 REG[00EEh] bits 9-0 = Partial Area0/1 Display Start in lines + REG[004Eh] REG[00EEh] bits 9-0  REG[0052h] bits 8-0 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 177 Registers REG[00F0h] Partial Drive Area0 End Line Register Default = 0000h n/a 15 Reserved 14 13 Read/Write Reserved 12 n/a 11 Partial Drive Area0 End Line bits 9-8 10 9 8 2 1 0 Partial Drive Area0 End Line bits 7-0 7 6 5 4 3 bit 13 Reserved The default value for this bit is 0. bit 12 Reserved The default value for this bit is 0. bits 9-0 Partial Drive Area0 End Line bits [9:0] These bits specify the Partial Drive Area0 End Line in 1 line resolution. REG[00F0h] bits 9-0 = Partial Drive Area0 End Line in lines Note The Partial Drive Area0 End Line must be set at least 1 line smaller than the Partial Drive Area1 Start Line Address. Note The Partial Drive End Line bits indicate the line at which the partial area will end. For example, to display 30 lines at the beginning of the display, set the Start to 1 and the End to 29. REG[00F2h] Partial Drive Area1 Start Line Register Default = 0000h Read/Write Partial Drive Area1 Enable n/a bit 10 178 15 14 13 7 6 5 12 11 Partial Drive Area1 Start Line bits 7-0 4 3 Partial Drive Area1 Start Line bits 9-8 10 9 8 2 1 0 Partial Drive Area1 Enable The Partial Drive Enable bit (REG[00EEh] bit 15) must be set to 1 before Partial Drive Area1 can be enabled. When this bit = 1, Partial Drive Area1 is enabled. When this bit = 0, Partial Drive Area1 is disabled. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bits 9-0 Partial Drive Area1 Start Line bits [9:0] These bits specify the Partial Drive Area1 Start Line number in 1 line resolution. REG[00F2h] bits 9-0 = Partial Drive Start Line in lines Note The Partial Drive Area1 Start Line must be set at least 1 line larger than the Partial Drive Area0 End Line Address. Note These bits must be programmed such that the following formulas are valid: REG[00F2h] bits 9-0 > REG[004Eh] bits 9-0 REG[00F2h] bits 9-0 = Partial Area0/1 Display Start in lines + REG[004Eh] REG[00F2h] bits 9-0  REG[0052h] bits 8-0 REG[00F4h] Partial Drive Area1 End Line Register Default = 0000h Read/Write n/a 15 14 13 Partial Drive Area1 End Line bits 9-8 12 11 10 9 8 2 1 0 Partial Drive Area1 End Line bits 7-0 7 bits 9-0 6 5 4 3 Partial Drive Area1 End Line bits [9:0] These bits specify the Partial Drive Area1 End Line number in 1 line resolution. REG[00F4h] bits 9-0 = Partial Drive Area1 End Line Number in Lines Note The Partial Drive Area0 End Line must be set at least 3 lines smaller than the Partial Drive Area1 Start Line Address. Note The Partial Drive End Line bits indicate the line at which the partial area will end. For example, to display 30 lines at the beginning of the display set the Start to 1 and the End to 29. REG[00F6h] through REG[00FCh] are Reserved These registers are Reserved and should not be written. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 179 Registers REG[00FEh] LCD Interface ID Register Default = 0001h Read/Write LCD Interface Address ID bits 7-0 15 14 13 7 6 5 12 11 LCD Interface Data ID bits 7-0 4 3 10 9 8 2 1 0 bits 15-8 LCD Interface Address ID bits [7:0] These bits, along with REG[0034h] bits 15-8, indicate the address for the serial command interface of the TFT Type 5 panel. bits 7-0 LCD Interface Data ID bits [7:0] (default = 01h) These bits, along with REG[0034h] bits 7-0, indicate the data for the serial command interface of the TFT Type 5 panel. Note The serial command interface consists of four bytes of data as follows: 1. Identify register address (REG[00FEh] bits 15-8). 2. Register address (REG[0034h] bits 15-8). 3. Identify register data (REG[00FEh] bits 7-0). 4. Register data (REG[0034h] bits 7-0). REG[00FEh] is written first, then REG[0034h]. The command transfer is started after writing REG[0034h]. 180 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.8 Camera Interface Setting Register REG[0100h] Camera1 Clock Setting Register Default = 0000h Read/Write n/a 15 14 n/a 13 12 11 7 6 5 4 3 bits 4-0 10 9 Camera1 Clock Divide Select bits 4-0 2 1 8 0 Camera1 Clock Divide Select bits[4:0] These bits specify the divide ratio used to generate the Camera1 Clock from the System Clock. Table 10-27: Camera1 Clock Divide Ratio Selection 00000 00001 00010 00011 Camera1 Clock Divide Ratio 1:1 2:1 3:1 4:1 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 REG[0100h] bits 4-0 S1D13715 Hardware Functional Specification Rev. 7.4 10000 10001 10010 10011 Camera1 Clock Divide Ratio 17:1 18:1 19:1 20:1 5:1 6:1 7:1 8:1 9:1 10:1 10100 10101 10110 10111 11000 11001 21:1 22:1 23:1 24:1 25:1 26:1 11:1 12:1 13:1 14:1 15:1 16:1 11010 11011 11100 11101 11110 11111 27:1 28:1 29:1 30:1 31:1 32:1 REG[0100h] bits 4-0 Seiko Epson Corporation 181 Registers REG[0102h] Camera1 Signal Setting Register Default = 0000h Read/Write n/a 15 n/a 14 Camera1 Interface Select 13 Camera1 Clock Mode Select 6 5 7 12 11 Camera1 YUV Data Format Select bits 1-0 4 10 Camera1 HSYNC Active Select 9 Camera1 VSYNC Active Select 8 Camera1 Valid Input Clock Edge 2 1 0 3 bit 6 Camera1 Interface Select This bit specifies the Camera1 Interface type. When this bit = 0, the Camera1 interface is configured for YUV 4:2:2 8-bit. When this bit = 1, the Camera1 interface is configured for YUV 4:2:2 16-bit. bit 5 Camera1 Clock Mode Select This bit determines the source of the clock used to sample incoming YUV data on the Camera1 interface. When this bit = 0, the external input clock (CM1CLKIN) from the camera interface is used to sample incoming YUV data (default). When this bit = 1, the internally divided system clock is used to sample incoming YUV data. bits 4-3 Camera1 YUV Data Format Select bits [1:0] These bits specify the YUV data format for the Camera1 interface, in bytes. Table 10-28: YUV Data Format Selection REG[0102h] bits 4-3 YUV Data Format (8-bit format) 00 (1st) UYVY (last) 01 (1st) VYUY (last) 10 (1st) YUYV (last) 11 (1st) YVYU (last) YUV Data Format (16-bit format) (1st cam1) U V (last) (1st cam2) Y Y (last) (1st cam1) V U (last) (1st cam2) Y Y (last) (1st cam1) Y Y (last) (1st cam2) U V (last) (1st cam1) Y Y (last) (1st cam2) V U (last) bit 2 Camera1 HSYNC Active Select This bit defines HYSNC for the Camera1 interface. When this bit = 0, the Camera1 HSYNC (CM1HREF) is active low and CM1HREF high means data is valid. When this bit = 1, the Camera1 HSYNC (CM1HREF) is active high and CM1HREF low means data is valid. bit 1 Camera1 VSYNC Active Select This bit defines VYSNC for the Camera1 interface. When this bit = 0, the Camera1 VSYNC (CM1VREF) is active low and CM1VREF high means data is valid. When this bit = 1, the Camera1 VSYNC (CM1VREF) is active high and CM1VREF low means data is valid. 182 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 0 Camera1 Valid Input Clock Edge This bit determines the edge on which Camera1 data is latched. When this bit = 0, the S1D13715 latches input data on the rising edge of the clock (CM1CLKIN). When this bit = 1, S1D13715 latches input data on the falling edge of the clock (CM1CLKIN). REG[0104h] Camera2 Clock Divide Select Register Default = 0000h Read/Write n/a 15 14 n/a 13 12 11 7 6 5 4 3 bits 4-0 10 9 Camera2 Clock Divide Select bits 4-0 2 1 8 0 Camera2 Clock Divide Select bits[4:0] These bits specify the divide ratio used to generate the Camera2 Clock from the System Clock. Table 10-29: Camera2 Clock Divide Ratio Selection REG[0102h] bits 4-0 Camera2 Clock Divide Ratio REG[0102h] bits 4-0 Camera2 Clock Divide Ratio 00000 00001 00010 00011 00100 00101 1:1 2:1 3:1 4:1 5:1 6:1 10000 10001 10010 10011 10100 10101 17:1 18:1 19:1 20:1 21:1 22:1 00110 00111 01000 01001 01010 01011 7:1 8:1 9:1 10:1 11:1 12:1 10110 10111 11000 11001 11010 11011 23:1 24:1 25:1 26:1 27:1 28:1 01100 01101 01110 01111 13:1 14:1 15:1 16:1 11100 11101 11110 11111 29:1 30:1 31:1 32:1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 183 Registers REG[0106h] Camera2 Input Signal Format Select Register Default = 0000h Read/Write n/a 15 14 Camera2 Interface Select bits 1-0 7 bits 7-6 6 13 Camera2 Clock Mode Select 5 12 11 Camera2 YUV Data Format Select bits 1-0 4 10 Camera2 HSYNC Active Select 9 Camera2 VSYNC Active Select 8 Camera2 Valid Input Clock Edge 2 1 0 3 Camera2 Interface Select bits [1:0] These bits specify the Camera2 Interface type. Table 10-30: YUV Data Format Selection REG[0106h] bits 7-6 00 01 10 11 YUV Format Camera Interface MPEG Codec Interface Reserved Reserved bit 5 Camera2 Clock Mode Select This bit determines the source of the clock used to sample incoming YUV data on the Camera2 interface. When this bit = 0, the external input clock from the camera interface is used to sample incoming YUV data (default). When this bit = 1, the internally divided system clock (CM2CLKIN) is used to sample incoming YUV data. bits 4-3 Camera2 YUV Data Format Select bits[1:0] These bits specify the YUV data format for the Camera2 interface, in bytes. Table 10-31: YUV Data Format Selection REG[0106h] bits 4-3 00 01 10 11 YUV Format (1st) UYVY (last) (1st) VYUY (last) (1st) YUYV (last) (1st) YVYU (last) bit 2 Camera2 HSYNC Active Select This bit defines HYSNC for the Camera2 interface. When this bit = 0, the Camera2 HSYNC (CM2HREF) is active low and CM2HREF high means data is valid. When this bit = 1, the Camera2 HSYNC (CM2HREF) is active high and CM2HREF low means data is valid. bit 1 Camera2 VSYNC Active Select This bit defines VYSNC for the Camera2 interface. When this bit = 0, the Camera2 VSYNC (CM2VREF) is active low and CM2VREF high means data is valid. When this bit = 1, the Camera2 VSYNC (CM2VREF) is active high and CM2VREF low means data is valid. 184 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 0 Camera2 Valid Input Clock Edge This bit determines the edge on which Camera2 data is latched. When this bit = 0, the S1D13715 latches input data on the rising edge of the clock (CM2CLKIN). When this bit = 1, S1D13715 latches input data on the falling edge of the clock (CM2CLKIN). REG[0108h] through REG[010Eh] are Reserved These registers are Reserved and should not be written. REG[0110h] Camera Mode Setting Register Default = 0000h Reserved n/a Camera2 Active Pull-down Disable 15 ITU-R BT656 Enable 14 13 7 6 Read/Write Camera1 Active Pull-down Disable 12 n/a 11 Camera Mode Select bits 2-0 5 Reserved 10 9 8 Camera Module Enable 1 0 Clock Output Port Select bits 2-0 4 3 2 YUV Data Offset Enable bit 15 Reserved The default value for this bit is 0. bit 13 Camera2 Active Pull-down Disable This bit controls the active pull-down resistors on the Camera2 interface. When this bit = 1, the active pull-down resistors on the Camera2 interface are disabled. When this bit = 0, the active pull-down resistors on the Camera2 interface are enabled. bit 12 Camera1 Active Pull-down Disable This bit controls the active pull-down resistors on the Camera1 interface. When this bit = 1, the active pull-down resistors on the Camera1 interface are disabled. When this bit = 0, the active pull-down resistors on the Camera1 interface are enabled. bit 9 Reserved The default value for this bit is 0. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 185 Registers bit 8 YUV Data Offset Enable This bit determines whether the incoming U and V data from the camera interface is internally offset. Typically, camera modules output in YUV or YCbCr offset format, therefore this bit is cleared or set to 0. If the camera data is intended for viewing after the YUV/RGB Converter (YRC), or encoding through the JPEG codec, the resulting YUV data format should be YUV or YCbCr offset. When this bit = 0, no offset is applied to the incoming U and V camera (UV values are unmodified). When this bit = 1, an offset is applied to the incoming U and V camera data, the incoming U and V camera data MSB are inverted. Note For YUV to RGB Converter (YRC) input requirements, see the bit description for REG[0240h] bit 4. Table 10-32: YUV/YUV Offset Enable REG[0110h] bits 8 YUV Data Offset Input Data Range Output Data Range 0  Y  255 -128  U  127 0 -128  V  127 No offset is applied 16  Y  235 Same as Input -113  U  112 -113  V  112 Camera format: YUV Straight range converted to YUV Offset range 1 Camera format: YCbCr Straight range converted to YCbCr Offset range bit 7 186 0  Y  255 0  Y  255 0  U  255 -128  U  127 0  V  255 -128  V  127 16  Y  235 16  Y  235 16  U  240 -113  U  112 16  V  240 -113  V  112 ITU-R BT656 Enable This bit controls the active camera interface type and is valid when the interface type is YUV 4:2:2 8-bit (see REG[0102h] bit 6). When this bit = 0, the normal camera interface is active. In this mode the HSYNC, VSYNC, clock, and data signals are independent. When this bit = 1, the ITU-R BT656 camera interface is active. In this mode the HSYNC and VSYNC signals are mixed with the data signals. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 6-4 Camera Mode Select bits [2:0] These bits select the active camera mode. Table 10-33: Camera Mode Selection REG[0110h] bits 6-4 000 001 010 (see note) 011-111 Active Camera Mode Camera1 Interface Input is Active Camera2 Interface Input is Active Camera1 Interface Input is Active and Camera2 Interface Output is Active Reserved Note This camera mode must not be selected when any of the following interfaces are selected because the Camera2 data pins are already allocated. • Camera1 interface is set for 16-bit YUV 4:2:2 (REG[0102h] bit 6 = 1) • Camera2 interface is set for MPEG Codec Interface (REG[0106h] bits 7-6 = 10) bit 3-1 Clock Output Select bits [2:0] These bits select the active clock output ports. Table 10-34: Clock Output Port Selection REG[0110h] bits 3-1 000 001 010 011 100 101-111 bit 0 Active Clock Output Port Same Active Port as selected by REG[0110h] bits 6-4 Camera1 Output Port Active Only Camera2 Output Port Active Only Both Camera1 and Camera2 Output Port Active Clock Output Inactive Reserved Camera Module Enable This bit controls the camera module. When this bit = 1, the camera module and clock output (CM1CLKOUT/CM2CLKOUT) are enabled. When this bit = 0, the camera module and clock output (CM1CLKOUT/CM2CLKOUT) are disabled. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 187 Registers REG[0112h] Camera Frame Setting Register Default = 0000h Read/Write n/a 15 14 Camera Frame Capture Interrupt Control Camera Single Frame Capture Enable 7 6 bit 7 13 Camera Frame Capture Interrupt Status Always Active 12 5 4 11 10 Frame Sampling Control bits 2-0 3 2 9 8 Camera Frame Capture Interrupt Polarity Camera Frame Capture Interrupt Enable 1 0 Camera Frame Capture Interrupt Control This bit controls when the camera frame capture interrupt is asserted and depends on the setting of the Camera Single Frame Capture Mode bit (REG[0112h] bit 6) as follows. For continuous frame capture mode (REG[0112h] bit 6 = 0): When this bit = 0, the interrupt is generated when a valid frame is captured. This result also depends on the Camera Frame Capture Interrupt Status Always Active bit (REG[0112h] bit 5). When this bit = 1, the interrupt is generated after a valid frame is captured and the capture is stopped. For single frame capture mode (REG[0112h] bit 6 = 1): When this bit = 0, the interrupt is generated when a valid frame is captured. This result also depends on the Camera Frame Capture Interrupt Status Always Active bit (REG[0112h] bit 5). When this bit = 1, the interrupt is generated when a valid frame is captured. Note When this bit = 1, the Camera Frame Capture Interrupt Status Always Active bit (REG[0112h] bit 5) has no effect on camera frame interrupt generation. bit 6 Camera Single Frame Capture Enable This bit controls the camera frame capture mode of the camera interface. This bit must not be changed while the camera module is enabled (REG[0110h] bit 0 = 1). When this bit = 0, frames from the camera interface are continuously captured. When this bit = 1, the next frame from the camera interface is captured when a camera frame capture start command is issued (REG[0114h] bit 2 = 1). The camera frame capture stops after a single frame is captured. bit 5 Camera Frame Capture Interrupt Status Always Active When Camera Frame Capture Interrupts are enabled (REG[0112h] bit 0 =1b) this bit enables triggering of the camera frame capture interrupt on all captured camera frames. This bit has no effect if Camera Frame Capture Interrupts are disabled When this bit = 0, the camera frame capture interrupt flag is only active when the JPEG Start/Stop Control bit is on, REG[098Ah] bit 0 =1. When this bit = 1, the camera frame capture interrupt flag is active on all captured camera frames. 188 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bits 4-2 Frame Sampling Control Bits [2:0] These bits control the camera data sampling rate in frames. Table 10-35: Frame Sampling Control Selection REG[0112h] bits 4-2 000 001 010 011 100 101 110 111 Frame Sampling Mode Every Frame is sampled 1 Frame is sampled for every 2 Frames 1 Frame is sampled for every 3 Frames 1 Frame is sampled for every 4 Frames 1 Frame is sampled for every 5 Frames 1 Frame is sampled for every 6 Frames 1 Frame is sampled for every 7 Frames Reserved bit 1 Camera Frame Capture Interrupt Trigger Polarity This bit controls the assertion timing of the camera frame capture interrupt. When this bit = 0, the Camera Frame Capture Interrupt is asserted when VSYNC is active. When this bit = 1, the Camera Frame Capture Interrupt is asserted when VSYNC is inactive. bit 0 Camera Frame Capture Interrupt Enable This bit controls whether a camera frame capture interrupt is generated or not. When this bit = 0, the camera frame capture interrupt is disabled. When this bit = 1, the camera frame capture interrupt is enabled. REG[0114h] Camera Control Register Default = 0000h Write Only n/a 15 14 13 12 n/a 7 6 5 4 11 10 Camera Frame Capture Stop Camera Frame Capture Start 3 2 ITU-R BT656 Error Flag 1 Clear ITU-R BT656 Error Flag 0 Clear 9 Camera Frame Capture Interrupt Status Clear 8 Camera Module Software Reset 1 bit 9 ITU-R BT656 Error Flag 1 Clear (Write Only) This bit only has an effect when ITU-R BT656 interface mode is active (REG[0110h] bit 7 = 1). Writing a 1 to this bit clears the ITU-R BT656 Error Flag 1 (REG[0116h] bit 9). Writing a 0 to this bit has no hardware effect. bit 8 ITU-R BT656 Error Flag 0 Clear (Write Only) This bit only has an effect when ITU-R BT656 interface mode is active (REG[0110h] bit 7 = 1). Writing a 1 to this bit clears the ITU-R BT656 Error Flag 0 (REG[0116h] bit 8). Writing a 0 to this bit has no hardware effect. bit 3 Camera Frame Capture Stop (Write Only) This bit stops image frame capturing from the camera interface. Writing a 1 to this bit stops image frame capturing. Writing a 0 to this bit has no hardware effect. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 0 189 Registers bit 2 Camera Frame Capture Start (Write Only) This bit starts image frame capturing from the camera interface. Writing a 1 to this bit starts image frame capturing. Writing a 0 to this bit has no hardware effect. bit 1 Camera Frame Capture Interrupt Status Clear (Write Only) This bit clears the Camera Frame Capture Interrupt Status bit (REG[0116h] bit 1). Writing a 1 to this bit clears the Camera Frame Capture Interrupt Status. Writing a 0 to this bit has no hardware effect. bit 0 Camera Module Software Reset (Write Only) This bit initializes the camera module logic. Camera interface registers are not affected. Writing a 1 to this bit initializes the camera module. Writing a 0 to this bit has no hardware effect. REG[0116h] Camera Status Register Default = 0044h Read Only n/a bit 9 15 14 13 12 n/a Camera Vsync Effective Strobe Frame Status Effective Frame Status 7 6 5 4 ITU-R BT656 Error Flag 1 ITU-R BT656 Error Flag 0 8 11 Camera Frame Capture Busy Status 10 Camera Frame Capture Start/Stop Flag 9 Camera Frame Capture Interrupt Status 3 2 1 n/a 0 ITU-R BT656 Error Flag 1 (Read Only) This bit only has an effect when ITU-R BT656 interface mode is active (REG[0110h] bit 7 = 1). When this bit = 1, a 2-bit error is detected on the reference decode operation. When this bit = 0, no error has occurred. To clear this bit, see REG[0114h] bit 9. bit 8 ITU-R BT656 Error Flag 0 (Read Only) This bit only has an effect when ITU-R BT656 interface mode is active (REG[0110h] bit 7 = 1). When this bit = 1, a 1-bit error is detected on the reference decode operation. When this bit = 0, no error has occurred. To clear this bit, see REG[0114h] bit 8. bit 6 Camera VSYNC (Read Only) This bit indicates the current condition of VSYNC from the camera interface. When this bit = 1, VSYNC is currently occurring. When this bit = 0, VSYNC is not currently occurring. bit 5 Effective Strobe Frame Status (Read Only) This bit indicates the status of the valid data captured when the strobe is enabled (REG[0124h] bit 0 = 1). This bit goes high when the valid frame for the strobe pulse is captured. It will only remain high for one frame and then go low. This bit returns a 1, when the valid frame for the strobe pulse is captured. It remains high for only one frame and then goes low. This bit returns a 0, when there is no valid data. 190 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 4 Effective Frame Status (Read Only) This bit indicates whether the current frame from the camera interface is an “effective” frame based on the Frame Sampling Control bits (REG[0112h] bit 4-2). When this bit = 1, an effective frame is occurring. When this bit = 0, an effective frame is not occurring. The following diagram shows an example of the Effective Frame Status bit where the Frame Sampling Control bits are set for 1 frame sampled for every 3 frames (REG[0112h] bits 4-2 = 010). Camera VSYNC REG[0116h] bit 6 Camera Data Invalid Valid Invalid Valid Invalid Effective Frame Status REG[0116h] bit 4 Figure 10-1: Effective Frame Status Bit Example bit 3 Camera Frame Capture Busy Status (Read Only) This bit indicates the status of frame capturing from the camera interface. When this bit = 1, frames are being captured. When this bit = 0, frames are not being captured. bit 2 Camera Frame Capture Start/Stop Flag (Read Only) This bit indicates the current state of the camera frame capture setting in relation to the setting of the Camera Frame Capture Start/Stop bits (REG0114h] bits 3-2). When this bit = 1, the camera frame capturing start command has been asserted. When this bit = 0, camera frame capturing has been stopped. bit 1 Camera Frame Capture Interrupt Status (Read Only) This bit indicates when a Camera Frame Capture Interrupt has taken place. This bit is masked by the Camera Frame Capture Interrupt Enable bit (REG[0112h] bit 0) and cleared using the Camera Frame Capture Interrupt Status Clear bit (REG[0114h] bit 1). When this bit = 1, a camera frame capture interrupt has occurred. When this bit = 0, a camera frame capture interrupt has not occurred. Note When the Camera Frame Capture Interrupt is enabled (REG[0112h] bit 0 = 1) and the Camera Frame Capture Interrupt Status Always Active is enabled (REG[0112h] bit 5 = 0), the camera frame capture interrupt is only set at the first camera VREF if continuous capture mode is selected (REG[0112h] bit 6 = 0). Note This bit is set regardless of whether the resizers are enabled. Therefore, the Camera Frame Capture Interrupt Status bit cannot be used as an indication that a camera frame has been written to the embedded memory or the JPEG Codec. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 191 Registers REG[0120h] Strobe Line Delay Register Default = 0000h Read/Write Strobe Line Delay bits 15-8 15 14 13 7 6 5 bit 15-0 12 11 Strobe Line Delay bits 7-0 4 3 10 9 8 2 1 0 Strobe Line Delay bits [15:0] When the strobe is enabled (REG[0124h] bit 0 = 1), these bits specify the delay, in lines of the camera interface, from the first HSYNC input of a camera frame to the beginning of the Strobe Control Signal. For details on the Strobe Control Signal, see Section 20.2, “Strobe Control Signal” on page 396. REG[0122h] Strobe Pulse Width Register Default = 0000h Read/Write Strobe Pulse Width bits 15-8 15 14 13 7 6 5 bit 15-0 192 12 11 Strobe Pulse Width bits 7-0 4 3 10 9 8 2 1 0 Strobe Pulse Width bits [15:0] When the strobe is enabled (REG[0124h] bit 0 = 1), these bits specify the pulse width of the Strobe Control Signal, in lines of the camera interface. For details on the Strobe Control Signal, see Section 20.2, “Strobe Control Signal” on page 396. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0124h] Strobe Control Register Default = 0000h Read/Write n/a 15 14 13 12 Strobe Capture Delay Control bits 3-0 7 bit 7-4 6 5 4 11 Strobe Port Enable 3 10 Reserved 2 9 Strobe Control Signal Polarity 1 8 Strobe Enable 0 Strobe Capture Delay Control bits [3:0] When the strobe is enabled (REG[0124h] bit 0 = 1) and continuous frame capture mode is enabled (REG[0112h] bit 6 = 0), these bits specify the delay, in camera frames, from when the strobe signal (GPIO20) is output until camera data is captured by the JPEG encoder. This register has no effect when the strobe is disabled or when single frame capture mode is enabled (REG[0112h] bit 6 = 1). Table 10-36: Strobe Capture Delay Control REG[0124h] bits 7-4 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Delay Value No Delay 1 Frame 2 Frames 3 Frames 4 Frames 5 Frames 6 Frames 7 Frames 8 Frames 9 Frames 10 Frames 11 Frames 12 Frames 13 Frames 14 Frames 15 Frames bit 3 Strobe Port Enable When the strobe is enabled (REG[0124h] bit 0 = 1), this bit configures the output port used for the Strobe Control Signal. When this bit = 1, GPIO20 is used as the output for the Strobe Control Signal. When this bit = 0, GPIO20 is a normal general purpose IO pin. bit 2 Reserved The default value for this bit is 0. bit 1 Strobe Control Signal Polarity This bit selects output polarity of the Strobe Control Signal. When this bit = 1, the strobe control signal is active high. When this bit = 0, the strobe control signal is active low. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 193 Registers bit 0 Strobe Enable This bit controls the Strobe function. This bit must remain enabled for the entire duration of the delay value (REG[0124h] bits 7-4), otherwise the strobe will be disabled immediately when the Strobe Enable bit is set to 0. When this bit = 1, the strobe function is enabled and a strobe pulse is output on GPIO20 when a JPEG encode is started (REG[098Ah] bit 0 = 1), or when the camera frame capture is stopped (REG[0114h] bit 3 = 1) in continuous capture mode, or when a single frame is captured in single frame capture mode (REG[0112h] bit 6 = 1 and REG[0114h] bit 2 = 1). When this bit = 0, the strobe function is disabled. Typically the strobe signal controls the external camera flash and is used in conjunction with the camera interface and JPEG encoder to capture or display the optimal camera image after the camera flash has gone off. The strobe function can be used for the following: • After a JPEG encode has been started, to delay the camera frame from being encoded as specified in REG[0126h] bits 7-4. This is only available in continuous frame capture mode. • To memory encode the specified delayed camera image and main window image after the continuous frame capture has been stopped. • To generate a strobe signal every time a camera frame is captured in single frame capture mode. REG[0128h] MPEG Interface VSYNC Width register Default = 0000h Read/Write MPEG Interface VSYNC Width bits 9-8 n/a 15 14 13 7 6 5 bits 9-0 12 11 MPEG Interface VSYNC Width bits 7-0 4 3 10 9 8 2 1 0 MPEG Interface VSYNC Width bits [9:0] When the MPEG interface is enabled, these bits specify the Vertical Total Period for a MPEG interface chip. REG[0128h] bits 9-0 = Vertical Total -1 REG[012Ah] MPEG Interface HSYNC Width register Default = 0000h Read/Write MPEG Interface HSYNC Width bits 9-8 n/a 15 14 13 7 6 5 bits 9-0 12 11 MPEG Interface HSYNC Width bits 7-0 4 3 10 9 8 2 1 0 MPEG Interface HSYNC Width bits[9:0] When the MPEG interface is enabled, these bits specify the Horizontal Total Period for MPEG interface chip. REG[012Ah] bits 9-0 = Horizontal Total -1 194 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[012Ch] through REG[012Fh] are Reserved These registers are Reserved and should not be written. 10.4.9 Display Mode Setting Register REG[0200h] Display Mode Setting Register 0 Default = 0000h n/a 15 LCD Software Reset (WO) 14 LCD Memory Image JPEG Encode Enable 7 6 Read/Write Double Buffer Window Select Double Buffer Mode Enable n/a Memory Image JPEG Encode Status (RO) 13 12 11 10 LUT2 Bypass Enable LUT1 Bypass Enable 5 4 Display Mode Select bits 1-0 9 PIP+ Window Bpp Select bits 1-0 3 8 Main Window Bpp Select bits 1-0 2 1 0 bit 13 Double Buffer Window Select This bit controls which window (Main or PIP+) is affected when Double Buffer Mode is enabled (REG[0200h] bit 12 = 1). When this bit = 1, the Main window area is double buffered. When this bit = 0, the PIP+ window area is double buffered. bit 12 Double Buffer Mode Enable This bit controls double buffer mode. When double buffer mode is enabled, the window to be double buffered must be selected using the Double Buffer Window Select bit (REG[0200h] bit 13). The corresponding Main/PIP+ window area settings, such as the Display Start Address and the Line Address Offset registers, specify the front buffer display start address and line address offset. The back buffer uses the same line address offset as the front buffer, however it’s display start address is now controlled by the Back Buffer Display Start Address registers (REG[022Ch]-[022Ah]). The following table summarizes the possible address and offset configurations. When this bit = 1, double buffer mode is enabled. When this bit = 0, double buffer mode is disabled. Table 10-37: Double Buffer Address Registers Double Buffer Window Select (REG[0200h] bit 13) Front Buffer Start Address Back Buffer Offset Start Address Offset double buffer = Main REG[0212h]-[0210h] REG[0216h] REG[022Ch]-[022Ah] REG[0216h] double buffer = PIP+ REG[021Ah]-[0218h] REG[021Eh] REG[022Ch]-[022Ah] REG[021Eh] Double buffer mode in combination with double buffer write mode (REG[0240h] bit 5 = 1) can be used to enhance the performance of the camera interface, allowing the display to be refreshed from one buffer while the camera interface is writing data to the other buffer. Note If double buffer mode is enabled, but single buffer write mode is selected (REG[0240h] bit 5 = 0), only the back buffer image is displayed on the selected window (see REG[0200h] bit 13). S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 195 Registers bit 10 Memory Image JPEG Encode Status (Read Only) When this bit = 1, the memory image (or display frame) JPEG encode process is in progress. When this bit = 0, the memory image JPEG Encode process has finished or the memory image JPEG encode mode is not enabled. bit 9-8 Display Mode Select bits[1:0] These bits determine the display mode for either LCD1 or LCD2 depending on the setting of the LCD Output Port Select bits (REG[0202h] bits 12-10). Table 10-38: Display Mode Selection REG[0200h] bits 9-8 00 01 10 11 Display Mode Main Window only Main Window and PIP+ Reserved Main Window and PIP+ with Overlay bit 7 LCD Software Reset (Write Only) When this bit is set to 1, a software reset is performed on the LCD interface. When this bit is set to 0, there is no hardware effect. bit 6 LCD Memory Image JPEG Encode Enable This bit controls the memory image JPEG encode function which uses the RGB to YUV Converter (RYC). When enabled, a single frame of display data that is sent to the display is also sent to the JPEG encoder. This bit must be cleared and re-enabled for each individual Memory Image JPEG Encode process. For panels without RAM, data is sent to the JPEG encoder with the first updated frame after the mode is enabled (REG[0200h] bit 6 = 1). For panels with RAM, data is sent to the JPEG encoder using a frame forwarding trigger according to the panel type (i.e. manual transfer using REG[003Ah] bit 0 = 1). When this bit = 1, LCD memory image JPEG encode is enabled. When this bit = 0, LCD memory image JPEG encode is disabled. bit 5 LUT2 Bypass Enable LUT2 is associated with the PIP+ Window. This bit determines if LUT2 is used for output to the PIP+ Window. For more information on the display format when LUT2 is used or bypassed, see Section 13, “Display Data Formats” on page 316. When this bit = 1, LUT2 is bypassed. When this bit = 0, LUT2 is used. bit 4 LUT1 Bypass Enable LUT1 is associated with the Main Window. This bit determines if LUT1 is used for output to the Main Window. For more information on the display format when LUT1 is used or bypassed, see Section 13, “Display Data Formats” on page 316. When this bit = 1, LUT1 is bypassed. When this bit = 0, LUT1 is used. 196 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 3-2 PIP+ Window Bits-per-pixel Select bits[1:0] These bits determine the color depth for the PIP+ Window. For more information, see Section 13, “Display Data Formats” on page 316. Table 10-39: LUT2 (PIP+ Window) Color Mode Selection REG[0200h] bits 3-2 Color Depth LUT2 Bypass Enable 0 00 8 bpp 1 0 01 16 bpp 10 Reserved 11 32 bpp bit 1-0 1 0 1 0 1 Color LUT2 color format Data is handled as follows: R_data={r2, r1, r0, r2, r2, r2, r2, r2} G_data={g2, g1, g0, g2, g2, g2, g2, g2} B_data={b1, b0, b1, b1, b1, b1, b1, b1} LUT2 color format Data is handled as follows: R_data={r4, r3, r2, r1, r0, r4, r4, r4} G_data={g5, g4, g3, g2, g1, g0, g5, g5} B_data={b4, b3, b2, b1,b0, b4, b4, b4} Reserved Reserved Same as Input Data Format Main Window Bits-per-pixel Select bits[1:0] These bits determine the color depth for the Main Window. For more information, see Section 13, “Display Data Formats” on page 316. Table 10-40: LUT1 (Main Window) Color Mode Selection REG[0200h] bits 1-0 Color Depth LUT1 Bypass Enable 0 00 8 bpp 1 0 01 16 bpp 10 Reserved 11 32 bpp S1D13715 Hardware Functional Specification Rev. 7.4 1 0 1 0 1 Seiko Epson Corporation Color LUT1 color format Data is handled as follows: R_data={r2, r1, r0, r2, r2, r2, r2, r2} G_data={g2, g1, g0, g2, g2, g2, g2, g2} B_data={b1, b0, b1, b1, b1, b1, b1, b1} LUT1 color format Data is handled as follows: R_data={r4, r3, r2, r1, r0, r4, r4, r4} G_data={g5, g4, g3, g2, g1, g0, g5, g5} B_data={b4, b3, b2, b1,b0, b4, b4, b4} Reserved Reserved Same as Input Data Format 197 Registers REG[0202h] Display Mode Setting Register 1 Default = 0000h Read/Write Active LCD Port Status bits 2-0 (RO) 15 PIP+ Window Mirror Enable 7 bits 15-13 14 LCD Output Port Select bits 2-0 13 12 PIP+ Window SwivelView Mode Select bits 1-0 Reserved 6 5 4 SW Video Invert 11 Main Window Mirror Enable 10 n/a 3 2 Display Blank 9 8 Main Window SwivelView Mode Select bits 1-0 1 0 Active LCD Port Status bits[2:0] (Read Only) These bits indicate the selected output port is active. Before sending any commands, parameters, or image data to the port, confirm that the desired port is active. Note These bits are read only and are only changed using the LCD Output Port Select bits 2-0 (REG[0202h] bits 12-10). Table 10-41: Active LCD Port Status REG[0202h] bits 15-13 000 001 010 011 to 111 bits 12-10 Active LCD Port All Off LCD1 LCD2 Reserved LCD Output Port Select bits [2:0] These bits specify the valid output port. Changes to these bits take effect after the end of the current frame. The auto transfer bits (REG[003Ch] bit 0) must be cleared before changing these bits. Table 10-42: LCD Output Port Selection REG[0202h] bits 12-10 000 001 010 011 - 111 bit 9 LCD Output Port All Off LCD1 LCD2 Reserved Software Video Invert This bit determines whether the RGB type panel data output (FPDAT[17:0], GPIO[9:4]) is inverted or left unchanged (normal). This bit has an effect when the display is active and when the display is blanked (see REG[0202h] bit 8). For a summary, see Table 10-43: “LCD Interface Data Output Selection”. When this bit = 0, the panel data output is left unchanged (normal). When this bit = 1, the panel data output is inverted. Note If the Software Video Invert bit is set to 1 when configured for an 8-bit parallel panel, the FPDAT[15:8] pins will toggle. 198 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 8 Display Blank This bit blanks the display of RGB Type panels by disabling the display pipe and forcing all data outputs (FPDAT[17:0], GPIO[9:4]) low (or high). For a summary, see Table 10-43: “LCD Interface Data Output Selection”. When this bit = 0, the display is active. When this bit = 1, display is blanked and all data outputs are forced low or high based on the setting of the Software Video Invert bit (REG[0202h] bit 9). Table 10-43: LCD Interface Data Output Selection REG[0202h] bit 8 0 1 REG[0202h] bit 9 0 1 0 1 LCD Interface Data Output normal inverted forced low forced high Note For further details, see Table 5-12: “LCD Interface Pin Mapping for Mode 1,” on page 46 and Table 5-13: “LCD Interface Pin Mapping for Modes 2/3,” on page 47. bit 7 PIP+ Window Mirror Enable This bit controls the Mirror Display function for the PIP+ window. Mirror display is independently controlled for the PIP+ Window and the Main window (see REG[0202h] bit 3). When this bit = 0, mirror display for the PIP+ window is disabled. When this bit = 1, mirror display for the PIP+ window is enabled. bit 6 Reserved The default value for this bit is 0. bit 5-4 PIP+ Window SwivelView Mode Select bits[1:0] These bits select the SwivelView mode of the PIP+ window. The SwivelView mode (orientation) of the PIP+ window is independently controlled for the PIP+ window and the Main window (see bits 1-0). SwivelView is a counter-clockwise hardware rotation of the displayed image. For more information on SwivelView, see Section 14, “SwivelView™” on page 334. Table 10-44: PIP+ Window SwivelView Mode Selection bit 3 REG[0202h] bits 5-4 SwivelView Mode 00 0° (Normal) 01 90° 10 180° 11 270° Main Window Mirror Enable This bit controls the Mirror Display function for the Main Window. Mirror display is independently controlled for the PIP+ window (bit 7) and the main window. When this bit = 0, mirror display for the main window is disabled. When this bit = 1, mirror display for the main window is enabled. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 199 Registers bits 1-0 Main Window SwivelView Mode Select bits[1:0] These bits select the SwivelView mode of the Main window. The SwivelView mode (orientation) of the Main window is independently controlled for the Main window and the PIP+ window (see bits 5-4). SwivelView is a counter-clockwise hardware rotation of the displayed image. For more information on SwivelView, see Section 14, “SwivelView™” on page 334. Table 10-45: Main Window SwivelView Mode Selection 200 REG[0202h] bits 1-0 SwivelView Mode 00 0° (Normal) 01 90° 10 180° 11 270° Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0204h] Transparent Overlay Key Color Red Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 Transparent Overlay Key Color Red Data bits 7-0 4 3 10 9 8 2 1 0 Transparent Overlay Key Color Red Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the red color component of the Transparent Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. REG[0206h] Transparent Overlay Key Color Green Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 Transparent Overlay Key Color Green Data bits 7-0 4 3 10 9 8 2 1 0 Transparent Overlay Key Color Green Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the green color component of the Transparent Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 201 Registers REG[0208h] Transparent Overlay Key Color Blue Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 Transparent Overlay Key Color Blue Data bits 7-0 4 3 10 9 8 2 1 0 Transparent Overlay Key Color Blue Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the blue color component of the Transparent Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. REG[0210h] Main Window Display Start Address Register 0 Default = 0000h Read/Write Main Window Display Start Address bits 15-8 15 14 13 7 6 5 12 11 Main Window Display Start Address bits 7-0 4 3 10 9 8 2 1 0 REG[0212h] Main Window Display Start Address Register 1 Default = 0000h Read/Write n/a 15 14 13 n/a 12 11 7 6 5 4 3 10 9 8 Main Window Display Start Address bits 18-16 2 1 0 REG[0212h] bits 2-0 REG[0210h] bits 15-0 Main Window Display Start Address bits [18:0] These bits specify the Main window starting address for the LCD image in the display buffer. At a color depth of 8 bpp, this register is incremented in 8-bit steps. At 16 bpp, this register should be incremented by 16-bit steps. 16 bpp pixel data should be mapped from even memory addresses, and this register should be set to an even number. At 32 bpp , this register should be incremented by 32-bit steps. 202 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0214h] Main Window Start Address Status Register Default = 0001h Read Only n/a 15 14 13 12 11 10 9 8 Main Window Start Address Status 3 2 1 0 n/a 7 bit 0 6 5 4 Main Window Start Address Status (Read Only) When Double Buffer Mode is disabled (REG[0200h] bit 12 = 0), this bit indicates the current main window frame status. This bit is updated only after the Main Window Display Start Address has been changed. When this bit = 1, the current frame is using the latest Main Window Display Start Address values (REG[0210h] - REG[0212h]. When this bit = 0, the next frame will use the latest Main Window Display Start Address values (REG[0210h] - REG[0212h]). When Double Buffer Mode is enabled (REG[0200h] bit 12 = 1) and the Main Window is used for the front buffer (REG[0200h] bit 13 = 1), this bit indicates which buffer is currently displayed. When this bit = 1, the front buffer which corresponds to the Main window area (REG[0210h] - REG[0212h]) is being displayed. When this bit = 0, the back buffer as defined by the Back Buffer Display Start Address registers (REG[022Ah] - REG[022Ch]) is being displayed. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 203 Registers REG[0216h] Main Window Line Address Offset Register Default = 0000h Main Window Vertical Pixel Doubling Enable n/a bit 13 15 14 13 7 6 5 Read/Write Main Window Horizontal Pixel Doubling Enable Main Window Line Address Offset bits 11-8 12 11 Main Window Line Address Offset bits 7-0 4 3 10 9 8 2 1 0 Main Window Pixel Doubling Vertical Enable This bit controls the pixel doubling feature for the vertical dimension or height of the panel (i.e. 160 pixel high data doubles for a 320 pixel high panel). When this bit = 1, pixel doubling in the vertical dimension (height) is enabled. When this bit = 0, there is no hardware effect. When vertical pixel doubling of the main window is enabled, the main window display start address must be adjusted according to the selected SwivelView mode (see REG[0202h] bits 1-0) using the following formulas. For SwivelView 0° Address = 0 For SwivelView 90° Address = (main window height - (bpp/8)) For SwivelView 180° Address = ((main window height - 1) x (main window width)) - (bpp/8) For SwivelView 270° Address = main window line offset x ((main window width  2) - 1 204 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 12 Main Window Pixel Doubling Horizontal Enable This bit controls the pixel doubling feature for the horizontal dimension or width of the panel (i.e. 160 pixel wide data doubles for a 320 pixel wide panel) When this bit = 1, pixel doubling in the horizontal dimension (width) is enabled. When this bit = 0, there is no hardware effect. When horizontal pixel doubling of the main window is enabled, the main window display start address must be adjusted according to the selected SwivelView mode (see REG[0202h] bits 1-0) using the following formulas. For SwivelView 0° Address = 0 For SwivelView 90° Address = (main window height - (bpp/8)) For SwivelView 180° Address = ((main window height - 1) x (main window width)) - (bpp/8) For SwivelView 270° Address = main window line offset x ((main window width  2) - 1 bits 11-0 Main Window Line Address Offset bits [11:0] These bits specify the offset from the beginning of one display line to the beginning of the next display line in the memory used for the main window. At a color depth of 8 bpp, these bits should be incremented by 8-bit steps. At 16 bpp, these bits should be incremented by 16-bit steps. 16 bpp pixel data should be mapped from even memory addresses, and these bits should be set to an even number. At 32 bpp, these bits should be incremented by 32-bit steps. Calculate the Line Address Offset as follows (valid for both pixel doubling enabled and disabled). REG[0216h] bits 11-0 = Line width in pixels x bpp  8 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 205 Registers REG[0218h] PIP+ Display Start Address Register 0 Default = 0000h Read/Write PIP+ Display Start Address bits 15-8 15 14 13 7 6 5 12 11 PIP+ Display Start Address bits 7-0 4 3 10 9 8 2 1 0 REG[021Ah] PIP+ Display Start Address Register 1 Default = 0000h Read/Write n/a 15 14 13 12 11 10 7 6 5 9 8 PIP+ Display Start Address bits 18-16 n/a 4 3 2 1 0 REG[021Ah] bits 2-0 REG[0218h] bits 15-0 PIP+ Display Start Address bits [18:0] These bits specify the PIP+ window starting address for the LCD image in the display buffer. When the PIP+ function is disabled (REG[0200h] bits 9-8 = 00), this register is ignored. At a color depth of 8 bpp, this register is incremented in 8-bit steps. At 16 bpp, this register should be incremented by 16-bit steps. 16 bpp pixel data should be mapped from even memory addresses, and this register should be set to an even number. At 32 bpp , this register should be incremented by 32-bit steps. REG[021Ch] PIP+ Window Start Address Status Register Default = 0001h Read Only n/a 15 14 13 12 11 10 9 8 PIP+ Window Start Address Status 3 2 1 0 n/a 7 bit 0 6 5 4 PIP+ Window Start Address Status (Read Only) When Double Buffer Mode is disabled (REG[0200h] bit 12 = 0), this bit indicates the current PIP+ window frame status. This bit is updated only after the PIP+ Window Display Start Address has been changed. When this bit = 1, the current frame is using the latest PIP+ Window Display Start Address values (REG[0218h] - REG[021Ah]. When this bit = 0, the next frame will use the latest PIP+ Window Display Start Address values (REG[0218h] - REG[021Ah]). When Double Buffer Mode is enabled (REG[0200h] bit 12 = 1) and the PIP + Window is used for the front buffer (REG[0200h] bit 13 = 0), this bit indicates which buffer is currently displayed. When this bit = 1, the front buffer which corresponds to the PIP+ window area (REG[0218h] - REG[021Ah]) is being displayed. When this bit = 0, the back buffer as defined by the Back Buffer Display Start Address registers (REG[022Ah] - REG[022Ch]) is being displayed. 206 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[021Eh] PIP+ Window Line Address Offset Register Default = 0000h PIP+ Window Pixel Doubling Vertical Enable n/a 15 14 13 Read/Write PIP+ Window Pixel PIP+ Window Line Address Offset bits 11-8 Doubling Horizontal Enable 12 11 10 9 8 2 1 0 PIP+ Window Line Address Offset bits 7-0 7 bit 13 6 5 4 3 PIP+ Window Pixel Doubling Vertical Enable This bit controls the pixel doubling feature for the vertical dimension or height of the panel (i.e. 160 pixel high data doubles for a 320 pixel high panel). When this bit = 1, pixel doubling in the vertical dimension (height) is enabled. When this bit = 0, there is no hardware effect. When vertical pixel doubling of the PIP+ window is enabled, the PIP+ window display start address must be adjusted according to the selected SwivelView mode (see REG[0202h] bits 5-4) using the following formulas. For SwivelView 0° Address = 0 For SwivelView 90° Address = (PIP+ window height - (bpp/8)) For SwivelView 180° Address = ((PIP+ window height - 1) x (PIP+ window width)) - (bpp/8) For SwivelView 270° Address = PIP+ window line offset x ((PIP+ window width  2) - 1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 207 Registers bit 12 PIP+ Window Pixel Doubling Horizontal Enable This bit controls the pixel doubling feature for the horizontal dimension or width of the panel (i.e. 160 pixel wide data doubles for a 320 pixel wide panel) When this bit = 1, pixel doubling in the horizontal dimension (width) is enabled. When this bit = 0, there is no hardware effect. When horizontal pixel doubling of the PIP+ window is enabled, the PIP+ window display start address must be adjusted according to the selected SwivelView mode (see REG[0202h] bits 5-4) using the following formulas. For SwivelView 0° Address = 0 For SwivelView 90° Address = (PIP+ window height - (bpp/8)) For SwivelView 180° Address = ((PIP+ window height - 1) x (PIP+ window width)) - (bpp/8) For SwivelView 270° Address = PIP+ window line offset x ((PIP+ window width  2) - 1 bits 11-0 PIP+ Window Line Address Offset bits [11:0] This register specifies the offset from the beginning of one display line to the beginning of the next display line in the memory of the PIP+ window. At a color depth of 8 bpp, these bits should be incremented by 8-bit steps. At 16 bpp, these bits should be incremented by 16-bit steps. 16 bpp pixel data should be mapped from even memory addresses, and these bits should be set to an even number. At 32 bpp, these bits should be incremented by 32bit steps. Calculate the Line Address Offset as follows (valid for both pixel doubling enabled and disabled). REG[021Eh] bits 11-0 = Line width in pixels x bpp  8 Note When the camera image is being displayed in the PIP+ window, the PIP+ window size must equal the resulting camera frame dimensions after it has been sized and scaled by the resizer. 208 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0220h] PIP+ X Start Positions Register Default = 0000h Read/Write PIP+ X Start Position bits 9-8 n/a 15 14 13 12 11 10 9 8 2 1 0 PIP+ X Start Position bits 7-0 7 6 5 4 3 + bits 9-0 PIP Window X Start Position bits [9:0] These bits determine the X start position of the PIP+ window in relation to the origin of the panel (in pixels). Note When the camera image is being displayed in the PIP+ window, the PIP+ window size must equal the resulting camera frame dimensions after it has been sized and scaled by the resizer. REG[0222h] PIP+ Y Start Positions Register Default = 0000h Read/Write PIP+ Y Start Position bits 9-8 n/a 15 14 13 12 11 10 9 8 2 1 0 PIP+ Y Start Position bits 7-0 7 bits 9-0 6 5 4 3 PIP+ Window Y Start Position bits [9:0] These bits determine the Y start position of the PIP+ window in relation to the origin of the panel (in pixels). Note When the camera image is being displayed in the PIP+ window, the PIP+ window size must equal the resulting camera frame dimensions after it has been sized and scaled by the resizer. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 209 Registers REG[0224h] PIP+ X End Positions Register Default = 0000h Read/Write PIP+ X End Position bits 9-8 n/a 15 14 13 12 11 10 9 8 2 1 0 PIP+ X End Position bits 7-0 7 6 5 4 3 + bits 9-0 PIP Window X End Position bits [9:0] These bits determine the X end position of the PIP+ window in relation to the origin of the panel (in pixels). Note These bits must be set such that the following formula is valid. REG[0224h] bits 9-0 < Horizontal Display Period Note When the camera image is being displayed in the PIP+ window, the PIP+ window size must equal the resulting camera frame dimensions after it has been sized and scaled by the resizer. REG[0226h] PIP+ Y End Positions Register Default = 0000h Read/Write PIP+ Y End Position bits 9-8 n/a 15 14 13 12 11 10 9 8 2 1 0 PIP+ Y End Position bits 7-0 7 bits 9-0 6 5 4 3 + PIP Window Y End Position bits [9:0] These bits determine the Y end position of the PIP+ window in relation to the origin of the panel (in pixels). Note These bits must be set such that the following formula is valid. REG[0226h] bits 9-0 < Vertical Display Period Note When the camera image is being displayed in the PIP+ window, the PIP+ window size must equal the resulting camera frame dimensions after it has been sized and scaled by the resizer. REG[0228h] is Reserved This register is Reserved and should not be written. 210 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[022Ah] Back Buffer Display Start Address Register 0 Default = 0000h Read/Write Buck Buffer Display Start Address bits 15-8 15 14 13 7 6 5 12 11 Back Buffer Display Start Address bits 7-0 4 3 10 9 8 2 1 0 REG[022Ch] Back Buffer Display Start Address Register 1 Default = 0000h Read/Write n/a 15 14 13 n/a 12 11 7 6 5 4 3 10 9 8 Back Buffer Display Start Address bits 18-16 2 1 0 REG[022Ch] bits 2-0 REG[022Ah] bits 15-0 Back Buffer Display Start Address bits [18:0] These bits specify the Back Buffer window starting address for the LCD image in the display buffer. When the Double Buffer function is disabled (REG[0200h] bits 12 = 0), this register is ignored. REG[0240h] YUV/RGB Translate Mode Register Default = 0405h YUV/RGB Converter Bypass Enable 15 Reserved 7 bit 15 YUV/RGB Converter Reset UV Fix bits 1-0 14 YUV/RGB Rectangular Write Mode Enable 13 Frame Buffer Writing Mode Select 6 5 Read/Write YRC Output Bpp Select bits 1-0 12 11 YUV Input Data Type Select n/a 4 3 10 n/a YUV Output Data Format Select 9 8 YUV/RGB Transfer Mode bits 2-0 2 1 0 YUV/RGB Converter Bypass Enable When YUV/RGB Converter (YRC) bypass mode is enabled, YUV data from the camera interface or JPEG decoder, or Host goes directly into the internal memory. When the YRC is enabled (bypass mode is disabled), incoming YUV data is converted to RGB format and stored in the display buffer to be displayed by the LCD panel. When this bit = 0, YUV/RGB Converter bypass mode is disabled (default). When this bit = 1, YUV/RGB Converter bypass mode is enabled. Note The YUV/RGB converter swaps the incoming byte data when it is disabled. To change the YUV data back to normal, set the YRC Output Data Format Select bit (REG[0240h] bit 8) to 1. Disabling the YRC is useful for cameras that can output RGB data. bit 14 YUV/RGB Converter Reset This bit is resets the YUV/RGB Converter (YRC). It has no effect on the YRC registers. The YRC should be reset after any changes are made to the Resizer Operation registers (REG[0930h]-[096Eh] and before performing a Memory Image JPEG Encode operation. When this bit is set to 1, the YUV/RGB Converter is reset. This bit must be set back to 0 before the YUV/RGB Converter can be used again. When this bit is set to 0, the YRC is available for use. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 211 Registers bits 13-12 UV Fix Select bits [1:0] These bits control the UV input to the YUV/RGB Converter (YRC). The setting of these bits has an effect on the UV data even when the YRC is disabled (REG[0240h] bit 15 = 1).. Table 10-46: UV Fix Selection bits 11-10 REG[0240h] bits 13-12 UV Input to the YUV/RGB Converter 00 Original U data, original V data 01 U data = REG[024Ah] bits 15-8, original V data 10 Original U data, V data = REG[024Ah] bits 7-0 11 U data = REG[024Ah] bits 15-8, V data = REG[024Ah] bits 7-0 YRC Output Bpp Select bits [1:0] These bits specify the color depth in bits-per-pixel (bpp) for the YUV/RGB Converter output. Table 10-47: YUV/RGB Converter Output Bpp Selection REG[0240h] bit 11-10 YUV/RGB Converter Output Bpp 00 16 bpp 01 (default) 212 10 Reserved 11 32 bpp Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 8 YRC Output Data Format Select This bit selects the output data format of the YUV/RGB Converter (YRC) when it is disabled (REG[0240h] bit 15 = 1). This bit has no effect when the YRC is enabled (REG[0240h] bit 15 = 0). When this bit = 0, VYUY format is selected. See Table 10-48: “VYUY Output Data Format (REG[0240h] bit 8 = 0),” on page 213. When this bit = 1, YUYV format is selected. See Table 10-49: “YUYV Output Data Format Select (REG[0240h] bit 8 = 1),” on page 214. Table 10-48: VYUY Output Data Format (REG[0240h] bit 8 = 0) Cycle Count 1 2 3 D15 V07 V06 V05 V04 V03 V02 V01 V00 Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 U07 U06 U05 U04 U03 U02 U01 U00 Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 V27 V26 V25 V24 V23 V22 V21 V20 Y37 Y36 Y35 Y34 Y33 Y32 Y31 Y30 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 S1D13715 Hardware Functional Specification Rev. 7.4 4 ... 2n+1 2n+2 7 ... U2n7 U26 ... 5 ... U24 ... U23 ... U22 ... 1 ... U20 ... V2n7 V2n6 V2n5 V2n4 V2n3 V2n2 V2n1 V2n0 Y2 7 ... Y2n+17 Y2n7 Y2 6 U2 U2 U2 U2n6 U2n5 U2n4 U2n3 U2n2 U2n1 U2n0 ... Y2n+16 Y2n6 5 ... Y2n5 Y2 4 ... Y2 3 ... Y2 2 ... 1 ... Y2 0 ... Y2n+15 Y2n+14 Y2n+13 Y2n+12 Y2n+11 Y2n+10 Y2 Y2 Seiko Epson Corporation Y2n4 Y2n3 Y2n2 Y2n1 Y2n0 213 Registers Table 10-49: YUYV Output Data Format Select (REG[0240h] bit 8 = 1) Cycle Count 1 2 D15 Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 U07 U06 U05 U04 U03 U02 U01 U00 Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 V07 V06 V05 V04 V03 V02 V01 V00 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 3 Y2 4 7 Y2 6 Y2 5 Y2 4 Y2 3 Y2 2 Y2 1 Y2 0 U27 U26 U25 U24 U23 U22 U21 U20 Y37 Y36 Y35 Y34 Y33 Y32 Y31 Y30 V27 V26 V25 V24 V23 V22 V21 V20 ... 2n+1 ... Y2n 7 2n+2 Y2n+17 ... Y2n6 Y2n+16 ... Y2n5 Y2n+15 ... Y2n4 Y2n+14 ... Y2n 3 Y2n+13 ... Y2n2 Y2n+12 ... Y2n1 Y2n+11 ... Y2n0 Y2n+10 ... U2n 7 V2n+17 ... U2n6 V2n+16 ... U2n5 V2n+15 ... U2n4 V2n+14 ... U2n 3 V2n+13 ... U2n2 V2n+12 ... U2n1 V2n+11 ... U2n0 V2n+10 bit 7 Reserved The default value for this bit is 0. bit 6 YUV/RGB Rectangular Write Mode Enable When this bit = 0, continuous write mode is selected. In continuous write mode, data is written to the frame buffer continuously based on the YUV/RGB Converter Frame Buffer Write Start Address registers (REG[0242h]-[0244h]). When this bit = 1, rectangular write mode is selected. In rectangular write mode, data is written based on the X Pixel Size register (REG[024Ch]) and the Frame Buffer Line Address Offset register (REG[024Eh]). Note YUV/RGB Rectangular Write Mode may only be enabled when Single Buffer Writing Mode is selected (REG[0240h] bit 5 = 0). bit 5 214 Frame Buffer Writing Mode Select This bit determines the write mode used by the YRC when writing YUV data to the frame buffer. When this bit = 0, single buffer write mode is selected. In single buffer write mode, frames of data are written only to the memory section defined by REG[0244h] - REG[0242h]. When this bit = 1, double buffer write mode is selected. In double buffer write mode, frames of data are written alternately between the memory section defined by REG[0244h] - REG[0242h] and the the memory section defined by REG[0248h] REG[0246h]. This mode can be used with double buffer mode (REG[0200h] bit 12 = 1) to prevent “tearing” of the camera image for fast moving images. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 4 YRC Input Data Type Select This bit specifies the data type of the YUV input to the YUV to RGB Converter (YRC). Table 10-50: YUV Data Type Selection REG[0240h] bit 4 YRC Input Data Type YRC Input Data Range 0 YUV Offset 0  Y  255 -128  U  127 -128  V  127 1 YCbCr Offset 16  Y  235 -113  U  112 -113  V  112 bits 2-0 YUV/RGB Transfer Mode bits [2:0] These bits specify the YUV/RGB Transfer mode. Recommended settings are provided for various specifications.. Table 10-51: YUV/RGB Transfer Mode Selection REG[0240h] bits 2-0 YUV/RGB Specification 000 Reserved 001 Recommended for ITU-R BT.709 010 Reserved 011 Reserved 100 Recommended for ITU-R BT.470-6 System M 101 (Default) Recommended for ITU-R BT.470-6 System B, G (Recommended for ITU-R BT.601-5) 110 SMPTE 170M 111 SMPTE 240M(1987) REG[0242h] YUV/RGB Converter Write Start Address 0 Register 0 Default = 0000h Read/Write YUV/RGB Converter Write Start Address 0 bits 15-8 15 14 13 7 6 5 12 11 YUV/RGB Converter Write Start Address 0 bits 7-0 4 3 10 9 8 2 1 0 REG[0244h] YUV/RGB Converter Write Start Address 0 Register 1 Default = 0000h Read/Write n/a 15 14 13 n/a 12 11 7 6 5 4 3 10 9 8 YUV/RGB Converter Write Start Address bits 18-16 2 1 0 REG[0244h] bits 2-0 REG[0242h] bits 15-0 YUV/RGB Converter Write Start Address 0 bits [18:0] These bits determine the start address where the YUV/RGB Converter writes data. The YUV/RGB Converter writes data to the display buffer in 32-bit blocks, therefore bits 1-0 of this register must be set to 00. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 215 Registers REG[0246h] YUV/RGB Converter Write Start Address 1 Register 0 Default = 0000h Read/Write YUV/RGB Converter Write Start Address 1 bits 15-8 15 14 13 7 6 5 12 11 YUV/RGB Converter Write Start Address 1 bits 7-0 4 3 10 9 8 2 1 0 REG[0248h] YUV/RGB Converter Write Start Address 1 Register 1 Default = 0000h Read/Write n/a 15 14 13 n/a 12 11 7 6 5 4 3 10 9 8 YUV/RGB Converter Write Start Address 1 bits 18-16 2 1 0 REG[0248h] bits 2-0 REG[0246h] bits 15-0 YUV/RGB Converter Write Start Address 1 bits [18:0] These bits determine the start address for data input from the camera interface and for JPEG decoded images. This register value is valid when Frame Buffer Writing Mode Select bit (REG[0240h] bit 5) is set for double buffer writing mode. REG[024Ah] UV Data Fix Register Default = 0000h Read/Write U Data Fix bits 7-0 15 14 13 12 11 V Data Fix bits 7-0 10 9 8 7 6 5 4 2 1 0 3 bits 15-8 U Data Fix bits [7:0] These bits only have an effect when the UV Fix Select bits are set to 01 or 11 (REG[0240h] bits 13-12 = 01 or 11). The U Data Input of the YUV/RGB Converter data is fixed to the value of these bits. bits 7-0 V Data Fix bits [7:0] These bits only have an effect when the UV Fix Select bits are set to 10 or 11 (REG[0240h] bits 13-12 = 10 or 11). The V Data Input of YUV/RGB Converter data is fixed to the value of these bits. REG[024Ch] YRC Rectangle Pixel Width Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 10-0 216 YRC Rectangular Pixel Width bits 10-8 12 11 YRC Rectangular Pixel Width bits 7-0 4 3 10 9 8 2 1 0 YRC Rectangular Pixel Width Bits [10:0] These bits specify the horizontal pixel size of the data being written when the YUV/RGB Converter (YRC) is configured for rectangular write mode (REG[0240h] bit 6 = 1). For a color depth of 16 bpp, it specifies an even number of pixels (only bits 9-1 are used). For a color depth of 32 bpp, it specifies every pixel (all bits 9-0 are used). Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[024Eh] YRC Rectangular Line Address Offset Register Default = 0000h n/a 15 14 13 7 6 5 bits 11-0 Read/Write YRC Rectangular Line Address Offset bits 11-8 12 11 YRC Rectangular Line Address Offset bits 7-0 4 3 10 9 8 2 1 0 YRC Rectangular Line Address Offset Bits [11:0] These bits specify the number of pixels from the beginning of the current display line to the beginning of the next line when the YUV/RGB Converter (YRC) is configured for rectangular write mode (REG[0240h] bit 6 = 1). For a color depth of 16 bpp, it specifies an even number of pixels (only bits 11-1 are used). For a color depth of 32 bpp, it specifies every pixel (all bits 11-0 are used). When the YUV/RGB Converter is disabled, it specifies every pixel (all bits 11-0 are used). REG[0260h] RGB/YUV Converter Configuration Register Default = 0005h RYC Disable 15 14 13 n/a 7 6 Read/Write Reserved n/a 5 n/a 12 RYC Output Data Type Select 4 11 10 n/a 3 9 8 RGB/YUV Transfer Mode bits 2-0 2 1 0 bit 15 RGB/YUV Converter (RYC) Disable This bit controls the RGB/YUV Converter. The RGB/YUV Converter is used for Memory Image JPEG Encode mode to convert RGB data in the display buffer into YUV data that can be encoded by the JPEG codec. When this bit = 0, the RGB/YUV Converter is enabled. When this bit = 1, the RGB/YUV Converter is disabled (bypass mode). bits 13-12 Reserved The default value for these bits is 0. bit 4 RYC Output Data Type Select This bit selects the output YUV data range of the RYC when performing a Memory Image JPEG Encode. It is recommended that this bit always be set to 0. When this bit = 0, the data type is YUV. When this bit = 1, the data type is YCbCr S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 217 Registers bits 2-0 RGB/YUV Transfer Mode bits [2:0] These bits specify the RGB/YUV transfer mode. Recommended settings are provided for various specifications.. Table 10-52: RGB/YUV Transfer Mode Selection REG[0260h] bits 2-0 RGB/YUV Specification 000 Reserved 001 Recommended for ITU-R BT.709 010 Reserved 011 Reserved 100 Recommended for ITU-R BT.470-6 System M 101 (Default) Recommended for ITU-R BT.470-6 System B, G (Recommended for ITU-R BT.601-5) 110 SMPTE 170M 111 SMPTE 240M(1987) REG[0262h] is Reserved This register is Reserved and should not be written. 218 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0264h] Memory Image JPEG Encode Horizontal Display Period Register Default = 0000h Read/Write Memory Image JPEG Encode Horizontal Display Period bit 8 n/a 15 14 13 12 11 10 9 8 1 0 Memory Image JPEG Encode Horizontal Display Period bits 7-0 7 6 bits 8-0 5 4 3 2 Memory Image JPEG Encode Horizontal Display Period bits [8:0] These bits specify the Horizontal Display Period for the Memory Image JPEG Encode (MIJE) function, in 2 pixel resolution. REG[0264h] bits 8-0 = (MIJE HDP in pixels ÷ 2) - 1 REG[0266h] Memory Image JPEG Encode Vertical Display Period Register Default = 0000h n/a 15 14 13 Read/Write Memory Image JPEG Encode Vertical Display Period bits 9-8 12 11 10 9 8 1 0 Memory Image JPEG Encode Vertical Display Period bits 7-0 7 bits 9-0 6 5 4 3 2 Memory Image JPEG Encode Vertical Display Period bits [9:0] These bits specify the Vertical Display Period for the Memory Image JPEG Encode (MIJE) function, in 1 line resolution. REG[0266h] bits 9-0 = MIJE VDP in number of lines - 1 REG[0268h] is Reserved This register is Reserved and should not be written. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 219 Registers REG[0270h] Host Image JPEG Encode Control Register Default = 0000h n/a Host RGB Encode Write Data Format bits 2-0 15 14 n/a Host RGB Encode Mode Enable 7 6 bits 14-12 13 12 Read/Write Host RGB Encode Data End (RO) Host RGB Encode Status (RO) n/a 11 10 9 8 Host Image JPEG Encode Mode Select 2 1 0 n/a 5 4 3 Host RGB Encode Write Data Format bits [2:0] These bits select the host image JPEG encode write data format. • When REG[0270h] bits [14:12] = 000b through 000b or 011b, the data is written to REG[0278h] only. • When REG[0270h] bits [14:12] = 100b, 101b, 110b or 111b, the data is first written to REG[0278h], then REG[0276h], alternately. . Table 10-53: Host RGB Encode Write Data Format Selection REG[0270h] bits 14-12 Host RGB Encode Write Data Format 000 RGB 5:6:5 001 Reserved 010 RGB 4:4:4 011 RGB 3:3:2 100 RGB 8:8:8 (32 bit un-packed 1 pixel / 2 cycle) 101 RGB 8:8:8 (24 bit packed 2 pixel / 3 cycle) 110 RGB 6:6:6 (32 bit un-packed 1 pixel / 2 cycle) 111 RGB 6:6:6 (24 bit packed 2 pixel / 3 cycle) bit 11 Host RGB Encode Data End (Read Only) This bit indicates when the host image JPEG encode mode for host memory write is not finished. When this bit = 0, host image JPEG encode mode for host memory write is finished. When this bit = 1, host image JPEG encode mode for host memory write is not finished. bit 10 Host RGB Encode Status (RO) This bit indicates when the host image JPEG encode mode for host memory is active. When this bit = 0, host image JPEG encode mode for host memory is inactive. When this bit = 1, host image JPEG encode mode for host memory is active. bit 6 Host RGB Encode Enable This bit controls the host image JPEG encode mode for host memory. When this bit = 0, host image JPEG encode mode for host memory is disabled. When this bit = 1, host image JPEG encode mode for host memory is enabled. 220 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 0 Host Image JPEG Encode Mode Select This bit selects the Host Image JPEG Encode source between encoding a host image from the S1D13715 memory or encoding a memory image from the host interface. When this bit = 0, encode a host image from the S1D13715 memory. When this bit = 1, encode from the host interface. REG[0272h] Host Image JPEG Encode Horizontal Pixel Count Register Default = 0000h n/a 15 14 13 7 6 5 bits 10-0 Read/Write Host Image JPEG Encode Horizontal Pixel Count bits 10-8 12 11 Host Image JPEG Encode Horizontal Pixel Count bits 7-0 4 3 10 9 8 2 1 0 Host Image JPEG Encode Horizontal Pixel Count bits [10:0] These bits represent the number of horizontal pixels for the host image JPEG encode. Horizontal Size = (Value of this Register) + 1 The maximum horizontal size that can be encoded is 2048 pixels. REG[0274h] Host Image JPEG Encode Vertical Line Count Register Default = 0000h n/a 15 14 13 7 6 5 bits 10-0 Read/Write Host Image JPEG Encode Vertical Line Count bits 10-8 12 11 Host Image JPEG Encode Vertical Line Count bits 7-0 4 3 10 9 8 2 1 0 Host Image JPEG Encode Vertical Line Count bits [10:0] These bits represent the number of vertical pixels for the host image JPEG encode. Vertical Size = (Value of this Register) + 1 The maximum vertical size that can be encoded is 2048 lines. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 221 Registers REG[0276h] Host Image JPEG Encode RGB Data Register 0 Default = 0000h Read/Write Host Image JPEG Encode RGB Data bits 15-8 15 14 13 7 6 5 12 11 Host Image JPEG Encode RGB Data bits 7-0 4 3 10 9 8 2 1 0 REG[0278h] Host Image JPEG Encode RGB Data Register 1 Default = 0000h Read/Write Host Image JPEG Encode RGB Data bits 31-24 15 14 13 7 6 5 12 11 Host Image JPEG Encode RGB Data bits 23-16 4 3 10 9 8 2 1 0 REG[0278h] bits 15-0 REG[0276h] bits 15-0 Host Image JPEG Encode RGB Data bits [31:0] These bits are the RGB write data for the host image JPEG encode. Table 10-54: Host Image JPEG Encode Write Data Format Host Image JPEG Encode Write Data Format Data Register Data Register Bits 15 14 13 12 11 10 9 REG[0278h] Data 2 R4 R3 R2 R1 R0 G5 G4 n/a n/a n/a R3 R2 R1 REG[0276h] Data 1 RGB 5:6:5 REG[0278h] Data 2 n/a 6 5 4 3 2 1 0 G3 G2 G1 G0 B4 B3 B2 B1 B0 G2 G1 G0 B3 B2 B1 B0 R1 R0 G2 G1 G0 B1 B0 Not Used REG[0276h] Data 1 RGB 3:3:2 7 Not Used REG[0276h] Data 1 RGB 4:4:4 8 R0 G3 Not Used REG[0278h] Data 2 R12 R11 R10 G12 G11 G10 B11 B10 R2 REG[0276h] Data 2 G7 RGB 8:8:8 (32 bit un-packed 1 pixel / 2 cycle) REG[0278h] Data 1 n/a G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 n/a n/a n/a n/a n/a n/a n/a R7 R6 R5 R4 R3 R2 R1 R0 REG[0276h] Data 1 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 REG[0278h] Data 2 B15 B14 B13 B12 B11 B10 B9 B8 R7 R6 R5 R4 R3 R2 R1 R0 REG[0276h] Data 3 R15 R14 R13 R12 R11 R10 R9 REG[0276h] Data 1 n/a RGB 8:8:8 (24 bit packed 2 pixel / 3 cycle) R8 G15 G14 G13 G12 G11 G10 G9 G8 RGB 6:6:6 (32 bit un-packed 1 pixel / 2 cycle) REG[0278h] Data 2 n/a n/a G5 G4 G3 G2 G1 G0 n/a n/a n/a n/a n/a n/a n/a REG[0276h] Data 1 n/a n/a G5 G4 G3 G2 G1 G0 REG[0278h] Data 2 n/a n/a B13 B12 B11 B10 B9 B8 REG[0276h] Data 3 n/a n/a R13 R12 R11 R10 R9 R8 RGB 6:6:6 (24 bit packed 2 pixel / 3 cycle) n/a n/a B5 B4 B3 B2 B1 B0 n/a n/a R5 R4 R3 R2 R1 R0 n/a n/a B5 B4 B3 B2 B1 B0 n/a n/a R5 R4 R3 R2 R1 R0 n/a n/a G13 G12 G11 G10 G9 G8 REG[0280h] is Reserved This register is Reserved and should not be written. 222 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.10 GPIO Registers REG[0300h] GPIO Status and Control Register 0 Default = 0000h Read/Write GPIO15 Config GPIO14 Config GPIO13 Config GPIO12 Config GPIO11 Config GPIO10 Config GPIO9 Config GPIO8 Config 15 GPIO7 Config 14 GPIO6 Config 13 GPIO5 Config 12 GPIO4 Config 11 GPIO3 Config 10 GPIO2 Config 9 GPIO1 Config 8 GPIO0 Config 7 6 5 4 3 2 1 0 REG[0302h] GPIO Status and Control Register 1 Default = 0000h Read/Write n/a 15 14 13 GPIO21 Config 12 GPIO20 Config 11 GPIO19 Config 10 GPIO18 Config 9 GPIO17 Config 8 GPIO16 Config 6 5 4 3 2 1 0 n/a 7 REG[0302h] bits 5-0 REG[0300h] bits 15-0 GPIO[21:0] Pin IO Configuration When the GPIO pins (GPIO[21:0]) are configured as inputs at RESET# (CNF1 = 1), these bits can be used to change individual GPIO pins between inputs/outputs. When the GPIO pins are configured as outputs at RESET# (CNF1 = 0), these bits are ignored and the GPIO pins are always outputs. When this bit = 0 (default), the corresponding GPIO pin is configured as an input pin. When this bit = 1, the corresponding GPIO pin is configured as an output pin. REG[0304h] GPIO Status and Control Register 2 Default = 0000h Read/Write GPIO15 Input Enable GPIO14 Input Enable GPIO13 Input Enable GPIO12 Input Enable GPIO11 Input Enable GPIO10 Input Enable GPIO9 Input Enable GPIO8 Input Enable 15 GPIO7 Input Enable 14 GPIO6 Input Enable 13 GPIO5 Input Enable 12 GPIO4 Input Enable 11 GPIO3 Input Enable 10 GPIO2 Input Enable 9 GPIO1 Input Enable 8 GPIO0 Input Enable 7 6 5 4 3 2 1 0 REG[0306h] GPIO Status and Control Register 3 Default = 0000h Read/Write n/a 15 14 13 GPIO21 Input Enable 12 GPIO20 Input Enable 11 GPIO19 Input Enable 10 GPIO18 Input Enable 9 GPIO17 Input Enable 8 GPIO16 Input Enable 6 5 4 3 2 1 0 n/a 7 REG[0306h] bits 5-0 REG[0304h] bits 15-0 GPIO[21:0] Pin Input Enable These bits are used to enable the input function of each GPIO pin. They must be changed to a 1 after power-on reset to enable the input function of the corresponding GPIO pin. When this bit = 0 (default), the input function for the corresponding GPIO pin is disabled. When this bit = 1, the input function for the corresponding GPIO pin is enabled. Note When the GPIO pins are configured as outputs at RESET# (CNF1 = 0), the GPIO pins are always outputs and these bits have no effect. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 223 Registers REG[0308h] GPIO Pull Down Control Register 0 Default = FFFFh Read/Write GPIO15 Pulldown Control GPIO14 Pulldown Control GPIO13 Pulldown Control GPIO12 Pulldown Control GPIO11 Pulldown Control GPIO10 Pulldown Control GPIO9 Pull-down Control GPIO8 Pull-down Control 15 GPIO7 Pull-down Control 14 GPIO6 Pull-down Control 13 GPIO5 Pull-down Control 12 GPIO4 Pull-down Control 11 GPIO3 Pull-down Control 10 GPIO2 Pull-down Control 9 GPIO1 Pull-down Control 8 GPIO0 Pull-down Control 7 6 5 4 3 2 1 0 REG[030Ah] GPIO Pull Down Control Register 1 Default = 003Fh Read/Write n/a 15 14 13 GPIO21 Pulldown Control 12 GPIO20 Pulldown Control 11 GPIO19 Pulldown Control 10 GPIO18 Pulldown Control 9 GPIO17 Pulldown Control 8 GPIO16 Pulldown Control 6 5 4 3 2 1 0 n/a 7 REG[030Ah] bits 5-0 REG[0308h] bits 15-0 GPIO[21:0] Pull-down Control All GPIO pins have internal pull-down resistors. These bits individually control the state of the pull-down resistors. When the bit = 1, the pull-down resistor for the associated GPIO pin is active. When the bit = 0, the pull-down resistor for the associated GPIO pin is inactive. REG[030Ch] GPIO Status and Control Register 4 Default = 0000h Read/Write GPIO15 Status GPIO14 Status GPIO13 Status GPIO12 Status GPIO11 Status GPIO10 Status GPIO9 Status GPIO8 Status 15 GPIO7 Status 14 GPIO6 Status 13 GPIO5 Status 12 GPIO4 Status 11 GPIO3 Status 10 GPIO2 Status 9 GPIO1 Status 8 GPIO0 Status 7 6 5 4 3 2 1 0 REG[030Eh] GPIO Status and Control Register 5 Default = 0000h Read/Write n/a 15 14 13 GPIO21 Status 12 GPIO20 Status 11 GPIO19 Status 10 GPIO18 Status 9 GPIO17 Status 8 GPIO16 Status 6 5 4 3 2 1 0 n/a 7 REG[030Eh] bits 5-0 REG[030Ch] bits 15-0 GPIO[21:0] Pin IO Status When GPIOx is configured as an output (see REG[0300h]-REG[0302h]), writing a 1 to this bit drives GPIOx high and writing a 0 to this bit drives GPIOx low. When GPIOx is configured as an input (see REG[0300h]-REG[0302h]), a read from this bit returns the status of GPIOx. Note To read the status of a GPIO pin configured as an input, the GPIO pin must first have it’s input function enabled using REG[0304h]-REG[0306h]. 224 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.11 Overlay Registers REG[0310h] Average Overlay Key Color Red Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 Average Overlay Key Color Red Data bits 7-0 4 3 10 9 8 2 1 0 Average Overlay Key Color Red Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the red color component of the Average Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 225 Registers REG[0312h] Average Overlay Key Color Green Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 Average Overlay Key Color Green Data bits 7-0 4 3 10 9 8 2 1 0 Average Overlay Key Color Green Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the green color component of the Average Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. REG[0314h] Average Overlay Key Color Blue Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 Average Overlay Key Color Blue Data bits 7-0 4 3 10 9 8 2 1 0 Average Overlay Key Color Blue Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the blue color component of the Average Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. 226 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0316h] AND Overlay Key Color Red Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 AND Overlay Key Color Red Data bits 7-0 4 3 10 9 8 2 1 0 AND Overlay Key Color Red Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the red color component of the AND Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. REG[0318h] AND Overlay Key Color Green Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 AND Overlay Key Color Green Data bits 7-0 4 3 10 9 8 2 1 0 AND Overlay Key Color Green Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the green color component of the AND Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 227 Registers REG[031Ah] AND Overlay Key Color Blue Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 AND Overlay Key Color Blue Data bits 7-0 4 3 10 9 8 2 1 0 AND Overlay Key Color Blue Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the blue color component of the AND Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. REG[031Ch] OR Overlay Key Color Red Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 OR Overlay Key Color Red Data bits 7-0 4 3 10 9 8 2 1 0 OR Overlay Key Color Red Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the red color component of the OR Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. 228 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[031Eh] OR Overlay Key Color Green Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 OR Overlay Key Color Green Data bits 7-0 4 3 10 9 8 2 1 0 OR Overlay Key Color Green Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the green color component of the OR Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. REG[0320h] OR Overlay Key Color Blue Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 OR Overlay Key Color Blue Data bits 7-0 4 3 10 9 8 2 1 0 OR Overlay Key Color Blue Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the blue color component of the OR Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 229 Registers REG[0322h] INV Overlay Key Color Red Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 INV Overlay Key Color Red Data bits 7-0 4 3 10 9 8 2 1 0 INV Overlay Key Color Red Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the red color component of the INV Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. REG[0324h] INV Overlay Key Color Green Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 INV Overlay Key Color Green Data bits 7-0 4 3 10 9 8 2 1 0 INV Overlay Key Color Green Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the green color component of the INV Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. 230 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0326h] INV Overlay Key Color Blue Data Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bit 7-0 12 11 INV Overlay Key Color Blue Data bits 7-0 4 3 10 9 8 2 1 0 INV Overlay Key Color Blue Data bits [7:0] These bits only have an effect when PIP+ with Overlay is enabled (REG[0200h] bits 9-8 = 11). These bits set the blue color component of the INV Overlay Key Color. For more information on Overlays, see Section 15.1, “Overlay Display” on page 340. Note If LUT bypass mode is enabled (see REG[0200h] bits 5-4), the key color bits must be expanded to a full 8 bits using the bit cover method in Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. REG[0328h] Overlay Miscellaneous Register Default = 0000h Overlay PIP+ Window Bit Shift n/a Overlay Main Window Bit Shift 15 14 13 n/a 7 6 5 Read/Write n/a 12 11 10 9 INV Overlay Key Color Enable OR Overlay Key Color Enable AND Overlay Key Color Enable Average Overlay Key Color Enable 4 3 2 1 8 Transparent Overlay Key Color Enable 0 bit 15 Overlay PIP+ Window Bit Shift This bit only has an effect if the Display Mode Select bits are set for PIP+ with Overlay (REG[0200h] bits 9-8 = 11). For more information on the Overlay function, see Section 15.1, “Overlay Display” on page 340. When this bit = 0, the PIP+ window pixel data is normal. When this bit = 1, the PIP+ window is pixel data is bit shifted to the right by 1 bit. bits 13 Overlay Main Window Bit Shift This bit only has an effect if the Display Mode Select bits are set for PIP+ with Overlay (REG[0200h] bits 9-8 = 11). For more information on the Overlay function, see Section 15.1, “Overlay Display” on page 340. When this bit = 0, the main window pixel data is normal. When this bit = 1, the main window pixel data is bit shifted to the right by 1 bit. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 231 Registers bit 4 INV Overlay Key Color Enable This bit only has an effect if the Display Mode Select bits are set for PIP+ with Overlay (REG[0200h] bits 9-8 = 11). For more information on the Overlay function, see Section 15.1, “Overlay Display” on page 340. When this bit = 1, the INV overlay key color function is enabled. When this bit = 0, the INV overlay key color function is disabled. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. bit 3 OR Overlay Key Color Enable This bit only has an effect if the Display Mode Select bits are set for PIP+ with Overlay (REG[0200h] bits 9-8 = 11). For more information on the Overlay function, see Section 15.1, “Overlay Display” on page 340. When this bit = 1, the OR overlay key color function is enabled. When this bit = 0, the OR overlay key color function is disabled. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. bit 2 AND Overlay Key Color Enable This bit only has an effect if the Display Mode Select bits are set for PIP+ with Overlay (REG[0200h] bits 9-8 = 11). For more information on the Overlay function, see Section 15.1, “Overlay Display” on page 340. When this bit = 1, the AND overlay key color function is enabled. When this bit = 0, the AND overlay key color function is disabled. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. 232 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 1 Average Overlay Key Color Enable This bit only has an effect if the Display Mode Select bits are set for PIP+ with Overlay (REG[0200h] bits 9-8 = 11). For more information on the Overlay function, see Section 15.1, “Overlay Display” on page 340. When this bit = 1, the average overlay key color function is enabled. When this bit = 0, the average overlay key color function is disabled. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. bit 0 Transparent Overlay Key Color Enable This bit only has an effect if the Display Mode Select bits are set for PIP+ with Overlay (REG[0200h] bits 9-8 = 11). For more information on the Overlay function, see Section 15.1, “Overlay Display” on page 340. When this bit = 1, the transparent overlay key color function is enabled. When this bit = 0, the transparent overlay key color function is disabled. Note If more than one overlay function is enabled, only the function with the highest priority takes effect. If this function doesn’t apply to a display area, it still prevents a lower priority function from taking effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 233 Registers 10.4.12 LUT1 (Main Window) High Byte Low Byte Green 0 Red 0 n/a Blue 0 0404h Green 1 Red 1 ... ... 0400h 0402h 07FEh n/a Blue 255 Figure 10-2: LUT1 Mapping REG[0400 - 07FCh] LUT1 Data Register 0 Default = not applicable Read/Write LUT1 Green Data bits 7-0 15 14 13 7 6 5 12 11 LUT1 Red Data bits 7-0 4 3 10 9 8 2 1 0 bits 15-8 LUT1 (Main Window) Green Data bits [7:0] These bits are used to set the LUT1 Green Data. There are 256 entries in LUT1 from 0400h to 07FCh. LUT1 is used for the Main Window. bits 7-0 LUT1 (Main Window) Red Data bits [7:0] These bits are used to set the LUT1 Red Data. There are 256 entries in LUT1 from 0400h to 07FCh. LUT1 is used for the Main Window. REG[0402 - 07FEh] LUT1 Data Register 1 Default = not applicable Read/Write n/a 15 14 13 7 6 5 bits 7-0 234 12 11 LUT1 Blue Data bits 7-0 4 3 10 9 8 2 1 0 LUT1 (Main Window) Blue Data bits [7:0] These bits are used to set the LUT1 Blue Data. There are 256 entries in LUT1 from 0402h to 07FEh. LUT1 is used for the Main Window. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.13 LUT2 (PIP+ Window) Low Byte High Byte Green 0 Red 0 n/a Blue 0 0804h Green 1 Red 1 ... ... 0800h 0802h 08FEh n/a Blue 63 Figure 10-3: LUT2 mapping REG[0800 - 08FCh] LUT2 Data Register 0 Default = not applicable Read/Write LUT2 Green Data bits 7-0 15 14 13 7 6 5 12 11 LUT2 Red Data bits 7-0 4 3 10 9 8 2 1 0 bits 15-8 LUT2 (PIP+ Window) Green Data bits [7:0] These bits are used to set the LUT2 Green Data. There are 64 entries in LUT2 from 0800h to 08FCh. LUT2 is used for the PIP+ Window. bits 7-0 LUT2 (PIP+ Window) Red Data bits [7:0] These bits are used to set the LUT2 Red Data. There are 64 entries in LUT2 from 0800h to 08FCh. LUT2 is used for the PIP+ Window. REG[0802 - 08FEh] LUT2 Data Register 1 Default = not applicable Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 LUT2 Blue Data bits 7-0 4 3 10 9 8 2 1 0 LUT2 (PIP+ Window) Blue Data bits [7:0] These bits are used to set the LUT2 Blue Data. There are 64 entries in LUT2 from 0802h to 08FEh. LUT2 is used for the PIP+ Window. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 235 Registers 10.4.14 Resizer Operation Registers Note The resizer registers must not be changed while receiving data from the camera interface, JPEG decoder, or host interface. REG[0930h] Global Resizer Control Register Default = 0000h Read/Write Resizer Frame Reduction n/a 15 14 13 n/a 7 6 5 12 Captured Data Input Select (WO) 11 Output Source Select 4 3 10 n/a 2 Reserved Reserved 9 8 Camera Display Control bits 1-0 1 0 bit 10 Resizer Frame Reduction This bit controls frame reduction in the resizer block. When this bit = 1, the resizer performs frame reduction by using only every second frame. When this bit = 0, the resizer performs no reduction. bit 9 Reserved The default value for this bit is 0. bit 8 Reserved The default value for this bit is 0. bit 4 Captured Data Input Select (Write Only) This bit selects the data input for the capture resizer. When this bit = 1, input from the RGB/YUV Converter (RYC) is selected. When this bit = 0, input from the camera interface is selected. 236 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 3 Output Source Select This bit selects which resizer outputs data to the YUV/RGB Converter (YRC). Typically, the view resizer is selected when data comes from the camera interface since JPEG encode dimensions may differ from display dimensions. For JPEG decode and host to S1D13715 YUV mode, the view resizer must be selected. When this bit = 0, the view resizer outputs data to the YRC. When this bit = 1, the capture resizer outputs data to the YRC and the view resizer logic is powered down. Note During JPEG encoding, this bit must be set to an active resizer, or the YRC must be disabled (REG[0240h] bit 14 = 1). Table 10-55: Output Source Select Output Source Select REG[0930h] bit 3 View Resizer Enable REG[0940h] bit 0 Capture Resizer Enable REG[0960h] bit 0 to YUV/RGB Converter to JPEG Line Buffer 0 0 0 — — 0 0 1 — — 0 1 0 Available — 0 1 1 Available Available 1 0 0 — — 1 0 1 Available Available 1 1 0 — — 1 1 1 Available Available 0: View Resizer Selected 1: Capture Resizer Selected S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 237 Registers bits 1-0 Camera Display Control bits [1:0] These bits control how camera data is displayed when a JPEG encode operation is performed (REG[0980h] bits 3-1 = 000) and when YUV to Host mode (JPEG Bypass) is enabled (REG[0980h] bits 3-1 = 011 or 111). . Table 10-56: Camera Display Control Selection REG[0930h] bits 1-0 Function 00 JPEG Encode: YUV data from the camera interface is continuously written to the display buffer until a JPEG encode operation is performed. When a JPEG encode operation is started (REG[098Ah] bit 0 = 1), camera data is no longer written to the display buffer once the next frame is written. After REG[098Ah] bit 0 is set to 0, camera data is again written to the display buffer from the next frame. JPEG Bypass: YUV data from the camera interface is continuously written to the JPEG FIFO and converted YUV data (YUV/RGB Converter) is continuously written to the display buffer. JPEG Encode: When a JPEG encode operation is started (REG[098Ah bit 0 = 1), only the next frame of camera data is written to the display buffer. When a JPEG encode operation is not enabled (REG[098Ah] bit 0 = 0), camera data is not written to the display buffer. 01 JPEG Bypass: YUV data from the camera interface is continuously written to the JPEG FIFO. When the shutter is enabled (REG[098Ah] bit 0 = 1), YUV data from the camera interface is converted by the YUV/RGB Converter to RGB data and is stored in the display buffer. When the shutter is disabled (REG[098Ah] bit 0 = 0), camera data is not written to the display buffer. JPEG Encode: Data from the camera interface is always written to the display buffer. 10 JPEG Bypass: YUV data from the camera interface is continuously written to the JPEG FIFO and converted YUV data (YUV/RGB Converter) is continuously written to the display buffer. 11 Reserved. REG[0932h] through REG[093Eh] are Reserved These registers are Reserved and should not be written. 238 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers View (Display) Resizer Registers . REG[0940h] View Resizer Control Register Default = 0000h Read/Write n/a 15 14 13 View Resizer Software Reset (WO) 7 12 11 n/a 6 5 4 10 View Resizer Independent Horizontal/Vertical Scaling Enable 3 2 9 8 View Resizer Register Update VSYNC Enable View Resizer Enable 1 0 bit 7 View Resizer Software Reset (Write Only) When the resizers are activated by writing a 1 to REG[0940h] bit 0 or REG[0960h] bit 0 and a 1 is written to this bit, the view resizer logic is reset. When a 0 is written to this bit, there is no hardware effect. bit 2 View Resizer Independent Horizontal/Vertical Scaling Enable When this bit = 1, the horizontal and vertical scaling rates can be selected independently. Horizontal scaling rate is controlled by REG[094Ch] bits 5-0 and vertical scaling rate is controlled by REG[094Eh] bits 13-8. When this bit = 0, the horizontal and vertical scaling rates are the same. Both horizontal and vertical scaling rates are controlled by REG[094Ch] bits 5-0. bit 1 View Resizer Register Update VSYNC Enable When this bit = 1, the View Resizer uses the previous register value until the next camera VSYNC occurs. When this bit = 0, the View Resizer use the new register value immediately. bit 0 View Resizer Enable This bit controls the view resizer logic. When this bit = 1, the view resizer logic is enabled. When this bit = 0, the view resizer logic is disabled. Note When this bit and the Capture Resizer Enable bit (REG[0960h] bit 0) are both set to 0, the clock to the resizer block is automatically stopped. REG[0944h] View Resizer Start X Position Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 10-0 View Resizer Start X Position bits 10-8 12 11 View Resizer Start X Position bits 7-0 4 3 10 9 8 2 1 0 View Resizer Start X Position bits [10:0] These bits determine the X start position for the View Resizer. These bits must be programmed according to the restrictions in Section 17.3, “Resizer Restrictions” on page 358. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 239 Registers REG[0946h] View Resizer Start Y Position Register Default = 0000h Read/Write View Resizer Start Y Position bits 10-8 n/a 15 14 13 7 6 5 bits 10-0 12 11 View Resizer Start Y Position bits 7-0 4 3 10 9 8 2 1 0 View Resizer Start Y Position bits [10:0] These bits determine the Y start position for the View Resizer. These bits must be programmed according to the restrictions in Section 17.3, “Resizer Restrictions” on page 358. REG[0948h] View Resizer End X Position Register Default = 027Fh Read/Write n/a 15 14 13 7 6 5 bits 10-0 View Resizer End X Position bits 10-8 12 11 View Resizer End X Position bits 7-0 4 3 10 9 8 2 1 0 View Resizer End X Position bits [10:0] These bits determine the X End position for the View Resizer. These bits must be programmed according to the restrictions in Section 17.3, “Resizer Restrictions” on page 358. REG[094Ah] View Resizer End Y Position Register Default = 01DFh Read/Write n/a 15 14 13 7 6 5 bits 10-0 View Resizer End Y Position bits 10-8 12 11 View Resizer End Y Position bits 7-0 4 3 10 9 8 2 1 0 View Resizer End Y Position bits [10:0] These bits determine the Y end position for the View Resizer. These bits must be programmed according to the restrictions in Section 17.3, “Resizer Restrictions” on page 358. REG[094Ch] View Resizer Operation Setting Register 0 Default = 0101h n/a 15 14 13 12 6 5 4 n/a 7 bits 13-8 240 Read/Write View Resizer Vertical Scaling Rate bits 5-0 11 10 View Resizer Horizontal Scaling Rate bits 5-0 3 2 9 8 1 0 View Resizer Vertical Scaling Rate bits [5:0] These bits determine the view resizer vertical scaling rate when independent horizontal/vertical scaling is enabled (REG[0940h] bit 2 = 1). Not all scaling rates are available for all scaling modes (see REG[094Eh] bits 1-0). For a summary of the available scaling rate/mode options, see Table 10-57: “View Resizer Vertical Scaling Rate Selection,” on page 241. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers Table 10-57: View Resizer Vertical Scaling Rate Selection REG[094Ch] bits 13-8 00 0000 00 0001 00 0010 00 0011 00 0100 00 0101 00 0110 00 0111 00 1000 00 1001 00 1010 00 1011 00 1100 00 1101 00 1110 00 1111 01 0000 01 0001 01 0010 01 0011 01 0100 01 0101 01 0110 01 0111 01 1000 01 1001 01 1010 01 1011 01 1100 01 1101 01 1110 01 1111 10 0000 10 0001 - 11 1111 REG[094Eh] bits 1-0 = 00 Reserved n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a Reserved S1D13715 Hardware Functional Specification Rev. 7.4 View Resizer Vertical Scaling Rate REG[094Eh] REG[094Eh] bits 1-0 = 01 bits 1-0 = 10 Reserved Reserved 1/1 1/1 1/2 1/2 1/3 1/3 1/4 1/4 1/5 1/5 1/6 1/6 1/7 1/7 1/8 1/8 1/9 1/9 1/10 1/10 1/11 1/11 1/12 1/12 1/13 1/13 1/14 1/14 1/15 1/15 1/16 1/16 1/17 1/17 1/18 1/18 1/19 1/19 1/20 1/20 1/21 1/21 1/22 1/22 1/23 1/23 1/24 1/24 1/25 1/25 1/26 1/26 1/27 1/27 1/28 1/28 1/29 1/29 1/30 1/30 1/31 1/31 1/32 1/32 Reserved Reserved Seiko Epson Corporation REG[094Eh] bits 1-0 = 11 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 241 Registers bits 5-0 View Resizer Horizontal Scaling Rate bits [5:0] When independent horizontal/vertical scaling is disabled (REG[0940h] bit 2 = 0), these bits determine the vertical and horizontal scaling rate. When independent horizontal/vertical scaling is enabled (REG[0940h] bit 2 = 1), these bits only determine the horizontal scaling rate. Not all scaling rates are available for all scaling modes (see REG[094Eh] bits 1-0). For a summary of the available scaling rate/mode options, see Table 10-58: “View Resizer Horizontal Scaling Rate Selection,” on page 242. Table 10-58: View Resizer Horizontal Scaling Rate Selection REG[094Ch] bits 5-0 00 0000 00 0001 00 0010 00 0011 00 0100 00 0101 00 0110 00 0111 00 1000 00 1001 00 1010 00 1011 00 1100 00 1101 00 1110 00 1111 01 0000 01 0001 01 0010 01 0011 01 0100 01 0101 01 0110 01 0111 01 1000 01 1001 01 1010 01 1011 01 1100 01 1101 01 1110 01 1111 10 0000 10 0001 - 11 1111 242 REG[094Eh] bits 1-0 = 00 Reserved n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a Reserved View Resizer Horizontal Scaling Rate REG[094Eh] REG[094Eh] bits 1-0 = 01 bits 1-0 = 10 Reserved Reserved 1/1 1/1 1/2 1/2 1/3 Reserved 1/4 1/4 1/5 Reserved 1/6 Reserved 1/7 Reserved 1/8 1/8 1/9 Reserved 1/10 Reserved 1/11 Reserved 1/12 Reserved 1/13 Reserved 1/14 Reserved 1/15 Reserved 1/16 1/16 1/17 Reserved 1/18 Reserved 1/19 Reserved 1/20 Reserved 1/21 Reserved 1/22 Reserved 1/23 Reserved 1/24 Reserved 1/25 Reserved 1/26 Reserved 1/27 Reserved 1/28 Reserved 1/29 Reserved 1/30 Reserved 1/31 Reserved 1/32 1/32 Reserved Reserved Seiko Epson Corporation REG[094Eh] bits 1-0 = 11 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[094Eh] View Resizer Operation Setting Register 1 Default = 0000h Read/Write n/a 15 14 13 12 11 n/a 7 10 Reserved 6 5 4 3 9 8 View Resizer Scaling Mode bits 1-0 2 1 0 bits 3-2 Reserved The default value for these bits is 0. bits 1-0 View Resizer Scaling Mode bits[1:0] These bits determine the view resizer scaling mode. Not all scaling modes are available for all scaling rates. Before selecting a scaling mode, set the View Resizer Vertical Scaling Rate bits (REG[094Eh] bits 13-8) and/or the View Resizer Horizontal Scaling Rate bits (REG[094Ch] bits 5-0) to a valid scaling rate. Enabling a scaling mode with an unsupported scaling rate (reserved or n/a) may turn off the view resizer. . Table 10-59: View Resizer Scaling Mode Selection REG[094Eh] bits 1-0 View Resizer Scaling Mode 00 no resizer scaling 01 V/H Reduction 10 V: Reduction, H: Average 11 Reserved S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 243 Registers Capture (Encode) Resizer Registers REG[0960h] Capture Resizer Control Register Default = 0000h Read/Write n/a 15 14 13 Capture Resizer Software Reset (WO) 7 12 11 n/a 6 5 4 3 10 Capture Resizer Independent Horizontal/Vertical Scaling Enable 2 9 8 Capture Resizer Register Update VSYNC Enable Capture Resizer Enable 1 0 bit 7 Capture Resizer Software Reset (Write Only) When the resizers are activated by writing a 1 to REG[940h] bit 0 or REG[0960h] bit 0 and a 1 is written to this bit, the capture resizer logic is reset. When a 0 is written to this bit, there is no hardware effect. bit 2 Capture Resizer Independent Horizontal/Vertical Scaling Enable When this bit = 1, the horizontal and vertical scaling rates can be selected independently. Horizontal scaling rate is controlled by REG[096Ch] bits 4-0 and vertical scaling rate is controlled by REG[096Ch] bits 12-8. When this bit = 0, the horizontal and vertical scaling rates are the same. Both horizontal and vertical scaling rates are controlled by REG[096Ch] bits 4-0. bit 1 Capture Resizer Register Update VSYNC Enable When this bit = 1, the Capture Resizer uses the previous register value until the next camera VSYNC occurs. When this bit = 0, the Capture Resizer use the new register value immediately. bit 0 Capture Resizer Enable This bit controls the capture resizer logic. When this bit = 1, the capture resizer logic is enabled. When this bit = 0, the capture resizer logic is disabled. Note When this bit and the View Resizer Enable bit (REG[0940h] bit 0) are both set to 0, the clock to the resizer block is automatically stopped. 244 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0964h] Capture Resizer Start X Position Register Default = 0000h Read/Write Capture Resizer Start X Position bits 10-0 n/a 15 14 13 7 6 5 bits 10-0 12 11 Capture Resizer Start X Position bits 7-0 4 10 9 8 2 1 0 3 Capture Resizer Start X Position bits [10:0] These bits determine the X start position for the Capture Resizer. These bits must be programmed according to the restrictions in Section 17.3, “Resizer Restrictions” on page 358. The following image size limitations must be observed when the JPEG functions (or JPEG Bypass) are used. Table 10-60: Capture Resizer Limitations YUV Format Minimum Horizontal Resolution Minimum Vertical Resolution Minimum Size YUV 4:4:4 multiples of 1 pixel multiples of 1 line 8 pixels/8 lines YUV 4:2:2 multiples of 2 pixels multiples of 1 line 16 pixels/8 lines YUV 4:2:0 multiples of 2 pixels multiples of 2 lines 16 pixels/16 lines YUV 4:1:1 multiples of 4 pixels multiples of 1 line 32 pixels/8 lines REG[0966h] Capture Resizer Start Y Position Register Default = 0000h Read/Write Capture Resizer Start Y Position bits 10-8 n/a 15 14 13 7 6 5 bits 10-0 12 11 Capture Resizer Start Y Position bits 7-0 4 3 10 9 8 2 1 0 Capture Resizer Start Y Position bits [10:0] These bits determine the Y start position for the Capture Resizer. These bits must be programmed according to the restrictions in Section 17.3, “Resizer Restrictions” on page 358. REG[0968h] Capture Resizer End X Position Register Default = 027Fh Read/Write Capture Resizer End X Position bits 10-8 n/a 15 14 13 7 6 5 bits 10-0 12 11 Capture Resizer End X Position bits 7-0 4 3 10 9 8 2 1 0 Capture Resizer End X Position bits [10:0] These bits determine the X End position for the Capture Resizer. These bits must be programmed according to the restrictions in Section 17.3, “Resizer Restrictions” on page 358. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 245 Registers REG[096Ah] Capture Resizer End Y Position Register Default = 01DFh Read/Write Capture Resizer End Y Position bits 10-8 n/a 15 14 13 7 6 5 bits 10-0 12 11 Capture Resizer End Y Position bits 7-0 4 3 10 9 8 2 1 0 Capture Resizer End Y Position bits [10:0] These bits determine the Y end position for the Capture Resizer. These bits must be programmed according to the restrictions in Section 17.3, “Resizer Restrictions” on page 358. REG[096Ch] Capture Resizer Operation Setting Register 0 Default = 0101h n/a 15 14 13 12 6 5 4 n/a 7 Read/Write Capture Resizer Vertical Scaling Rate bits 5-0 bits 13-8 11 10 Capture Resizer Horizontal Scaling Rate bits 5-0 3 2 9 8 1 0 Capture Resizer Vertical Scaling Rate bits [5:0] These bits determine the capture resizer vertical scaling rate when independent horizontal/vertical scaling is enabled (REG[0960h] bit 2 = 1). Not all scaling rates are available for all scaling modes (see REG[096Eh] bits 1-0). For a summary of the available scaling rate/mode options, see Table 10-61: “Capture Resizer Vertical Scaling Rate Selection,” on page 246. Table 10-61: Capture Resizer Vertical Scaling Rate Selection REG[096Ch] bits 13-8 00 0000 00 0001 00 0010 00 0011 00 0100 00 0101 00 0110 00 0111 00 1000 00 1001 00 1010 00 1011 00 1100 00 1101 00 1110 00 1111 01 0000 01 0001 246 REG[096Eh] bits 1-0 = 00 Reserved n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a Capture Resizer Vertical Scaling Rate REG[096Eh] REG[096Eh] bits 1-0 = 01 bits 1-0 = 10 Reserved Reserved 1/1 1/1 1/2 1/2 1/3 1/3 1/4 1/4 1/5 1/5 1/6 1/6 1/7 1/7 1/8 1/8 1/9 1/9 1/10 1/10 1/11 1/11 1/12 1/12 1/13 1/13 1/14 1/14 1/15 1/15 1/16 1/16 1/17 1/17 Seiko Epson Corporation REG[096Eh] bits 1-0 = 11 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved S1D13715 Hardware Functional Specification Rev. 7.4 Registers Table 10-61: Capture Resizer Vertical Scaling Rate Selection (Continued) 01 0010 01 0011 01 0100 01 0101 01 0110 01 0111 01 1000 01 1001 01 1010 01 1011 01 1100 01 1101 01 1110 01 1111 10 0000 10 0001 - 11 1111 bits 5-0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a Reserved 1/18 1/19 1/20 1/21 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29 1/30 1/31 1/32 Reserved 1/18 1/19 1/20 1/21 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29 1/30 1/31 1/32 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Capture Resizer Horizontal Scaling Rate bits [5:0] When independent horizontal/vertical scaling is disabled (REG[0960h] bit 2 = 0), these bits determine the vertical and horizontal scaling rate. When independent horizontal/vertical scaling is enabled (REG[0960h] bit 2 = 1), these bits only determine the horizontal scaling rate. Not all scaling rates are available for all scaling modes (see REG[096Eh] bits 1-0). For a summary of the available scaling rate/mode options, see Table 10-62: “Capture Resizer Horizontal Scaling Rate Selection,” on page 247. Table 10-62: Capture Resizer Horizontal Scaling Rate Selection REG[096Ch] bits 5-0 00 0000 00 0001 00 0010 00 0011 00 0100 00 0101 00 0110 00 0111 00 1000 00 1001 00 1010 00 1011 00 1100 00 1101 00 1110 00 1111 01 0000 01 0001 REG[096Eh] bits 1-0 = 00 Reserved n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a S1D13715 Hardware Functional Specification Rev. 7.4 Capture Resizer Horizontal Scaling Rate REG[096Eh] REG[096Eh] bits 1-0 = 01 bits 1-0 = 10 Reserved Reserved 1/1 1/1 1/2 1/2 1/3 Reserved 1/4 1/4 1/5 Reserved 1/6 Reserved 1/7 Reserved 1/8 1/8 1/9 Reserved 1/10 Reserved 1/11 Reserved 1/12 Reserved 1/13 Reserved 1/14 Reserved 1/15 Reserved 1/16 1/16 1/17 Reserved Seiko Epson Corporation REG[096Eh] bits 1-0 = 11 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 247 Registers Table 10-62: Capture Resizer Horizontal Scaling Rate Selection (Continued) 01 0010 01 0011 01 0100 01 0101 01 0110 01 0111 01 1000 01 1001 01 1010 01 1011 01 1100 01 1101 01 1110 01 1111 10 0000 10 0001 - 11 1111 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a Reserved 1/18 1/19 1/20 1/21 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29 1/30 1/31 1/32 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 1/32 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved REG[096Eh] Capture Resizer Operation Setting Register 1 Default = 0000h Read/Write n/a 15 14 13 12 11 n/a 7 10 Reserved 6 5 4 3 9 8 Capture Resizer Scaling Mode bits 1-0 2 1 0 bits 3-2 Reserved The default value for these bits is 0. bit 1-0 Capture Resizer Scaling Mode bits[1:0] These bits determine the capture resizer scaling mode. Not all scaling rates are available for all scaling modes. Before selecting a scaling mode, set the Capture Resizer Vertical Scaling Rate bits (REG[096Eh] bits 13-8) and/or the Capture Resizer Horizontal Scaling Rate bits (REG[096Ch] bits 5-0) to a valid scaling rate. Enabling a scaling mode with an unsupported scaling rate (reserved or n/a) may turn off the capture resizer. Table 10-63: Capture Resizer Scaling Mode Selection 248 REG[096Eh] bits 1-0 Capture Resizer Scaling Mode 00 no resizer scaling 01 V/H Reduction 10 V: Reduction, H: Average 11 Reserved Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers 10.4.15 JPEG Module Registers REG[0980h] JPEG Control Register Default = 0000h 15 JPEG Module SW Reset (WO) 14 7 6 13 Reserved 5 Read/Write Reserved JPEG 180° n/a Rotation Enable 12 YUV Data No Offset Select 11 4 3 10 9 8 JPEG Module Enable 1 0 JPEG Data Control bits 2-0 2 bits 15-12 Reserved The default value for these bits is 0. bit 8 JPEG 180° Rotation Enable This bit is only for camera data encode. This bit selects the rotation mode for JPEG encoded data. For an overview diagram, see Section 18.4, “JPEG 180° Rotate Encode Diagram” on page 365. When this bit = 1, the JPEG encoded data is rotated 180°. When this bit = 0, the JPEG encoded data is normal. Note The dimensions of the image must be in MCU size multiples. bit 7 JPEG Module Software Reset (Write Only) This bit initiates a software reset of the internal JPEG module circuit. The JPEG module should be reset using this bit before each JPEG encode operation. This bit resets only the internal JPEG module circuit and has no effect on the JPEG codec registers (REG[1000h]-[17A2h], the JPEG codec or the JPEG module registers (REG[0980h]-[09E0h]), except as follows. REG[0984] is reset except for bits 14, 5, and 1. REG[09B4] is reset REG[09B6] is reset REG[09AC] is reset REG[09AA] is reset REG[09A8] is reset REG[09A2] is reset To reset the JPEG codec, set the JPEG Codec Software Reset bit (REG[1002h] bit 7) to 1. When a 1 is written to this bit, the JPEG module is reset. When a 0 is written to this bit, there is no hardware effect. bit 6 Reserved The default value for this bit is 0. bit 5 Reserved The default value for this bit is 0. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 249 Registers bit 4 YUV Data No Offset Select This bit specifies whether an offset is applied to the U and V data when in YUV Capture, YUV Display, Host Encode, and Host Decode modes, REG[0980h] bits [3:1] = 001, 011, 100, 101, or 111. This bit is used in conjunction with REG[0110h] bit 8 to select the desired YUV output capture range for YUV Capture mode. When this bit = 0, an offset is applied to the U and V data (MSB is inverted). When this bit = 1, no offset is applied to the U and V data is not modified. The YUV data range depends on the interface data range and the YUV Data No Offset Select bit. For Host Decode mode, this bit must be set to 1. Table 10-64: YUV Output Range Selection (REG[0980h] bits 3-1 = 011, 100 or 111) Camera Interface Input YUV Data REG[0110h] bit 8 REG[0980h] bit 4 YUV Output Data Range 0 =< Y =< 255 -128 =< U =< 127 -128 =< V =< 127 0 or 16 =< Y =< 235 -112 =< Cb=< 112 -112 =< Cr=< 112 0 0 =< Y =< 255 0 =< U =< 255 0 =< V =< 255 1 or 16 =< Y =< 235 16 =< Cb=< 240 16 =< Cr =< 240 Straight Data 0 =< Y =< 255 0 =< U =< 255 0 =< V =< 255 0 or 16 =< Y =< 235 16 =< Cb =< 240 16 =< Cr =< 240 1 0 =< Y =< 255 -128 =< U =< 127 -128 =< V =< 127 1 or 16 =< Y =< 235 -112 =< Cb =< 112 -112 =< Cr =< 112 250 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers Table 10-64: YUV Output Range Selection (REG[0980h] bits 3-1 = 011, 100 or 111) (Continued) Camera Interface Input YUV Data REG[0110h] bit 8 REG[0980h] bit 4 YUV Output Data Range 0 =< Y =< 255 0 =< U =< 255 0 =< V =< 255 0 or 16 =< Y =< 235 16 =< Cb =< 240 16 =< Cr =< 240 0 0 =< Y =< 255 -128 =< U =< 127 -128 =< V =< 127 1 or 16 =< Y =< 235 -112 =< Cb =< 112 -112 =< Cr =< 112 Offset Data 0 =< Y =< 255 -128 =< U =< 127 -128 =< V =< 127 0 or 16 =< Y =< 235 -112 =< Cb=< 112 -112 =< Cr=< 112 1 0 =< Y =< 255 0 =< U =< 255 0 =< V =< 255 1 or 16 =< Y =< 235 16 =< Cb=< 240 16 =< Cr =< 240 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 251 Registers Table 10-65: YUV Input Range Selection (REG[0980h] bits 3-1 = 001, 100 or 101) Host Interface Input YUV Data REG[0980h] bit 4 YUV Input Data Range 0  Y  255 -128  U  127 -128  V  127 0 or 16  Y  235 -112  Cb  112 -112  Cr  112 Straight Data 0  Y  255 0  U  255 0  V  255 1 or 16  Y  235 16  Cb  240 16  Cr  240 0  Y  255 0  U  255 0  V  255 0 or 16  Y  235 16  Cb  240 16  Cr  240 Offset Data 0  Y  255 -128  U  127 -128  V  127 1 or 16  Y  235 -112  Cb  112 -112  Cr  112 252 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bits 3-1 JPEG Data Control bits [2:0] Table 10-66: JPEG Data Mode Selection REG[0980h] bits 3-1 JPEG Data Mode Description In this mode the encode data paths are: 000 JPEG Encode/Decode • Camera Interface => Capture Resizer => JPEG Line Buffer => Codec Core => JPEG FIFO => Host Interface • Display Buffer => RGB/YUV Converter => Capture Resizer => JPEG Line Buffer => Codec Core => JPEG FIFO => Host Interface • Host Interface => RGB/YUV Converter => Capture Resizer => JPEG Line Buffer => Codec Core => JPEG FIFO => Host Interface In this mode the decode data path is: • Host Interface => JPEG FIFO => Codec Core => JPEG Line Buffer => View Resizer => RGB/YUV Converter => Display Buffer 001 YUV Data Input from Host The data by-passes the JPEG Module. (YUV 4:2:2) 010 011 Reserved YUV Data Output to Host The data by-passes the JPEG Module. (YUV 4:2:2) In this mode the encode data path is: 100 101 • Host Interface => JPEG Line Buffer => Capture Resizer => Host Input/Output JPEG Codec Core => JPEG FIFO => Host Interface Encode/Decode (YUV 4:2:0 or YUV 4:2:2) In this mode the decode data path is: • Host Interface => JPEG FIFO => Codec Core => JPEG Line Buffer => View Resizer => Host Interface YUV Data Input from Host The data by-passes the JPEG Module. (YUV 4:2:0) 110 111 bit 0 Reserved YUV Data Output to Host The data by-passes the JPEG Module. (YUV 4:2:0) JPEG Module Enable This bit enables/disables the JPEG module and its associated registers. If the JPEG module is disabled, REG[1000h] - REG[17A2h] must not be accessed. When this bit = 1, the JPEG module is enabled and a clock source is supplied. When this bit = 0, the JPEG module is disabled and the clock source is disabled. Note The JPEG module must be disabled before the View Resizer Enable bit (REG[0940h] bit 0) or the Capture Resizer Enable bit (REG[0960h] bit 0) are disabled. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 253 Registers REG[0982h] JPEG Status Flag Register Default = 8080h Reserved JPEG Codec File Out Status (RO) 15 14 JPEG FIFO Threshold Status bits 1-0 (RO) Reserved 7 Read/Write 6 Encode Size Limit Violation Flag 13 12 11 JPEG Decode Complete Flag Decode Marker Read Flag Reserved 5 4 3 JPEG FIFO Threshold Trigger Flag JPEG FIFO Full Flag JPEG FIFO Empty Flag 10 JPEG Line Buffer Overflow Flag (RO) 9 JPEG Codec Interrupt Flag (RO) 8 JPEG Line Buffer Interrupt Flag (RO) 2 1 0 bit 15 Reserved The default value for this bit is 1. bit 14 JPEG Codec File Out Status (Read Only) This bit indicates the status of the JPEG Codec output. When this bit = 1, the JPEG Codec is encoding or outputing encoded data. When this bit = 0, the JPEG Codec is not outputing encoded data. bits 13-12 JPEG FIFO Threshold Status bits [1:0] (Read Only) These bits indicate how much data is currently in the JPEG FIFO. See the JPEG FIFO Size register (REG[09A4h]) for information on setting the JPEG FIFO size. Table 10-67: JPEG FIFO Threshold Status bit 11 REG[0982h] bits 13-12 JPEG FIFO Threshold Status 00 no data (same as empty 01 more than 4 bytes of data exist 10 more than 1/4 of specified FIFO size data exists 11 more than 1/2 of specified FIFO size data exists Encode Size Limit Violation Flag This flag is asserted when the JPEG compressed data size is over the encode size limit as specified in the Encode Size Limit registers (REG[09B0h], REG[09B2h]). This flag is masked by the JPEG Encode Size Limit Violation Interrupt Enable bit and is only available when REG[0986h] bit 11 = 1. For Reads: When this bit = 1, an encode size limit violation has occurred. When this bit = 0, no violation has occurred. For Writes: When a 1 is written to this bit, the Encode Size Limit Violation Flag is cleared. When a 0 is written to this bit, there is no hardware effect. Note The Encode Size Limit Violation Flag can only be cleared when an Encode Size Limit Violation no longer exists. This can be done by setting the Encode Size Limit to a value greater then the Encode Size Result (REG[09B0h] - REG[09B2h] > REG[09B4h] REG[09B6h]), or by resetting the JPEG Module (REG[0980h] bit 7 = 1). 254 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers Note For further information on the use of this bit, see Section 19.1.2, “JPEG Codec Interrupts” on page 368. bit 10 JPEG FIFO Threshold Trigger Flag This flag is asserted when the amount of data in the JPEG FIFO meets the condition specified by the JPEG FIFO Trigger Threshold bits (REG[09A0h] bits 5-4). This flag is masked by the JPEG FIFO Threshold Trigger Interrupt Enable bit and is only available when REG[0986h] bit 10 = 1. For Reads: When this bit = 1, the amount of data in the JPEG FIFO has reached the JPEG FIFO Trigger Threshold. When this bit = 0, the amount of data in the JPEG FIFO is less than the JPEG FIFO Trigger Threshold. For Writes: When a 1 is written to this bit, the FIFO Threshold Trigger Flag is cleared. When a 0 is written to this bit, there is no hardware effect. Note The JPEG FIFO Threshold Trigger Flag can only be cleared when a JPEG FIFO Threshold Trigger Flag condition no longer exists. This can be done by increasing the JPEG FIFO Threshold (REG[09A0h] bits 5-4), emptying the JPEG FIFO until it drops below the specified threshold, or by resetting the JPEG Module (REG[0980h] bit 7 = 1). Note For further information on the use of this bit, see Section 19.1.2, “JPEG Codec Interrupts” on page 368. bit 9 JPEG FIFO Full Flag This flag is asserted when the JPEG FIFO is full. This flag is masked by the JPEG FIFO Full Interrupt Enable bit and is only available when REG[0986h] bit 9 = 1. For Reads: When this bit = 1, the JPEG FIFO is full. When this bit = 0, the JPEG FIFO is not full. For Writes: When a 1 is written to this bit, the JPEG FIFO Full Flag is cleared. When a 0 is written to this bit, there is no hardware effect. Note The JPEG FIFO Full Flag can only be cleared when the JPEG FIFO is no longer full, or after a JPEG Module Software Reset (REG[0980h] bit 7 = 1). Note For further information on the use of this bit, see Section 19.1.2, “JPEG Codec Interrupts” on page 368. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 255 Registers bit 8 JPEG FIFO Empty Flag This flag is asserted when the JPEG FIFO is empty. This flag is masked by the JPEG FIFO Empty Interrupt Enable bit and is only available when REG[0986h] bit 8 = 1. For Reads: When this bit = 1, the JPEG FIFO is empty. When this bit = 0, the JPEG FIFO is not empty. For Writes: When a 1 is written to this bit, the JPEG FIFO Empty Flag is cleared. When a 0 is written to this bit, there is no hardware effect. Note The JPEG FIFO Empty Flag can only be cleared when the JPEG FIFO is no longer empty, or after a JPEG Module Software Reset (REG[0980h] bit 7 = 1). Note For further information on the use of this bit, see Section 19.1.2, “JPEG Codec Interrupts” on page 368. bit 7 Reserved The default value for this bit is 1. bit 6 Reserved The default value for this bit is 0. bit 5 JPEG Decode Complete Flag This flag is asserted when the JPEG decode operation is finished. This flag is masked by the JPEG Decode Complete Interrupt Enable bit and is only available when REG[0986h] bit 5 = 1. For Reads: When this bit = 1, the JPEG decode operation is finished. When this bit = 0, the JPEG decode operation is not finished yet. For Writes: When a 1 is written to this bit, this bit is cleared. When a 0 is written to this bit, there is no hardware effect. Note When error detection is enabled (REG[101Ch] bits 1-0 = 01) and an error is detected while decoding a JPEG image, this status bit is not set at the end of the decode process. Note For further information on the use of this bit, see Section 19.1.2, “JPEG Codec Interrupts” on page 368. 256 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 4 Decode Marker Read Flag This flag is asserted during the JPEG decoding process when decoded marker information is read from the JPEG file. This flag is masked by the JPEG Decode Marker Read Interrupt Enable bit and is only available when REG[0986h] bit 4 = 1. When this bit = 1, a JPEG decode marker has been read. When this bit = 0, a JPEG decode marker has not been read. To clear this flag, disable the Decode Marker Read Interrupt Enable bit (REG[0986h] bit 4 = 0). Note For further information on the use of this bit, see Section 19.1.2, “JPEG Codec Interrupts” on page 368. bit 3 Reserved The default value for this bit is 0. bit 2 JPEG Line Buffer Overflow Flag (Read Only) This flag is asserted when a JPEG Line Buffer overflow occurs. This flag is masked by the JPEG Line Buffer Overflow Interrupt Enable bit and is only available when REG[0986h] bit 2 = 1. When this bit = 1, a JPEG Line Buffer overflow has occurred. When this bit = 0, a JPEG Line Buffer overflow has not occurred. To clear this flag, perform a JPEG Software Reset (REG[0980h] bit 7 = 1). Note For further information on the use of this bit, see Section 19.1.2, “JPEG Codec Interrupts” on page 368. bit 1 JPEG Codec Interrupt Flag (Read Only) This flag is asserted when the JPEG codec generates an interrupt. This flag is masked by the JPEG Codec Interrupt Enable bit and is only available when REG[0986h] bit 1 = 1). When this bit = 1, the JPEG codec has generated an interrupt. When this bit = 0, the JPEG codec has not generated an interrupt. To clear this flag, read the JPEG Operation Status bit (REG[1004h] bit 0). Note For further information on the use of this bit, see Section 19.1.2, “JPEG Codec Interrupts” on page 368. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 257 Registers bit 0 JPEG Line Buffer Interrupt Flag (Read Only) This bit is valid only when YUV Capture/Display or Host Decode/Encode mode is selected (REG[0980h] bits 3-1  000). This bit is set when a JPEG Line Buffer Interrupt occurs in REG[09C0h] and is used for YUV data transfers or Host Decode/Encode operations with interrupt handling. This flag is masked by the JPEG Line Buffer Interrupt Enable bit and is only available when REG[0986h] bit 0 = 1). This bit is cleared when all JPEG Line Buffer Interrupt requests are cleared in REG[09C0h]. When this bit = 1, the JPEG Line Buffer has generated an interrupt. When this bit = 0, the JPEG Line Buffer has not generated an interrupt. REG[0984h] JPEG Raw Status Flag Register Default = 8180h Reserved JPEG Codec File Out Status 15 14 JPEG FIFO Threshold Status bits 1-0 Reserved 7 Read Only 6 13 Raw JPEG Decode Complete Flag 12 Raw JPEG Decode Marker Read Flag 5 4 Raw Encode Size Limit Violation Flag Raw JPEG FIFO Threshold Trigger Flag 11 10 Raw JPEG Line Buffer Overflow Flag Reserved 3 Raw JPEG FIFO Full Flag Raw JPEG FIFO Empty Flag 9 8 Raw JPEG Line Buffer Interrupt Flag Raw JPEG Codec Interrupt Flag 2 1 bit 15 Reserved The default value for this bit is 1. bit 14 JPEG Codec File Out Status (Read Only) This bit provides the status of the JPEG Codec output. When this bit = 1, the JPEG Codec is encoding or outputing encoded data. When this bit = 0, the JPEG Codec is not outputing encoded data. 0 Note This bit has the same functionality as REG[0982h] bit 14. bits 13-12 JPEG FIFO Threshold Status bits [1:0] (Read Only) These bits indicate how much data is currently in the JPEG FIFO. See the JPEG FIFO Size Register (REG[09A4h) for information on setting the JPEG FIFO Size. Table 10-68: JPEG FIFO Threshold Status REG[0984h] bits 13-12 JPEG FIFO Threshold Status 00 no data (same as empty 01 more than 4 bytes of data exist 10 more than 1/4 of specified FIFO size data exists 11 more than 1/2 of specified FIFO size data exists Note These bits have the same functionality as REG[0982h] bits 13-12. 258 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 11 Raw Encode Size Limit Violation Flag (Read Only) This flag is asserted when the JPEG encoded data size is over the size limit as specified in the Encode Size Limit registers (REG[09B02h] - REG[09B2h]). This flag is not affected by the JPEG Encode Size Limit Violation Interrupt Enable bit (REG[0986h] bit 11). When this bit = 1, an encode size limit violation has occurred. When this bit = 0, no violation has occurred. To clear this flag, write a 1 to the Encode Size Limit Violation Flag, REG[0982h] bit 11, when an Encode Size Limit Violation condition no longer exists. (i.e. Set the Encode Size Limit, REG[09B0h] and REG[09B2h] > Encode Size Result, REG[09B4h] and REG[09B6h], or reset the JPEG Module, REG[0980h] bit 7 = 1.) bit 10 Raw JPEG FIFO Threshold Trigger Flag (Read Only) This flag is asserted when the amount of data in the JPEG FIFO meets the condition specified by the JPEG FIFO Trigger Threshold bits (REG[09A0] bits 5-4). This flag is not affected by the JPEG FIFO Threshold Trigger Interrupt Enable bit (REG[0986h] bit 10). When this bit = 1, the amount of data in the JPEG FIFO has reached the JPEG FIFO Trigger Threshold. When this bit = 0, the amount of data in the JPEG FIFO is less than the JPEG FIFO Trigger Threshold. To clear this flag, write a 1 to the JPEG FIFO Threshold Trigger Flag, REG[0982] bit 10, when a JPEG FIFO Threshold Trigger condition no longer exists. (i.e. Set the JPEG FIFO Threshold in REG[09A0] bits [5:4] greater, empty the JPEG FIFO until it’s level is below the specified threshold, or reset the JPEG Module, REG[0980] bit 7 = 1.) bit 9 Raw JPEG FIFO Full Flag (Read Only) This flag is asserted when the JPEG FIFO is full. This flag is not affected by the JPEG FIFO Full Interrupt Enable bit (REG[0986h] bit 9). When this bit = 1, the JPEG FIFO is full. When this bit = 0, the JPEG FIFO is not full. To clear this flag, write a 1 to the JPEG FIFO Full Flag, REG[0982h] bit 9, when the JPEG FIFO is no longer full or after a JPEG Module reset, REG[0980h] bit 7 = 1. bit 8 Raw JPEG FIFO Empty Flag (Read Only) This flag is asserted when the JPEG FIFO is empty. This flag is not affected by the JPEG FIFO Empty Interrupt Enable bit (REG[0986h] bit 8). When this bit = 1, the JPEG FIFO is empty. When this bit = 0, the JPEG FIFO is not empty. To clear this flag, write a 1 to the JPEG FIFO Empty Flag, REG[0982h] bit 8, when the JPEG FIFO is no longer empty or after a JPEG Module reset, REG[0980h] bit 7 = 1. Note This bit is not affected by the JPEG FIFO Clear bit (REG[09A0h] bit 2). bit 7 Reserved The default value for this bit is 1. bit 6 Reserved The default value for this bit is 0. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 259 Registers bit 5 Raw JPEG Decode Complete Flag (Read Only) This flag is asserted when the JPEG decode operation is finished. This flag is not affected by the JPEG Decode Complete Interrupt Enable bit (REG[0986h] bit 5). When this bit = 1, the JPEG decode operation is finished. When this bit = 0, the JPEG decode operation is not finished yet. To clear this flag, write a 1 to the JPEG Decode Complete Flag (REG[0982h] bit 5 = 1). Note When error detection is enabled (REG[101Ch] bits 1-0 = 01) and an error is detected while decoding a JPEG image, this status bit is not set at the end of the decode process. bit 4 Raw JPEG Decode Marker Read Flag (Read Only) This flag is asserted during the JPEG decoding process when decoded marker information is read from the JPEG file and when REG[0986h] bit 4 = 1. When this bit = 1, a JPEG decode marker has been read. When this bit = 0, a JPEG decode marker has not been read. To clear this flag, disable the JPEG Decode Marker Read Interrupt Enable bit (REG[0986h] bit 4 = 0). bit 3 Reserved The default value for this bit is 0. bit 2 Raw JPEG Line Buffer Overflow Flag (Read Only) This flag is asserted when a JPEG Line Buffer overflow occurs. This flag is not affected by the JPEG Line Buffer Overflow Interrupt Enable (REG[0986h] bit 2). When this bit = 1, a JPEG Line Buffer overflow has occurred. When this bit = 0, a JPEG Line Buffer overflow has not occurred. To clear this flag, perform a JPEG module software reset (REG[0980h] bit 7 = 1). bit 1 Raw JPEG Codec Interrupt Flag (Read Only) This flag is asserted when an interrupt is generated by the JPEG codec. This flag is not affected by the JPEG Codec Interrupt Enable bit (REG[0986h] bit 1). When this bit = 1, the JPEG codec has generated an interrupt. When this bit = 0, no interrupt has been generated. To clear this flag, read the JPEG Operation Status bit (REG[1004h] bit 0). bit 0 Raw JPEG Line Buffer Interrupt Flag This bit is valid only when YUV Capture/Display mode is selected (REG[0980h] bits 3-1  000). This flag is not affected by the JPEG Line Buffer Interrupt Enable bit (REG[0986h] bit 0). This bit is set when a JPEG Line Buffer Interrupt occurs in REG[09C0h] and is cleared when all JPEG Line Buffer Interrupt requests are cleared in REG[09C0h]. When this bit = 1, the JPEG Line Buffer has generated an interrupt. When this bit = 0, the JPEG Line Buffer has not generated an interrupt. 260 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[0986h] JPEG Interrupt Control Register Default = 0000h Read/Write Reserved 15 14 Reserved 7 6 13 JPEG Decode Complete Interrupt Enable 12 Decode Marker Read Interrupt Enable 5 4 Encode Size Limit Violation Interrupt Enable JPEG FIFO Threshold Trigger Interrupt Enable 11 10 JPEG Line Buffer Overflow Interrupt Enable Reserved 3 2 JPEG FIFO Full Interrupt Enable JPEG FIFO Empty Interrupt Enable 9 8 JPEG Codec Interrupt Enable JPEG Line Buffer Interrupt Enable 1 0 bits 15-12 Reserved The default value for these bits is 0. bit 11 Encode Size Limit Violation Interrupt Enable This bit controls the encode size limit violation interrupt. The status of this interrupt can be determined using the Encode Size Limit Violation Flag bit (REG[0982h] bit 11). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. bit 10 JPEG FIFO Threshold Trigger Interrupt Enable This bit controls the JPEG FIFO threshold trigger interrupt. The status of this interrupt can be determined using the JPEG FIFO Threshold Trigger Flag bit (REG[0982h] bit 10). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. bit 9 JPEG FIFO Full Interrupt Enable This bit controls the JPEG FIFO full interrupt. The status of this interrupt can be determined using the JPEG FIFO Full Flag bit (REG[0982h] bit 9). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. bit 8 JPEG FIFO Empty Interrupt Enable This bit controls the JPEG FIFO empty interrupt. The status of this interrupt can be determined using the JPEG FIFO Empty Flag bit (REG[0982h] bit 8). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. bit 7 Reserved The default value for this bit is 0. bit 6 Reserved The default value for this bit is 0. bit 5 JPEG Decode Complete Interrupt Enable This bit controls the JPEG decode complete interrupt. The status of this interrupt can be determined using the JPEG Decode Complete Flag bit (REG[0982h] bit 5). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 261 Registers bit 4 JPEG Decode Marker Read Interrupt Enable This bit controls the JPEG decode marker read interrupt. The status of this interrupt can be determined using the JPEG Decode Complete Flag (REG[0982h] bit 4). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. bit 3 Reserved The default value for this bit is 0. bit 2 JPEG Line Buffer Overflow Interrupt Enable This bit controls the JPEG line buffer overflow interrupt. The status of this interrupt can be determined using the Line Buffer Overflow Flag (REG[0982h] bit 2). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. bit 1 JPEG Codec Interrupt Enable This bit controls the JPEG codec interrupt. The status of this interrupt can be determined using the JPEG Codec Interrupt Flag (REG[0982h] bit 1). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. bit 0 JPEG Line Buffer Interrupt Enable This bit controls the JPEG Line Buffer Interrupt. The status of this interrupt can be determined using the JPEG Line Buffer Interrupt Flag (REG[0982h] bit 0). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. This bit should be disabled if YUV Data in not being input from host and then displayed (REG[0980h] bits 3-1 = 001 or 101). REG[0988h] is Reserved This register is Reserved and should not be written. 262 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[098Ah] JPEG Code Start/Stop Control Register Default = 0000h Write Only n/a 15 14 13 12 11 10 9 8 JPEG Start/Stop Control 3 2 1 0 n/a 7 bit 0 6 5 4 JPEG Start/Stop Control (Write Only) This bit controls the JPEG codec for both JPEG encode mode and YUV data capture (JPEG bypass) mode. This bit is not used for JPEG decoding. For JPEG Encode: When this bit is set to 1, the JPEG codec starts capturing the next frame and then stops. When this bit is set to 0, the JPEG codec will be ready to capture from the next frame. For YUV Data Capture (JPEG Bypass): When this bit is set to 1, YUV data capturing starts from the next frame. When this bit is set to 0, YUV data capturing stops at the end of the current frame. REG[098Ch] through REG[098Eh] are Reserved These registers are Reserved and should not be written. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 263 Registers 10.4.16 JPEG FIFO Setting Register REG[09A0h] JPEG FIFO Control Register Default = 0000h Read/Write Reserved 15 14 13 Reserved 7 12 11 JPEG FIFO Trigger Threshold bits 1-0 6 5 Reserved 4 3 10 JPEG FIFO Clear (WO) 9 JPEG FIFO Direction (RO) 2 1 8 n/a 0 bits 15-6 Reserved The default value for these bits is 0. bits 5-4 JPEG FIFO Trigger Threshold bits[1:0] These bits set the JPEG FIFO Threshold Trigger Flag (REG[0982h] bit 10) when the specified conditions are met. . Table 10-69: JPEG FIFO Trigger Threshold Selection bit 3 264 REG[09A0h] bits 5-4 JPEG FIFO Trigger Threshold 00 Never trigger 01 Trigger when the JPEG FIFO contains 4 bytes of data or more 10 Trigger when the JPEG FIFO contains more than 1/4 of the specified JPEG FIFO size (REG[09A4h] bits 3-0) 11 Trigger when the JPEG FIFO contains more than 1/2 of the specified JPEG FIFO size (REG[09A4h] bits 3-0) Reserved The default value for this bit is 0. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 2 JPEG FIFO Clear (Write Only) This bit clears the JPEG FIFO. It is recommended that the JPEG module should also be reset (REG[0980h] bit 7 = 1) when the JPEG FIFO is cleared. When this bit = 1, the JPEG FIFO, the JPEG FIFO Read/Write Pointer registers (REG[09AAh]-[09ACh]), and the JPEG FIFO Valid Data Size registers (REG[09A8h] are cleared. When this bit = 0, there is no hardware effect. The following sequence is used clear the JPEG FIFO. 1. Clear the JPEG FIFO, REG[09A0h] bit 2 = 1. 2. Perform 2 dummy reads from REG[09A6h] to ensure that the JPEG FIFO is empty. 3. Reset the JPEG module, REG[0980h] bit 7 = 1. Note Clearing the JPEG FIFO using this bit has no effect on the Raw JPEG FIFO Empty Flag (REG[0984h] bit 8). Note This bit only clears the JPEG FIFO and does not clear the JPEG Line Buffer. For details on using the JPEG FIFO, see Section 19.1.1, “JPEG FIFO” on page 367. bit 1 JPEG FIFO Direction Bit (Read Only) This bit indicates the configuration of the JPEG FIFO. When this bit = 1, the JPEG FIFO is configured to transmit (decode process). When this bit = 0, the JPEG FIFO is configured to receive (encode process). REG[09A2h] JPEG FIFO Status Register Default = 8001h Read Only Reserved 15 n/a 14 13 12 Reserved 7 bit 15 6 11 10 JPEG FIFO Threshold Status bits 1-0 5 4 3 2 9 JPEG FIFO Full Status 8 JPEG FIFO Empty Status 1 0 Reserved The default value for this bit is 0. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 265 Registers bits 3-2 JPEG FIFO Threshold Status bits [1:0] (Read Only) These bits indicate how much data is currently in the JPEG FIFO. See the JPEG FIFO Size register (REG[09A4h]) for information on setting the JPEG FIFO size. Table 10-70: JPEG FIFO Threshold Status REG[09A2h] bits 3-2 JPEG FIFO Threshold Status 00 no data (same as empty 01 more than 4 bytes of data exist 10 more than 1/4 of specified FIFO size data exists 11 more than 1/2 of specified FIFO size data exists Note These bits have the same functionality as REG[0982h] bits 13-12. bit 1 JPEG FIFO Full Status (Read Only) This bit indicates whether the JPEG FIFO is full. When this bit = 1, the JPEG FIFO is full. When this bit = 0, the JPEG FIFO is not full. bit 0 JPEG FIFO Empty Status (Read Only) This bit indicates that the JPEG FIFO is empty. When this bit = 1, the JPEG FIFO is empty. When this bit = 0, the JPEG FIFO is not empty. REG[09A4h] JPEG FIFO Size Register Default = 0000h Read/Write Reserved 15 14 Reserved 13 12 11 10 JPEG FIFO Size bits 4-0 9 8 7 6 5 4 3 2 1 0 bits 15-5 Reserved The default value for these bits is 0. bits 4-0 JPEG FIFO Size bits [4:0] These bits determine the JPEG FIFO size in 4K byte units. The maximum size of the JPEG FIFO is 128K bytes. These bits also specify the amount of memory reserved for the JPEG FIFO. JPEG FIFO size = (REG[09A4h] bits 4-0 + 1) x 4K bytes Note For further information on S1D13715 memory mapping, see Section 8, “Memory Allocation” on page 118. 266 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[09A6h] JPEG FIFO Read/Write Port Register Default = Not Applicable Read/Write JPEG FIFO Read/Write Port bits 15-8 15 14 13 7 6 5 bits 15-0 12 11 JPEG FIFO Read/Write Port bits 7-0 4 3 10 9 8 2 1 0 JPEG FIFO Read/Write Port bits[15:0] These bits are the access port for the JPEG FIFO. The current address pointed to by the port can be determined using the JPEG FIFO Read Pointer register (REG[09AAh) and the JPEG FIFO Write Pointer register (REG[09ACh]). When JPEG encoding is selected, these bits are used as the JPEG FIFO read data port. When JPEG decoding is selected, these bits are used as the JPEG FIFO write data port. When YUV data is output to the Host interface (REG[0980] bits 3-1 = 011 or 111), these bits are used as the JPEG FIFO read data port. Note Since the JPEG FIFO is 32 bits wide and the Host CPU interface is 16 bits wide, this register must be accessed an even number of times. REG[09A8h] JPEG FIFO Valid Data Size Register Default = 0000h Read Only JPEG FIFO Valid Data Size bits 15-8 15 14 13 7 6 5 bits 15-0 12 11 JPEG FIFO Valid Data Size bits 7-0 4 3 10 9 8 2 1 0 JPEG FIFO Valid Data Size bits[15:0] (Read Only) These bits indicate the valid data size in 32-bit units which can be read from the JPEG FIFO. If the JPEG file size is not aligned on 32-bit boundaries, the JPEG FIFO may contain more data (1 to 3 bytes) than the indicated size. See the Encode Size Result registers (REG[09B4h]-[09B6h]) to determine the correct data size. REG[09AAh] JPEG FIFO Read Pointer Register Default = 0000h Read Only JPEG FIFO Read Pointer bits 15-8 15 14 13 7 6 5 bits 15-0 12 11 JPEG FIFO Read Pointer bits 7-0 4 3 10 9 8 2 1 0 JPEG FIFO Read Pointer bits[15:0] (Read Only) These bits are used during evaluation and are for reference only. These bits indicate the 32-bit read pointer into the JPEG FIFO. The read pointer is automatically incremented when either a read or write to/from the JPEG FIFO Read/Write Port register (REG[09A6h]) takes place. For details on the JPEG FIFO, see Section 19.1.1, “JPEG FIFO” on page 367. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 267 Registers REG[09ACh] JPEG FIFO Write Pointer Register Default = 0000h Read Only JPEG FIFO Write Pointer bits 15-8 15 14 13 7 6 5 bits 15-0 12 11 JPEG FIFO Write Pointer bits 7-0 4 3 10 9 8 2 1 0 JPEG FIFO Write Pointer bits[15:0] (Read Only) These bits are used during evaluation and are for reference only. These bits indicate the 32-bit write pointer into the JPEG FIFO. The write pointer is automatically incremented when a write to the JPEG FIFO Read/Write Port register (REG[09A6h]) takes place. For details on the JPEG FIFO, see Section 19.1.1, “JPEG FIFO” on page 367. REG[09B0h] Encode Size Limit Register 0 Default = 0000h Read/Write Encode Size Limit bits 15-8 15 14 13 7 6 5 12 11 Encode Size Limit bits 7-0 4 3 10 9 8 2 1 0 REG[09B2h] Encode Size Limit Register 1 Default = 0000h Read/Write n/a 15 14 13 7 6 5 12 11 Encode Size Limit bits 23-16 4 3 10 9 8 2 1 0 REG[09B2h] bits 7-0 REG[09B0h] bits 15-0 Encode Size Limit bits[23:0] These bits are required for the JPEG encode process only. These bits specify the data size limit, in bytes, for the encoded JPEG file. Note Setting these registers to 0 will disable the Encode Size Limit Violation function and REG[0984h] bit 11 will not be set. 268 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[09B4h] Encode Size Result Register 0 Default = 0000h Read Only Encode Size Result bits 15-8 15 14 13 7 6 5 12 11 Encode Size Result bits 7-0 4 3 10 9 8 2 1 0 REG[09B6h] Encode Size Result Register 1 Default = 0000h Read Only n/a 15 14 13 7 6 5 12 11 Encode Size Result bits 23-16 4 3 10 9 8 2 1 0 REG[09B6h] bits 7-0 REG[09B4h] bits 15-0 Encode Size Result bits[23:0] (Read Only) These bits are required for the JPEG encode process only. These bits indicate the data size result, in bytes, for the encoded JPEG file. REG[09B8h] JPEG File Size Register 0 Default = 0000h Read/Write JPEG File Size bits 15-8 15 14 13 7 6 5 12 11 JPEG File Size bits 7-0 4 3 10 9 8 2 1 0 REG[09BAh] JPEG File Size Register 1 Default = 0000h Read/Write n/a 15 14 13 7 6 5 12 11 JPEG File Size bits 23-16 4 3 10 9 8 2 1 0 REG[09BAh] bits 7-0 REG[09B8h] bits 15-0 JPEG File Size bits[23:0] These bits are required for the JPEG decode process only. These bits specify the JPEG file size in bytes and must be set before the Host begins writing decoded data to the JPEG FIFO. REG[09BCh] is Reserved This register is Reserved and should not be written. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 269 Registers 10.4.17 JPEG Line Buffer Setting Register REG[09C0h] JPEG Line Buffer Status Flag Register Default = 0000h Read/Write n/a 15 14 13 12 11 10 JPEG Line Buffer Full Flag 9 JPEG Line Buffer Half Flag 8 JPEG Line Buffer Empty Flag 4 3 2 1 0 n/a 7 bit 2 6 5 JPEG Line Buffer Full Flag This flag is asserted when the JPEG Line Buffer becomes full. This flag is masked by the JPEG Line Buffer Full Interrupt Enable bit and is only available when REG[09C6h] bit 2 = 1. This bit is only valid for YUV Capture/Display and Host Encode/Decode modes (REG[0980h] bits 3-1  000). When this bit = 1, the JPEG Line Buffer is full. When this bit = 0, the JPEG Line Buffer is not full. To clear this flag, when the JPEG Line Buffer is not full, write a 1 to this bit. bit 1 JPEG Line Buffer Half Full Flag This flag is asserted when the JPEG Line Buffer has become half full. This flag is masked by the JPEG Line Buffer Half Full Interrupt Enable bit and is only available when REG[09C6h] bit 1 = 1. This bit is only valid for YUV Capture/Display and Host Encode/Decode modes (REG[0980h] bits 3-1  000). When this bit = 1, the JPEG Line Buffer is half full. When this bit = 0, the JPEG Line Buffer is not half full. To clear this flag, when the JPEG Line Buffer is not half full, write a 1 to this bit. bit 0 JPEG Line Buffer Empty Flag This flag is asserted when the JPEG Line Buffer contains less than or equal to 16 bytes of YUV 4:2:2 data or 8 bytes of YUV 4:2:0 data. This flag is masked by the JPEG Line Buffer Empty Interrupt Enable bit and is only available when REG[09C6h] bit 0 = 1. This bit is only valid for YUV Capture/Display and Host Encode/Decode modes (REG[0980h] bits 3-1  000). When this bit = 1, the JPEG Line Buffer contains 16 bytes or less of YUV 4:2:2 data or 8 bytes or less of YUV 4:2:0 data. When this bit = 0, the JPEG Line Buffer is not empty. To clear this flag, when the JPEG Line Buffer is not empty, write a 1 to this bit. 270 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[09C2h] JPEG Line Buffer Raw Status Flag Register Default = 0000h Read Only n/a 15 14 13 12 11 10 Raw JPEG Line Buffer Full Flag 9 Raw JPEG Line Buffer Half Flag 8 Raw JPEG Line Buffer Empty Flag 4 3 2 1 0 n/a 7 bit 2 6 5 Raw JPEG Line Buffer Full Flag (Read Only) This flag is asserted when the JPEG Line Buffer becomes full. This flag is not affected by the JPEG Line Buffer Full Interrupt Enable bit (REG[09C6h] bit 2). This bit is only valid for YUV Capture/Display and Host Encode/Decode modes (REG[0980h] bits 3-1  000). When this bit = 0, the JPEG Line Buffer is not half full. When this bit = 1, the JPEG Line Buffer is full. When this bit = 0, the JPEG Line Buffer is not full. To clear this flag, when the JPEG Line Buffer is not full, write a 1 to REG[09C0h] bit 2. bit 1 Raw JPEG Line Buffer Half Full Flag (Read Only) This flag is asserted when the JPEG Line Buffer becomes half full. This flag is not affected by the JPEG Line Buffer Half Full Interrupt Enable bit (REG[09C6h] bit 1). This bit is only valid for YUV Capture/Display and Host Encode/Decode modes (REG[0980h] bits 3-1  000). When this bit = 0, the JPEG Line Buffer is not half full. When this bit = 1, the JPEG Line Buffer is half full. When this bit = 0, the JPEG Line Buffer is not half full. To clear this flag, when the JPEG Line Buffer is not half full, write a 1 to REG[09C0h] bit 1. bit 0 Raw JPEG Line Buffer Empty Flag (Read Only) This flag is asserted when the JPEG Line Buffer contains less than or equal to 16 bytes of YUV 4:2:2 data or 8 bytes of YUV 4:2:0 data. This flag is not affected by the JPEG Line Buffer Empty Interrupt Enable bit (REG[09C6h] bit 0). This bit is only valid for YUV Capture/Display and Host Encode/Decode modes (REG[0980h] bits 3-1  000). When this bit = 1, the JPEG Line Buffer contains 16 bytes or less of YUV 4:2:2 data or 8 bytes or less of YUV 4:2:0 data. When this bit = 0, the JPEG Line Buffer is not empty To clear this flag, when the JPEG Line Buffer is not empty, write a 1 to REG[09C0h] bit 0. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 271 Registers REG[09C4h] JPEG Line Buffer Raw Current Status Register Default = F001h Read Only Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 15 14 13 12 11 10 Raw JPEG Line Buffer Full Current Status 9 Raw JPEG Line Buffer Half Full Current Status 8 Raw JPEG Line Buffer Empty Current Status 4 3 2 1 0 Reserved 7 n/a 6 5 bits 15-7 Reserved The default value for bits 15 - 12 is 1 and the default value for bits 11 - 8 is 0. bit 2 Raw JPEG Line Buffer Full Current Status (Read Only) This flag indicates the current status of the JPEG Line Buffer. This flag is not affected by the JPEG Line Buffer Full Interrupt Enable bit (REG[09C6h] bit 2). When this bit = 1, the JPEG Line Buffer is full. When this bit = 0, the JPEG Line Buffer is not full. bit 1 Raw JPEG Line Buffer Half Full Current Status (Read Only) This flag indicates the current status of the JPEG Line Buffer. This flag is not affected by the JPEG Line Buffer Half Full Interrupt Enable bit (REG[09C6h] bit 1). When this bit = 1, the JPEG Line Buffer is half full. When this bit = 0, the JPEG Line Buffer is not half full. bit 0 Raw Line Buffer Empty Current Status (Read Only) This flag indicates the current status of the JPEG Line Buffer. This flag is not affected by the JPEG Line Buffer Empty Interrupt Enable bit (REG[09C6h] bit 0). When this bit = 1, the JPEG Line Buffer contains 16 bytes or less of YUV 4:2:2 data or 8 bytes or less of YUV 4:2:0 data. When this bit = 0, the JPEG Line Buffer is not empty. REG[09C6h] JPEG Line Buffer Interrupt Control Register Default = 0000h Read/Write n/a 15 14 13 12 11 10 JPEG Line Buffer Full Interrupt Enable 9 JPEG Line Buffer Half Full Interrupt Enable 8 JPEG Line Buffer Empty Interrupt Enable 4 3 2 1 0 n/a 7 6 5 bit 2 JPEG Line Buffer Full Interrupt Enable This bit controls the JPEG Line Buffer Full Interrupt. The status of the interrupt can be determined using the JPEG Line Buffer Full Flag (REG[09C0h] bit 2). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. bit 1 JPEG Line Buffer Half Full Interrupt Enable This bit controls the JPEG Line Buffer Half Full Interrupt. The status of the interrupt can be determined using the JPEG Line Buffer Half Full Flag (REG[09C0h] bit 1). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. 272 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers bit 0 JPEG Line Buffer Empty Interrupt Enable This bit controls the JPEG Line Buffer Empty Interrupt. The status of the interrupt can be determined using the JPEG Line Buffer Empty Flag (REG[09C0h] bit 0). When this bit = 1, the interrupt is enabled. When this bit = 0, the interrupt is disabled. REG[09C8h] through REG[09CEh] are Reserved These registers are Reserved and should not be written. REG[09D0h] JPEG Line Buffer Configuration Register Default = 2800h Read/Write Reserved JPEG Line Buffer Raw Horizontal Pixel Size bits 10-4 (RO) 15 11 Reserved 14 13 12 JPEG Line Buffer Raw Horizontal Pixel Size bits 3-0 (RO) 7 6 5 4 3 10 9 8 JPEG Line Buffer Horizontal Pixel Size bits 2-0 2 1 0 bit 15 Reserved The default value for this bit is 0. bits 14-4 JPEG Line Buffer Raw Horizontal Pixel Size bits [10:0] (Read Only These bits provide actual number of the horizontal pixel size supported by the JPEG Line Buffer as set in REG[09D0h] bits 2-0. bit 3 Reserved The default value for this bit is 0. bits 2-0 JPEG Line Buffer Horizontal Pixel Size bits [2:0] 1600These bits indicate the horizontal pixel size supported by the JPEG Line Buffer. Table 10-71: Supported Horizontal Pixel Size REG[09D0h] bits 2-0 Supported Horizontal Pixel Size Line Buffer Size 000 VGA (640) 001 SVGA (800) 38k Bytes 010 XGA (1024) 48k Bytes 011 SXGA (1280) 60k Bytes 100 UXGA (1600) 75k Bytes 101 - 111 S1D13715 Hardware Functional Specification Rev. 7.4 30k Bytes Reserved Seiko Epson Corporation 273 Registers REG[09D2h] JPEG Line Buffer Address Offset Register Default = 0060h Read/Write Reserved 15 Reserved 14 13 12 11 10 JPEG Line Buffer Address Offset bits 6-0 9 8 7 6 5 4 1 0 3 2 bits 15-7 Reserved The default value for these bits is 0. bits 6-0 JPEG Line Buffer Address Offset bits [6:0] These bits provide the address offset of the JPEG Line Buffer, and therefore the size (default is 256 bytes), as follows. REG[09D2h] bits 6-0 = [(128 x1024) - (XSize x 2 x 24 x F)] >> 10 Offset Value(h) = (REG[09C2h] bits 6-0) > 10 represents a 10 bit, shift right operator 1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 289 Registers REG[1012h] Horizontal Pixel Size Register 0 Default = 0000h Read/Write n/a 15 14 13 12 11 X Pixel Size bits 15-8 10 9 8 7 6 5 4 2 1 0 3 REG[1014h] Horizontal Pixel Size Register 1 Default = 0000h Read/Write n/a 15 14 13 12 11 X Pixel Size bits 7-0 10 9 8 7 6 5 4 2 1 0 REG[1012h] bits 7-0 REG[1014h] bits 7-0 3 X Pixel Size bits[15:0] For the JPEG encode process, these bits specify the horizontal image size before encoding takes place. For the JPEG decode process, these bits are read-only and indicate the horizontal image size. The following restrictions must be observed when setting the Vertical Pixel Size. The minimum resolution must be set based on the YUV format as follows. Table 10-78: Horizontal Pixel Size Minimum Resolution Restrictions YUV Format Minimum Resolution Minimum Horizontal Pixel Size 4:2:2 2x1 2 4:2:0 2x2 16 4:1:1 4x1 4 REG[1016h] through REG[101Ah] are Reserved These registers are Reserved and should not be written. 290 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[101Ch] RST Marker Operation Setting Register Default = 0000h Read/Write n/a 15 14 13 12 11 10 4 3 2 n/a 7 6 bits 1-0 5 9 8 RST Marker Operation Select bits 1-0 1 0 RST Marker Operation Select bits[1:0] For the JPEG decode process, these bits select the RST Marker Operation. For the JPEG encode process, these bits are not used. Table 10-79: RST Marker Selection REG[101Ch] bits 1-0 RST Marker Operation Error detection and data revise function is turned off 00 This option should only be used when it is certain that the JPEG file to be decoded is correct and has no errors. If there is an error in the file, no error detection will take place and the decode process will not finish correctly. Error detection on 01 When an error is detected during the decode process, the decode process finishes and the JPEG interrupt is asserted (REG[0A00h] bit 2 = 1). To determine the exact nature of the operational error see REG[0982h]. To determine the JPEG decode error (file error), check the JPEG Error Status bits (REG[101Eh] bits 6-3). Because the decode process finished before normal completion, all data can not be displayed. If the JPEG file is to be decoded again with the Data Revise function on, a software reset is required (see REG[1002h] bit 7). Data revise function on 10 11 When an error is detected during the decode process, data is skipped/added automatically and the decode process continues normally to the end of file. After the decode process finishes, a data revise interrupt is asserted. Because the decode process is finished completely, the next JPEG file can be decoded immediately. Reserved S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 291 Registers REG[101Eh] RST Marker Operation Status Register Default = 0000h Read Only n/a 15 Revise Code 14 7 6 13 12 JPEG Error Status bits 3-0 5 4 11 10 9 n/a 8 3 2 1 0 bit 7 Revise Code (Read Only) This bit is valid only when the data revise function is enabled using the RST Marker Selection bits (REG[101Ch bits 1-0 = 10). For the JPEG decode process, this bit indicates whether a revise operation has been done. For the JPEG encode process, this bit is not used. When this bit = 1, a revise operation was done. When this bit = 0, a revise operation was not done. bits 6-3 JPEG Error Status[3:0] (Read Only) These bits are valid only when error detection is enabled using the RST Marker Selection bits (REG[101Ch bits 1-0 = 01). For the JPEG decode process, these bits indicate the type of JPEG error. If these bits return 0000, no error has occurred. For the JPEG encode process, these bits are not used. Table 10-80: JPEG Error Status 292 REG[101Eh] bits 6-3 JPEG Error Status 0000 No error 0001 - 1010 Reserved 1011 Restart interval error 1100 Image size error 1101 - 1111 Reserved Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[1020 - 1066h] Insertion Marker Data Register Default = 00FFh Read/Write n/a 15 14 13 7 6 5 REG[1020h-1066h] 12 11 Insert marker Data bits 7-0 4 3 10 9 8 2 1 0 These registers (36 bytes) store the Insertion Marker Data which gets inserted into the JPEG file. Only the even bytes are used. All unused registers (up to REG[1200h]) should be filled with FFh. The registers are defined as follows. Table 10-81: Insertion Marker Data Register Usage Register Description REG[1020h]-[1022h] These registers set the insertion marker code type. REG[1024h]-[1026h] These registers set the marker length (0002h - 0022h). REG[1028h]-[1066h] These registers set the marker data (up to a maximum of 32 bytes). Note that all unused registers must be filled with FFh. REG[1200 - 127Eh] Quantization Table No. 0 Register Default = not applicable Read/Write n/a 15 14 13 7 6 5 REG[1200-127Eh] 12 11 Quantization Table No. 0 bits 7-0 4 3 10 9 8 2 1 0 Quantization Table No. 0 These registers are used for the JPEG encode process only. REG[1280 - 12FEh] Quantization Table No. 1 Register Default = not applicable Write Only n/a 15 14 13 7 6 5 REG[1280-12FEh] 12 11 Quantization Table No. 1 bits 7-0 4 3 10 9 8 2 1 0 Quantization Table No. 1 These registers are used for the JPEG encode process only. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 293 Registers REG[1400 - 141Eh] DC Huffman Table No. 0 Register 0 Default = not applicable Write Only n/a 15 14 13 7 6 5 REG[1400-141Eh] 12 11 DC Huffman Table No. 0 Register 0 bits 7-0 4 3 10 9 8 2 1 0 DC Huffman Table No. 0 (Write Only) These registers are used for the JPEG encode process only and set the codes for code length. When JPEG Encode “High Speed Mode” is enabled (REG[0F00h] bit 0 = 0), the DC Huffman Table No. 0 must be programmed as follows. Table 10-82: DC Huffman Table No. 0 Values for High Speed Mode Register REG[1400h] REG[1402h] REG[1404h] REG[1406h] Value 00h 01h 05h 01h Register REG[1408h] REG[140Ah] REG[140Ch] REG[140Eh] Value 01h 01h 01h 01h Register REG[1410h] REG[1412h] REG[1414h] REG[1416h] Value 01h 00h 00h 00h Register REG[1418h] REG[141Ah] REG[141Ch] REG[141Eh] REG[1420 - 1436h] DC Huffman Table No. 0 Register 1 Default = not applicable Value 00h 00h 00h 00h Write Only n/a 15 14 13 12 11 Reserved (must be all 0) 7 6 REG[1420-1436h] 10 9 8 DC Huffman Table No. 0 Register 1 bits 3-0 5 4 3 2 1 0 DC Huffman Table No. 0 (Write Only) These registers are used for the JPEG encode process only and set a group number based on the order of probability of occurrence. Only bits 3-0 are used (bits 7-4 must be set to 0). When JPEG Encode “High Speed Mode” is enabled (REG[0F00h] bit 0 = 0), the DC Huffman Table No. 0 must be programmed as follows. Table 10-83: DC Huffman Table No. 1 Values for High Speed Mode Register REG[1420h] REG[1422h] REG[1424h] 294 Value 00h 01h 02h Register REG[1426h] REG[1428h] REG[142Ah] Value 03h 04h 05h Register REG[142Ch] REG[142Eh] REG[1430h] Seiko Epson Corporation Value 06h 07h 08h Register REG[1432h] REG[1434h] REG[1436h] Value 09h 0Ah 0Bh S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[1440 - 145Eh] AC Huffman Table No. 0 Register 0 Default = not applicable Write Only n/a 15 14 13 7 6 5 REG[1440-145Eh] 12 11 AC Huffman Table No. 0 Register 0 bits 7-0 4 3 10 9 8 2 1 0 AC Huffman Table No. 0 (Write Only) These registers are used for the JPEG encode process only and set the codes for code length. When JPEG Encode “High Speed Mode” is enabled (REG[0F00h] bit 0 = 0), the AC Huffman Table No. 0 must be programmed as follows. Table 10-84: AC Huffman Table No. 0 Values for High Speed Mode Register REG[1440h] REG[1442h] REG[1444h] REG[1446h] Value 00h 02h 01h 03h Register REG[1448h] REG[144Ah] REG[144Ch] REG[144Eh] Value 03h 02h 04h 03h Register REG[1450h] REG[1452h] REG[1454h] REG[1456h] Value 05h 05h 04h 04h Register REG[1458h] REG[145Ah] REG[145Ch] REG[145Eh] REG[1460 - 15A2h] AC Huffman Table No. 0 Register 1 Default = not applicable Value 00h 00h 01h 7Dh Write Only n/a 15 14 13 7 6 5 REG[1460-15A2h] 12 11 AC Huffman Table No. 0 Register 0 bits 7-0 4 3 10 9 8 2 1 0 AC Huffman Table No. 0 (Write Only) These registers are used for the JPEG encode process only and set a zero run length / group number based on the order of probability of occurrence. When JPEG Encode “High Speed Mode” is enabled (REG[0F00h] bit 0 = 0), the AC Huffman Table No. 0 must be programmed as follows. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 295 Registers Table 10-85: AC Huffman Table No. 0 Values for High Speed Mode Register REG[1460h] REG[1462h] REG[1464h] REG[1466h] REG[1468h] REG[146Ah] REG[146Ch] REG[146Eh] REG[1470h] REG[1472h] REG[1474h] REG[1476h] REG[1478h] REG[147Ah] REG[147Ch] REG[147Eh] REG[1480h] REG[1482h] REG[1484h] REG[1486h] REG[1488h] REG[148Ah] REG[148Ch] REG[148Eh] REG[1490h] REG[1492h] REG[1494h] REG[1496h] REG[1498h] REG[149Ah] REG[149Ch] REG[149Eh] REG[14A0h] REG[14A2h] REG[14A4h] REG[14A6h] REG[14A8h] REG[14AAh] REG[14ACh] REG[14AEh] 296 Value 01h 02h 03h 00h 04h 11h 05h 12h 21h 31h 41h 06h 13h 51h 61h 07h 22h 71h 14h 32h 81h 91h A1h 08h 23h 42h B1h C1h 15h 52h D1h F0h 24h 33h 62h 72h 82h 09h 0Ah 16h Register REG[14B0h] REG[14B2h] REG[14B4h] REG[14B6h] REG[14B8h] REG[14BAh] REG[14BCh] REG[14BEh] REG[14C0h] REG[14C2h] REG[14C4h] REG[14C6h] REG[14C8h] REG[14CAh] REG[14CCh] REG[14CEh] REG[14D0h] REG[14D2h] REG[14D4h] REG[14D6h] REG[14D8h] REG[14DAh] REG[14DCh] REG[14DEh] REG[14E0h] REG[14E2h] REG[14E4h] REG[14E6h] REG[14E8h] REG[14EAh] REG[14ECh] REG[14EEh] REG[14F0h] REG[14F2h] REG[14F4h] REG[14F6h] REG[14F8h] REG[14FAh] REG[14FCh] REG[14FEh] Value 17h 18h 19h 1Ah 25h 26h 27h 28h 29h 2Ah 34h 35h 36h 37h 38h 39h 3Ah 43h 44h 45h 46h 47h 48h 49h 4Ah 53h 54h 55h 56h 57h 58h 59h 5Ah 63h 64h 65h 66h 67h 68h 69h Register REG[1500h] REG[1502h] REG[1504h] REG[1506h] REG[1508h] REG[150Ah] REG[150Ch] REG[150Eh] REG[1510h] REG[1512h] REG[1514h] REG[1516h] REG[1518h] REG[151Ah] REG[151Ch] REG[151Eh] REG[1520h] REG[1522h] REG[1524h] REG[1526h] REG[1528h] REG[152Ah] REG[152Ch] REG[152Eh] REG[1530h] REG[1532h] REG[1534h] REG[1536h] REG[1538h] REG[153Ah] REG[153Ch] REG[153Eh] REG[1540h] REG[1542h] REG[1544h] REG[1546h] REG[1548h] REG[154Ah] REG[154Ch] REG[154Eh] Seiko Epson Corporation Value 6Ah 73h 74h 75h 76h 77h 78h 79h 7Ah 83h 84h 85h 86h 87h 88h 89h 8Ah 92h 93h 94h 95h 96h 97h 98h 99h 9Ah A2h A3h A4h A5h A6h A7h A8h A9h AAh B2h B3h B4h B5h B6h Register REG[1550h] REG[1552h] REG[1554h] REG[1556h] REG[1558h] REG[155Ah] REG[155Ch] REG[155Eh] REG[1560h] REG[1562h] REG[1564h] REG[1566h] REG[1568h] REG[156Ah] REG[156Ch] REG[156Eh] REG[1570h] REG[1572h] REG[1574h] REG[1576h] REG[1578h] REG[157Ah] REG[157Ch] REG[157Eh] REG[1580h] REG[1582h] REG[1584h] REG[1586h] REG[1588h] REG[158Sh] REG[158Ch] REG[158Eh] REG[1590h] REG[1592h] REG[1594h] REG[1596h] REG[1598h] REG[159Ah] REG[159Ch] REG[159Eh] REG[15A0h] REG[15A2h] Value B7h B8h B9h BAh C2h C3h C4h C5h C6h C7h C8h C9h CAh D2h D3h D4h D5h D6h D7h D8h D9h DAh E1h E2h E3h E4h E5h E6h E7h E8h E9h EAh F1h F2h F3h F4h F5h F6h F7h F8h F9h FAh S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[1600 - 161Eh] DC Huffman Table No. 1 Register 0 Default = not applicable Write Only n/a 15 14 13 7 6 5 REG[1600-161Eh] 12 11 DC Huffman Table 1 Register No. 0 bits 7-0 4 3 10 9 8 2 1 0 DC Huffman Table No. 1 (Write Only) These registers are used for the JPEG encode process only and set the codes for code length. When JPEG Encode “High Speed Mode” is enabled (REG[0F00h] bit 0 = 0), the DC Huffman Table No. 1 must be programmed as follows. Table 10-86: DC Huffman Table No. 1 Values for High Speed Mode Register REG[1600h] REG[1602h] REG[1604h] REG[1606h] Value 00h 03h 01h 01h Register REG[1608h] REG[160Ah] REG[160Ch] REG[160Eh] Value 01h 01h 01h 01h Register REG[1610h] REG[1612h] REG[1614h] REG[1616h] Value 01h 01h 01h 00h Register REG[1618h] REG[161Ah] REG[161Ch] REG[161Eh] REG[1620 - 1636h] DC Huffman Table No. 1 Register 1 Default = not applicable Value 00h 00h 00h 00h Write Only n/a 15 14 13 12 11 Reserved (must be all 0) 7 6 REG[1620-1636h] 10 9 8 DC Huffman Table No. 1 Register 1 bits 3-0 5 4 3 2 1 0 DC Huffman Table No. 1 (Write Only) These registers are used for the JPEG encode process only and set a group number based on the order of probability of occurrence. Only bits 3-0 are used (bits 7-4 must be set to 0). When JPEG Encode “High Speed Mode” is enabled (REG[0F00h] bit 0 = 0), the DC Huffman Table No. 1 must be programmed as follows. Table 10-87: DC Huffman Table No. 1 Values for High Speed Mode Register REG[1620h] REG[1622h] REG[1624h] Value 00h 01h 02h Register REG[1626h] REG[1628h] REG[162Ah] S1D13715 Hardware Functional Specification Rev. 7.4 Value 03h 04h 05h Register REG[162Ch] REG[162Eh] REG[1630h] Seiko Epson Corporation Value 06h 07h 08h Register REG[1632h] REG[1634h] REG[1636h] Value 09h 0Ah 0Bh 297 Registers REG[1640 - 165Eh] AC Huffman Table No. 1 Register 0 Default = not applicable Write Only n/a 15 14 13 7 6 5 REG[1640-165Eh] 12 11 AC Huffman Table No. 1 Register 0 bits 7-0 4 3 10 9 8 2 1 0 AC Huffman Table No. 1 (Write Only) These registers are used for the JPEG encode process only and set the codes for code length. When JPEG Encode “High Speed Mode” is enabled (REG[0F00h] bit 0 = 0), the AC Huffman Table No. 1 must be programmed as follows. Table 10-88: AC Huffman Table No. 1 Values for High Speed Mode Register REG[1640h] REG[1642h] REG[1644h] REG[1646h] Value 00h 02h 01h 02h Register REG[1648h] REG[164Ah] REG[164Ch] REG[164Eh] Value 04h 04h 03h 04h Register REG[1650h] REG[1652h] REG[1654h] REG[1656h] Value 07h 05h 04h 04h Register REG[1658h] REG[165Ah] REG[165Ch] REG[165Eh] REG[1660 - 17A2h] AC Huffman Table No. 1 Register 1 Default = not applicable Value 00h 01h 02h 77h Write Only n/a 15 14 13 7 6 5 REG[1660-17A2h] 298 12 11 AC Huffman Table No. 1 Register 0 bits 7-0 4 3 10 9 8 2 1 0 AC Huffman Table No. 1 (Write Only) These registers are used for the JPEG encode process only and set a zero run length / group number based on the order of probability of occurrence. When JPEG Encode “High Speed Mode” is enabled (REG[0F00h] bit 0 = 0), the AC Huffman Table No. 1 must be programmed as follows. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers Table 10-89: AC Huffman Table No. 1 Values for High Speed Mode Register REG[1660h] REG[1662h] REG[1664h] REG[1666h] REG[1668h] REG[166Ah] REG[166Ch] REG[166Eh] REG[1670h] REG[1672h] REG[1674h] REG[1676h] REG[1678h] REG[167Ah] REG[167Ch] REG[167Eh] REG[1680h] REG[1682h] REG[1684h] REG[1686h] REG[1688h] REG[168Ah] REG[168Ch] REG[168Eh] REG[1690h] REG[1692h] REG[1694h] REG[1696h] REG[1698h] REG[169Ah] REG[169Ch] REG[169Eh] REG[16A0h] REG[16A2h] REG[16A4h] REG[16A6h] REG[16A8h] REG[16AAh] REG[16ACh] REG[16AEh] Value 00h 01h 02h 03h 11h 04h 05h 21h 31h 06h 12h 41h 51h 07h 61h 71h 13h 22h 32h 81h 08h 14h 42h 91h A1h B1h C1h 09h 23h 33h 52h F0h 15h 62h 72h D1h 0Ah 16h 24h 34h Register REG[16B0h] REG[16B2h] REG[16B4h] REG[16B6h] REG[16B8h] REG[16BAh] REG[16BCh] REG[16BEh] REG[16C0h] REG[16C2h] REG[16C4h] REG[16C6h] REG[16C8h] REG[16CAh] REG[16CCh] REG[16CEh] REG[16D0h] REG[16D2h] REG[16D4h] REG[16D6h] REG[16D8h] REG[16DAh] REG[16DCh] REG[16DEh] REG[16E0h] REG[16E2h] REG[16E4h] REG[16E6h] REG[16E8h] REG[16EAh] REG[16ECh] REG[16EEh] REG[16F0h] REG[16F2h] REG[16F4h] REG[16F6h] REG[16F8h] REG[16FAh] REG[16FCh] REG[16FEh] S1D13715 Hardware Functional Specification Rev. 7.4 Value E1h 25h F1h 17h 18h 19h 1Ah 26h 27h 28h 29h 2Ah 35h 36h 37h 38h 39h 3Ah 43h 44h 45h 46h 47h 48h 49h 4Ah 53h 54h 55h 56h 57h 58h 59h 5Ah 63h 64h 65h 66h 67h 68h Register REG[1500h] REG[1502h] REG[1504h] REG[1506h] REG[1508h] REG[150Ah] REG[150Ch] REG[150Eh] REG[1510h] REG[1512h] REG[1514h] REG[1516h] REG[1518h] REG[151Ah] REG[151Ch] REG[151Eh] REG[1520h] REG[1522h] REG[1524h] REG[1526h] REG[1528h] REG[152Ah] REG[152Ch] REG[152Eh] REG[1530h] REG[1532h] REG[1534h] REG[1536h] REG[1538h] REG[153Ah] REG[153Ch] REG[153Eh] REG[1540h] REG[1542h] REG[1544h] REG[1546h] REG[1548h] REG[154Ah] REG[154Ch] REG[154Eh] Seiko Epson Corporation Value 69h 6Ah 73h 74h 75h 76h 77h 78h 79h 7Ah 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 92h 93h 94h 95h 96h 97h 98h 99h 9Ah A2h A3h A4h A5h A6h A7h A8h A9h AAh B2h B3h B4h Register REG[1550h] REG[1552h] REG[1554h] REG[1556h] REG[1558h] REG[155Ah] REG[155Ch] REG[155Eh] REG[1560h] REG[1562h] REG[1564h] REG[1566h] REG[1568h] REG[156Ah] REG[156Ch] REG[156Eh] REG[1570h] REG[1572h] REG[1574h] REG[1576h] REG[1578h] REG[157Ah] REG[157Ch] REG[157Eh] REG[1580h] REG[1582h] REG[1584h] REG[1586h] REG[1588h] REG[158Sh] REG[158Ch] REG[158Eh] REG[1590h] REG[1592h] REG[1594h] REG[1596h] REG[1598h] REG[159Ah] REG[159Ch] REG[159Eh] REG[15A0h] REG[15A2h] Value B5h B6h B7h B8h B9h BAh C2h C3h C4h C5h C6h C7h C8h C9h CAh D2h D3h D4h D5h D6h D7h D8h D9h DAh E2h E3h E4h E5h E6h E7h E8h E9h EAh F2h F3h F4h F5h F6h F7h F8h F9h FAh 299 Registers 10.4.21 2D BitBLT Registers Note The S1D13715 BitBLT engine does not support 32 bpp . REG[8000h] BitBLT Control Register 0 Default = 0000h Write Only n/a 15 BitBLT Reset 14 7 6 13 12 11 10 9 8 BitBLT Enable 3 2 1 0 n/a 5 4 bit 7 BitBLT Reset (Write Only) When a 1 is written to this bit, the 2D BitBLT engine is reset. When a 0 is written to this bit, there is no hardware effect. bit 0 BitBLT Enable (Write Only) When a 1 is written to this bit, the 2D BitBLT operation is started. When a 0 is written to this bit, the 2D BitBLT operation is terminated. REG[8002h] BitBLT Control Register 1 Default = 0000h Read/Write Reserved 15 14 13 12 11 n/a 7 6 5 4 3 10 Color Format Select 9 Dest Linear Select 2 bits 15-8 Reserved The default value for these bits is 0. bit 2 BitBLT Color Format Select This bit selects the color format that the 2D operation is applied to. When this bit = 0, 8 bpp (256 color) format is selected. When this bit = 1, 16 bpp (64K color) format is selected. 1 8 Source Linear Select 0 Note The BitBLT engine does not support color depths of 32 bpp. bit 1 BitBLT Destination Linear Select When this bit = 1, the Destination BitBLT is stored as a contiguous linear block of memory. When this bit = 0, the Destination BitBLT is stored as a rectangular region of memory. The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset from the start of one line to the next line. bit 0 BitBLT Source Linear Select When this bit = 1, the Source BitBLT is stored as a contiguous linear block of memory. When this bit = 0, the Source BitBLT is stored as a rectangular region of memory. The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset from the start of one line to the next line. 300 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[8004h] BitBLT Status Register 0 Default = 0000h Read Only n/a bit 6 15 14 13 12 n/a FIFO Not Empty FIFO Half Full FIFO Full Status 7 6 5 4 11 10 9 8 BitBLT Busy Status 1 0 n/a 3 2 BitBLT FIFO Not-Empty Status (Read Only) This bit indicates if the BitBLT FIFO is empty or not. When this bit = 0, the BitBLT FIFO is empty. When this bit = 1, the BitBLT FIFO has at least one entry. To reduce system memory read latency, software can monitor this bit prior to a BitBLT read burst operation. The following table shows the number of words available in the BitBLT FIFO under different status conditions. Table 10-90: Possible BitBLT FIFO Writes BitBLT Status Register (REG[8004h]) FIFO Not Empty Status FIFO Half Full Status FIFO Full Status 0 0 0 1 0 0 1 1 0 1 1 1 Word Writes Available 16 8 up to 8 0 (do not write) bit 5 BitBLT FIFO Half Full Status (Read Only) This bit indicates whether the BitBLT FIFO is more or less than half full. When this bit = 1, the BitBLT FIFO is half full or greater than half full. When this bit = 0, the BitBLT FIFO is less than half full. bit 4 BitBLT FIFO Full Status (Read Only) This bit indicates whether the BitBLT FIFO is full or not. This bit must be confirmed as not full (0) before writing to the BitBLT FIFO. When this bit = 1, the BitBLT FIFO is full. When this bit = 0, the BitBLT FIFO is not full. bit 0 BitBLT Busy Status (Read Only) This bit indicates the state of the current BitBLT operation. When this bit = 1, the BitBLT operation is in progress. When this bit = 0, the BitBLT operation is complete. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 301 Registers REG[8006h] BitBLT Status Register 1 Default = 0010h Read Only n/a 15 Number of Used FIFO Entries 14 13 12 11 n/a 7 10 9 8 Number of Free FIFO Entries (0 means full) 6 5 4 3 2 1 0 bits 12-8 Number of Used FIFO Entries bits [4:0] (Read Only) These bits indicate the number of FIFO entries currently in use. bits 4-0 Number of Free FIFO Entries bits [4:0] (Read Only) These bits indicate the number of empty FIFO entries available. If these bits return a 0, the FIFO is full. REG[8008h] BitBLT Command Register 0 Default = 0000h Read/Write n/a 15 14 13 12 11 5 4 3 10 9 BitBLT Operation bits 3-0 n/a 7 bits 3-0 6 2 1 8 0 BitBLT Operation bits [3:0] These bits specify the 2D Operation to be performed. Table 10-91: BitBLT Operation Selection BitBLT Operation bits [3:0] 302 BitBLT Operation 0000 Reserved 0001 Read BitBLT 0010 Move BitBLT in positive direction with ROP 0011 Move BitBLT in negative direction with ROP 0100 Reserved 0101 Transparent Move BitBLT in positive direction 0110 Pattern Fill with ROP 0111 Pattern Fill with transparency 1000 Reserved 1001 Reserved 1010 Move BitBLT with Color Expansion 1011 Move BitBLT with Color Expansion and transparency 1100 Solid Fill Other combinations Reserved Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[800Ah] BitBLT Command Register 1 Default = 0000h Read/Write n/a 15 14 13 12 11 5 4 3 n/a 7 6 bits 3-0 10 9 BitBLT ROP Code bits 3-0 2 1 8 0 BitBLT Raster Operation Code/Color Expansion bits [3:0] These bits determine the ROP Code for Write BitBLT and Move BitBLT. Bits 2-0 also specify the start bit position for Color Expansion. Table 10-92: BitBLT ROP Code/Color Expansion Function Selection BitBLT ROP Code bits [3:0] Boolean Function for Write BitBLT and Move BitBLT Boolean Function for Pattern Fill Start Bit Position for Color Expansion 0000 0 (Blackness) 0 (Blackness) bit 0 0001 ~S . ~D or ~(S + D) ~P . ~D or ~(P + D) bit 1 0010 ~S . D ~P . D bit 2 0011 ~S ~P bit 3 0100 S . ~D P . ~D bit 4 0101 ~D ~D bit 5 0110 S^D P^D bit 6 0111 ~S + ~D or ~(S . D) ~P + ~D or ~(P . D) bit 7 1000 S.D P.D bit 0 1001 ~(S ^ D) ~(P ^ D) bit 1 1010 D D bit 2 1011 ~S + D ~P + D bit 3 1100 S P bit 4 1101 S + ~D P + ~D bit 5 1110 S+D P+D bit 6 1111 1 (Whiteness) 1 (Whiteness) bit 7 Note S = Source, D = Destination, P = Pattern. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 303 Registers REG[800Ch] BitBLT Source Start Address Register 0 Default = 0000h Read/Write BitBLT Source Start Address bits 15-8 15 14 13 7 6 5 12 11 BitBLT Source Start Address bits 7-0 4 3 10 9 8 2 1 0 REG[800Eh] BitBLT Source Start Address Register 1 Default = 0000h Read/Write n/a 15 14 13 12 11 10 9 8 1 0 BitBLT Source Start Address bits 20-16 7 6 5 4 3 2 REG[800Eh] bits 4-0 REG[800Ch] bits 15-0 BitBLT Source Start Address bits [20:0] These bits specify the source start address for the BitBLT operation. If data is sourced from the CPU, then bit 0 is used for byte alignment within a 16-bit word and the other address bits are ignored. In pattern fill operation, the BitBLT Source Start Address is defined by the following equation. Value programmed to the Source Start Address Register = Pattern Base Address + Pattern Line Offset + Pixel Offset. The following table shows how Source Start Address Register is defined for 8 and 16 bpp color depths. Table 10-93: BitBLT Source Start Address Selection Color Format 304 Pattern Base Address[20:0] Pattern Line Offset[2:0] Pixel Offset[3:0] 8 bpp BitBLT Source Start Address[20:6] BitBLT Source Start Address[5:3] BitBLT Source Start Address[2:0] 16 bpp BitBLT Source Start Address[20:7] BitBLT Source Start Address[6:4] BitBLT Source Start Address[3:0] Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[8010h] BitBLT Destination Start Address Register 0 Default = 0000h Read/Write BitBLT Destination Start Address bits 15-8 15 14 13 7 6 5 12 11 BitBLT Destination Start Address bits 7-0 4 3 10 9 8 2 1 0 REG[8012h] BitBLT Destination Start Address Register 1 Default = 0000h Read/Write n/a 15 14 13 12 n/a 7 6 11 10 9 8 BitBLT Destination Start Address bits 20-16 5 4 3 2 1 0 REG[8012h] bits 4-0 REG[8010h] bits 15-0 BitBLT Destination Start Address bits [20:0] These bits specify the destination start address for the BitBLT operation. REG[8014h] BitBLT Memory Address Offset Register Default = 0000h Read/Write n/a 15 14 13 7 6 5 bits 10-0 BitBLT Memory Address Offset bits 10-8 12 11 BitBLT Memory Address Offset bits 7-0 4 3 10 9 8 2 1 0 BitBLT Memory Address Offset bits [10:0] These bits are the display’s 11-bit address offset from the starting word of line n to the starting word of line n + 1. They are used only for address calculation when the BitBLT is configured as a rectangular region of memory. They are not used for the displays. REG[8018h] BitBLT Width Register Default = 0000h Read/Write n/a BitBLT Width bits 9-8 15 14 13 12 11 BitBLT Width bits 7-0 10 9 8 7 6 5 4 2 1 0 bits 9-0 3 BitBLT Width bits [9:0] These bits determine the BitBLT width in pixels. BitBLT width in pixels = (REG[8018h] bits 9-0) + 1 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 305 Registers REG[801Ch] BitBLT Height Register Default = 0000h Read/Write n/a BitBLT Height bits 9-8 15 14 13 12 11 BitBLT Height bits 7-0 10 9 8 7 6 5 4 2 1 0 bits 9-0 3 BitBLT Height bits [9:0] These bits determine the BitBLT height in lines. BitBLT height in lines = (REG[801Ch] bits 9-0) + 1 REG[8020h] BitBLT Background Color Register Default = 0000h Read/Write BitBLT Background Color bits 15-8 15 14 13 7 6 5 bits 15-0 12 11 BitBLT Background Color bits 7-0 4 3 10 9 8 2 1 0 BitBLT Background Color bits [15:0] These bits specify the BitBLT background color for Color Expansion or key color for Transparent BitBLT. For 16 bpp color depths (REG[8000h] bit 18 = 1), bits 15-0 are used. For 8 bpp color depths (REG[8000h] bit 18 = 0), bits 7-0 are used. REG[8024h] BitBLT Foreground Color Register Default = 0000h Read/Write BitBLT Foreground Color bits 15-8 15 14 13 7 6 5 bits 15-0 12 11 BitBLT Foreground Color bits 7-0 4 3 10 9 8 2 1 0 BitBLT Foreground Color bits [15:0] These bits specify the BitBLT foreground color for Color Expansion or Solid Fill. For 16 bpp color depths (REG[8000h] bit 18 = 1), bits 15-0 are used. For 8 bpp color depths (REG[8000h] bit 18 = 0), bits 7-0 are used. REG[8030h] BitBLT Interrupt Status Register Default = 0000h Read/Write n/a 15 14 13 12 11 10 9 8 BitBLT Operation Complete Flag 3 2 1 0 n/a 7 bit 0 306 6 5 4 BitBLT Operation Complete Flag This bit is set when the BitBLT operation is finished. This bit is masked by REG[8032h] bit 0. When a 1 is written to this bit, the flag is cleared. When a 0 is written to this bit, there is no hardware effect. Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Registers REG[8032h] BitBLT Interrupt Control Register Default = 0000h Read/Write n/a 15 14 13 12 11 10 9 8 BitBLT Operation Complete Interrupt Enable 3 2 1 0 n/a 7 6 bit 0 5 4 BitBLT Operation Complete Interrupt Enable This bit determines whether an interrupt is generated when the current BitBLT operation finishes. When this bit = 0, the interrupt is disabled. When this bit = 1, the interrupt is enabled. REG[10000h] 2D BitBLT Data Memory Mapped Region Register Default = not applicable Read/Write BitBLT Data bits 15-8 15 14 13 12 11 10 9 8 2 1 0 BitBLT Data bits 7-0 7 bits 15-0 6 5 4 3 BitBLT Data bits [15:0] This register specifies the BitBLT data when a Direct Interface is selected (CNF[4:2]). When an Indirect Interface is selected, BitBLT data must be specified using the Indirect Interface 2D BitBLT Data Read/Write Port register (REG[002Ah]). S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 307 Power Save Modes 11 Power Save Modes 11.1 Power-On/Power-Off Sequence Normal mode Power-On Sequence Power-On 1. CORE VDD 2. PLL VDD 3. HIOVDD, NIOVDD, PIOVDD, CIOVDD Hardware Reset RESET Pulse > 1 CLKI Period Software Reset REG[0016h] CLKI input is required PLL Bypass mode PLL Set REG[000Eh] bits 15-0 REG[0010h] bits 15-12 REG[0012h] bit 0 = 0 PLL Power Down Disable (see Note) System Clock Set REG[0018h] bits 1-0 Power Save Mode Disable REG[0014h] bit 0 = 0 Registers Initialize Power-Off Sequence Check Memory Status Power Save Mode Enable REG[0014h] bit 6 REG[0014h] bit 0 = 1 PLL Bypass mode PLL Power Down Enable Power-Off REG[0012h] bit 0 = 1 1. HIOVDD, NIOVDD, PIOVDD, CIOVDD 2. PLL VDD 3. CORE VDD Note: There may be up to a 100ms delay before the PLL output becomes stable. The S1D13715 must not be accessed during this time. Figure 11-1: Power-On/Power-Off Sequence 308 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 S1D13715 Hardware Functional Specification Rev. 7.4 Power Save Mode Seiko Epson Corporation PLL Power Down Valid REG[0012h] bit 0 = 1 PLL Power Down Invalid REG[0012h] bit 0 = 0 Power Save Mode Valid (PLL bypass) REG[0014h] bit 0 = 1 Power Save Mode Valid REG[0014h] bit 0 = 1 Power Save Mode Invalid REG[0014h] bit 0 = 0 Power Save Mode Invalid (PLL bypass) REG[0014h] bit 0 = 0 Power Save Modes Power-On Hardware Reset Software Reset External Clock Mode Standby Mode Normal Mode Power-Off Figure 11-2: Power Save Modes 309 Power Save Modes 11.1.1 Power-On When powering-on the S1D13715, the following sequence must be used unless all power is active within 10 ms. 1. COREVDD On 2. PLLVDD On 3. HIOVDD, PIOVDD, CIOVDD On 11.1.2 Reset After power-on, an active low hardware reset pulse, which is one external clock cycle (CLKI) in length, must be input to the S1D13715 RESET# pin. All registers, including the Clock Setting registers (REG[000Eh]-[0018h]) are reset by a hardware reset. After releasing the RESET# signal, the Clock Setting registers are immediately accessible. A software reset is enabled by writing to REG[0016h]. All registers above REG[0018h] are reset to the default values by a software reset (REG[0000h] - [0018h] are not reset). The following conditions apply to software reset. • After initialization, and before the software reset (REG[0016h]), Power Save Mode should be enabled (REG[0014h] bit 0 = 1). • After the software reset, Power Save Mode can be disabled (REG[0016h] bit 0 = 0) after waiting 100ms. All registers, synchronous and asynchronous, may now be accessed. 11.1.3 Standby Mode Standby Mode offers the lowest power consumption because all internal clock supplies are stopped and the PLL is disabled. This mode must be entered before turning off the power supplies or setting the PLL registers. In order to switch to the Standby Mode, a PLL power down should be executed (REG[0012h] bit 0 = 1). After power down, the CLKI input should be continued for a minimum 100us to allow the PLL power down to complete. 11.1.4 Power Save Mode Power Save Mode stops all internal clock supplies. This mode must be entered before setting the System Clock Setting register (REG[0018h]). Also, there may be up to a 100ms delay before the PLL output becomes stable after it is enabled. The S1D1715 should be in Power Save Mode during this time. 310 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Power Save Modes 11.1.5 Normal Mode All functions are available in Normal Mode. However, clocks to modules that are not in use are dynamically stopped. Before enabling Power Save Mode (REG[0014] bit 0 = 1) from Normal Mode, confirm that the memory controller is idle (REG[0014h] bit 6 = 1). 11.1.6 Power-Off When powering-off the S1D13715, the following sequence must be used. 1. HIOVDD, PIOVDD, CIOVDD Off 2. PLLVDD Off 3. COREVDD Off 11.2 Power Save Mode Function Table 11-1: Power Save Mode Function Selection Reset State Power Save Mode Normal Mode REG[0000h-0018h], REG[0300h-030Eh] Yes Yes Yes All other registers Item IO (Register) Access Possible? No No Yes Memory Access Possible? No No Yes Look-Up Table Registers Access Possible? No No Yes Display Active? No No Yes FPCS1# Inactive Inactive Active All other pins Forced Low Forced Low Active CNF2 = 1 Input GPIO State GPIO State CNF2 = 0 Forced Low GPO State GPO State Camera Interface Pins Forced Low Forced Low Active System Clock Forced Low Active Active Forced Low Forced Low Active Inactive Active Active LCD1, LCD2 Interface Outputs and GPIO Pins configured for Panel Support GPIO Pins configured as GPIOs Pixel Clock Serial Clock For the LCD2 Serial Panel I/F setting (REG[0032h] bits 1,0 = 00 or 10) For all other settings Camera1, Camera2 Clock JPEG Module Forced Low Forced Low Active Forced Low Forced Low Active Inactive Inactive Inactive Inactive Inactive Active Inactive Inactive Active REG[0980] bit 0 = 0 REG[0980] bit 0 = 1 BitBLT Module S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 311 LUT Architecture 12 LUT Architecture 12.1 LUT1 (Main Window) for 8 bpp Red Look-Up Table 256x8 REG[0400h] bits 7-0 REG[0404h] bits 7-0 REG[0408h] bits 7-0 REG[040Ch] bits 7-0 REG[0410h] bits 7-0 REG[0414h] bits 7-0 REG[0418h] bits 7-0 REG[041Ch] bits 7-0 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 REG[07E0h] bits 7-0 REG[07E4h] bits 7-0 REG[07E8h] bits 7-0 REG[07ECh] bits 7-0 REG[07F0h] bits 7-0 REG[07F4h] bits 7-0 REG[07F8h] bits 7-0 REG[07FCh] bits 7-0 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 Green Look-Up Table 256x8 REG[0400h] bits 15-8 REG[0404h] bits 15-8 REG[0408h] bits 15-8 REG[040Ch] bits 15-8 REG[0410h] bits 15-8 REG[0414h] bits 15-8 REG[0418h] bits 15-8 REG[041Ch] bits 15-8 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 REG[07E0h] bits 15-8 REG[07E4h] bits 15-8 REG[07E8h] bits 15-8 REG[07ECh] bits 15-8 REG[07F0h] bits 15-8 REG[07F4h] bits 15-8 REG[07F8h] bits 15-8 REG[07FCh] bits 15-8 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 8-bit Red Data 8-bit Green Data Blue Look-Up Table 256x8 REG[0402h] bits 7-0 REG[0406h] bits 7-0 REG[040Ah] bits 7-0 REG[040Eh] bits 7-0 REG[0412h] bits 7-0 REG[0416h] bits 7-0 REG[041Ah] bits 7-0 REG[041Eh] bits 7-0 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 REG[07E2h] bits 7-0 REG[07E6h] bits 7-0 REG[07EAh] bits 7-0 REG[07EEh] bits 7-0 REG[07F2h] bits 7-0 REG[07F6h] bits 7-0 REG[07FAh] bits 7-0 REG[07FEh] bits 7-0 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 8-bit Blue Data 8-bit-per-pixel data from Display Buffer Figure 12-1: LUT1 (Main Window) for 8 Bpp Architecture 312 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 LUT Architecture 12.2 LUT2 (PIP+ Window) for 8 Bpp Architecture Red Look-Up Table 8x8 REG[0800h] bits 7-0 REG[0804h] bits 7-0 REG[0808h] bits 7-0 REG[080Ah] bits 7-0 REG[0810h] bits 7-0 REG[0814h] bits 7-0 REG[0818h] bits 7-0 REG[081Ah] bits 7-0 000 001 010 011 100 101 110 111 8-bit Red Data 3-bit Red Data from Display Buffer Green Look-Up Table 8x8 REG[0800h] bits 15-8 REG[0804h] bits 15-8 REG[0808h] bits 15-8 REG[080Ah] bits 15-8 REG[0810h] bits 15-8 REG[0814h] bits 15-8 REG[0818h] bits 15-8 REG[081Ah] bits 15-8 000 001 010 011 100 101 110 111 8-bit Green Data 3-bit Green Data from Display Buffer Blue Look-Up Table 4x8 00 01 10 11 REG[0802h] bits 7-0 REG[0806h] bits 7-0 REG[080Ah] bits 7-0 REG[080Eh] bits 7-0 8-bit Blue Data 2-bit Blue Data from Display Buffer Figure 12-2: LUT2 (PIP+ Window) for 8 Bpp Architecture S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 313 LUT Architecture 12.3 LUT1 (Main Window) for 16 Bpp Architecture Red Look-Up Table 32x8 REG[0400h] bits 7-0 REG[0404h] bits 7-0 REG[0408h] bits 7-0 REG[040Ch] bits 7-0 REG[0410h] bits 7-0 REG[0414h] bits 7-0 REG[0418h] bits 7-0 REG[041Ch] bits 7-0 00000 00001 00010 00011 00100 00101 00110 00111 REG[0470h] bits 7-0 REG[0474h] bits 7-0 REG[0478h] bits 7-0 REG[047Ch] bits 7-0 REG[0470h] bits 7-0 REG[0474h] bits 7-0 REG[0478h] bits 7-0 REG[047Ch] bits 7-0 11000 11001 11010 11011 11100 11101 11110 11111 5-bit Red Data from Display Buffer 8-bit Red Data Green Look-Up Table 64x8 REG[0400h] bits 15-8 REG[0404h] bits 15-8 REG[0408h] bits 15-8 REG[040Ch] bits 15-8 REG[0410h] bits 15-8 REG[0414h] bits 15-8 REG[0418h] bits 15-8 REG[041Ch] bits 15-8 000000 000001 000010 000011 000100 000101 000110 000111 REG[04E0h] bits 15-8 REG[04E4h] bits 15-8 REG[04E8h] bits 15-8 REG[04ECh] bits 15-8 REG[04F0h] bits 15-8 REG[04F4h] bits 15-8 REG[04F8h] bits 15-8 REG[04FCh] bits 15-8 111000 111001 111010 111011 111100 111101 111110 111111 6-bit Green Data from Display Buffer 8-bit Green Data Blue Look-Up Table 32x8 REG[0402h] bits 7-0 REG[0406h] bits 7-0 REG[040Ah] bits 7-0 REG[040Eh] bits 7-0 REG[0412h] bits 7-0 REG[0416h] bits 7-0 REG[041Ah] bits 7-0 REG[041Eh] bits 7-0 00000 00001 00010 00011 00100 00101 00110 00111 REG[0472h] bits 7-0 REG[0476h] bits 7-0 REG[047Ah] bits 7-0 REG[047Eh] bits 7-0 REG[0472h] bits 7-0 REG[0476h] bits 7-0 REG[047Ah] bits 7-0 REG[047Eh] bits 7-0 11000 11001 11010 11011 11100 11101 11110 11111 8-bit Blue Data 5-bit Blue Data from Display Buffer Figure 12-3: LUT1 (Main Window) for 16 Bpp Architecture 314 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 LUT Architecture 12.4 LUT2 (PIP+ Window) for 16 Bpp Architecture Red Look-Up Table 32x8 REG[0800h] bits 7-0 REG[0804h] bits 7-0 REG[0808h] bits 7-0 REG[080Ch] bits 7-0 REG[0810h] bits 7-0 REG[0814h] bits 7-0 REG[0818h] bits 7-0 REG[081Ch] bits 7-0 00000 00001 00010 00011 00100 00101 00110 00111 REG[0870h] bits 7-0 REG[0874h] bits 7-0 REG[0878h] bits 7-0 REG[087Ch] bits 7-0 REG[0870h] bits 7-0 REG[0874h] bits 7-0 REG[0878h] bits 7-0 REG[087Ch] bits 7-0 11000 11001 11010 11011 11100 11101 11110 11111 5-bit Red Data from Display Buffer 8-bit Red Data Green Look-Up Table 64x8 REG[0800h] bits 15-8 REG[0804h] bits 15-8 REG[0808h] bits 15-8 REG[080Ch] bits 15-8 REG[0810h] bits 15-8 REG[0814h] bits 15-8 REG[0818h] bits 15-8 REG[081Ch] bits 15-8 000000 000001 000010 000011 000100 000101 000110 000111 REG[08E0h] bits 15-8 REG[08E4h] bits 15-8 REG[08E8h] bits 15-8 REG[08ECh] bits 15-8 REG[08F0h] bits 15-8 REG[08F4h] bits 15-8 REG[08F8h] bits 15-8 REG[08FCh] bits 15-8 111000 111001 111010 111011 111100 111101 111110 111111 6-bit Green Data from Display Buffer 8-bit Green Data Blue Look-Up Table 32x8 REG[0802h] bits 7-0 REG[0806h] bits 7-0 REG[080Ah] bits 7-0 REG[080Eh] bits 7-0 REG[0812h] bits 7-0 REG[0816h] bits 7-0 REG[081Ah] bits 7-0 REG[081Eh] bits 7-0 00000 00001 00010 00011 00100 00101 00110 00111 REG[0872h] bits 7-0 REG[0876h] bits 7-0 REG[087Ah] bits 7-0 REG[087Eh] bits 7-0 REG[0872h] bits 7-0 REG[0876h] bits 7-0 REG[087Ah] bits 7-0 REG[087Eh] bits 7-0 11000 11001 11010 11011 11100 11101 11110 11111 8-bit Blue Data 5-bit Blue Data from Display Buffer Figure 12-4: LUT2 (PIP+ Window) for 16 Bpp Architecture S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 315 Display Data Formats 13 Display Data Formats 13.1 Display Data for LUT Mode 13.1.1 8 Bpp Mode bit 7 A0 B0 C0 D0 E0 F0 G0 H0 Byte 1 A1 B1 C1 D1 E1 F1 G1 H1 Byte 2 A2 B2 C2 D2 E2 F2 G2 H2 Host Address P0 P1 P2 bit 0 Byte 0 Pn = RGB value from LUT Index LUT1 (An, Bn, Cn, Dn, En, Fn, Gn, Hn) Display Buffer Panel Display Figure 13-1: LUT1 for 8 Bpp Mode bit 7 Byte 0 R02 R01 R00 G02 G01 G00 B01 B00 Byte 1 R12 R11 R10 G12 G11 G10 B11 B10 Byte 2 P0 P1 bit 0 R22 R21 R20 G22 G21 G20 B21 B20 Pn = RGB value from LUT Index LUT2 Byte 3 Host Address (Rn7, Rn6, Rn5) (Gn7, Gn6, Gn5) (Bn7, Bn6) Panel Display Display Buffer Figure 13-2: LUT2 for 8 Bpp Mode 316 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Display Data Formats 13.1.2 16 Bpp Mode bit 7 Byte 0 Byte 1 bit 0 G02 R0 1 G0 3 R02 G0 4 R0 0 B0 4 B0 1 R00 R0 3 2 B0 B0 5 G04 G03 B0 G0 1 P0 P1 0 Byte 2 G12 G11 G10 B14 B13 B12 B11 B10 Byte 3 R14 R13 R12 R11 R10 G15 G14 G13 Host Address Display Buffer Pn = RGB value from LUT Index (Rn4, Rn3, Rn2, Rn1, Rn0) LUT1 (Gn5,Gn4, G n3, G n2, Gn1, Gn0) (Bn4, Bn3, Bn2, Bn1, B n0) Panel Display Figure 13-3: LUT1 for 16 Bpp Mode bit 7 Byte 0 bit 0 G02 1 G0 3 R02 G0 4 R0 0 B0 4 B0 1 R00 R0 3 2 B0 B0 5 G04 G03 B0 G0 1 P0 P1 0 Byte 1 R0 Byte 2 G12 G11 G10 B14 B13 B12 B11 B10 Byte 3 R14 R13 R12 R11 R10 G15 G14 G13 Host Address Display Buffer Pn = RGB value from LUT Index LUT2 (Rn4, Rn3, Rn2, Rn1, Rn0) (Gn5,Gn4, G n3, G n2, Gn1, Gn0) (Bn4, Bn3, Bn2, Bn1, B n0) Panel Display Figure 13-4: LUT2 for 16 Bpp Mode 13.1.3 32 bppMode The LUT is always bypassed at a color depth of 32 bpp. See Section 13.2.3, “32 Bpp Mode” on page 318. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 317 Display Data Formats 13.2 Display Data for LUT Bypass Mode 13.2.1 8 Bpp Mode 3-3-2 RGB bit 7 R01 R00 2 bit 0 1 Byte 1 1 R12 R11 R10 G12 G11 G10 B1 B10 Byte 2 1 R22 R21 R20 G22 G21 G20 B2 B20 G0 G0 B0 P0 P1 P2 P3 P4 P5 P6 P7 B 00 Byte 0 G0 1 0 R02 Pn = (Rn2-0, Gn 2-0, Bn1-0) Host Address Display Memory Panel Display Figure 13-5: LUT Bypass for 8 Bpp mode 13.2.2 16 Bpp Mode Byte 0 5-6-5 RGB bit 7 bit 0 G02 G01 G00 B04 B03 B02 B01 B00 4 R0 3 2 Byte 1 R0 Byte 2 G12 G11 G10 B14 Byte 3 R14 R13 R12 R11 R0 Host Address R0 1 R0 G05 B 13 B 12 R10 G15 0 G04 B 11 G14 G0 3 B10 P0 P1 P2 P3 P4 P5 P6 P7 Pn = (Rn4-0, Gn 5-0, Bn4-0) G13 Display Buffer Panel Display Figure 13-6: LUT Bypass for 16 Bpp mode 13.2.3 32 Bpp Mode 8-8-8 RGB bit 7 7 G0 6 bit 0 G0 G04 G03 G02 G01 G00 5 Byte 0 G0 Byte 1 B07 B06 B05 B04 B03 B02 B01 B00 Byte 2 R07 R06 R05 R04 R03 R02 R01 R00 Byte 3 n/a n/a n/a n/a n/a n/a n/a n/a Byte 4 n/a n/a n/a n/a n/a n/a n/a n/a P0 P1 P2 P3 P4 P5 P6 P7 Pn = (Rn7-0, Gn 7-0, Bn7-0) Panel Display Host Address Display Buffer Figure 13-7: LUT Bypass for 32 bpp Mode Note 32 bpp always bypasses the LUT. 318 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Display Data Formats 13.3 Display Data Flow The 8 bpp or 16 bpp data in the display buffer is expanded to 24 bpp (RGB=8:8:8) either by the internal LUT or by bit cover (see Section 13.3.2, “Bit Cover When LUT Bypassed” on page 319). For 32 bpp data, the 24 bits of pixel data automatically bypass the LUT. Before being output, the LCD data is altered depending on the specified LCD panel data format. For more information, see Section 5.6, “LCD Interface Pin Mapping” on page 46 , Section 13.4, “Parallel Data Format” on page 320 and Section 13.5, “Serial Data Format” on page 327. 13.3.1 Display Buffer Data Display data can be stored in the display buffer as either 8 bpp, 16 bpp or 32 bpp. Data from the camera interface or JPEG decoder must be stored as 16 bpp or 32 bpp only. The data format for each color depth differs based on whether the LUT is used or the LUT is bypassed. For 32bpp, the LUT is always bypassed. 13.3.2 Bit Cover When LUT Bypassed When the LUT is bypassed, 8 bpp and 16 bpp data are not indexed using the LUT. The data is expanded to 24 bpp (or bit covered) by copying the MSB to the LSBs as follows. 8 bpp Memory Data Internal 24 bpp Data (LUT bypass mode) R R2 R1 R0 R R2 R1 R0 R2 R2 R2 R2 R2 G G2 G1 G0 G G2 G1 G0 G2 G2 G2 G2 G2 B B1 B0 B B1 B0 B1 B1 B1 B1 B1 B1 16 bpp Memory Data R R4 R3 R2 R1 R0 R R4 R3 R2 R1 R0 R4 R4 R4 G G5 G4 G3 G2 G1 G0 G G5 G4 G3 G2 G1 G0 G5 G5 B B4 B3 B2 B1 B0 B B4 B3 B2 B1 B0 B4 B4 B4 Figure 13-8: Data Bit Cover When the LUT is Bypassed 13.3.3 Overlay The overlay function compares 24-bit data after the LUT. If the 24-bit data is the same as the Overlay key color (see REG[0204h] - REG[0208h], REG[0304h] - REG[0326h]), the data that will be output is the PIP+ window data instead of the main window data. For more information on the overlay function, see Section 15.1, “Overlay Display” on page 340. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 319 Display Data Formats 13.4 Parallel Data Format When the Panel Interface bits are set for a parallel panel(s) (REG[0032h] bits 1-0 = 01 or 10 or 11), a parallel data format must be selected. REG[0056h] bits 2-0 select the data format for LCD1 and REG[005Eh] bits 2-0 select the data format for LCD2. Note When REG[0032h] bits 1-0 = 10, Mode 2 is enabled and only LCD1 is configured as a parallel panel. When REG[0032h] bits 1-0 = 11, Mode 3 is enabled and both LCD1 and LCD2 are configured as parallel panels. When REG[0032h] bits 1-0 = 01, Mode 4 is enabled and only LCD2 is configured as a parallel panel. For more information on possible panel combinations, see REG[0032h] bits 1-0 in Section 10.4.4, “LCD Panel Interface Generic Setting Register” on page 149. 13.4.1 8-Bit Parallel, RGB=3:3:2 When REG[0056h] bits 2-0 = 000, the LCD1 data format is specified as this format. When REG[005Eh] bits 2-0 = 000, the LCD2 data format is specified as this format. Table 13-1: 8-Bit Parallel, RGB=3:2:2 Data Format Selection Cycle Count 1 2 3 ... n+1 D7 R05 R15 R25 ... Rn5 D6 R04 R03 G05 G04 G03 B05 B04 R14 R13 G15 G14 G13 B15 B14 R24 R23 G25 G24 G23 B25 B24 ... Rn4 ... Rn3 ... Gn5 ... Gn4 ... Gn3 ... Bn5 ... Bn4 D5 D4 D3 D2 D1 D0 320 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Display Data Formats 13.4.2 8-Bit Parallel, RGB=4:4:4 When REG[0056h] bits 2-0 = 001, the LCD1 data format is specified as this format. When REG[005Eh] bits 2-0 = 001, the LCD2 data format is specified as this format. Table 13-2: 8-Bit Parallel, RGB=4:4:4 Data Format Selection Cycle Count 1 2 5 D7 R0 D6 R04 D5 R03 D4 R0 2 D3 G05 D2 G04 D1 G03 D0 G02 B05 B04 B03 B02 R15 R14 R13 R12 3 ... 3n+1 3n+2 3n+3 5 ... ... G13 ... 2 ... Bn5 Bn4 Bn3 Bn2 Gn+15 G14 B15 ... Rn+15 Bn+15 B14 ... Rn+14 Bn+14 B13 ... Rn5 Rn4 Rn3 Rn2 Gn5 Gn4 Gn3 Gn2 Rn+13 Bn+13 Rn+12 Bn+12 G1 G1 B12 ... Gn+14 Gn+13 Gn+12 13.4.3 8-Bit Parallel, RGB=8:8:8 When REG[0056h] bits 2-0 = 011, the LCD1 data format is specified as this format. When REG[005Eh] bits 2-0 = 011, the LCD2 data format is specified as this format. Table 13-3: 8-Bit Parallel, RGB=8:8:8 Data Format Selection Cycle Count 1 R0 7 D6 R0 6 D5 R05 D4 R04 D3 R03 D2 R0 2 D1 R01 D0 R00 D7 2 3 G07 G06 G05 G04 G03 G02 G01 G00 B07 B06 B05 B04 B03 B02 B01 B00 S1D13715 Hardware Functional Specification Rev. 7.4 ... 3n+1 3n+2 3n+3 ... Rn7 Rn6 Rn5 Rn4 Rn3 Rn2 Rn1 Rn0 Gn7 Gn6 Gn5 Gn4 Gn3 Gn2 Gn1 Gn0 Bn7 ... ... ... ... ... ... ... Seiko Epson Corporation Bn6 Bn5 Bn4 Bn3 Bn2 Bn1 Bn0 321 Display Data Formats 13.4.4 16-Bit Parallel, RGB=4:4:4 When REG[0056h] bits 2-0 = 101, the LCD1 data format is specified as this format. When REG[005Eh] bits 2-0 = 101, the LCD2 data format is specified as this format. Table 13-4: 16-Bit Parallel, RGB=4:4:4 Data Format Selection Cycle Count D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 322 1 2 3 ... n+1 R05 R04 R03 R02 G05 G04 G03 G02 B05 B04 B03 B02 R15 R14 R13 R12 G15 G14 G13 G12 B15 B14 B13 B12 R25 R24 R23 R22 G25 G24 G23 G22 B25 B24 B23 B22 ... Rn5 ... Rn4 ... Rn3 ... Rn2 ... Gn5 ... Gn4 ... Gn3 ... Gn2 ... Bn5 ... Bn4 ... Bn3 ... Bn2 D3 ... D2 ... D1 ... D0 ... Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Display Data Formats 13.4.5 16-Bit Parallel, RGB=5:6:5 When REG[0056h] bits 2-0 = 110, the LCD1 data format is specified as this format. When REG[005Eh] bits 2-0 = 110, the LCD2 data format is specified as this format. Table 13-5: 16-Bit Parallel, RGB=5:6:5 Data Format Selection Cycle Count 1 2 3 ... n+1 D15 R05 R15 R25 ... Rn5 D14 R04 R14 R24 ... Rn4 D13 R03 R13 R23 ... Rn3 D12 R02 R12 R22 ... Rn2 D11 R0 1 Rn1 G05 ... Gn5 D9 G04 ... Gn4 D8 G03 ... Gn3 D7 G0 2 ... Gn2 D6 G01 ... Gn1 D5 G00 ... Gn0 D4 B05 ... Bn5 D3 B04 B03 B02 B01 R21 G25 G24 G23 G22 G21 G20 B2 5 B2 4 B2 3 B2 2 B2 1 ... D10 R11 G15 G14 G13 G12 G11 G10 B15 B14 B13 B12 B11 ... Bn4 ... Bn3 ... Bn2 ... Bn1 D2 D1 D0 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 323 Display Data Formats 13.4.6 18-Bit Parallel, RGB=6:6:6 When REG[0056h] bits 2-0 = 111, the LCD1 data format is specified as this format. When REG[005Eh] bits 2-0 = 111, the LCD2 data format is specified as this format. Table 13-6: 18-Bit Parallel, RGB=6:6:6 Data Format Selection Cycle Count 1 2 3 ... n+1 D17 R05 R15 R25 ... Rn5 D16 R04 R14 R24 ... Rn4 D15 R03 R13 R23 ... Rn3 D14 R02 R12 R22 ... Rn2 D13 R01 R00 G05 G04 G03 G02 G01 G00 B05 B04 B03 B02 B01 B00 R11 R10 G15 G14 G13 G12 G11 G10 B15 B14 B13 B12 B11 B10 R21 R20 G25 G24 G23 G22 G21 G20 B25 B24 B23 B22 B21 B20 ... Rn1 ... Rn0 ... Gn5 ... Gn4 ... Gn3 ... Gn2 ... Gn1 ... Gn0 ... Bn5 ... Bn4 ... Bn3 ... Bn2 ... Bn1 ... Bn0 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 324 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Display Data Formats 13.4.7 16-Bit Parallel, RGB=8:8:8 When REG[0056h] bits 2-0 = 010, the LCD1 data format is specified as this format. When REG[005Eh] bits 2-0 = 010, the LCD2 data format is specified as this format. Table 13-7: 16-Bit Parallel, RGB=8:8:8 Data Format Selection Cycle Count 1 7 D15 R0 D14 R06 D13 R05 D12 R0 4 D11 R03 D10 R02 D9 R01 D8 R0 0 D7 G07 D6 G06 D5 G05 D4 G0 4 D3 G03 D2 G02 D1 G01 D0 0 G0 S1D13715 Hardware Functional Specification Rev. 7.4 2 3 ... n+1 B07 B06 B05 B04 B03 B02 B01 B00 R17 R16 R15 R14 R13 R12 R11 R10 G17 G16 G15 G14 G13 G12 G11 G10 B1 7 B1 6 B1 5 B1 4 B1 3 B1 2 B1 1 B1 0 ... Rn7 ... Rn6 ... Rn5 ... Rn4 ... Rn3 ... Rn2 ... Rn1 ... Rn0 ... Gn7 ... Gn6 ... Gn5 ... Gn4 ... Gn3 ... Gn2 ... Gn1 ... Gn0 Seiko Epson Corporation 325 Display Data Formats 13.4.8 24-Bit Parallel, RGB=8:8:8 When REG[0056h] bits 2-0 = 100, the LCD1 data format is specified as this format. When REG[005Eh] bits 2-0 = 100, the LCD2 data format is specified as this format. Table 13-8: 24-Bit Parallel, RGB=8:8:8 Data Format Selection Cycle Count D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 326 1 2 3 R07 R06 R05 R04 R03 R02 R01 R00 G07 G06 G05 G04 G03 G02 G01 G00 B07 B06 B05 B04 B03 B02 B01 B00 R17 R16 R15 R14 R13 R12 R11 R10 G17 G16 G15 G14 G13 G12 G11 G10 B17 B16 B15 B14 B13 B12 B11 B10 R27 R26 R25 R24 R23 R22 R21 R20 G27 G26 G25 G24 G23 G22 G21 G20 B27 B26 B25 B24 B23 B22 B21 B20 Seiko Epson Corporation ... n+1 Rn7 Rn6 Rn5 Rn4 Rn3 Rn2 Rn1 Rn0 ... Gn7 ... Gn6 ... Gn5 ... Gn4 ... Gn3 ... Gn2 ... Gn1 ... Gn0 ... Bn7 ... Bn6 ... Bn5 ... Bn4 ... Bn3 ... Bn2 ... Bn1 ... Bn0 S1D13715 Hardware Functional Specification Rev. 7.4 Display Data Formats 13.5 Serial Data Format When the Panel Interface bits are set for a serial panel (REG[0032h] bits 1-0 = 00 or 10), a serial data format must be selected. REG[005Ch] bits 3-2 select the data format for LCD2. A data direction which sets either the MSB or the LSB first can also be specified using REG[005Ch] bit 4. Note When REG[0032h] bits 1-0 = 00, Mode 1 is enabled and LCD2 is configured as a serial panel. When REG[0032h] bits 1-0 = 10, Mode 2 is enabled and LCD2 is configured as a serial panel. For more information on possible panel combinations, see REG[0032h] bits 1-0 in Section 10.4.4, “LCD Panel Interface Generic Setting Register” on page 149. 13.5.1 8-Bit Serial, RGB=3:3:2 When REG[005Ch] bits 1-0 = 00, the LCD2 data format is specified as this format. Table 13-9: 8-Bit Serial, RGB=3:2:2 Data Format Selection Cycle Count 1 5 D7 R0 D6 R04 D5 R03 D4 G0 5 D3 G04 D2 G03 D1 B05 D0 B04 2 3 ... n+1 R15 R14 R13 G15 G14 G13 B15 B14 R25 R24 R23 G25 G24 G23 B2 5 B2 4 ... Rn5 ... Rn4 ... Rn3 ... Gn5 ... Gn4 ... Gn3 ... Bn5 ... Bn4 13.5.2 8-Bit Serial, RGB=4:4:4 When REG[005Ch] bits 1-0 = 01, the LCD2 data format is specified as this format. Table 13-10: 8-Bit Serial, RGB=4:4:4 Data Format Selection Cycle Count 1 2 5 D7 R0 D6 R04 D5 R03 D4 R02 D3 G05 G04 G03 G02 D2 D1 D0 B05 B04 B03 B02 R15 R14 R13 R12 S1D13715 Hardware Functional Specification Rev. 7.4 3 ... 3n+1 3n+2 3n+3 5 ... ... G13 ... G12 ... Bn5 Bn4 Bn3 Bn2 Gn+15 G14 Rn5 Rn4 Rn3 Rn2 Gn5 Gn4 Gn3 Gn2 Rn+15 Rn+14 Rn+13 Rn+12 Bn+15 G1 5 ... B1 4 ... B1 3 ... B1 2 ... B1 Seiko Epson Corporation Gn+14 Gn+13 Gn+12 Bn+14 Bn+13 Bn+12 327 Display Data Formats 13.6 YUV Input / Output Data Format 13.6.1 YUV 4:2:2 Data Input / Output Format YUV 4:2:2 output format is selected when REG[0980h] bits 3-1 = 011 and YUV 4:2:2 input format is selected when REG[0980h] bits 3-1 = 001. Table 13-11: YUV 4:2:2 Data Format Cycle Count 1 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 328 Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 U07 U06 U05 U04 U03 U02 U01 U00 2 Y1 7 Y1 6 Y1 5 Y1 4 Y1 3 Y1 2 Y1 1 Y1 0 V0 7 V0 6 V0 5 V0 4 V0 3 V0 2 V0 1 V0 0 3 4 Y27 Y26 Y25 Y24 Y23 Y22 Y21 Y20 U27 U26 U25 U24 U23 U22 U21 U20 Y37 Y36 Y35 Y34 Y33 Y32 Y31 Y30 V27 V26 V25 V24 V23 V22 V21 V20 Seiko Epson Corporation ... 2n+1 2n+2 ... Y2n7 Y2n6 Y2n5 Y2n4 Y2n3 Y2n2 Y2n1 Y2n0 U2n7 U2n6 U2n5 U2n4 U2n3 U2n2 U2n1 U2n0 Y2n+17 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... Y2n+16 Y2n+15 Y2n+14 Y2n+13 Y2n+12 Y2n+11 Y2n+10 V2n+17 V2n+16 V2n+15 V2n+14 V2n+13 V2n+12 V2n+11 V2n+10 S1D13715 Hardware Functional Specification Rev. 7.4 Display Data Formats 13.6.2 YUV 4:2:0 Data Input / Output Format YUV 4:2:0 format is selected when REG[0980h] bits 3-1 = 111 and YUV 4:2:2 input format is selected when REG[0980h] bits 3-1 = 101. This data format differs between even and odd lines. The line number count starts at 0. Table 13-12: YUV 4:2:0 Data Format (Even Line) Cycle Count 1 2 7 D15 Y0 D14 Y0 6 D13 Y0 5 D12 Y0 4 D11 Y0 3 D10 Y0 2 D9 Y0 1 D8 Y0 0 D7 U0 7 D6 U06 D5 U05 D4 U04 D3 U0 3 D2 U02 D1 U01 D0 U00 Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 V07 V06 V05 V04 V03 V02 V01 V00 S1D13715 Hardware Functional Specification Rev. 7.4 3 Y2 4 7 Y2 6 Y2 5 Y2 4 Y2 3 Y2 2 Y2 1 Y2 0 U2 7 U26 U25 U24 U2 3 U22 U21 U20 Y37 Y36 Y35 Y34 Y33 Y32 Y31 Y30 V27 V26 V25 V24 V23 V22 V21 V20 Seiko Epson Corporation ... 2n 2n+1 ... Y2n 7 Y2n+17 ... Y2n6 Y2n+16 ... Y2n5 Y2n+15 ... Y2n4 Y2n+14 ... Y2n 3 Y2n+13 ... Y2n2 Y2n+12 ... Y2n1 Y2n+11 ... Y2n0 Y2n+10 ... U2n 7 V2n+17 ... U2n6 V2n+16 ... U2n5 V2n+15 ... U2n4 V2n+14 ... U2n 3 V2n+13 ... U2n2 V2n+12 ... U2n1 V2n+11 ... U2n0 V2n+10 329 Display Data Formats Table 13-13: YUV 4:2:0 Data Format (Odd Line) Cycle Count D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 330 1 2 ... n+1 Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 Y37 Y36 Y35 Y34 Y33 Y32 Y31 Y30 Y27 Y26 Y25 Y24 Y23 Y22 Y21 Y20 ... Y2n+17 ... Y2n+16 ... Y2n+15 ... Y2n+14 ... Y2n+13 ... Y2n+12 ... Y2n+11 ... Y2n+10 ... Y2n7 ... Y2n6 ... Y2n5 ... Y2n4 ... Y2n3 ... Y2n2 ... Y2n1 ... Y2n0 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Display Data Formats 13.7 YUV/RGB Conversion The YUV/RGB Converter (YRC) converts YUV image data from the Camera interface (YUV 4:2:2), from the JPEG decoder (YUV 4:4:4, YUV 4:2:2, YUV 4:2:0, YUV 4:1:1), or from the Host (YUV 4:2:2, 4:2:0) to RGB data (RGB 5:6:5, RGB 8:8:8). The YUV data range input can be selected using the YRC Input Data Type Select bit (REG[0240h] bit 4) and the transfer mode can be selected using the YUV/RGB Transfer mode bits (REG[0240h] bits 2-0). The YUV/RGB Converter uses the following parameters and equations. 0  Y  255 -128  U  127 -128  V  127 . Table 13-14: YUV/RGB Conversion Parameter Table Transfer Mode REG[0240h] bit 2-0 Color Ey Recommendation ITU-R BT.709 ER 1.000 0.000 1.575 001 EG 1.000 -0.187 -0.468 EB 1.002 1.855 0.000 ER 1.000 0.001 1.400 EG 1.000 -0.333 -0.712 EB 1.000 1.780 0.002 ER 1.000 0.000 1.402 EG 1.000 -0.344 -0.714 Recommendation ITU-R BT.470-6 System M 100 Recommendation ITU-R BT.470-6 System B, G 101 SMPTE 170M 110 SMPTE 240M(1987) 111 Epb Epr EB 1.000 1.772 0.000 ER 1.000 0.000 1.402 EG 1.000 -0.344 -0.714 EB 1.000 1.772 0.000 ER 1.000 0.000 1.576 EG 1.000 -0.226 -0.477 EB 1.000 1.826 0.000 E R E y E R E pb E R E pr R Y =  E G E y E G E pb E G E pr G U B V E B E y E B E pb E B E pr Figure 13-9: YUV/RGB Conversion Equation S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 331 Display Data Formats 13.8 RGB/YUV Conversion The RGB/YUV Converter (RYC) converts RGB data to YUV or YCbCr data format (see REG[0260h] bit 4). This allows the contents of the display buffer (including PIP+ window with rotated camera images) to be converted to YUV format and then encoded to JPEG data which the Host can transfer. To enable the RGB/YUV Converter, clear the RGB/YUV Converter Disable bit (REG[0260h] bit 15 = 0). The RGB/YUV Converter uses the following parameters and equations. Where the RGB input is: 0  R  255 0  G  255 0  B  255 and the YUV output is: 0  Y  255 0  U  255 0  V  255 the YCbCr output limit is: 16  Y  235 16  Cb  240 16  Cr  240 . Table 13-15: RGB/YUV Conversion Parameter Table Transfer Mode Recommendation ITU-R BT.709 001 Recommendation ITU-R BT.470-6 System M 100 Recommendation ITU-R BT.470-6 System B, G 101 SMPTE 170M SMPTE 240M(1987) 332 REG[0260h] bit 2-0 110 111 Color E’g E’b E’r Y (E’y) 0.7152 0.0722 0.2126 U (E’pb) -0.3860 0.5000 -0.1150 V (E’pr) -0.4540 -0.0460 0.5000 Y (E’y) 0.5900 0.1100 0.3000 U (E’pb) -0.3310 0.5000 -0.1690 V (E’pr) -0.4210 -0.0790 0.5000 Y (E’y) 0.5870 0.1140 0.2990 U (E’pb) -0.3310 0.5000 -0.1690 V (E’pr) -0.4190 -0.0810 0.5000 Y (E’y) 0.5870 0.1140 0.2990 U (E’pb) -0.3310 0.5000 -0.1690 V (E’pr) -0.4190 -0.0810 0.5000 Y (E’y) 0.7010 0.0870 0.2120 U (E’pb) -0.3840 0.5000 -0.1160 V (E’pr) -0.4450 -0.0550 0.5000 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Display Data Formats For YUV conversion, the equation is summarized as: Y Eg Eb Er G =  U Eg Eb Er B V Eg Eb Er R Figure 13-10: YUV Conversion Equation For YCbCr conversion, the equation is summarized as: 219 ---------- 0 0 255 Y Y 16 224 0 ---------- 0  U + 128 Cb = 255 Cr V 128 224 0 0 ---------255 Figure 13-11: YUV Conversion Equation S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 333 SwivelView™ 14 SwivelView™ Most computer displays are refreshed in landscape orientation – from left to right and top to bottom. Computer images are stored in the same manner. SwivelView™ is designed to rotate the displayed image on an LCD by 90, 180, or 270in a counter-clockwise direction The rotation is done in hardware and is transparent to the user for all display buffer reads and writes. By processing the rotation in hardware, SwivelView™ offers a performance advantage over software rotation of the displayed image. The image is not actually rotated in the display buffer since there is no address translation during CPU read/write. The image is rotated during display refresh. 14.1 SwivelView Modes 14.1.1 90° SwivelView The following figure shows how the programmer sees a portrait image and how the image is being displayed. The application image is written to the S1D13715 in the following sense: A–B–C–D. The display is refreshed by the S1D13715 in the following sense: B-DA-C. Address Of A SwivelView Window C C Panel Height D SwivelView Window B B A Display Image Height Virtual Image Height A Display Start Address (panel origin) Panel Width D Display Image Width Virtual Image Width Image seen by programmer (= Image in display buffer) 90° SwivelView image Figure 14-1: Relationship Between The Screen Image and the Image Refreshed in 90 SwivelView. 334 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 SwivelView™ Display Start Address The display refresh circuitry starts at pixel “B”, therefore the Display Start Address register must be programmed with the address of pixel “B”. Display Start Address = Address of A + Line Address Offset - (bpp  8) Line Address Offset Line Address Offset is set as byte counts per 1 line of virtual image. Line Address Offset = Virtual Image Width x bpp  8 Memory Address of a Given Pixel To calculate the address of pixel at any given position for the Main Window or PIP+ window, use the following formula. Memory Address (X,Y) = [(X - 1) + (Y - 1) x Virtual Image Width] x bpp  8 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 335 SwivelView™ 14.1.2 180° SwivelView The following figure shows how the programmer sees a landscape image and how the image is being displayed. The application image is written to the S1D13715 in the following sense: A–B–C–D. The display is refreshed by the S1D13715 in the following sense: D-C-B-A. SwivelView Window SwivelView Window D A C B Display Image Width Panel Height B A D Display Image Height Display Start Address (panel origin) C Virtual Image Height Address Of A Panel Width Virtual Display Image Width 180° SwivelView image Image seen by programmer (= Image in display buffer) Figure 14-2: Relationship Between The Screen Image and the Image Refreshed in 180 SwivelView. Display Start Address The display refresh circuitry starts at pixel “D”, therefore the Display Start Address register must be programmed with the address of pixel “D”. Display Start Address = Address of A + Line Address Offset x Display Image Height - (bpp  8) Line Address Offset Line Address Offset is set as byte counts per 1 line of virtual image. Line Address Offset = Virtual Image Width x bpp  8 Memory Address of a Given Pixel To calculate the address of pixel at any given position for the Main Window or PIP+ window, use the following formula. Memory Address (X,Y) = [(X - 1) + (Y - 1) x Virtual Image Height] x bpp  8 336 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 SwivelView™ 14.1.3 270° SwivelView The following figure shows how the programmer sees a portrait image and how the image is being displayed. The application image is written to the S1D13715 in the following sense: A–B–C–D. The display is refreshed by the S1D13715 in the following sense: C-AD-B. B C A SwivelView Window SwivelView Window Panel Height B D Display Image Height A Display Start Address (panel origin) C Virtual Image Height Address Of A Panel Width D Display Image Width Virtual Image Width 270° SwivelView image Image seen by programmer (= Image in display buffer) Figure 14-3: Relationship Between The Screen Image and the Image Refreshed in 270 SwivelView. Display Start Address The display refresh circuitry starts at pixel “C”, therefore the Display Start Address register must be programmed with the address of pixel “C”. Display Start Address = Address of A + Line Address Offset × (Display Image Width - 1) Line Address Offset Line Address Offset is set as byte counts per 1 line of virtual image. Line Address Offset = Virtual Image Width x bpp  8 Memory Address of a Given Pixel To calculate the address of pixel at any given position for the Main Window or PIP+ window, use the following formula. Memory Address (X,Y) = [(X - 1) + (Y - 1) x Virtual Image Width] x bpp  8 S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 337 Picture-in-Picture Plus (PIP+) 15 Picture-in-Picture Plus (PIP + ) Picture-in-Picture Plus (PIP+) enables a secondary window (or PIP+ window) within the main display window. The PIP+ window may be positioned anywhere within the main window display and is controlled using the PIP+ Window control registers (REG[0218h][0228h]). The PIP+ window color depth (REG[0200h] bits 3-2) and SwivelView orientation (REG[0202h] bits 5-4) are independent from the Main window. The following diagrams show examples of a PIP+ window within a main window and the registers used to position it. SwivelViewTM 0° PIP+ Window Y Start Position (REG[0222h] bits 9-0) panel’s origin PIP+ Window Y End Position (REG[0226h] bits 9-0) Main Window PIP+ Window PIP+ Window X Start Position (REG[0220h] bits 9-0) PIP+ Window X End Position (REG[0224h] bits 9-0) Figure 15-1: PIP+ with SwivelView Disabled (SwivelView 0°) SwivelViewTM 90° panel’s origin PIP+ Window X Start Position (REG[0220h] bits 9-0) PIP+ Window X End Position (REG[0224h] bits 9-0) PIP+ Window Main Window PIP+ Window Y Start Position (REG[0222h] bits 9-0) PIP+ Window Y End Position (REG[0226h] bits 9-0) Figure 15-2: PIP+ with SwivelView 90° Enabled 338 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Picture-in-Picture Plus (PIP+) SwivelViewTM 180° PIP+ Window X End Position (REG[0224h] bits 9-0) PIP+ Window X Start Position (REG[0220h] bits 9-0) PIP+ Window Main Window PIP+ Window Y End Position (REG[0226h] bits 9-0) PIP+ Window Y Start Position (REG[0222h] bits 9-0) panel’s origin Figure 15-3: PIP+ with SwivelView 180° Enabled SwivelViewTM 270° PIP+ Window Y End Position (REG[0226h] bits 9-0) PIP+ Window Y Start Position (REG[0222h] bits 9-0) Main Window PIP+ Window PIP+ Window X Start Position (REG[0220h] bits 9-0) PIP+ Window X End Position (REG[0224h] bits 9-0) panel’s origin Figure 15-4: PIP+ with SwivelView 270° Enabled S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 339 Picture-in-Picture Plus (PIP+) 15.1 Overlay Display When Picture-in-Picture Plus (PIP+) is enabled, the S1D13715 supports an overlay with the following functions: Transparent, Average, AND, OR, and INV. Each RGB component of the overlay function key colors are set using REG[0204h]-[0208h] and REG[0304h][0326h]. The overlay settings are specified using the Overlay Key Color registers for each RGB color and individual Overlay Key Color Enable bits (see REG[0328h]) as follows. Table 15-1: Overlay Mode Selection Register Overlay PIP+ Overlay Main Window Bit Shift Window Bit Shift (REG[0328h] bit 15) (REG[0328h] bit 13) Transparent Overlay Key Color REG[0204h] REG[0206h] REG[0208h] 0 Average Overlay Key Color REG[0310h] REG[0312h] REG[0314h] 0 AND Overlay Key Color REG[0316h] REG[0318h] REG[031Ah] 0 OR Overlay Key Color REG[031Ch] REG[031Eh] REG[0320h] 0 INV Overlay Key Color REG[0322h] REG[0324h] REG[0326h] 0 340 1 1 1 1 1 Display Image PIP+ window data * (PIP+ window data)/2 0 ((PIP+ window data) + (Key Color data))/2 1 ((PIP+ window data) + (Key Color data)/2)/2 0 ((PIP+ window data)/2 + (Key Color data))/2 1 ((PIP+ window data)/2 + (Key Color data)/2)/2 0 (PIP+ window data) AND (Key Color data) 1 (PIP+ window data) AND (Key Color data)/2 0 (PIP+ window data)/2 AND (Key Color data) 1 (PIP+ window data)/2 AND (Key Color data)/2 0 (PIP+ window data) OR (Key Color data) 1 (PIP+ window data) OR (Key Color data)/2 0 (PIP+ window data)/2 OR (Key Color data) 1 (PIP+ window data)/2 OR (Key Color data)/2 Negative image of (PIP+ window data) * Seiko Epson Corporation Negative image of (PIP+ window data)/2 S1D13715 Hardware Functional Specification Rev. 7.4 Picture-in-Picture Plus (PIP+) The following table shows the resulting PIP+ window color when overlay is combined with the PIP+ Window Bit Shift and the Main Window Bit Shift functions. LUT LUT P7 P6 P5 P4 P3 P2 P1 P0 M7 M6 M5 M4 M3 M2 M1 M0 Bit Shift x2, /2 Bit Shift x2, /2 Overlay P/2, M P/2, M/2 0 P7 P6 P5 P4 P3 P2 P1 P0 0 M7 M6 M5 M4 M3 M2 M1 M0 AND, OR O7 O6 O5 O4 O3 O2 O1 O0 0 P7 P6 P5 P4 P3 P2 P1 P0 M7 M6 M5 M4 M3 M2 M1 M0 AND, OR O7 O6 O5 O4 O3 O2 O1 O0 P, M/2 P, M P7 P6 P5 P4 P3 P2 P1 P0 0 M7 M6 M5 M4 M3 M2 M1 M0 AND, OR O7 O6 O5 O4 O3 O2 O1 O0 P7 P6 P5 P4 P3 P2 P1 P0 M7 M6 M5 M4 M3 M2 M1 M0 AND, OR O7 O6 O5 O4 O3 O2 O1 O0 O7 O6 O5 O4 O3 O2 O1 O0 Figure 15-5: Data Flow for Bit Shift Function 15.1.1 Overlay Display Effects When PIP+ is disabled (REG[0200h] bits 9-8 = 00) • Only the Main window is displayed and the PIP+ Window is ignored. When PIP+ is enabled (REG[0200h] bits 9-8 = 01) • The PIP+ window area “overlays” the Main window area. The Overlay Key Color settings are ignored. When PIP+ with overlay is enabled (REG[0200h] bits 9-8 = 11) • The PIP+ window area “overlays” the Main window area only on areas of the Main window where the color matches the overlay key color. For the Main window area, only the Main window is displayed. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 341 Picture-in-Picture Plus (PIP+) • For the PIP+ Window area, if the Main window data is same as the Overlay Key color, then the PIP+ window data is mixed with the Main window data as specified for each overlay function (see Figure 15-6: “Overlay Display Effects 1,” on page 342). If the Main window data differs from the Overlay Key color, then the Main window data is displayed. If two or more Overlays are active, they have the following priority: Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. A lower priority overlay function is ignored and only the highest priority overlay function is displayed. Original Image PIP+ Window Image Main Window Image PIP Effects PIP+ Disabled Overlay Effects Set Green as Transparent Overlay Key Color PIP+ Only Enabled (PIP+ with Overlay Enabled) Set Green as Average Overlay Key Color Set Green as AND Overlay Key Color Set Green as OR Overlay Key Color Set Green as INV Overlay Key Color Figure 15-6: Overlay Display Effects 1 342 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Picture-in-Picture Plus (PIP+) Transparent Overlay Key Color INV Overlay Key Color PIP+ Image Main Window Image PIP+ Only PIP+ with Overlay (Transparent) PIP+ with Overlay (Transparent, INV) PIP+ with Overlay (INV) Figure 15-7: Overlay Display Effects 2 Note If more than one overlay function is enabled, only the function with the highest priority takes effect. Function priority is as follows (from highest to lowest) Transparent Key Color > Average Key Color > AND Key Color > OR Key Color > INV Key Color. In the case where Transparent and INV overlay are enabled, the INV function is ignored. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 343 2D BitBLT Engine 16 2D BitBLT Engine 16.1 Overview The purpose of the BitBLT Engine is to off-load the work of the CPU for moving pixel data to and from the CPU and display memory and also for moving pixel data from one location to another in display memory. There are 5 BitBLTs (Bit Block Transfer) which are used to move pixel data from one location to another. • Read BitBLT: Move pixel data from Display Memory to CPU • Move BitBLT: Move pixel data from one location in Display Memory to another • Pattern Fill BitBLT: Move a Pixel Pattern in Display Memory and duplicate several times to produce a larger image • Solid Fill BitBLT: Move a Single Color to a location in Memory The BitBLT Engine can perform several Data Functions in combination with some of the BitBLT functions on the pixel data. • ROP: Perform a Boolean function on the pixel data • Transparency: Only write pixel data of which the color does not match the Transparent Color. The BitBLT Engine supports pixel data color depths of 8 bpp and16 bpp and CPU data transfers of 16-bits or 8-bits. The destination and source BitBLTs can be set to be either contiguous linear blocks of memory (Linear) or as a rectangular region of memory (Rectangular). Note The S1D13715 BitBLT engine does not support 32 bppmodes. 344 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 2D BitBLT Engine 16.2 BitBLTs 16.2.1 Read BitBLT S1D13715 Destination Source BitBLT Engine CPU Display Memory FIFO Figure 16-1: Read BitBLT Data Flow Data can be read from memory by the Host CPU using the BitBLT Engine. The source of the data is the S1D13715 internal memory (stored as either Linear or Rectangular data format). The destination of the data to the Host CPU can also be configured to either Linear or Rectangular data format. No data functions like ROP, Transparency or Color Expansion are supported for Read BitBLTs. If these features are enabled, they are ignored. The Read Phase can also be set for the either the first data read at the start of the BitBLT for Linear or at the start of each line for Rectangular. The Read Phase allows the user to set which byte in the data read is the first byte read from memory. 16.2.2 Move BitBLT Display Memory Source Destination Source Start Address Destination Start Address Figure 16-2: Move BitBLT data flow The Move BitBLT copies data from the source area in memory to the destination area. The source data can also be ROP’ed with the destination data and then written back to the destination. The source data can also be Color Expanded using the Color Expansion data function and then stored to the destination. Transparency can also be applied to the source data. The source and the destination can be in either Linear or Rectangular data format. The top left hand corner of the BitBLT Window is always specified as the start address for the source and destination. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 345 2D BitBLT Engine 16.2.3 Pattern Fill BitBLT BitBLT window defined by BitBLT Width and BitBLT Height Destination Start Address The pattern is duplicated over and over again in the BitBLT window Display Memory Pixel Pattern Source Start Address The Pixel Pattern in this example is shown as rectangular for clarity, however it must be stored in Linear format. Figure 16-3: Pattern Fill Drawing The Pattern Fill BitBLT allows an 8 x 8 pixel pattern to be duplicated multiple times to a larger area in memory as shown in the example above. The Pixel Pattern is stored at one location and it is read and drawn multiple times to the BitBLT window. For Pattern Fill BitBLTs, the Pixel Pattern, which is the source data, must be Linear and the destination, which is the BitBLT window, must be Rectangular. The source data can also be ROP’ed with the destination data and then written back to the destination. The start of the Pixel Pattern must be aligned to a 16-bit address. The Pixel Pattern can be drawn to a BitBLT window area of 1 x 1 pixel to a max of the BitBLT Width x BitBLT Height. 16.2.4 Solid Fill BitBLT Display Memory Destination Start Address Destination Foreground Color Register Figure 16-4: Solid Fill BitBLT Data Flow For Solid Fill BitBLTs, the foreground color is written to the destination. The foreground color can be ROP’ed with the destination. The destination can also be Linear or Rectangular data format. 346 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 2D BitBLT Engine For 8 bpp, the foreground color is specified by REG[8024h] bits 7-0. For 16 bpp, the foreground color is specified by REG[8024h] bits 15-0. 16.2.5 BitBLT Terms Memory Address Offset BitBLT Width Start Address BitBLT Height BitBLT Window Figure 16-5: BitBLT Terms Memory Address Offset Width of the display (i.e. Main Window width or PIP+ Window width) in 16-bit words. The source and destination share the memory address offsets. Start Address Top left corner of the BitBLT window specified in bytes. BitBLT Width Width of the BitBLT in pixels. BitBLT Height Height of the BitBLT in pixels. BitBLT Window The area of the display memory to work with. For each bitBLT there is a source of data and a destination for the result data. The source is the location where the data for the data function (i.e. color expansion, ROP, and transparency) is read from. The destination is where the data for the data function (i.e. ROP) is read from and also the location where the result is written to. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 347 2D BitBLT Engine 16.2.6 Source and Destination Memory Address Offset Source Start Address Source Window Destination Start Address Destination Window Figure 16-6: Source and Destination 16.3 Data Functions The following data functions are supported by the BitBLT Engine. For some BitBLTs these functions can be combined together for some BitBLTs. • Color Expansion • ROP • Transparency 348 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 2D BitBLT Engine 16.3.1 ROP ROPs allow for a boolean function to be applied to the source and destination data. The boolean function is selected using the BitBLT ROP Code bits (REG[800Ah] bits 3-0). Functions such as AND, OR, XOR, NAND, NOR, and others can be selected. The following example shows the results for 3 different ROPs with the same source and destination input. ROP = AND Source ROP Result Destination ROP = OR Source ROP Result Destination ROP = XOR Source ROP Result Destination Figure 16-7: ROP Example S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 349 2D BitBLT Engine 16.3.2 Transparency Transparency allows for colors which do not match the background color to be written to the destination. This is useful when a non-square image contained in the BitBLT window is to be written over another image. For example, a mouse pointer is stored in memory as a block, but when the pointer is written to the display only the color of the pointer is written and the colors around it are not. The following example shows how the source image of a mouse pointer with its color set to black and color around it set to white would appear over the destination image using Transparency. The white color (which matches the background color) around the mouse pointer is not written over the destination image, yet the black mouse pointer is. Source Result Destination Figure 16-8: Transparency Example 350 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 2D BitBLT Engine 16.4 Linear / Rectangular Most BitBLTs support linear or rectangular data formats for the source and destination. Linear means that the data in memory or to be written by the Host CPU is in a continuous format with no gaps between the EOL (End of Line) and SOL (Start of Line). The line offset is ignored for the linear data format. The following example shows how each line of linear data is stored in display memory for a BitBLT with a height of 5. Note that the SOL of Line 2 starts right after the EOL of Line 1. For 8 bpp, the next SOL starts in the byte after the previous lines EOL. For 16 bpp, it is the word after the previous line’s EOL. SOL Line 1 EOL Line 1 Start Address SOL Line 2 EOL Line 2 BitBLT Window in Linear Format BitBLT Width EOL Line 5 Figure 16-9: Memory Linear Example The following example shows how linear Host CPU data is written for 16-bit writes. The SOL of the next line starts in the same 16-bit data as the EOL of the previous line. SOL Line 1 bit 15 CPU Data Write bit 0 EOL Line 1 SOL Line 2 EOL Line 2 EOL Line 5 Figure 16-10: Memory Linear Example S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 351 2D BitBLT Engine Rectangular means that after each EOL, the SOL of the next line is the SOL of the current line plus the line offset for memory accesses. For Host CPU accesses, the SOL of the next line is always in the data written after the data with the EOL. SOL Line 1 EOL Line 1 Start Address EOL Line 2 SOL Line 2 BitBLT Window in Rectangular Format BitBLT Width EOL Line 5 Figure 16-11: Memory Rectangular Example The following example shows how rectangular Host CPU data is written for 16-bit writes. The SOL of the next line starts in the next 16-bit data after the EOL of the previous line. SOL Line 1 bit 15 CPU Data Write bit 0 EOL Line 1 SOL Line 2 EOL Line 2 EOL Line 5 Figure 16-12: Memory Linear Example 352 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Resizers 17 Resizers Resizers perform the trimming and scaling functions that can be used to “resize” image data from the camera interface and/or the JPEG decoder. There are two resizers, one for viewing image data and one for viewing/capturing image data. Image data from the camera interface (always YUV 4:2:2 format) can use either the View resizer or the Capture resizer before being stored in the display memory. If image data from the camera interface is being sent to the JPEG Codec for JPEG encoding, it must use the Capture resizer. View and Capture resizer functions are configured independently. Image data from the JPEG decoder (YUV 4:4:4, YUV 4:2:2, YUV 4:2:0, YUV 4:1:1 formats) or from the Host CPU can only use the View resizer before being stored in the display buffer. The resize function is a two stage process - trimming then scaling. 17.1 Trimming Function The trimming function is similar to cropping an image and “trims” the unwanted portion of the image. The trimming is controlled using the Resizer X/Y Start/End Position registers (REG[0944h]-[094Ah] or REG[0964h]-[096Ah]). The Start and End addresses programmed in these registers are limited by the size of the actual camera image or the actual size of the decoded JPEG image and must not be set to a value greater than these actual sizes. The Start and End Position registers are set in 1 pixel increments. (0, 0) Start Y End Y Invalid Area Valid Area Start X Original Image End X View Resizer: Start X = REG[0944h] bits 10-0 Start Y = REG[0946h] bits 10-0 End X = REG[0948h] bits 10-0 End Y = REG[094Ah] bits 10-0 Capture Resizer: Start X = REG[0964h] bits 10-0 Start Y = REG[0966h] bits 10-0 End X = REG[0968h] bits 10-0 End Y = REG[096Ah] bits 10-0 Figure 17-1: Trimming Function S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 353 Resizers 17.2 Scaling Function The scaling function takes place after the trimming stage and it specifies the desired compression ratio to be applied to the image. When image data is scaled by the capture resizer for JPEG Encoding, the JPEG Codec size registers must be set for the image size after scaling. Trimmed and scaled image Y X Capture Resizer: Scaling Rate = REG[096Ch] bits 3-0 Result X = REG[1010h], REG[100Eh] Result Y = REG[1014h], REG[1012h] View Resizer: Scaling Rate = REG[094Ch] bits 3-0 Figure 17-2: Scaling Example (1/2 Scaling) 17.2.1 1/2 Scaling For 1/2 scaling, each 2x2 pixel block is scaled to 1 pixel. For the horizontal dimension, the scaling method can be either average or reduction (see REG[094Eh] or REG[096Eh]). For the vertical dimension, the scaling method is always reduction. (0, 0) 1/2 Scaling (1, 1) Scaled data 2x2 data block Scaled data = {(0, 0)+(0, 1)}/2 = (0, 0) (average) (reduction) Figure 17-3: 1/2 Compression 354 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Resizers 17.2.2 1/3 Scaling For 1/3 scaling, each 3x3 pixel block is scaled to 1 pixel. For both the horizontal and vertical dimensions, the scaling method is always reduction. (0, 0) 1/3 Scaling (2, 2) Scaled data 3x3 data block Scaled data = (1, 1) Figure 17-4: 1/3 Scaling 17.2.3 1/4 Scaling For 1/4 scaling, each 4x4 pixel block is scaled to 1 pixel. For the horizontal dimension, the scaling method can be either average or reduction (see REG[094Eh] or REG[096Eh]). For the vertical dimension, the scaling method is always reduction. (0, 0) 1/4 Scaling Scaled data (3, 3) 4x4 data block Scaled data = {(0, 1)+(1, 1)+(2, 1)+(3, 1)}/4 = (1, 1) (average) (reduction) Figure 17-5: 1/4 Scaling S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 355 Resizers 17.2.4 1/5 Scaling For 1/5 Scaling, each 5x5 pixel block is scaled to 1 pixel. For both the horizontal and vertical dimensions, the scaling method is always reduction. (0, 0) 1/5 Scaling Scaled data (4, 4) 5x5 data block Scaled data = (2, 2) Figure 17-6: 1/5 Scaling 17.2.5 1/6 Scaling For 1/6 scaling, each 6x6 pixel block is scaled to 1 pixel. For both the horizontal and vertical dimensions, the scaling method is always reduction. (0, 0) 1/6 Scaling Scaled data (5, 5) 6x6 data block Scaled data = (2, 2) Figure 17-7: 1/6 Scaling 356 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Resizers 17.2.6 1/7 Scaling For 1/7 scaling, each 7x7 pixel block is scaled to 1 pixel. For both the horizontal and vertical dimensions, the scaling method is always reduction. (0, 0) 1/7 Scaling Scaled data (6, 6) 7x7 data block Scaled data = (3, 3) Figure 17-8: 1/7 Scaling 17.2.7 1/8 Scaling For 1/8 scaling, each 8x8 pixel block is scaled to 1 pixel. For the horizontal dimension, the scaling method can be either average or reduction (see REG[094Eh] or REG[096Eh]). For the vertical dimension, the scaling method is always reduction. (0, 0) 1/8 Scaling Scaled data (7, 7) 8x8 data block Scaled data = {(0, 3)+(1, 3)+(2, 3)+(3, 3)+(4, 3)+(5, 3)+(6, 3)+(7, 3)}/8 (average) = (3, 3) (reduction) Figure 17-9: 1/8 Scaling S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 357 Resizers 17.3 Resizer Restrictions If any of the resizer registers must be changed while data is being received (from the camera interface, from the JPEG Decoder, or from the Host CPU), the View Resizer Register Update VSYNC Enable bit (REG[0940h] bit 1) or the Capture Resizer Update VSYNC Enable bit (REG[0960h] bit 1) must be set to 1 before changing any resizer register values. The resizer X/Y Start/End Position registers must not be set larger than the incoming image size. The dimensions specified by the View Resizer X/Y Start/End Position registers (REG[0944h] - REG[094Ah]) must be divisible by the View Resizer Scaling Rate (REG[094Ch] bits 5-0). The dimensions specified by the Capture Resizer X/Y Start/End Position registers (REG[0964h] - REG[096Ah]) must be divisible by the Capture Resizer Scaling Rate (REG[096Ch] bits 5-0). 358 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Resizers Refer to the following table for a summary of the resizer horizontal restrictions. Table 17-1: Resizer Horizontal Restrictions Summary YUV Format 4:4:4 Scaling Rate Start Resolution Position YUV Format Scaling Rate Start Resolution Position YUV Format Scaling Rate Start Resolution Position 1/1 1 pixel 1/1 2 pixels 1/1 4 pixels 1/2 2 pixels 1/2 2 pixels 1/2 4 pixels 1/3 3 pixels 1/3 6 pixels 1/3 12 pixels 1/4 4 pixels 1/4 4 pixels 1/4 4 pixels 1/5 5 pixels 1/5 10 pixels 1/5 20 pixels 1/6 6 pixels 1/6 6 pixels 1/6 12 pixels 1/7 7 pixels 1/7 14 pixels 1/7 28 pixels 1/8 8 pixels 1/8 8 pixels 1/8 8 pixels 1/9 9 pixels 1/9 18 pixels 1/9 36 pixels 1/10 10 pixels 1/10 10 pixels 1/10 20 pixels 1/11 11 pixels 1/11 22 pixels 1/11 44 pixels 1/12 12 pixels 1/12 12 pixels 1/12 12 pixels 1/13 13 pixels 1/13 26 pixels 1/13 52 pixels 1/14 14 pixels 1/14 14 pixels 1/14 28 pixels 1/15 15 pixels 1/15 30 pixels 1/15 60 pixels 1/16 1/17 1 pixel 16 pixels 4:2:2 1/16 17 pixels 4:2:0 1/17 2 pixel 16 pixels 34 pixels YUV 4:1:1 1/16 1/17 4 pixel 16 pixels 68 pixels 1/18 18 pixels 1/18 18 pixels 1/18 36 pixels 1/19 19 pixels 1/19 38 pixels 1/19 76 pixels 1/20 20 pixels 1/20 20 pixels 1/20 20 pixels 1/21 21 pixels 1/21 42 pixels 1/21 84 pixels 1/22 22 pixels 1/22 22 pixels 1/22 44 pixels 1/23 23 pixels 1/23 46 pixels 1/23 92 pixels 1/24 24 pixels 1/24 24 pixels 1/24 24 pixels 1/25 25 pixels 1/25 50 pixels 1/25 100 pixels 1/26 26 pixels 1/26 26 pixels 1/26 52 pixels 1/27 27 pixels 1/27 54 pixels 1/27 108 pixels 1/28 28 pixels 1/28 28 pixels 1/28 28 pixels 1/29 29 pixels 1/29 58 pixels 1/29 116 pixels 1/30 30 pixels 1/30 30 pixels 1/30 60 pixels 1/31 31 pixels 1/31 62 pixels 1/31 124 pixels 1/32 32 pixels 1/32 32 pixels 1/32 32 pixels S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 359 Resizers Refer to the following table for a summary of the resizer vertical restrictions. . Table 17-2: Resizer Vertical Restrictions Summary YUV Format 4:4:4 4:2:2 4:1:1 360 Scaling Start Resolution Rate Position YUV Format Scaling Start Resolution Rate Position 1/1 1 pixel 1/1 2 pixels 1/2 2 pixels 1/2 2 pixels 1/3 3 pixels 1/3 6 pixels 1/4 4 pixels 1/4 4 pixels 1/5 5 pixels 1/5 10 pixels 1/6 6 pixels 1/6 6 pixels 1/7 7 pixels 1/7 14 pixels 1/8 8 pixels 1/8 8 pixels 1/9 9 pixels 1/9 18 pixels 1/10 10 pixels 1/10 10 pixels 1/11 11 pixels 1/11 22 pixels 1/12 12 pixels 1/12 12 pixels 1/13 13 pixels 1/13 26 pixels 1/14 14 pixels 1/14 14 pixels 1/15 15 pixels 1/15 30 pixels 1/16 1/17 1 line 16 pixels 17 pixels 4:2:0 1/16 1/17 2 lines 16 pixels 34 pixels 1/18 18 pixels 1/18 18 pixels 1/19 19 pixels 1/19 38 pixels 1/20 20 pixels 1/20 20 pixels 1/21 21 pixels 1/21 42 pixels 1/22 22 pixels 1/22 22 pixels 1/23 23 pixels 1/23 46 pixels 1/24 24 pixels 1/24 24 pixels 1/25 25 pixels 1/25 50 pixels 1/26 26 pixels 1/26 26 pixels 1/27 27 pixels 1/27 54 pixels 1/28 28 pixels 1/28 28 pixels 1/29 29 pixels 1/29 58 pixels 1/30 30 pixels 1/30 30 pixels 1/31 31 pixels 1/31 62 pixels 1/32 32 pixels 1/32 32 pixels Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Digital Video Functions 18 Digital Video Functions The following is an overview block diagram of how the digital video functions interact. Resizer Camera Interface Camera1 Camera2 YUV 8-bit 24-bit Camera Interface YUV 8-bit YUV M S Camera FIFO 8-bit YUV View Resizer S M 24-bit YUV 8-bit to 24-bit M 8-bit 24-bit S YUV S YUV/RGB Converter YUV Capture Resizer M 24-bit JPEG Module S YUV Format Converter YUV 24-bit M (w) M 16-bit JPEG Line Buffer S M Host Interface 16-bit (w) M (w) (w) 16-bit S (w) M 16-bit S JPEG FIFO 8-bit 8-bit YUV S M M S YUV S M YUV S (w) JPEG 8-bit M JPEG 8-bit (w) S JPEG Codec (w) M 8-bit S Register Interface M 8-bit (w) M S Block Interleave Data S Interface Slave Line Data, etc. xx-bit Data Width Register Configuration (w) Wait Control Type Bus Interface Master Figure 18-1: Digital Video Functions S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 361 Digital Video Functions 18.1 Display Image Data from the Camera Interface Initial Reset and Power-On Set Registers LCD output Enable Data from Camera Data from Host Camera Clock Output Enable Overlay Enable Display Image Figure 18-2: Display Image Data from the Camera Interface 362 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Digital Video Functions 18.2 JPEG Encode and Camera Data to the Host Image from Camera Interface is on the Display JPEG Operation Enable Data to Host / Encode Process Read FIFO Interrupt FIFO Flag Extra Operation Operation Complete Flag JPEG Encode Operation is Completed Figure 18-3: JPEG Encode Data from the Camera Interface S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 363 Digital Video Functions 18.3 JPEG Decode and Display Data from the Host Initial Reset and Power-On Set Registers LCD Output Enable JPEG Operation Enable Data from Host / Decoding Process Interrupt Write JPEG Data to FIFO FIFO Flag Extra Operation Complete JPEG Operation is Completed Overlay Display Enable Overlay Display JPEG decoded Image as Background image Figure 18-4: JPEG Decode and Display Data from the Host 364 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Digital Video Functions 18.4 JPEG 180° Rotate Encode Diagram Host Stores JPEG Image in 3 Blocks System Clock (PLL) 1st 32Kb block Camera1 Clock Capture Resizer Camera1 Interface View Resizer Camera2 Interface 2nd 32Kb block Camera2 Clock Camera Input (96K byte image) REG[0980h] bit 8 = 1 JPEG Line Buffer 3rd 32Kb block JPEG Codec JPEG FIFO 1st 32k byte block of the camera image YUV/RGB Host Processing of the blocks into a single JPEG file using embedded RST Markers 2D BitBLT Display Buffer LUT2 LUT1 Host I/F Embedded SRAM Pixel Clock Display FIFO RGB Interface RGB/YUV Parallel Interface Serial Clock P/S Serial Interface GPIO Display Output using SwivelView 180° Figure 18-5: JPEG 180° Rotate Encode Diagram S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 365 JPEG Encode/Decode Operation 19 JPEG Encode/Decode Operation The S1D13715 JPEG Codec is based on the JPEG baseline standard and the arithmetic accuracy satisfies the requirement of the compatibility test of JPEG Part-2 (ISO/IEC109182). The maximum image size is 1600 x 1200 and the image to be compressed/decompressed must be YUV format with a minimum resolution as shown in Table 19-1: “Minimum Resolution Restrictions”. The following image restrictions must be observed for JPEG encode/decode, YUV data input from the Host (only YUV 4:2:2, 4:2:0), and YUV data to the Host (only YUV 4:2:2, 4:2:0). The image must be in YUV format and the minimum image resolution must be set based on the YUV format as follows. Table 19-1: Minimum Resolution Restrictions YUV Format Minimum Resolution 4:4:4 (decode only) 1x1 4:2:2 (encode/decode) 2x1 4:2:0 (encode/decode) 2x2 4:1:1 (encode/decode) 4x1 The quantization table accommodates two compression tables and four decompression tables. The Huffman table accommodates two tables for each AC and DC. It is possible to insert markers (up to a 36 byte maximum size) during the encoding process. Markers which can be processed and automatically translated during the decoding process are SOI, SOF0, SOS, DQT, DHT, DRI, RSTm and EOI. The decoding process supports YUV 4:4:4, YUV 4:2:2, YUV 4:1:1 and YUV 4:2:0, and the encoding process supports YUV 4:2:2, 4:1:1 and 4:2:0 format. RGB format is not supported. The image data processing ratio is almost less than 1/15 second at 640x480 resolution. However, the image data processing ratio is not guaranteed since it depends on the image data, the Huffman table and the quantization table. 366 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation 19.1 JPEG Features 19.1.1 JPEG FIFO JPEG FIFO Host Bus JPEG FIFO Buffer (8 bytes - 2 FIFO Entries) Figure 19-1: JPEG FIFO Overview The JPEG FIFO is mapped at the beginning of the display buffer and is programmable to a maximum size of 128K bytes using REG[09A4h]. The JPEG file size and Host CPU performance should be considered when determining the JPEG FIFO size. The status of the JPEG FIFO can be checked using the JPEG FIFO Status register (REG[09A2h]). It is also possible to indicate the JPEG FIFO status using interrupts via the JPEG Interrupt Control register (REG[0986h]). The JPEG FIFO must be read by the Host CPU during the JPEG encode process. There are two methods. 1. High Performance - Before reading the JPEG FIFO, check how much data is available in the FIFO using the status bits in the JPEG FIFO Status register (REG[09A2h]). Next, read the FIFO through REG[09A6h] based on the available amount of data. Note that the FIFO must be read twice for each entry in the FIFO (32-bit FIFO but only 16-bit read/write port). Continue to check and read the FIFO until it is empty. This method offers the best performance because it is possible to transfer the block of data in the FIFO without a FIFO status check for each entry. If the JPEG FIFO is read while no data is in the FIFO, a terminate cycle will occur and no data will be read from the FIFO. 2. Low Performance - Before reading the JPEG FIFO, confirm that the FIFO is not empty using the JPEG FIFO Empty Status bit (REG[09A2h] bit 0) and JPEG FIFO Threshold Status bits (REG[09A2h] bits 3-2). After confirmation, read one entry from the FIFO. Note that the FIFO must be read twice for each entry in the FIFO (32-bit FIFO but only 16-bit read/write port). The JPEG FIFO must be written by the Host CPU during the JPEG decode process. Much like the methods for reading the JPEG FIFO, writing to the JPEG FIFO can be done entry by entry or as a block of data once it has been determined how many entries are available in the JPEG FIFO. If the JPEG FIFO is full and data is written to it by the Host CPU, a terminate cycle will occur and no data will be read from the FIFO. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 367 JPEG Encode/Decode Operation 19.1.2 JPEG Codec Interrupts The JPEG codec can generate the following interrupts to avoid continuously poling the JPEG status bits. Using interrupts decreases the CPU load for a JPEG process. For information on the JPEG Interrupt register bits, see the register descriptions in Section 10.4.15, “JPEG Module Registers” on page 249. 1. JPEG Codec Interrupt Flag (REG[0982h] bit 1) This flag is asserted when all JPEG processes have finished without errors, or during the decode process when a RST marker process error is detected. This interrupt flag should be enabled when RST marker error detection is enabled. However, if the RST marker is not required during the decode process, confirm that the operation has finished using the JPEG Decode Complete Flag (REG[0982h] bit 5). For the encoding process, confirm that the operation has finished using the JPEG FIFO Empty Flag (REG[0982h] bit 8) and the JPEG Operation Status bit (REG[1004h] bit 0). 2. JPEG Line Buffer Overflow Flag (REG[0982h] bit 2) If the JPEG FIFO is read slower than the JPEG Line Buffer is written to during the encoding process, this flag is asserted when the JPEG Line Buffer overflows. This flag should be enabled for JPEG encoding. 3. JPEG Decode Marker Read Flag (REG[0982h] bit 4) During JPEG decoding, this flag is asserted when marker information is read from the JPEG file. Marker information may include resize settings or LCD settings. JPEG decoding is stopping while this flag is asserted and does not restart until after this flag is cleared (REG[0986h] bit 4 = 0). 4. JPEG Decode Complete Flag (REG[0982h] bit 5) This flag is asserted after the JPEG decode process is finished and the decompressed image data is stored in memory. This flag is useful as a trigger for enabling the overlay or display of the image. 5. JPEG FIFO Empty Flag (REG[0982h] bit 8) This flag is asserted when the JPEG FIFO is empty. For the decode process, this flag is useful for timing JPEG data writes to the FIFO and to identify when the JPEG decode process is finished completely. For the encode process, this flag indicates that the entire JPEG file has been read by the host. 6. JPEG FIFO Full Flag (REG[0982h] bit 9) This flag is asserted when the JPEG FIFO is full. For the encode process, this flag is used as a trigger for increasing the priority of host reads to the FIFO. For the decode process, this flag indicates if it is possible to write data to the FIFO. 7. JPEG FIFO Threshold Trigger Flag (REG[0982h] bit 10) This flag is asserted when the amount of data in the JPEG FIFO meets the condition programmed into the JPEG FIFO Trigger Threshold bits (REG[09A0h] bits 5-4). This flag is useful for timing when the host will start to read JPEG compressed data in the FIFO. 368 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation 8. Encode Size Limit Violation Flag (REG[0982h] bit 11) This flag is asserted when the compressed JPEG data size is greater than the programmed size in the JPEG Encode Size Limit registers (see REG[09B0h] REG[09B2h]). 19.1.3 JPEG Bypass Modes The S1D13715 can bypass the JPEG Codec in order for the Host CPU to capture raw YUV data from the camera interface (YUV Data Capture Mode). The S1D13715 can also bypass the JPEG Codec in order for the Host CPU to send raw YUV data to be displayed (YUV Data Display Mode). For YUV Data Capture Mode, YUV data is still sent to the Host CPU through the JPEG FIFO which is accessed through REG[09A6h]. For YUV Data Display Mode, the JPEG FIFO is bypassed and the Host CPU writes YUV data directly to the JPEG Line Buffer using the JPEG Line Buffer Write Port (REG[09E0h]). The raw YUV data can be in either of the two YUV format as follows (YUV 4:2:2 = 2x1, YUV 4:2:0 = 2x2). Nth line N+1th line S1D13715 Hardware Functional Specification Rev. 7.4 YUV 4:2:2 UYVYUYVY UYVYUYVY Seiko Epson Corporation YUV 4:2:0 UYVYUYVY YYYYYYYY 369 JPEG Encode/Decode Operation 19.2 Example Sequences 19.2.1 JPEG Encoding Process Start Redo Capture JPEG Module On REG[0980h] bit 0 = 1 JPEG Codec Software Reset REG[1002h] bit 7 = 1 JPEG Module Software Reset REG[0980h] bit 7 = 1 Set JPEG Codec Registers REG[1000h]-[1066h] Set JPEG FIFO Registers REG[09A0h]-[09ACh] Set Huffman Table Registers REG[1400h]-[17A2h] Set Quantization Table Registers REG[1200h]-[12FEh] Capture Resizer On REG[0960h] bit 0 = 1 Capture Resizer Software Reset REG[0960h] bit 7 = 1 Capture Next Frame Operation Capture Next Frame Process? 2nd or later Frame? JPEG Encode Stop REG[098Ah]=0000h to Normal Ending Operation Capturing finish REG[098Ah]=0000h JPEG Encode Stop Wait 1 frame of Camera JPEG Status Flag Clear Interrupt Enable REG[0982h]=FFFFh REG[0986h] REG[0A02h] to JPEG Codec Process Start Figure 19-2: JPEG Encoding Process (1 of 4) 370 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation Interrupt Enable JPEG Codec Process Start REG[1002h] = 0001h Wait Marker Insertion Finish Wait Interrupt Assertion JPEG Encode Process Start REG[098Ah] = 0001h Interrupt Assert JPEG Encode Time Out REG[0A0Ah] bit 15 =1 Bus Time Out Error Process JPEG Time Out Error Process REG[0A00h] bit 2 =1 Check and Process of the Other Interrupt to Wait Interrupt Assertion JPEG Interrupt Disable REG[0A02h] bit 2 = 0 to JPEG Status Flag Read Figure 19-3: JPEG Encoding Process (2 of 4) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 371 JPEG Encode/Decode Operation JPEG Interrupt Disable JPEG Status Flag Read to Size Limitation Over REG[0982h] bit 11 = 1 to JPEG Line Buffer Over Flow REG[0982h] bit 2 = 1 REG[0982h] bit 10 = 1 REG[0986h] bit 10 = 0 FIFO Threshold Trigger Interrupt Disable ValidDataSize=(REG[09A8h])x4 Check JPEG FIFO Valid Data Size JPEG FIFO Read x 2 ReadDataSize=ReadDataSize+4 ValidDataSize=ValidDataSize-4 REG[09A6h] ValidDataSize > 0 REG[0982h] bit 10 = 1 JPEG FIFO Threshold Trigger Flag Clear REG[0986h] bit 10 = 1 JPEG FIFO Threshold Trigger Interrupt Enable REG[0982h] bit 1 = 1 REG[0A02h] bit 2 = 1 JPEG Interrupt Enable REG[1004h] bit 0 =1 to Error Process to Wait Interrupt Assertion Check Compression Result to Calculate Remaining FIFO Entries Figure 19-4: JPEG Encoding Process (3 of 4) 372 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation Check Compression Result Calculate Remaining JPEG FIFO Entries ValidDataSize = EncodeResult - ReadDataSize JPEG FIFO Read x 2 ReadDataSize=ReadDataSize+4 ValidDataSize=ValidDataSize-4 REG[09A6h] ValidDataSize > 0 ReadDataSize-EncodeResult 1~3 0 Remove Invalid Data Increment Frame Number to Capture Next Frame Process Error Process Size Limitation Over Redo Capture? Line Buffer Over Flow Redo Capture? Clear JPEG Interrupt Flags Read REG[1004h] Clear JPEG Interrupt Flags Read REG[1004h] to Redo Capture? Display Error Message Normal Ending Process REG[0986h], REG[0A02h] Interrupt Disable JPEG Module Software Reset REG[0980h] bit 7 = 1 JPEG FIFO Dummy Read x 2 REG[09A6h] REG[0980h] = 0000h The JPEG module must be disabled before the View Resizer Enable bit (REG[0940h] bit 0) or the Capture Resizer Enable bit (REG[0960h] bit 0) are disabled. JPEG Module Off Figure 19-5: JPEG Encoding Process (4 of 4) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 373 JPEG Encode/Decode Operation 1. Initialize the camera interface registers (REG[0100h]-[0124h]). 2. Enable the JPEG module, set REG[0980h] bits 3-0 = 0001. 3. Initialize the JPEG Codec registers. a. Software reset the JPEG codec, set REG[1002h] bit 7 = 1. b. Select the operation mode for encoding, set REG[1000h] bit 2 = 0. c. Set the desired quantization table number (REG[1006h]) and the huffman table number (REG[1008h]). d. Select the DRI setting (REG[100Ah]-[100Ch]). e. Configure the vertical pixel size (REG[100Eh]-[1010h]) and the horizontal pixel size (REG[1012h]-[1014h]). f. Set the Insertion Marker Data in REG[1020h]-[1066h]. When REG[1000h] bit 3 = 1, the data in these registers is written to the JPEG file. Unused bits must be written as FFh. g. Initialize Quantization Table No. 0 (REG[1200h]-[127Eh]) and Quantization Table No. 1 (REG[1280h]-[12FEh]) with the following sequence. 1 9 17 25 33 41 49 57 374 2 10 18 26 34 42 50 58 3 11 19 27 35 43 51 59 4 12 20 28 36 44 52 60 Seiko Epson Corporation 5 13 21 29 37 45 53 61 6 14 22 30 38 46 54 62 7 15 23 31 39 47 55 63 8 16 24 32 40 48 56 64 S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation h. Set DC Huffman Tables and the AC Huffman Tables according to ISO/IEC 10918 attachment K, each numerical formula is specified as follows: DC Huffman Table No. 0 Register 0 (REG[1400h-141Eh]) is set as A DC Huffman Table No. 0 Register 1 (REG[1420h-1436h]) is set as B AC Huffman Table No. 0 Register 0 (REG[1440h-145Eh]) is set as C AC Huffman Table No. 0 Register 1 (REG[1460h-15A2h]) is set as D DC Huffman Table No. 1 Register 0 (REG[1600h-161Eh]) is set as E DC Huffman Table No. 1 Register 1 (REG[1620h-1636h]) is set as F AC Huffman Table No. 1 Register 0 (REG[1640h-165Eh]) is set as G AC Huffman Table No. 1 Register 1 (REG[1660h-17A2h]) is set as H A: B: C: D: E: F: G: H: 00h, 01h, 05h, ........, 00h, 00h 00h, 01h, 02h, ........, 0Ah, 0Bh 00h, 02h, 01h, 03h, ......01h, 7Dh 01h, 02h, 03h, ........, F9h, FAh 00h, 03h, 01h, ........, 00h, 00h 00h, 01h, 02h, ........, 0Ah, 0Bh 00h, 02h, 01h, 02h, ..., 02h, 77h 00h, 01h, 02h, ........, F9h, FAh 16 byte 12 byte 16 byte 162 byte 16 byte 12 byte 16 byte 162 byte 4. Set the JPEG module registers. a. Enable the JPEG module and perform a JPEG software reset (REG[0980h] = 81h). b. Specify the JPEG FIFO size (REG[09A4h]). The FIFO size is determined using the following formula: JPEG FIFO size = ((REG[09A4h] bits 3-0) + 1) x 4K bytes. Example: for a JPEG FIFO size of 12K bytes, REG[09A4h] = 2 (2 + 1) x 4KB = 12K bytes c. Set the Encode Size Limit (REG[09B0h]-[09B2h]) in bytes. To generate an interrupt when the encode size limit is exceeded use the Encode Size Limit Violation Flag (REG[0982h] bit 11). d. Clear the JPEG FIFO (REG[09A0h] bit 2 = 1). e. Set the JPEG FIFO Threshold Trigger (REG[09A0h] bits 5-4). 5. Set the capture resizer registers. The vertical and horizontal dimensions must be the same as the JPEG vertical and horizontal sizes as programmed in step 3e. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 375 JPEG Encode/Decode Operation 6. Start the encode process. a. Clear all status bits by writing REG[0982h] as FFFFh b. Enable the appropriate interrupts in the JPEG Interrupt Control register. For example, set REG[0986h] = 0E07h. c. Start the JPEG operation (REG[1002h] bit 0 = 1) d. Start capturing (REG[098Ah] bit 0 = 1) After setting REG[1002h] bit 0 = 1, 2ms (internal system clock = 50Mhz) is required to generate the Markers. If REG[098Ah] bit 0 is set to 1 before 2ms, capturing will start only after generating the Markers (after 2 ms has passed). Host CPU Process 7. Wait for the JPEG FIFO Threshold condition to be met. This can be done using the JPEG FIFO Threshold Interrupt (see REG[0986h]) or by polling the JPEG FIFO Threshold Status bits (REG[0982h] bits 13-12). If the interrupt method is used, the interrupt should be disabled after it is asserted. 8. Confirm the FIFO Valid Data Size (REG[09A8h]). 9. Read the JPEG FIFO Read/Write register twice (REG[09A6h]). Two reads from the 16-bit FIFO read/write register are required to get the entire 32-bit FIFO entry. 10. If using the interrupt method, the interrupt should be re-enabled again. 11. Loop steps 7 through 9 continuously until the FIFO Valid Data Size reaches 0 (REG[09A8h] = 0) and the JPEG Operation Status is idle (REG[1004h] bit 0 = 0). 12. When the encode process finishes, check the actual file size with the Encode Size Result registers (REG[09B4h]-[09B6h]). 13. Confirm the process is complete with the JPEG Codec Interrupt Flag (REG[0982h] bit 1). 14. Stop the JPEG codec using the JPEG Start/Stop Control bit (REG[098Ah] bit 0 = 0). 376 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation 19.2.2 Memory Image JPEG Encoding Process Start Redo Capture JPEG Module On REG[0980h] bit 0 = 1 JPEG Codec Software Reset REG[1002h] bit 7 = 1 JPEG Module Software Reset REG[0980h] bit 7 = 1 Set JPEG Codec Registers REG[1000h]-[1066h] Set JPEG FIFO Registers REG[09A0h]-[09ACh] Set Huffman Table Registers REG[1400h]-[17A2h] Set Quantization Table Registers REG[1200h]-[12FEh] Capture Resizer On REG[0960h] bit 0 = 1 Set Captured Data Input as RYC REG[0930h] bit 4 = 1 Set Memory Image JPEG Encode HDP REG[0264h] bits 8-0 Set Memory Image JPEG Encode VDP REG[0266h] bits 9-0] Reset YUV/RGB Converter Capture Resizer Software Reset REG[0240h] bit 14 = 1 (must be set back to 0) REG[0960h] bit 7 = 1 Capture Next Frame Operation Capture Next Frame Process? 2nd or later Frame? JPEG Encode Stop REG[098Ah]=0000h Yes No Capturing finish REG[098Ah]=0000h JPEG Encode Stop to Normal Ending Operation Wait 1 frame of Camera JPEG Status Flag Clear Interrupt Enable REG[0982h]=FFFFh REG[0986h] REG[0A02h] to JPEG Codec Process Start Figure 19-6: Memory Image JPEG Encoding Process (1 of 4) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 377 JPEG Encode/Decode Operation Interrupt Enable JPEG Codec Process Start REG[1002h] = 0001h Wait Marker Insertion Finish REG[098Ah] = 0001h JPEG Encode Process Start Yes Yes Mode 1 or 4? REG[0014h] bit 7 = 0 While VDP No No Update Main/PIP+ Start Address and Line Address Offset Registers Enable Memory Image JPEG Encode Yes While MIJE Status REG[0200h] bit 6 = 1 REG[0200h] bit 10 = 0 No No Mode 1 or 4? No REG[003Ah] = 1 REG[0038h] bit 0 = 0 Wait for frame to complete Yes Transfer 1 Frame REG[003Ah] bit 0 = 1 Yes REG[0202h] bit 8 = 1 Blank Display Wait Interrupt Assertion Interrupt Assert JPEG Encode Time Out REG[0A0Ah] bit 15 =1 Bus Time Out Error Process JPEG Time Out Error Process REG[0A00h] bit 2 =1 Check and Process of the Other Interrupt to Wait Interrupt Assertion JPEG Interrupt Disable REG[0A02h] bit 2 = 0 to JPEG Status Flag Read Figure 19-7: Memory Image JPEG Encoding Process (2 of 4) 378 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation JPEG Interrupt Disable JPEG Status Flag Read No REG[0982h] bit 1 = 1 Yes No REG[0014h] bit 7 = 1 Yes Clear Memory Image JPEG Encode bits REG[0930h] bit 4, REG[0240h] bit 14 Restore Main/PIP+ Start Address and Offset Mode 1 or 4? REG[0200h] bit 6 = 0 No REG[0200h] bit 10 = 0 Yes No Yes REG[0200h] bit 10 = 0 No Yes REG[003Ah] bit 0 = 1 Transfer 1 Frame Clear Blanking REG[0202h] bit 8 = 0 to Size Limitation Over REG[0982h] bit 11 = 1 to JPEG Line Buffer Over Flow REG[0982h] bit 2 = 1 REG[0982h] bit 10 = 1 REG[0986h] bit 10 = 0 FIFO Threshold Trigger Interrupt Disable ValidDataSize=(REG[09A8h])x4 Check JPEG FIFO Valid Data Size JPEG FIFO Read x 2 ReadDataSize=ReadDataSize+4 ValidDataSize=ValidDataSize-4 REG[09A6h] ValidDataSize > 0 REG[0982h] bit 10 = 1 JPEG FIFO Threshold Trigger Flag Clear REG[0986h] bit 10 = 1 JPEG FIFO Threshold Trigger Interrupt Enable REG[0982h] bit 1 = 1 REG[1004h] bit 0 =1 REG[0A02h] bit 2 = 1 to Error Process JPEG Interrupt Enable to Wait Interrupt Assertion Check Compression Result to Calculate Remaining FIFO Entries Figure 19-8: Memory Image JPEG Encoding Process (3 of 4) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 379 JPEG Encode/Decode Operation Check Compression Result Calculate Remaining JPEG FIFO Entries ValidDataSize = EncodeResult - ReadDataSize JPEG FIFO Read x 2 ReadDataSize=ReadDataSize+4 ValidDataSize=ValidDataSize-4 REG[09A6h] ValidDataSize > 0 ReadDataSize-EncodeResult 1~3 0 Remove Invalid Data Increment Frame Number to Capture Next Frame Process Error Process Size Limitation Over to Redo Capture Redo Capture? Line Buffer Over Flow to Redo Capture Redo Capture? Display Error Message Interrupt Disable Normal Ending Process REG[0986h], REG[0A02h] JPEG Module Software Reset REG[0980h] bit 7 = 1 JPEG FIFO Dummy Read x 2 REG[09A6h] JPEG Module Off REG[0980h] = 0000h The JPEG module must be disabled before the View Resizer Enable bit (REG[0940h] bit 0) or the Capture Resizer Enable bit (REG[0960h] bit 0) are disabled. Figure 19-9: Memory Image JPEG Encoding Process (4 of 4) 380 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation 19.2.3 Memory Image JPEG Encoding Process from Host I/F (RGB format) Start Redo Capture JPEG Module On REG[0980h] bit 0 = 1 JPEG Codec Software Reset REG[1002h] bit 7 = 1 JPEG Module Software Reset REG[0980h] bit 7 = 1 Set JPEG Codec Registers REG[1000h]-[1066h] Set JPEG FIFO Registers REG[09A0h]-[09ACh] Set Huffman Table Registers REG[1400h]-[17A2h] Set Quantization Table Registers REG[1200h]-[12FEh] Capture Resizer On REG[0960h] bit 0 = 1 Set Captured Data Input as RYC REG[0930h] bit 4 = 1 Set HDP from Host I/F REG[0272h] bits 10-0 Set VDP from Host I/F REG[0274h] bits 9-0] Reset YUV/RGB Converter Capture Resizer Software Reset REG[0240h] bit 14 = 1 (must be set back to 0) REG[0960h] bit 7 = 1 Capture Next Frame Operation Capture Next Frame Process? 2nd or later Frame? JPEG Encode Stop REG[098Ah]=0000h No Yes Capturing finish REG[098Ah]=0000h JPEG Encode Stop to Normal Ending Operation Wait 1 frame of Camera JPEG Status Flag Clear Interrupt Enable REG[0982h]=FFFFh REG[0986h] REG[0A02h] to JPEG Codec Process Start Figure 19-10: Memory Image JPEG Encoding Process from Host I/F (RGB format) (1 of 4) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 381 JPEG Encode/Decode Operation Interrupt Enable JPEG Codec Process Start REG[1002h] = 0001h Wait Marker Insertion Finish REG[098Ah] = 0001h JPEG Encode Process Start 1. RIE mode Select (REG[0270h] bit 0 = 1) Set RGB Data Format form Host Interface (REG[0270h] bit 14-12) Host Encode Enable (REG[0270h] bit 6 = 1) 2. Wait until RIE for Host Status(REG0270h] bit 10) = 1 3. Write RGB Data from Host Interface 4. When finish to write RGB Data from Host Interface Wait until REG[0270h] bit 11-10 = 00 5. Host Encode Disable (REG[0270h] bit 6 = 0) Wait Interrupt Assertion Interrupt Assert JPEG Encode Time Out REG[0A0Ah] bit 15 =1 Bus Time Out Error Process JPEG Time Out Error Process REG[0A00h] bit 2 =1 Check and Process of the Other Interrupt to Wait Interrupt Assertion JPEG Interrupt Disable REG[0A02h] bit 2 = 0 to JPEG Status Flag Read Figure 19-11: Memory Image JPEG Encoding Process from Host I/F (RGB format) (2 of 4) 382 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation JPEG Interrupt Disable JPEG Status Flag Read Clear Memory Image JPEG Encode bits REG[0930h] bit 4 to Size Limitation Over REG[0982h] bit 11 = 1 to JPEG Line Buffer Over Flow REG[0982h] bit 2 = 1 REG[0982h] bit 10 = 1 REG[0986h] bit 10 = 0 FIFO Threshold Trigger Interrupt Disable ValidDataSize=(REG[09A8h])x4 Check JPEG FIFO Valid Data Size JPEG FIFO Read x 2 ReadDataSize=ReadDataSize+4 ValidDataSize=ValidDataSize-4 REG[09A6h] ValidDataSize > 0 REG[0982h] bit 10 = 1 JPEG FIFO Threshold Trigger Flag Clear REG[0986h] bit 10 = 1 JPEG FIFO Threshold Trigger Interrupt Enable REG[0982h] bit 1 = 1 REG[1004h] bit 0 =1 REG[0A02h] bit 2 = 1 to Error Process JPEG Interrupt Enable to Wait Interrupt Assertion Check Compression Result to Calculate Remaining FIFO Entries Figure 19-12: Memory Image JPEG Encoding Process from Host I/F (RGB format) (3 of 4) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 383 JPEG Encode/Decode Operation Check Compression Result Calculate Remaining JPEG FIFO Entries ValidDataSize = EncodeResult - ReadDataSize JPEG FIFO Read x 2 ReadDataSize=ReadDataSize+4 ValidDataSize=ValidDataSize-4 REG[09A6h] ValidDataSize > 0 ReadDataSize-EncodeResult 1~3 0 Remove Invalid Data Increment Frame Number to Capture Next Frame Process Error Process Size Limitation Over Redo Capture? to Redo Capture Line Buffer Over Flow Redo Capture? Display Error Message Interrupt Disable Normal Ending Process REG[0986h], REG[0A02h] JPEG Module Software Reset REG[0980h] bit 7 = 1 JPEG FIFO Dummy Read x 2 REG[09A6h] JPEG Module Off to Redo Capture REG[0980h] = 0000h The JPEG module must be disabled before the View Resizer Enable bit (REG[0940h] bit 0) or the Capture Resizer Enable bit (REG[0960h] bit 0) are disabled. Figure 19-13: Memory Image JPEG Encoding Process from Host I/F (RGB format) (4 of 4) 384 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation 19.2.4 JPEG Decoding Process Start Not Supported or Error File EOF to END Retrieve SOI Marker Not Supported or Error File Retrieve Marker EOF to END Retrieve Marker APPx Marker to Retrieve Marker DQT Marker Confirm Quantization Table DHT Marker Confirm Huffman Table to Retrieve Marker to Retrieve Marker SOF0 Marker Confirm X size and Y size Y size  0 Confirm line count to Retrieve Marker to Retrieve Marker to SOS Marker Figure 19-14: JPEG Decoding Process (1 of 6) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 385 JPEG Encode/Decode Operation SOF0 Marker SOS Marker Not Supported Marker Not Supported or Error File to END to Retrieve Marker EOF Error File to END APPx Marker Format Confirmed Disable all of JPEG related Interrupt REG[0986h] = 0000h JPEG Module On REG[0980h] bit 0 = 1 JPEG Codec Software Reset REG[1002h] bit 7 = 1 JPEG Module Software Reset REG[0980h] bit 7 = 1 JPEG Decode Process Setting REG[1000h] bit 2 = 1 to RST Marker Process Setting Figure 19-15: JPEG Decoding Process (2 of 6) 386 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation JPEG Decode Process Setting RST Marker Process Setting REG[101Ch] bits 1-0 (these bits should be 01 -> error detect ON) JPEG FIFO size set REG[09A4h] bits 4-0 JPEG File size set REG[09B8h], REG[09BAh] JPEG FIFO clear REG[09A0h] bit 2 = 1 Image Size already known? View Resize Set (Resizer logic should be off during setting) View Resize On REG[0940h] bit 0 = 1 View Resize Software Reset REG[0940h] bit 7 = 1 PIP Window Set JPEG Interrupt Clear REG[0982h] = FFFFh Enable JPEG Interrupt REG[0986h], REG[0A02h] bit 2 = 1 to YUV Image Input Write Address Set Figure 19-16: JPEG Decoding Process (3 of 6) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 387 JPEG Encode/Decode Operation Enable JPEG Interrupt YUV Image Input Write Address Set JPEG Codec Operation Start REG[0242h], REG[0244h] REG[1002h] bit 0 = 1 Wait Interrupt Interrupt occurred JPEG Decode Time Out JPEG Decode Time Out Error Process REG[0A0Ah] bit 15=1 Cycle Time Out Error Process REG[0A00h] bit 2=1 Disable JPEG Interrupt REG[0A02h] bit 2 = 0 Confirm and proceed Other Interrupt to Wait Interrupt JPEG Status Flag read REG[0982h] to JPEG Interrupt Process Figure 19-17: JPEG Decoding Process (4 of 6) 388 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation JPEG Interrupt Process REG[0982h] bit 8 = 1 Disable JPEG FIFO Empty Interrupt REG[0986h] bit 8 = 0 JPEG File Download REG[09A6h] (Download FIFO Size) JPEG FIFO Empty Flag Clear JPEG FIFO Empty Interrupt Enable (remain disabled when file download is finished) REG[0982h] bit 4 = 1 Confirm Marker Read Horizontal/Vertical Image Size View Resizer Set (Resizer logic should be off while setting) View Resizer On REG[0940h] bit 0 = 1 View Resizer Software Reset REG[0940h] bit 7 = 1 PIP+ Window Set Decode Marker Read Flag Clear REG[0986h] bit 4 = 0 to JPEG Status Read Figure 19-18: JPEG Decoding Process (5 of 6) S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 389 JPEG Encode/Decode Operation JPEG Status Read REG[0982h] bit 1 =1 Confirm JPEG Status Error REG[101Eh] bits 6-3 Error? Error Process Confirm JPEG Operation Status REG[1004h] bit 0 JPEG Codec Process is finished REG[1002h] bit 0 = 0 JPEG Module Off REG[0980h] bit 0 = 0 JPEG Decode Process End Figure 19-19: JPEG Decoding Process (6 of 6) 1. Enable the JPEG codec, set REG[0980h] bits 3-0 to 0001. 2. Initialize the JPEG Codec registers. a. Software reset the JPEG codec, set REG[1002h] bit 7 to 1. b. Select the operation mode for JPEG decoding, set REG[1000h] bit 2 = 1b. c. Set the RST Marker Operation Setting, set REG[101Ah]. 3. Set the JPEG module registers. a. Enable the JPEG module and perform a JPEG software reset (REG[0980h] = 81h). b. Specify the JPEG FIFO size (REG[09A4h]). The FIFO size is determined using the following formula: JPEG FIFO size = ((REG[09A4h] bits 3-0) + 1) x 4K bytes. Example: for a JPEG FIFO size of 12K bytes, REG[09A4h] = 2 (2 + 1) x 4KB = 12K bytes c. specify the JPEG file size, set REG[09B8h]-[09BAh]. d. Clear the JPEG FIFO (REG[09A0h] bit 2 = 1). 390 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation 4. If the image size and the YUV format are already known, set the registers for the view resizer. If they are not known, read the data after stopping the JPEG decode process using the Decode Marker Read Interrupt (REG[0986h] bit 4). 5. Start decoding process. a. Clear all status bits, set REG[0982h] to FFFFh b. Enable the appropriate interrupts in the JPEG Interrupt Control register. For example, set REG[0986h] = 0133h. c. Start the JPEG operation (REG[1002h] bit 0 = 1). Host CPU Process 6. After confirming FIFO valid data size (REG[09A8h]), write data to the JPEG FIFO. 7. Wait for FIFO Empty by interrupt or polling. If the Decode Marker Read Interrupt is enabled, there is an interrupt between steps 6 and 7. After reading data from the registers, disable the interrupt enable and clear the interrupt. Then set the registers for the view resizer. 8. Repeat steps 6 and 7 until the end of the JPEG file is detected. 9. If the JPEG Decode Complete Interrupt is enabled, there is an interrupt when the end of file marker is written to the JPEG FIFO. 10. Verify that the JPEG decode operation is complete (REG[1004h] bit 0 = 0). Note When accessing the JPEG FIFO, an even number of accesses is needed for both encoding and decoding. For the encoding process, there will be up to 3 bytes of data that is not needed. Discard this data and compare the data read to the final compressed file size in the Encode size result register (REG[09B4h]-[09B6h]). For the decoding process, 32-bit unit data should always be written to the JPEG FIFO. Pad the end of the JPEG data stream with 00s to create 32-bits of data for the last JPEG FIFO entry. Note If the JPEG FIFO is accessed after the JPEG process has completed or before the JPEG process has started, any data is considered invalid and ignored. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 391 JPEG Encode/Decode Operation 19.2.5 YUV Data Capture 1. Set the JPEG module registers. a. Select the YUV data format, for YUV 4:2:2 set REG[0980h] bits 3-1 = 011, for YUV 4:2:0 set REG[0980h] bits 3-1 = 111. b. Enable the JPEG module and perform a JPEG software reset (REG[0980h] bit 7 = 1 and bit 0 = 1). c. Specify the JPEG FIFO size (REG[09A4h]). The FIFO size is determined using the following formula: JPEG FIFO size = ((REG[09A4h] bits 3-0) + 1) x 4K bytes. Example: for a JPEG FIFO size of 12K bytes, REG[09A4h] = 2 (2 + 1) x 4KB = 12K bytes d. Clear the JPEG FIFO (REG[09A0h] bit 2 = 1). e. Set the JPEG FIFO Threshold Trigger (REG[09A0h] bits 5-4). 2. Set the YUV capture size. a. Configure the vertical pixel size (REG[100Eh]-[1010h]) and the horizontal pixel size (REG[1012h]-[1014h]). These registers are used for both the JPEG codec and YUV capture. 3. Set the Capture resizer registers (REG[0960h - 096Eh]) and reset the Capture Resizer. The vertical and horizontal dimensions must be the same as the JPEG vertical and horizontal sizes as programmed in step 2a. 4. Start capturing YUV data. a. Clear all status bits by writing REG[0982h] to FFFFh. b. Enable the appropriate interrupts in the JPEG Interrupt Control register. For example, set REG[0986h] = 0605h. c. To enable the JPEG FIFO for YUV Capture Mode, set REG[1002h] bit 0 as 1. The JPEG FIFO is now ready to receive YUV data. d. Start capturing (REG[098Ah] bit 0 = 1). At this stage, it is the Host CPU’s task to access the JPEG FIFO in the same way as for a JPEG Encode process. YUV data capture continues until a 0 is written to REG[098Ah] bit 0. 392 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 JPEG Encode/Decode Operation 19.2.6 YUV Data Display 1. Set the JPEG module registers. a. Select the YUV data format, for YUV 4:2:2 set REG[0980h] bits 3-1 = 001, for YUV 4:2:0 set REG[0980h] bits 3-1 = 101. b. Enable the JPEG module and perform a JPEG software reset (REG[0980h] = 81h). 2. Set the YUV data display size. a. Configure the vertical pixel size (REG[100Eh]-[1010h]) and the horizontal pixel size (REG[1012h]-[1014h]). These registers are used for both the JPEG codec and YUV capture. 3. Set the Capture resizer registers (REG[0960h - 096Eh]) and reset the Capture Resizer. The vertical and horizontal dimensions must be the same as the JPEG vertical and horizontal sizes as programmed in step 2a. 4. Set the JPEG Line Buffer registers (If the JPEG Line Buffer empty interrupt is used). a. Set REG[09C6h] bit 0 =1 and set REG[0986h] bit 0 = 1. b. Clear the JPEG Line Buffer status bits (REG[09C0h] = FFFFh). 5. Start YUV data input. a. Clear all JPEG status bits (REG[0982h] = FFFFh). b. Enable the appropriate interrupts in the JPEG Interrupt Control register. For example, set REG[0986h] = 0001h. c. Write YUV data to the JPEG Line Buffer Write Port (REG[09E0h]) when the JPEG Line Buffer is empty. The following table shows the maximum data size which can be sent at one time. The minimum line unit for YUV 4:2:2 is 1, for YUV 4:2:0 it is 2. After writing the YUV data to the JPEG Line Buffer, clear the JPEG Line Buffer Empty Flag (REG[09C0h] bit 0 = 1). Line Size > 256  256  128  64  32 The maximum data size Line Data Size x 16 Line Data Size x 32 Line Data Size x 64 Line Data Size x 128 Line Data Size x 256 d. Continue writing YUV data until all the data is sent to the JPEG Line Buffer. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 393 JPEG Encode/Decode Operation 19.2.7 Exit Sequence The exit sequence is the same for all cases: JPEG Decode, JPEG Encode, YUV Data Capture, and YUV Data Display. 1. Check the JPEG Operation Status bit (REG[1004h] bit 0). 2. For JPEG decode only, check the JPEG Error Status bits (REG[101Eh] bits 6-3). 3. Disable all interrupts, set REG[0986h] to 0000h. 4. Clear all status bits, set REG[0982h] to FFFFh. 5. Clear the JPEG Operation Select bit, write a 0 to REG[1000h] bit 2. 6. Perform a JPEG Software Reset, write a 1 to REG[0980h] bit 7. 7. Disable the JPEG codec, write a 0 to REG[0980h] bit 0. 394 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Camera Interface 20 Camera Interface The S1D13715 is designed with a 2-port Camera interface. However, only one camera port can be used at a time (when Camera1 is enabled, Camera2 is disabled). Type 1 cameras are defined as cameras that supply horizontal and vertical sync information and typically are programmed through an I2C interface. The Camera2 interface also supports MPEG Codec Interface input. 20.1 Camera1/2 Type 1 Camera The Type 1 external camera module connected to either of the camera ports must satisfy the following conditions: • The camera module must work synchronously with the S1D13715 camera clock output. • The camera module must output VSYNC and HSYNC to the S1D13715 unless ITU-R BT 656 mode is used. ITU-R BT 656 mode uses embedded VSYNC/HSYNC signals in the YUV data stream. The S1D13715 fully satisfies the ITU-R BT656-4 requirements. • The camera data must be 8-bit YUV 4:2:2. The following YUV 4:2:2 data formats are supported: UYVY, VYUY, YUYV, and YUYV The following ranges for the camera YUV input data are supported. Table 20-1: YUV Input Data Ranges YUV Straight YUV Offset YCbCr Straight YCbCr Offset 0  Y  255 0  Y  255 16  Y  235 16  Y  235 0  U  255 -128  U  127 16  U  240 -113  U  112 0  V  255 -128  V  127 16  V  240 -113  V  112 • The input data rate is determined by the camera module pixel clock output and must be a maximum of 1/3 of the system clock. For example, when the system clock is 54MHz, the camera module can have a maximum pixel clock output of 18MHz. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 395 Camera Interface 20.2 Strobe Control Signal When the camera interface is enabled, a strobe feature is available. The strobe output is controlled using REG[0120h]-[0124h]. The strobe control signal output pin is GPIO20 and must be enabled using the Strobe Port Enable bit (REG[0124h] bit 3). 20.2.1 Generating a Strobe Pulse To generate a strobe pulse (GPIO20): 1. Enable the camera interface and ensure that the CM1VREF and CM1REF signals are present. ITU-R BT656 data format must not be enabled (REG[0110h] bit 5 = 0). 2. Set the JPEG Operation Mode bits (REG[0980h] bits 3-1 to 111 (JPEG Encode/Decode is bypassed). 3. Enable the JPEG Module (REG[0980h] bit 0 = 1). 4. Configure the Strobe Line Delay (REG[0120h]), Strobe Pulse Width (REG[0122h], and Strobe Pulse Polarity (REG[0124h] bit 1). 5. Enable the strobe control signal output port by setting the Strobe Port Enable bit (REG[0124h] bit 3 = 1). 6. Enable the strobe signal (GPIO20) by setting the Strobe Enable bit (REG[0124] bit 0 = 1). This bit must remain enabled for the entire duration of the delay value (REG[0124h] bits 7-4), otherwise the strobe will be disabled immediately when the Strobe Enable bit is set to 0. 7. Generate a strobe signal (GPIO20) by setting the JPEG Start/Stop Control bit to 1 (REG[098A] bit 0 = 1). Before generating another strobe signal, the strobe must be disabled (REG[0124h] bit 0 = 0) and then enabled again (REG[0124h] bit 0 = 1). Then generate the strobe pulse again by setting the JPEG Start/Stop Control bit to 1 (REG[098A] bit 0 = 1). 396 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Camera Interface 20.2.2 Strobe Timing The strobe pulse (GPIO20) begins on the falling edge of CM1HREF after CM1VREF as specified by the Strobe Line Delay Timing bits (REG[0120h] bits 15-0). A zero delay (REG[0120h] bits 15-0 = 0h) starts the strobe pulse (GPIO20) on the first falling edge of CM1HREF after CM1VREF. Note Both the Line Delay and Pulse Width signals are specified by counting HREFs which leads to an inherent timing delay if the HREF signal stops. This inherent delay must be considered when programming the Line Delay (REG[0120h]) and Pulse Width (REG[0122h]) registers. JPEG Start/Stop Control Bit* (REG[098A] bit 0) Next Frame CM1VREF (CM2VREF) Line Delay ((REG[0120h] bits 15-0) +1) CM1HREF (CM2HREF) Pulse Width (REG[0122h] bits 15-0 + 1 line) GPIO20 Figure 20-1: Strobe Signal Output Timing Note The line delay (REG[0120h] bits 15-0) may be set greater than the period of the CM1VREF signal. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 397 Camera Interface 20.3 MPEG Codec Interface The Camera2 interface can be selected to receive inputted YUV Data from a MPEG Codec Interface chip. The YUV data, along with horizontal and vertical sync signals, pixel clock output, and a display blank signal, enable the MPEG Codec Interface chip to encode image data into MPEG format. The following registers and bits control the MPEG Codec Interface. • MPEG Codec Interface: REG[0106] bits 7-6 = 01. • MPEG Codec Interface Vertical Height: REG[0128] bits 9-0. • MPEG Codec Interface Horizontal Height: REG[012A] bits 9-0. • MPEG Codec Interface Pixel Clock Output (CM2CLKOUT): REG[0104] bits 3-0. 398 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Indirect Host Interface 21 Indirect Host Interface The S1D13715 supports four indirect host interfaces which can be selected using CNF[4:2] (see Table 5-9: “Summary of Power-On/Reset Options,” on page 43). For an overview of the indirect host interface, see Section 1.4.2, “Indirect Addressing Host Interfaces” on page 14. For timing details, see Section 7.3, “Host Interface Timing” on page 60. 21.1 Using the Indirect Interface Accessing the S1D13715 through the indirect interface is a two step process. See Section 21.2, “Example Sequences” on page 399 for example sequences of register read/writes, memory writes, and memory reads. First, a “Command Write” (or register address) is written to the Indirect Interface Memory Access Port register (REG[0028h] where it is stored until the next Command Write. For Command Writes, the data bus width must be 16-bit. Next, a “Data Read/Write” is done that specifies the data to be stored or read from the register specified in the “Command Write” cycle. “Data Read/Write” accesses to registers must be 16-bit accesses. To access the internal memory, the memory address must be written to the Indirect Interface Memory Access registers (REG[0022h]-[0024h]) by “Command Write” and “Data Read/Write” accesses. Once the memory address is stored in these registers, a “Command Write” to the Memory Access Port Register REG[0028] must be done to enable memory accesses. Then “Data Read/Write” accesses to memory can be performed and they can be either 8-bit or 16-bit accesses. Once the memory “Data Read/Write” is complete, the address stored in REG[0022h] - 0024h] is incremented based on the Auto Increment bits (REG[0026h] bits 1-0). If the auto increment feature is enabled (REG[0026h] bits 1-0 = 00 or 01), the S1D13715 can support a memory burst transfer where the host can “Data Read/Write” memory data continuously without issuing a “Command Write” each time. For the first access the host must set the memory address registers (REG[0022h] - REG[0024h]), but after that, the host can read/write data continuously without issuing a “Command Write”. Note When the indirect interface is enabled, the S1D13715 uses REG[002Ah], instead of the 2D BitBLT Data Memory Mapped Region Register (REG[10000h]). 21.2 Example Sequences Note All example sequences are shown using the Indirect 80 Type 3 host interface (CNF[4:2] = 011). S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 399 Indirect Host Interface 21.2.1 Register Read/Write Example Sequence CS# A1 WEL# WEU# RDL# Write Cycle Write Cycle Read Cycle Read Cycle RDU# CMD0 DATA0 CMD2 DATA2 CMD4 DATA4 CMD6 DATA6 D[7:0] D[15:8] command write data write 1 2 command write 3 data write 4 command write 5 data read 6 command write 7 data read 8 Figure 21-1: Register Read/Write” Example Sequence 1. Write the desired register number. 2. Write the data to be placed in the register. 3. Write the next register number. 4. Write the data to be placed in the register. 5. Write the desired register number. 6. Read the data from the register. 7. Write the desired register number. 8. Read the data from the register. 9. ........ Note The data bus width for all register accesses must be 16-bit. 400 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Indirect Host Interface 21.2.2 Memory Write Example Sequence CS# A1 WEL# WEU# RDL# RDU# D[7:0] D[15:8] Command Data Write Write Command Data Write Command Memory Memory Write Address1 Data Memory Write Memory Address2 Address2 Data Address1 1 2 3 4 Data Write Data Write Data Write Data Write Data Write Byte Access Byte Access Word Access Word Access Byte Access Memory Memory Data Memory Data Memory Data Memory Data Memory Data Access Start Even Address Odd Address Even Address Even Address Even Address 5 6 7 8 9 10 Figure 21-2: Memory Write Example Sequence 1. Write the register number of the Indirect Interface Memory Address Register 1 (REG[0022h]). The data bus width must be 16-bit. 2. Write the lower memory address (MA[15:0]) as data to REG[0022h]. The data bus width must be 16-bit. 3. Write the register number of the Indirect Interface Memory Address Register 2 (REG[0024h]). The data bus width must be 16-bit. 4. Write the upper memory address (MA[18:16]) as data to REG[0024h]. The data bus width must be 16-bit. 5. Write the register number of the Indirect Interface Memory Access Port register (REG[0028h]). This write triggers burst memory access beginning with the next access. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 401 Indirect Host Interface 6. Write the memory data. Memory accesses may be either 8-bit or 16-bit. The data location (higher or lower byte) depends on the memory address (odd or even number). In this case, the memory address is an even address and is in the lower byte. After the memory data is written the Indirect Interface Memory Address registers are incremented as follows: • if REG[0026h] bits 1-0 = 00, the memory address registers (REG[0022h] [0024h]) are not incremented because it was a low byte access. • if REG[0026h] bits 1-0 = 01, the memory address registers (REG[0022h] [0024h]) are not incremented because it was a byte access. • if REG[0026h] bits 1-0 = 10, Memory Address registers (REG[0022h] [0024h]) are not incremented. 7. Write the memory data. Memory accesses may be either 8-bit or 16-bit. The data location (higher or lower byte) depends on the memory address (odd or even number). In this case, the memory address is an odd address and is in the higher byte. After the memory data is written the Indirect Interface Memory Address registers are incremented as follows: • if REG[0026h] bits 1-0 = 00, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a high byte access. • if REG[0026h] bits 1-0 = 01, the memory address registers (REG[0022h] [0024h]) are not incremented because it was a byte access. • if REG[0026h] bits 1-0 = 10, Memory Address registers (REG[0022h] [0024h]) are not incremented. 8. Write the memory data. After the memory data is written the Indirect Interface Memory Address registers are incremented as follows: • if REG[0026h] bits 1-0 = 00, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a word access. • if REG[0026h] bits 1-0 = 01, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a word access. • if REG[0026h] bits 1-0 = 10, Memory Address registers (REG[0022h] [0024h]) are not incremented. 9. Write the memory data. After the memory data is written the Indirect Interface Memory Address registers are incremented as follows: • if REG[0026h] bits 1-0 = 00, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a word access. • if REG[0026h] bits 1-0 = 01, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a word access. • if REG[0026h] bits 1-0 = 10, Memory Address registers (REG[0022h] [0024h]) are not incremented. 10. ........ 402 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Indirect Host Interface 11. If another Command Write is made, burst memory access mode (or auto increment) is stopped and a register access takes place. Note that the Indirect Interface Memory Address registers (REG[0022h] -[0024h]) store the last incremented memory address until it is changed. Note To begin (or trigger) memory accesses, a Command Write to the Indirect Interface Memory Access Port register (REG[0028h]) is required, however, a data write to the register is not required. A Command Write to REG[0028h] indicates that burst memory accesses will start from the next data write. 21.2.3 Memory Read Example Sequence CS# A1 WEL# WEU# RDL# RDU# D[7:0] D[15:8] Command Data Write Write Command Data Write Command Memory Data Read Memory Address1 Write Write Address1 Data Byte Access Memory Memory Address2 Address2 Data 1 2 3 4 Data Read Data Read Data Read Data Read Byte Access Word Access Word Access Byte Access Memory Memory Data Memory Data Memory Data Memory Data Memory Data Access Start Even Address Odd Address Even Address Even Address Even Address 5 6 7 8 9 10 Figure 21-3: Memory Read Example Sequence 1. Write the register number of the Indirect Interface Memory Address Register 1 (REG[0022h]). The data bus width must be 16-bit. 2. Write the lower memory address (MA[15:0]) as data to REG[0022h]. The data bus width must be 16-bit. 3. Write the register number of the Indirect Interface Memory Address Register 2 (REG[0024h]). The data bus width must be 16-bit. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 403 Indirect Host Interface 4. Write the upper memory address (MA[18:16]) as data to REG[0024h]. The data bus width must be 16-bit. 5. Write the register number of the Indirect Interface Memory Access Port register (REG[0028h]). This write triggers burst memory access beginning with the next access. 6. Read the memory data. Memory accesses may be either 8-bit or 16-bit. The data location (higher or lower byte) depends on the memory address (odd or even number). In this case, the memory address is an even address and is in the lower byte. After the memory data is read the Indirect Interface Memory Address registers are incremented as follows: • if REG[0026h] bits 1-0 = 00, the memory address registers (REG[0022h] [0024h]) are not incremented because it was a low byte access. • if REG[0026h] bits 1-0 = 01, the memory address registers (REG[0022h] [0024h]) are not incremented because it was a byte access. • if REG[0026h] bits 1-0 = 10, Memory Address registers (REG[0022h] [0024h]) are not incremented. 7. Read the memory data. Memory accesses may be either 8-bit or 16-bit. The data location (higher or lower byte) depends on the memory address (odd or even number). In this case, the memory address is an odd address and is in the higher byte. After the memory data is read the Indirect Interface Memory Address registers are incremented as follows: • if REG[0026h] bits 1-0 = 00, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a high byte access. • if REG[0026h] bits 1-0 = 01, the memory address registers (REG[0022h] [0024h]) are not incremented because it was a byte access. • if REG[0026h] bits 1-0 = 10, Memory Address registers (REG[0022h] [0024h]) are not incremented. 8. Read the memory data. After the memory data is read the Indirect Interface Memory Address registers are incremented as follows: • if REG[0026h] bits 1-0 = 00, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a word access. • if REG[0026h] bits 1-0 = 01, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a word access. • if REG[0026h] bits 1-0 = 10, Memory Address registers (REG[0022h] [0024h]) are not incremented. 9. Read the memory data. After the memory data is read the Indirect Interface Memory Address registers are incremented as follows: • if REG[0026h] bits 1-0 = 00, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a word access. 404 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Indirect Host Interface • if REG[0026h] bits 1-0 = 01, the memory address registers (REG[0022h] [0024h]) are incremented, +2 because it was a word access. • if REG[0026h] bits 1-0 = 10, Memory Address registers (REG[0022h] [0024h]) are not incremented. 10. ........ 11. If another Command Write is made, burst memory access mode (or auto increment) is stopped and a register access takes place. Note that the Indirect Interface Memory Address registers (REG[0022h] -[0024h]) store the last incremented memory address until it is changed. Note It is possible to perform a memory data write after a data read and vice versa without issuing another Command Write. S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 405 Mechanical Data 22 Mechanical Data Top View 10.0±0.20 A1 Corner 1.2 max 10.0±0.20 Index Bottom View 0.325 0.775 0.32±0.05 0.65 0.775 0.65 0.325 P N M L K J H G F E D C B A A1 Corner 0.08 0.22±0.05 0.1 max 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 = 1mm 406 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Mechanical Data Figure 22-1: S1D13715 PFBGA 160-pin Package HD D 132 89 88 E 133 HE Top View INDEX 176 45 e b 44 C A1 A2 Amax 1  y S L Symbol Min. Nom. Max E — 24 — D — 24 — Amax — — 1.7 A1 — 0.1 — A2 — 1.4 — e — 0.5 — b 0.17 — 0.27 C 0.09 — 0.2  0° — 10° L 0.3 — 0.75 L1 — 1 — HE — 26 — HD — 26 — y — — 0.08 L1 units = mm Figure 22-2: S1D13715 QFP21 176-Pin Package S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 407 Change Record 23 Change Record X52A-A-001-07 Revision 7.4 - Issued: April 12, 2018 • removed FCBGA package information • clarified naming of section 7.5.1 and 7.5.2 AC Camera Timings to match the available product names • updated Sales and Technical Support Section • updated some formatting X52A-A-001-07 Revision 7.3 - Issued: June 12, 2008 • all changes from the last revision of the spec are highlighted in Red • set revision to 7.3 to align with Japans numbering system • globally add the QFP21-176 pin package X52A-A-001-07 Revision 7.02 - Issued: September 19, 2007 • all changes from the last revision of the spec are highlighted in Red • section 24, updated the Sales and Technical Support addresses X52A-A-001-07 Revision 7.01 • all changes from the last revision of the spec are highlighted in Red • updated EPSON tagline to “Exceed Your Vision” • section 5.3.1, for both FCBGA and PFBGA packages clarified the pin#’s used for AB[18:1] and DB[15:0] • section 5.3.2, for both FCBGA and PFBGA packages clarified the pin#’s used for FPDAT[17:0] • section 5.3.3, for both FCBGA and PFBGA packages clarified the pin#’s used for CM1DAT[7:0] and CM2DAT[7:0] • section 5.3.5, for both FCBGA and PFBGA packages clarified the pin#’s used for CNF[6:0] and GPIO[21:0] • section 24.1, updated Japan sales office name and Taiwan office address/phone X52A-A-001-07 Revision 7.0 • add section 7.1.2 PLL Clock • REG[000Eh] bits 1-0, updated V-Divider bit description to clarify its effect on PLL jitter and power consumption • REG[0010h] bits 15-12, updated VCO Kv Set bit description to clarify its effect on PLL jitter and power consumption X52A-A-001-06 Revision 6.0 • rename section 7.5.1 to “S1D13715B01 Camera Interface Timing” 408 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Change Record • add section 7.5.2 S1D13715B01 Camera Interface Timing • section 20.1 Camera1/2 Type 1 Camera - rewrite bulleted text “The input data rate is determined by...” for a max 1/3 system clock X52A-A-001-05 Revision 5.0 • correct PFBGA160 mechanical package information in spec X52A-A-001-04 Revision 4.0 • add PFBGA160 package information to spec • REG[0116h] bit 4 - correct typos in figure 10-1, change “REG[0114h] bit 4” to “REG[0116h] bit 4” and “REG[0114h] bit 5” to “REG[0116h] bit 6” • section 11.1 Power-On/Power-Off Sequence - add “Software Reset” to Figure 11-1: Power On/Power-Off Sequence after “Hardware Reset” and remove the “Clock Source Select” block as per • section 11.1.2 Reset - rewrite software reset description • section 11.1.3 Standby Mode - rewrite standby mode description X52A-A-001-03 Revision 3.0 • section 1.5.3 Serial LCD Interface - delete “... except that the LCD Module VSYNC Input is not supported for serial interface panels” from end of section • section 1.6 Display Features - add Mirror to section • section 1.9.1 Encoder - add “..., or to encode YUV data sent by the Host CPU” to the third paragraph • section 1.9.2 Decoder - add “..., or to send the resulting YUV decoded data back to the Host CPU” to the first paragraph • section 2.2 Host CPU Interface- add bullet “M/R# and CS# inputs select between memory and register address space in 2 CS# mode” and bullet “CPU parallel port for direct control of a parallel LCD” • section 2.4 Display Modes- add bullet “Decoded by the internal JPEG decoder, resized, scaled, and downloaded to the Host CPU via the JPEG FIFO” • section 2.8 Picture Input/Output Functions - add bullets “Host CPU can directly control parallel interface panels on LCD1 or LCD2” and “Encoded by the internal JPEG encoder, resized, scaled, and downloaded to the Host CPU via the JPEG FIFO” • section 5.2.1 Host Interface - rewrite descriptions for SCS#, SCLK, SA0 and SI • section 5.2.2 LCD Interface - rewrite descriptions • section 10.1 Register Mapping - add “...(for 1 CS# mode), or CS# = 1 and M/R# = 0 (for 2 CS# mode)...” to first paragraph • REG[0028h] - change Command Write to Index Write in bit description • REG[0054h] - add “... for RGB displays requiring initialization through a serial interface” to all bit descriptions S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 409 Change Record • REG[0056h] bit 13 - rewrite bit description “When this bit = 1...” • REG[0056h] bit 12 - rewrite bit description “When this bit = 1...” • REG[0056h] bit 7 - add “When a manual transfer has been initiated...” to bit description • REG[005Eh] bit 13 - rewrite bit description “When this bit = 1...” • REG[005Eh] bit 12 - rewrite bit description “When this bit = 1...” • REG[005Eh] bit 7 - add “When a manual transfer has been initiated...” to bit description • REG[0110h] bit 8 - rename bit and add note to bit description • REG[0114h] bit 8 - delete note in bit description • REG[0116h] bit 1 - add “This bit is masked by the Camera Frame Capture Interrupt Enable...” to bit description • REG[0120h] - change description to read “... the first HSYNC input of a camera frame...” • REG[0200h] bit 6 - rewrite bit description • REG[0124h] bits 7-4 - rewrite bit description • REG[0124h] bit 0 - rewrite bit description • REG[0200h] bit 12 - rewrite bit description • REG[0200h] bit 7 - rewrite bit description • REG[021Eh] bits 11-0 - add note to bit description • REG[0220h] - add note to bit description • REG[0222h] - add note to bit description • REG[0224h] - add note to bit description • REG[0226h] - add note to bit description • REG[0240h] bit 5 - rewrite bit description • REG[0240h] bit 4 - rename bit and rewrite bit description • REG[0260h] bit 4 - rename bit and rewrite bit description • REG[0930h] bit 3 - add note to bit description • REG[0930h] bits 1-0 - rewrite description for bits 1-0 = 01 in table • REG[094Ch] bits 13-8 - rewrite bit description • REG[094Ch] bits 5-0 - rewrite bit description • REG[096Ch] bits 13-8 - rewrite bit description • REG[096Ch] bits 5-0 - rewrite bit description • REG[0980h] bit 4 - add “The YUV data range depends on the interface...” to bit description 410 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Change Record • REG[0982h] bit 11 - add note “The Encode Size Limit Violation Flag can only be cleared...” to bit description • REG[0982h] bit 10 - add note “The JPEG FIFO Threshold Trigger Flag can only be cleared...” to bit description • REG[0982h] bit 9 - add note “The JPEG FIFO Full Flag can only be cleared...” to bit description • REG[0982h] bit 8 - add note “The JPEG FIFO Empty Flag can only be cleared...” to bit description • REG[0982h] bit 0 - add “or Host Decode/Encode...” to bit description • REG[0984h] bit 14 - add note to bit description • REG[0984h] bits 13-12 - add note to bit description • REG[09A2h] - remove reserved bits 14 - 8 and mark them n/a • REG[09A2h] bits 3-2 - changes to table • REG[09C0h] bit 2 - add “This bit is only valid for YUV Capture/Display...” to bit description • REG[09C0h] bit 1 - add “This bit is only valid for YUV Capture/Display...” to bit description • REG[09C0h] bit 0 - rewrite bit description • REG[09C2h] bit 2 - add “This bit is only valid for YUV Capture/Display...” to bit description • REG[09C2h] bit 1 - add “This bit is only valid for YUV Capture/Display...” to bit description • REG[09C2h] bit 0 - rewrite bit description • REG[09C4h] bit 0 - changes to “When this bit = 1...” in bit description • section 12.2, removed separate lines about FPCS2#, FPSO, FPSCLK • section 19.1.1, added information about terminate cycles when read from an empty FIFO or write to a full FIFO takes place • section 19.2.1 JPEG Encoding Process - changes made to Figure 19-5 JPEG Encoding Process (4 of 4) - add “Clear JPEG Interrupt Flags” X52A-A-001-02 Revision 2.0 • Section 5.2.5 Miscellaneous - re-write note “When CNF1 = 0 (GPIO pins...” adding more information • Section 7.3 - Replace all Host Bus timing • Section 7.3 - Replace all Host Bus timing • REG[0128h] - add register equation “REG[0128h] bits 9-0 = Vertical Total -1” • REG[012Ah] - add register equation “REG[0128h] bits 9-0 = Horizontal Total -1” S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 411 Change Record X52A-A-001-01 Revision 1.0 • Released as Revision 1.0 (2003/07/22) 412 Seiko Epson Corporation S1D13715 Hardware Functional Specification Rev. 7.4 Sales and Technical Support 24 Sales and Technical Support For more information on Epson Display Controllers, visit the Epson Global website. https://global.epson.com/products_and_drivers/semicon/products/display_controllers/ For Sales and Technical Support, contact the Epson representative for your region. https://global.epson.com/products_and_drivers/semicon/information/support.html S1D13715 Hardware Functional Specification Rev. 7.4 Seiko Epson Corporation 413
S1D13715B00B200 价格&库存

很抱歉,暂时无法提供与“S1D13715B00B200”相匹配的价格&库存,您可以联系我们找货

免费人工找货