0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
WED9LC6416V1510BI

WED9LC6416V1510BI

  • 厂商:

    ETC

  • 封装:

  • 描述:

    WED9LC6416V1510BI - 128Kx32 SSRAM/4Mx32 SDRAM - List of Unclassifed Manufacturers

  • 数据手册
  • 价格&库存
WED9LC6416V1510BI 数据手册
WED9LC6416V 128Kx32 SSRAM/4Mx32 SDRAM FEATURES s Clock speeds: • SSRAM: 200, 166,150, and 133 MHz • SDRAMs: 125 and 100 MHz s DSP Memory Solution • Texas Instruments TMS320C6201 • Texas Instruments TMS320C6701 s Packaging: • 153 pin BGA, JEDEC MO-163 s 3.3V Operating supply voltage s Direct control interface to both the SSRAM and SDRAM ports on the “C6x” s Common address and databus s 65% space savings vs. monolithic solution s Reduced system inductance and capacitance Advanced* External Memory Solution for Texas Instruments TMS320C6000 DSP DESCRIPTION The WED9LC6416VxxBC is a 3.3V, 128K x 32 Synchronous Pipeline SRAM and a 4Mx32 Synchronous DRAM array constructed with one 128K x 32 SBSRAM and two 4Mx16 SDRAM die mounted on a multilayer laminate substrate. The device is packaged in a 153 lead, 14mm by 22mm, BGA. The WED9LC6416VxxBC provides a total memory solution for the Texas Instruments TMS320C6201 and the TMS320C6701 DSPs The Synchronous Pipeline SRAM is available with clock speeds of 200, 166,150, and 133 MHz, allowing the user to develop a fast external memory for the SSRAM interface port . The SDRAM is available in clock speeds of 125 and 100 MHz, allowing the user to develop a fast external memory for the SDRAM interface port . The WED9LC6416V is available in both commercial and industrial temperature ranges. * This data sheet describes a product that may or may not be under development and is subject to change or cancellation without notice. FIG. 1 1 A B C D E F G H J L M N P R T U PIN CONFIGURATION TOP VIEW 2 DQ23 DQ22 VCCQ DQ21 DQ20 VCCQ NC NC A7 NC VCCQ DQ11 DQ10 VCCQ DQ9 DQ8 2 3 VCC VCC VCC VCC VCC VCC NC A8 A9 NC VCC VCC VCC VCC VCC VCC 3 4 VSS VSS VSS VSS VSS VSS VSS VSS BWE2 BWE0 VSS VSS VSS SSOE 4 5 VSS SDCE VSS SDCLK VSS VSS VSS VSS BWE3 BWE1 VSS SSCLK VSS SSCE 5 6 VSS VSS NC VSS VSS VSS VSS NC NC NC NC NC VSS VSS VSS NC NC 6 7 VCC VCC VCC VCC VCC VCC A2 A1 A0 NC NC VCC VCC VCC VCC VCC VCC 7 8 DQ24 DQ25 VCCQ DQ26 DQ27 VCCQ A4 A3 A11 A13 A15 VCCQ DQ4 DQ5 VCCQ DQ6 DQ7 8 9 DQ28 DQ29 VCCQ DQ30 DQ31 VCCQ A5 A10 A12 A14 A16 VCCQ DQ0 DQ1 VCCQ DQ2 DQ3 9 VSS NC A B C D E F G H J K L M N P R T U SSCE SDCE VCC VCCQ PIN DESCRIPTION A0-16 DQ0-31 SSCLK SSADC SSWE SSOE SDCLK SDRAS SDCAS SDWE SDA10 BWE0-3 Address Bus Data Bus SSRAM Clock SSRAM Address Status Control SSRAM Write Enable SSRAM Output Enable SDRAM Clock SDRAM Row Address Strobe SDRAM Column Address Strobe SDRAM Write Enable SDRAM Address 10/auto precharge SSRAM Byte Write Enables SDRAM SDQM 0 - 3 Chip Enable SSRAM Device Chip Enable SDRAM Device Power Supply pins, 3.3V Data Bus Power Supply pins, 3.3V (2.5V future) Ground No Connect DQ19 DQ18 VCCQ DQ17 DQ16 VCCQ NC NC A6 NC VCCQ DQ12 DQ13 VCCQ DQ14 DQ15 1 SDWE SDA10 SDRAS SDCAS K NC / A17 NC / A18 NC / A19 SSADC SSWE January 20001 1 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V FIG. 2 BLOCK DIAGRAM A0-16 A0 A1 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 BWE BW1 BW2 BW3 BW4 CE2 OE ADSC CLK A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A11 A10/AP BA0 BA1 LDQM UDQM CS RAS CAS WE CLK A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A11 A10/AP BA0 BA1 LDQM UDQM CS RAS CAS WE CLK DQ1-8 DQ9-16 DQ17-24 DQ25-32 DQ0-7 DQ8-15 DQ16-23 DQ24-31 SSWE BWE0 BWE1 BWE2 BWE3 SSCE SSOE SSADC SSCLK DQ0-31 DQ0-7 DQ8-15 DQ0-7 DQ8-15 SDA10 A12 A13 SDCE SDRAS SDCAS SDWE SDCLK DQ0-7 DQ8-15 DQ16-23 DQ24-31 A12 A13 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 2 January 2001 WED9LC6416V OUTPUT FUNCTIONAL DESCRIPTIONS Symbol SSCLK SSADS SSOE SSWE SSCE SDCLK SDCE SDRAS SDCAS SDWE Type Input Input Input Input Input Input Signal Pulse Pulse Pulse Pulse Pulse Pulse Polarity Function Positive Edge The system clock input. All of the SSRAM inputs are sampled on the rising edge of the clock. Active Low Active Low Active Low Active Low When sampled at the positive rising edge of the clock, SSADS, SSOE, and SSWE define the operation to be executed by the SSRAM. SSCE disable or enable SSRAM device operation. SDCE disable or enable device operation by masking or enabling all inputs except SDCLK and BWE0-3. When sampled at the positive rising edge of the clock, SDCAS, SDRAS, and SDWE define the operation to be executed by the SDRAM. Address bus for SSRAM and SDRAM A0 and A1 are the burst address inputs for the SSRAM During a Bank Active command cycle, A0-11, SDA10 defines the row address (RA0-10) when sampled at the rising clock edge. Positive Edge The system clock input. All of the SDRAM inputs are sampled on the rising edge of the clock. A0-16, SDA10 Input Level — During a Read or Write command cycle, A0-7 defines the column address (CA0-7) when sampled at the rising clock edge. In addition to the row address, SDA10 is used to invoke Autoprecharge operation at the end of the Burst Read or Write Cycle. If SDA10 is high, autoprecharge is selected and A12 and A13 define the bank to be precharged. If SDA10 is low, autoprecharge is disabled. During a Precharge command cycle, SDA10 is used in conjunction with A12 and A13 to control which bank(s) to precharge. If SDA10 is high, all banks will be precharged regardless of the state of A12 and A13. If SDA10 is low, then A12 and A13 are used to define which bank to precharge. DQ0-31 BWE0-3 Input Output Input Level Pulse — Data Input/Output are multiplexed on the same pins. BWE0-3 perform the byte write enable function for the SSRAM and DQM function for the SDRAM. BWE0 is associated with DQ0-7, BWE1 with DQ8-15, BWE2 with DQ16-23 and BWE3 with DQ24-31. Power and ground for the input buffers and the core logic. Data base power supply pins, 3.3V (2.5V future). Vcc, Vss VCCQ Supply Supply January 20001 3 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V ABSOLUTE MAXIMUM RATINGS Voltage on Vcc Relative to Vss Vin (DQx) Storage Temperature (BGA) Junction Temperature Short Circuit Output Current -0.5V to +4.6V -0.5V to Vcc +0.5V -55°C to +125°C +175°C 100 mA RECOMMENDED DC OPERATING CONDITIONS (VCC = 3.3V -5% / +10% unless otherwise noted; 0°C ≤ TA ≤ 70°C, Commercial; -40°C ≤ TA ≤ 85°C, Industrial) Parameter Supply Voltage (1) Input High Voltage (1,2) Input Low Voltage (1,2) Input Leakage Current 0 ≤ VIN ≤ Vcc Output Leakage (Output Disabled) 0 ≤ VIN ≤ Vcc Output High (IOH = -4mA) (1) Output Low (IOL = 8mA) (1) Symbol VCC VIH VIL ILI ILo VOH VOL Min 3.135 2.0 -0.3 -10 -10 2.4 — Max 3.6 VCC +0.3 0.8 10 10 — 0.4 Units V V V µA µA V V *Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in operational sections of this specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. NOTES: 1. All voltages referenced to Vss (GND). 2. Overshoot: VIH ≤ + 6.0V for t ≤ t KC/2 Underershoot: VIL ≥ - 2.0V for t ≤ t KC/2 (VCC = 3.3V -5% / +10% unless otherwise noted; 0°C ≤ TA ≤ 70°C, Commercial; -40°C ≤ TA ≤ 85°C, Industrial) Description Power Supply Current: Operating (1,2,3) Conditions Symbol Frequency 133MHz 150MHz 166MHz 200MHz 133MHz 150MHz 166MHz 200MHz 83MHz 100MHz 125MHz Typ 400 450 500 550 300 350 400 450 220 235 255 20.0 Max 550 580 625 700 450 480 525 585 240 250 280 40.0 Units DC ELECTRICAL CHARACTERISTICS SSRAM Active / DRAM Auto Refresh Icc1 mA Power Supply Current Operating (1,2,3) SSRAM Active / DRAM Idle Icc2 mA Power Supply Current Operating (1,2,3) SDRAM Active / SSRAM Idle SSCE and SDCE ≤ Vcc -0.2V, All other inputs at Vss +0.2 ≤ VIN or VIN ≤ VCC -0.2V, Clk frequency = 0 SSCE and SDCE ≤ VIH min All other inputs at VIL max ≤ VIN or VIN ≤ VCC -0.2V, Clk frequency = 0 Icc3 mA CMOS Standby ISB1 mA TTL Standby Auto Refresh ISB2 Icc5 30.0 190 55.0 250 mA mA NOTES: 1. I CC ( operating) is specified with no output current. I CC ( operating) increases with faster cycle times and greater output loading. 2. "Device idle" means device is deselected (CE ≥ VIH) Clock is running at max frequency and Addresses are switching each cycle. 3. Typical values are measured at 3.3V, 25° C. ICC ( operating) is specified at specified frequency. BGA CAPACITANCE Description Address Input Capacitance (1) Input/Output Capacitance (DQ) (1) Control Input Capacitance (1) Clock Input Capacitance (1) NOTE: 1. This parameter is sampled. Conditions T A = 2 5°C; f = 1MHz T A = 2 5°C; f = 1MHz T A = 2 5°C; f = 1MHz T A = 2 5°C; f = 1MHz Symbol CI CO CA CCK Typ 5 8 5 4 Max 8 10 8 6 Units pF pF pF pF White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 4 January 2001 WED9LC6416V (VCC = 3.3V -5% / +10% unless otherwise noted; 0°C ≤ TA ≤ 70°C, Commercial; -40°C ≤ TA ≤ 85°C, Industrial) Symbol Parameter Clock Cycle Time Clock HIGH Time Clock LOW Time Clock to output valid Clock to output invalid Clock to output on Low-Z Clock to output in High-Z Output Enable to output valid Output Enable to output in Low-Z Output Enable to output in High-Z Address, Control, Data-in Setup Time to Clock Address, Control, Data-in Hold Time to Clock t KHKH t KLKH t KHKL t KHQV t KHQX t KQLZ t KQHZ t OELQV t OELZ t OEHZ tS tH 200MHz Min Max 5 1.6 1.6 2.5 1.5 0 1.5 3 2.5 0 3.0 1.5 0.5 166MHz Min Max 6 2.4 2.4 3.5 1.5 0 1.5 3.5 3.5 0 3.5 1.5 0.5 150MHz Min Max 7 2.6 2.6 3.8 1.5 0 1.5 3.8 3.8 0 3.5 1.5 0.5 133MHz Min Max 8 2.8 2.8 4.0 1.5 0 1.5 4.0 4.0 0 3.8 1.5 0.5 Units ns ns ns ns ns ns ns ns ns ns ns ns SSRAM AC CHARACTERISTICS January 20001 5 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V SSRAM OPERATION TRUTH TABLE Operation Deselected Cycle, Power Down WRITE Cycle, Begin Burst READ Cycle, Begin Burst READ Cycle, Begin Burst READ Cycle, Suspend Burst READ Cycle, Suspend Burst READ Cycle, Suspend Burst READ Cycle, Suspend Burst WRITE Cycle, Suspend Burst WRITE Cycle, Suspend Burst Address Used None External External External Current Current Current Current Current Current SSCE H L L L X X H H X H SSADS L L L L H H H H H H SSWE X L H H H H H H L L SSOE X X L H L H L H X X DQ High-Z D Q High-Z Q High-Z Q High-Z D D NOTE: 1. X means “don’t care”, H means logic HIGH. L means logic LOW. 2. All inputs except SSOE must meet setup and hold times around the rising edge (LOW to HIGH) of SSCLK. 3. Suspending burst generates wait cycle 4. For a write operation following a read operation, SSOE must be HIGH before the input data required setup time plus High-Z time for SSOE and staying HIGH though out the input data hold time. 5. This device contains circuitry that will ensure the outputs will be in High-Z during power-up. SSRAM PARTIAL TRUTH TABLE Function READ WRITE one Byte (DQ0-7) WRITE all Bytes SSWE H L L BWE0 X L L BWE1 BWE2 X H L X H L BWE3 X H L White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 6 January 2001 WED9LC6416V FIG. 3 SSRAM READ TIMING t KHKH tKHKL tKLKH SSCLK tS tH SSADS tS SSCE tH tS ADDR A1 A2 A3 A4 A5 tH SSOE t OEHQZ t OELQV SSWE t KHQX t KQLZ t KHQV Q(A2) Q(A3) Q(A4) Q(A5) DQ Q(A1) FIG. 4 SSRAM WRITE TIMING t KHKH tKHKL tKLKH SSCLK tS tH SSADS tH SSCE tH tS ADDR tH A1 A2 A3 A4 A5 SSOE tS KHG WX tH SSWE tH D(A2) D(A3) D (A4) D(A5) tS DQ D(A1) January 20001 7 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V (VCC = 3.3V -5% / +10% unless otherwise noted; 0°C ≤ TA ≤ 70°C, Commercial; -40°C ≤ TA ≤ 85°C, Industrial) Symbol Parameter Clock Cycle Time (1) CL = 3 CL = 2 t CC t CC t SAC t OH t CH t CL t SS t SH t SLZ t SHZ t RRD tRCD t RP t RAS t RC t RFC t CDL t RDL t BDL t CCD Min 8 10 3 3 3 2 1 2 7 20 20 20 50 70 70 1 1 1 1.5 2 1 20 20 20 50 80 80 1 1 1 1.5 2 2 125MHz Max 1000 1000 6 Min 10 12 3 3 3 2 1 2 7 24 24 24 60 90 90 1 1 1 1.5 2 1 100MHz Max 1000 1000 7 Min 12 15 3 3 3 2 1 2 8 83MHz Max 1000 1000 8 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns CLK CLK CLK CLK ea SDRAM AC CHARACTERISTICS Clock to valid Output delay (1,2) Output Data Hold Time (2) Clock HIGH Pulse Width (3) Clock LOW Pulse Width (3) Input Setup Time (3) Input Hold Time (3) CLK to Output Low-Z (2) CLK to Output High-Z Row Active to Row Active Delay (4) RAS\ to CAS\ Delay (4) Row Precharge Time (4) Row Active Time (4) Row Cycle Time - Operation (4) Row Cycle Time - Auto Refresh (4,8) Last Data in to New Column Address Delay (5) Last Data in to Row Precharge (5) Last Data in to Burst Stop (5) Column Address to Column Address Delay (6) Number of Valid Output Data (7) 10,000 10,000 10,000 NOTES: 1. Parameters depend on programmed CAS latency. 2. If clock rise time is longer than 1ns (trise/2 -0.5)ns should be added to the parameter. 3. Assumed input rise and fall time = 1ns. If trise o f t fall are longer than 1ns. [(trise = tfall )/2] - 1ns should be added to the parameter. 4. The minimum number of clock cycles required is detemined by dividing the minimum time required by the clock cycle time and then rounding up to the next higher integer. 5. Minimum delay is required to complete write. 6. All devices allow every cycle column address changes. 7. In case of row precharge interrupt, auto precharge and read burst stop. 8. A new command may be given tRFC a fter self-refresh exit. White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 8 January 2001 WED9LC6416V CLOCK FREQUENCY AND LATENCY PARAMETERS - 125MHz SDRAM (Unit = number of clock) Frequency CAS Latency 3 3 2 tRC 70ns 9 7 6 tRAS 50ns 6 5 4 tRP 20ns 3 2 2 tRRD 20ns 2 2 2 tRCD 20ns 3 2 2 tCCD 10ns 1 1 1 tCDL 10ns 1 1 1 tRDL 10ns 1 1 1 125MHz (8.0ns) 100MHz (10.0ns) 83MHz (12.0ns) CLOCK FREQUENCY AND LATENCY PARAMETERS - 100MHz SDRAM (Unit = number of clock) Frequency CAS Latency 3 2 tRC 70ns 7 6 tRAS 50ns 5 5 tRP 20ns 2 2 tRRD 20ns 2 2 tRCD 20ns 2 2 tCCD 10ns 1 1 tCDL 10ns 1 1 tRDL 10ns 1 1 100MHz (12.0ns) 83MHz (12.0ns) REFRESH CYCLE PARAMETERS -10 Parameter Refresh Period (1,2) Symbol t REF Min — Max 64 Min — -12 Max 64 Units ms NOTES: 1. 4096 cycles 2. Any time that the Refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to "wake-up" the device. SDRAM COMMAND TRUTH TABLE Function Mode Register Set Auto Refresh (CBR) Precharge Bank Activate Write Write with Auto Precharge Read Read with Auto Precharge Burst Termination No Operation Device Deselect Data Write/Output Disable Data Mask/Output Disable Single Bank Precharge all Banks SDCE L L L L L L L L L L L H X X SDRAS L L L L L H H H H H H X X X SDCAS L L H H H L L L L H H X X X SDWE L H L L H L L L H L H X X X BWE X X X X X X X X X X X X L H X BA X BA BA BA BA BA X X X X X A12, A13 SDA10 A11-0 Notes OP CODE X L H Row Address L H L H X X X X X 4 4 2 2 2 2 2 3 2 NOTES: 1. All of the SDRAM operations are defined by states of SDCE\, SDWE\, SDRAS\, SDCAS\, and BWE0-3 at the positive rising edge of the clock. 2. Bank Select (BA), if A12 (BA 0) and A 13 (BA 1 ) select between different banks. 3. During a Burst Write cycle there is a zero clock delay, for a Burst Read cycle the delay is equal to the CAS latency. 4. The BWE has two functions for the data DQ Read and Write operations. During a Read cycle, when BWE goes high at a clock timing the data outputs are disabled and become high impedance after a two clock delay. BWE also provides a data mask function for Write cycles. When it activates, the Write operation at the clock is prohibited (zero clock latency). January 20001 9 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V MODE REGISTER SET TABLE A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address Bus 11 10 9 8 7 6 5 4 3 2 1 0 Mode Register (Mx) Reserved* WB Op Mode CAS Latency BT Burst Length *Should program M11, M10 = "0, 0" to ensure compatibility with future devices. Burst Length M2 M1 M0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 M3 = 0 1 2 4 8 Reserved Reserved Reserved Full Page M3 = 1 1 2 4 8 Reserved Reserved Reserved Reserved M3 0 1 Burst Type Sequential Interleaved M2 M1 M0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 CAS Latency Reserved Reserved 2 3 Reserved Reserved Reserved Reserved M8 0 --- M7 0 --- M6-M0 Defined --- Operating Mode Standard Operation All other states reserved M9 0 1 Write Burst Mode Programmed Burst Length Single Location Access White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 10 January 2001 WED9LC6416V SDRAM CURRENT STATE TRUTH TABLE Current State SDCE L L L L Idle L L L L H L L L L Row Active L L L L H L L L L Read L L L L H L L L L Write L L L L H L L L Read with Auto Precharge L L L L L H SDRAS L L L L H H H H X L L L L H H H H X L L L L H H H H X L L L L H H H H X L L L L H H H H X SDCAS L L H H L L H H X L L H H L L H H X L L H H L L H H X L L H H L L H H X L L H H L L H H X SDWE L H L H L H L H X L H L H L H L H X L H L H L H L H X L H L H L H L H X L H L H L H L H X X X BA BA BA X X X X X BA BA BA X X X OP Code X X Row Address Column Column X X X X X BA BA BA X X X OP Code X X Row Address Column Column X X X X X BA BA BA X X X OP Code X X Row Address Column Column X X X X X BA BA BA X X X OP Code X X Row Address Column Column X X X Command A12 & A13 (BA) A11-A0 Description Mode Register Set X X Row Address Column Column X X X Auto or Self Refresh Precharge Bank Activate Write w/o Precharge Read w/o Precharge Burst Termination No Operation Device Deselect Mode Register Set Auto or Self Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Mode Register Set Auto or Self Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Mode Register Set Auto or Self Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Mode Register Set Auto or Self Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Action Set the Mode Register Start Auto No Operation Activate the specified bank and row ILLEGAL ILLEGAL No Operation No Operation No Operation ILLEGAL ILLEGAL Precharge ILLEGAL Start Write; Determine if Auto Precharge Start Read; Determine if Auto Precharge No Operation No Operation No Operation ILLEGAL ILLEGAL Terminate Burst; Start the Precharge ILLEGAL Terminate Burst; Start the Write cycle Terminate Burst; Start a new Read cycle Terminate the Burst Continue the Burst Continue the Burst ILLEGAL ILLEGAL Terminate Burst; Start the Precharge ILLEGAL Terminate Burst; Start a new Write cycle Terminate Burst; Start the Read cycle Terminate the Burst Continue the Burst Continue the Burst ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL Continue the Burst Continue the Burst 2 2 2 5,6 5,6 2 5,6 5,6 3 1 4,5 4,5 2 1 1 Notes 1 1 OP Code January 20001 11 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V SDRAM CURRENT STATE TRUTH TABLE (cont.) Current State SDCE L L L Write with Auto Precharge L L L L L H L L L L Precharging L L L L H L L L L Row Activating L L L L H L L L L Write Recovering L L L L H L L L Write Recovering with Auto Precharge L L L L L H SDRAS L L L L H H H H X L L L L H H H H X L L L L H H H H X L L L L H H H H X L L L L H H H H X SDCAS L L H H L L H H X L L H H L L H H X L L H H L L H H X L L H H L L H H X L L H H L L H H X SDWE L H L H L H L H X L H L H L H L H X L H L H L H L H X L H L H L H L H X L H L H L H L H X X X BA BA BA X X X X X BA BA BA X X X OP Code X X Row Address Column Column X X X X X BA BA BA X X X OP Code X X Row Address Column Column X X X X X BA BA BA X X X OP Code X X Row Address Column Column X X X X X BA BA BA X X X OP Code X X Row Address Column Column X X X Command A12 & A13 (BA) A11-A0 Description Mode Register Set X X Row Address Column Column X X X Auto or Self Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Mode Register Set Auto or Self Refresh Precharge Bank Activate Write w/o Precharge Read w/o Precharge Burst Termination No Operation Device Deselect Mode Register Set Auto or Self Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Mode Register Set Auto orSelf Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Mode Register Set Auto orSelf Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Action ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL Continue the Burst Continue the Burst ILLEGAL ILLEGAL No Operation; Bank(s) idle after tRP ILLEGAL ILLEGAL ILLEGAL No Operation; Bank(s) idle after tRP No Operation; Bank(s) idle after tRP No Operation; Bank(s) idle after tRP ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL No Operation; Row active after tRCD No Operation; Row active after tRCD No Operation; Row active after tRCD ILLEGAL ILLEGAL ILLEGAL ILLEGAL Start Write; Determine if Auto Precharge Start Read; Determine if Auto Precharge No Operation; Row active after tDPL No Operation; Row active after tDPL No Operation; Row active after tDPL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL No Operation; Precharge after tDPL No Operation; Precharge after tDPL No Operation; Precharge after tDPL 2 2 2,6 2,6 2 2 6 6 2 2 2 2 2 2 20 2 2 Notes OP Code White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 12 January 2001 WED9LC6416V SDRAM CURRENT STATE TRUTH TABLE (cont.) Current State SDCE L L L L Refreshing L L L L H L L L Mode Register Accessing L L L L L H SDRAS L L L L H H H H X L L L L H H H H X SDCAS L L H H L L H H X L L H H L L H H X SDWE Command A12 & A13 A11-A0 (BA) L OP Code H L H L H L H X L H L H L H L H X X X BA BA BA X X X X X BA BA BA X X X OP Code X X Row Address Column Column X X X X X Row Address Column Column X X X Description Mode Register Set Auto or Self Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Mode Register Set Auto or Self Refresh Precharge Bank Activate Write Read Burst Termination No Operation Device Deselect Action ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL No Operation; Idle after tRC No Operation; Idle after tRC No Operation; Idle after tRC ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL No Operation; Idle after two clock cycles No Operation; Idle after two clock cycles Notes NOTES: 1. Both Banks must be idle otherwise it is an illegal action. 2. The Current State refers only refers to one of the banks, if BA selects this bank then the action is illegal. If BA selects the bank not being referenced by the Current State then the action may be legal depending on the state of that bank. 3. The minimum and maximum Active time (t RAS) must be satisfied. 4. The RAS to CAS Delay (t RCD) must occur before the command is given. 5. Address SDA 10 is used to determine if the Auto Precharge function is activated. 6. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements. The command is illegal if the minimum bank to bank delay time (t RRD) is not satisfied. January 20001 13 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V FIG. 5 SDRAM SINGLE BIT READ-WRITE-READ CYCLE (SAME PAGE) @ CAS LATENCY = 3, BURST LENGTH = 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCLK t CC t CH t CL t RCD t RAS SDCE t RCD t SS t SH t RP t SS SDRAS t SH t SS SDCAS t SH t CCD t SS ADDR Ra t SH Ca t SS Cb t SH Cc Rb Note 2, 3 Note 2, 3 Note 2, 3 Note 4 Note 2 BA BS BS BS BS BS BS SDA10 Ra Note 3 Note 3 Note 3 Note 4 Rb t RAC t SAC DQ Qa t SS Db t SH Qc t SLZ SDWE t OH t SS t SH t SS BWE t SH Row Active Read Write Read Precharge Row Active DON’T CARE White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 14 January 2001 WED9LC6416V FIG. 6 SDRAM POWER UP SEQUENCE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCLK SDCE t RP SDRAS t RFC t RFC SDCAS ADDR Key RAa BA SDA10 RAa DQ HIGH-Z SDWE BWE High level is necessary Precharge (All Banks) Auto Refresh Auto Refresh Mode Register Set Row Active (A-Bank) DON’T CARE January 20001 15 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V FIG. 7 SDRAM READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCLK Note 1 t RC SDCE t RCD SDRAS SDCAS ADDR Ra Ca0 Rb Cb0 BA SDA10 Ra Rb Note 3 t RAC t SHZ t SAC Qa0 Note 4 t OH Qa1 Qa2 Qa3 Db0 Db1 Db2 t RDL Db3 CL = 2 DQ CL = 3 t RAC Note 3 t SAC Qa0 t OH Qa1 Qa2 t SHZ Qa3 Note 4 t RDL Db0 Db1 Db2 Db3 SDWE BWE Row Active (A-Bank) Read (A-Bank) Precharge (A-Bank) Row Active (A-Bank) Write (A-Bank) Precharge (A-Bank) DON’T CARE NOTES: 1. Minimum row cycle times are required to complete internal DRAM operation. 2. Row precharge can interrupt burst on any cycle. (CAS Latency - 1) number of valid output data is available after Row precharge. Last valid output will be Hi-Z (tSHZ ) after the clock. 3. Access time from Row active command. t CC *(t RCD + CAS Latency - 1) + tSAC . 4. Output will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst) White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 16 January 2001 WED9LC6416V FIG. 8 SDCLK SDRAM PAGE READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCE t RCD SDRAS Note 2 SDCAS ADDR Ra Ca0 Cb0 Cc0 Cd0 BA SDA10 Ra t RDL CL = 2 DQ CL = 3 Qa0 Qa1 Qb0 Qb1 Dc0 Qa0 Qa1 Qb0 Qb1 Qb2 Dc0 Dc1 Dd0 Dd1 t CDL Dc1 Dd0 Dd1 SDWE Note 1 Note 3 BWE Row Active (A-Bank) Read (A-Bank) Read (A-Bank) Write (A-Bank) Write (A-Bank) Precharge (A-Bank) DON’T CARE NOTES: 1. To write data before burst read ends. BWE should be asserted three cycle prior to write command to avoid bus contention. 2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge will be written. 3. BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge cycle will be masked internally. January 20001 17 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V FIG. 9 SDCLK SDRAM PAGE READ CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Note 1 SDCE SDRAS Note 2 SDCAS ADDR RAa CAa RBb CBb CAc CBd CAe BA SDA10 RAa RBb CL = 2 DQ CL = 3 QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1 QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1 SDWE BWE Row Active (A-Bank) Row Active (B-Bank) Read (A-Bank) Read (B-Bank) Read (A-Bank) Read (B-Bank) Read (A-Bank) Precharge (A-Bank) DON’T CARE NOTES: 1. SDCE can be “don’t care” when SDRAS, SDCAS and SDWE are high at the clock going high edge. 2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same. White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 18 January 2001 WED9LC6416V FIG. 10 0 SDRAM PAGE WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCLK SDCE SDRAS Note 2 SDCAS ADDR RAa CAa RBb CBb CAc CBd BA SDA10 RAa RBb t CDL DQ DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0 t RDL DBd1 SDWE Note 1 BWE Row Active (A-Bank) Row Active (B-Bank) Write (A-Bank) Write (B-Bank) Write (A-Bank) Write (B-Bank) Precharge (Both Banks) DON’T CARE NOTES: 1. To interrupt burst write by Row precharge, BWE should be asserted to mask invalid input data. 2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same. January 20001 19 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V FIG. 11 0 SDRAM READ & WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCLK SDCE SDRAS SDCAS ADDR RAa CAa RBb CBb RAc CAc BA SDA10 RAa RBb RAc t CDL CL = 2 DQ CL = 3 QAa0 QAa1 QAa2 QAa3 DBb0 DBb1 DBb2 DBb3 QAa0 QAa1 QAa2 QAa3 DBb0 DBb1 DBb2 DBb3 Note 1 QAc0 QAc1 QAc2 QAc0 QAc1 SDWE BWE Row Active (A-Bank) Read (A-Bank) Precharge (A-Bank) Row Active (B-Bank) Write (B-Bank) Row Active (A-Bank) Read (A-Bank) DON’T CARE NOTES: 1. tCDL should be met to complete write. White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 20 January 2001 WED9LC6416V FIG. 12 0 SDCLK SDRAM READ & WRITE CYCLE WITH AUTO PRECHARGE @ BURST LENGTH = 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCE SDRAS SDCAS ADDR Ra Rb Ca Cb BA SDA10 Ra Rb CL = 2 DQ CL = 3 Qa0 Qa1 Qa2 Qa3 Db0 Db1 Db2 Db3 Qa0 Qa1 Qa2 Qa3 Db0 Db1 Db2 Db3 SDWE BWE Row Active (A-Bank) Read with Auto Precharge (A-Bank) Row Active (B-Bank) Auto Precharge Start Point (A-Bank) Write with Auto Precharge (B-Bank) A uto Precharge Start Point (B-Bank) DON’T CARE NOTES: 1. tCDL should be controlled to meet minimum tRAS before internal precharge start. (In the case of Burst Length = 1 & 2 and BRSW mode) January 20001 21 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V FIG. 13 SDRAM READ INTERRUPTED BY PRECHARGE COMMAND & READ BURST STOP @ BURST LENGTH = FULL PAGE 0 SDCLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCE SDRAS SDCAS ADDR RAa CAa CAb BA SDA10 RAa Note 2 1 1 CL = 2 DQ QAa0 QAa1 QAa2 QAa3 QAa4 QAb0 QAb1 QAb2 QAb3 QAb4 QAb5 2 2 CL = 3 QAa0 QAa1 QAa2 QAa3 QAa4 QAb0 QAb1 QAb2 QAb3 QAb4 QAb5 SDWE BWE Row Active (A-Bank) Read (A-Bank) Burst Stop Read (A-Bank) Precharge (A-Bank) DON’T CARE NOTES: 1. At full page mode, burst is end at the end of burst. So auto precharge is possible. 2. About the valid DQs after burst stop, it is the same as the case of SDRAS interrupt. Both cases are illustrated in the above timing diagram. See the label 1, 2 on each of them. But at burst write, burst stop and SDRAS interrupt should be compared carefully. Refer to the timing diagram of “Full page write burst stop cycle”. 3. Burst stop is valid at every burst length. White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 22 January 2001 WED9LC6416V FIG. 14 SDRAM WRITE INTERRUPTED BY PRECHARGE COMMAND & WRITE BURST STOP @ BURST LENGTH = FULL PAGE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCLK SDCE SDRAS SDCAS ADDR RAa CAa CAb BA SDA10 RAa t BDL t RDL Note 2 DQ DAa0 DAa1 DAa2 DAa3 DAa4 DAb0 DAb1 DAb2 DAb3 DAb4 DAb5 SDWE BWE Row Active (A-Bank) Write (A-Bank) Burst Stop Write (A-Bank) Precharge (A-Bank) DON’T CARE NOTES: 1. At full page mode, burst is end at the end of burst. So auto precharge is possible. 2. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined by AC parameter of tRDL . BWE at write interrupt by precharge command is needed to prevent invalid write. BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge cycle will be masked internally. 3. Burst stop is valid at every burst length. January 20001 23 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V FIG. 15 0 SDRAM BURST READ SINGLE BIT WRITE CYCLE @ BURST LENGTH = 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 SDCLK SDCE SDRAS Note 2 SDCAS ADDR RAa CAa RBb CAb RAc CBc CAd BA SDA10 RAa RBb RAc CL = 2 DQ CL = 3 DAa0 QAb0 QAb1 DBc0 QAd0 QAd1 DAa0 QAb0 QAb1 DBc0 QAd0 QAd1 SDWE BWE Row Active (A-Bank) Row Active (B-Bank) Write (A-Bank) Read with Auto Precharge (A-Bank) Row Active (A-Bank) Write with Auto Precharge (B-Bank) Read (A-Bank) Precharge (Both Banks) DON’T CARE NOTES: 1. BRSW modes enabled by setting A9 “High” at MRS (Mode Register Set). At the BRSW Mode, the burst length at Write is fixed to “1” regardless of programmed burst length. 2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated. Auto precharge is executed at the burst-end cycle, so in the case of BRSW write command, the next cycle starts the precharge. White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 24 January 2001 WED9LC6416V FIG. 16 SDRAM MODE REGISTER SET CYCLE 0 1 2 3 4 5 6 SDRAM AUTO REFRESH CYCLE 0 1 2 3 4 5 6 7 8 9 10 SDCLK SDCE Note 2 H IGH t RFC SDRAS Note 1 SDCAS Note 3 ADDR Key Ra DQ HI-Z HI-Z SDWE BWE MRS New Command Auto Refresh New Command DON'T CARE *Both banks precharge should be completed before Mode Register Set cycle and Auto refresh cycle. NOTES: MODE REGISTER SET CYCLE 1. SDCE, SDRAS, SDCAS & SDWE activation at the same clock cycle with address key will set internal mode register. 2. Minimum 2 clock cycles should be met before new SDRAS activation. 3. Please refer to Mode Register Set Table. January 20001 25 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com WED9LC6416V PACKAGE DESCRIPTION: JEDEC MO-163 153 LEAD BGA (17 x 9 BALL ARRAY) 3.50 (0.138) MAX 14.00 (0.551) BSC A B C D E F G H J K L M N P R T U PIN 1 INDEX 22.00 (0.866) BSC 1.27 (0.050) TYP ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES ORDERING INFORMATION COMMERCIAL (0°C ≤ TA ≤ 70°C) INDUSTRIAL (-40°C ≤ TA ≤ 85°C) Part Number WED9LC6416V2012BC WED9LC6416V2010BC WED9LC6416V1612BC WED9LC6416V1610BC WED9LC6416V1512BC WED9LC6416V1510BC WED9LC6416V1312BC WED9LC6416V1310BC SSRAM Access 200MHz 200MHz 166MHz 166MHz 150MHz 150MHz 133MHz 133MHz SDRAM Access 125MHz 100MHz 125MHz 100MHz 125MHz 100MHz 125MHz 100MHz Part Number WED9LC6416V2012BI WED9LC6416V2010BI WED9LC6416V1612BI WED9LC6416V1610BI WED9LC6416V1512BI WED9LC6416V1510BI WED9LC6416V1312BI WED9LC6416V1310BI SSRAM Access 200MHz 200MHz 166MHz 166MHz 150MHz 150MHz 133MHz 133MHz SDRAM Access 125MHz 100MHz 125MHz 100MHz 125MHz 100MHz 125MHz 100MHz White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com 26 January 2001 WED9LC6416V FIG. 17 INTERFACING THE TEXAS INSTRUMENTS TMS320C6x WITH THE WED9LC6416V (128Kx32 SSRAM/4Mx32 SDRAM) Address Bus EA2-21 Texas Instruments TMS320C6x DSP SSWE\ CE2\ SSOE\ SSADS\ SSCLK BE0\ BE1\ BE2\ BE3\ SDA10 CE0\ SDRAS\ SDCAS\ SDWE\ SDCLK EA2 A0 EA3 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 WED9LC6416V 128K x 32 SSRAM 4M x 32 SDRAM DQ0-7 DQ8-15 DQ16-23 DQ24-31 SSWE\ SSCE\ SSOE\ SSADC\ SSCLK BWE0\ BWE1\ BWE2\ BWE3\ SDA10 SDCE\ SDRAS\ SDCAS\ SDWE\ SDCLK SSRAM Control Shared Controls Data Bus ED0-31 SDRAM Control January 20001 27 White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V1510BI 价格&库存

很抱歉,暂时无法提供与“WED9LC6416V1510BI”相匹配的价格&库存,您可以联系我们找货

免费人工找货