0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MLX90316KDC-SPI

MLX90316KDC-SPI

  • 厂商:

    ETC2

  • 封装:

  • 描述:

    MLX90316KDC-SPI - Rotary Position Sensor IC - List of Unclassifed Manufacturers

  • 数据手册
  • 价格&库存
MLX90316KDC-SPI 数据手册
MLX90316 Rotary Position Sensor IC Features and Benefits Absolute Rotary Position Sensor IC Simple & Robust Magnetic Design Tria⊗is™ Hall Technology Programmable Angular Range up to 360 Degrees Programmable Linear Transfer Characteristic Selectable Analog (Ratiometric), PWM, Serial Protocol 12 bit Angular Resolution - 10 bit Angular Thermal Accuracy 40 bit ID Number Single Die – SO8 Package RoHS Compliant Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant Applications Absolute Rotary Position Sensor Pedal Position Sensor Throttle Position Sensor Ride Height Position Sensor Steering Wheel Position Sensor Motor-shaft Position Sensor Float-Level Sensor Non-Contacting Potentiometer Ordering Information1 Part No. MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 1 2 Temperature Suffix S (− 20°C to + 85°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) L (− 40°C to + 150°C) S (− 20°C to + 85°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) L (− 40°C to + 150°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) L (− 40°C to + 150°C) E (− 40°C to + 85°C) K (− 40°C to + 125°C) L (− 40°C to + 150°C) K (− 40°C to + 125°C) K (− 40°C to + 125°C) K (− 40°C to + 125°C) K (− 40°C to + 125°C) Package Code DC [SOIC-8] DC [SOIC-8] DC [SOIC-8] DC [SOIC-8] GO [TSSOP-16] GO [TSSOP-16] GO [TSSOP-16] GO [TSSOP-16] DC [SOIC-8] DC [SOIC-8] DC [SOIC-8] GO [TSSOP-16] GO [TSSOP-16] GO [TSSOP-16] DC [SOIC-8] GO [TSSOP-16] DC [SOIC-8] GO [TSSOP-16] Option code -2 -2 -2 -2 -2 -2 -2 -2 SPI3 SPI3 SPI3 SPI3 SPI3 SPI3 PPA4 PPA4 PPD5 PPD5 Example: MLX90316KDC-PPA Fully end-user programmable version through the Melexis Programming Unit PTC-04 3 SPI Version pre-programmed and locked for 360deg rotary position application in SPI mode (High Speed). The standard version can also be programmed in SPI but the application diagram described in section 17.4.3 is recommended. 4 Pre-Programmed Analog – 360deg angular span for an analog output between 0.5V and 4.5V, Low Speed Mode (Locked) 5 Pre-Programmed PWM – 360deg angular span, 10-90% at 1 kHz, High Speed Mode (Locked) 3901090316 Rev. 003 Page 1 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 1. Functional Diagram DSP Tria is™ 3V3 Reg Rev.Pol. & OverVolt. VDD Vx Vy D 12 14 G -1 5 A μC D A MUX x1 OUT (Analog/PWM) RAM EEP ROM SWITCH OUT VSS Figure 1 - Block Diagram (Analog & PWM) ROM - F/W DSP Tria is™ 3V3 Reg Rev.Pol. VDD Vx Vy 14 G -1 5 A MUX D μC SERIAL PROTOCOL /SS SCLK MOSI/MISO RAM EEP ROM VSS Figure 2 - Block Diagram (Serial Protocol) ROM - F/W 3901090316 Rev. 003 Page 2 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 2. Description The MLX90316 is a monolithic sensor IC featuring the Tria⊗is™ Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is™ Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end step). The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360 Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are frequently required for both automotive and industrial applications. In combination with the appropriate signal processing, the magnetic flux density of a small magnet (diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 3). The angular information is computed from both vectorial components of the flux density (i.e. BX and BY). MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between Analog, PWM and Serial Protocol. α Figure 3 - Typical application of MLX90316 3901090316 Rev. 003 Page 3 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC TABLE of CONTENTS FEATURES AND BENEFITS ....................................................................................................................... 1 APPLICATIONS............................................................................................................................................ 1 ORDERING INFORMATION......................................................................................................................... 1 1. 2. 3. 4. 5. 6. 7. 8. 9. FUNCTIONAL DIAGRAM...................................................................................................................... 2 DESCRIPTION....................................................................................................................................... 3 GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 6 PINOUT.................................................................................................................................................. 6 ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 7 DETAILED DESCRIPTION.................................................................................................................... 7 MLX90316 ELECTRICAL SPECIFICATION....................................................................................... 10 MLX90316 ISOLATION SPECIFICATION .......................................................................................... 12 MLX90316 TIMING SPECIFICATION ................................................................................................. 12 10. MLX90316 ACCURACY SPECIFICATION ......................................................................................... 13 11. MLX90316 MAGNETIC SPECIFICATION .......................................................................................... 14 12. MLX90316 CPU & MEMORY SPECIFICATION ................................................................................. 14 13. MLX90316 END-USER PROGRAMMABLE ITEMS ........................................................................... 15 14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 16 14.1. OUTPUT MODE ..........................................................................................................................................16 14.1.1. Analog Output Mode ............................................................................................................................16 14.1.2. PWM Output Mode...............................................................................................................................16 14.1.3. Serial Protocol Output Mode ...............................................................................................................16 14.1.4. Switch Out ............................................................................................................................................17 14.2. OUTPUT TRANSFER CHARACTERISTIC.......................................................................................................18 14.2.1. CLOCKWISE Parameter......................................................................................................................18 14.2.2. Discontinuity Point (or Zero Degree Point).........................................................................................18 14.2.3. LNR Parameters ...................................................................................................................................19 14.2.4. CLAMPING Parameters ......................................................................................................................19 14.2.5. DEADZONE Parameter .......................................................................................................................19 14.3. IDENTIFICATION ........................................................................................................................................19 14.4. SENSOR FRONT-END .................................................................................................................................20 14.4.1. HIGHSPEED Parameter......................................................................................................................20 14.4.2. ARGC, AUTO_RG, RoughGain Parameters ........................................................................................20 14.4.3. RGThresL, RGThresH Parameters ......................................................................................................21 14.5. FILTER ....................................................................................................................................................21 14.5.1. Hysteresis Filter ...................................................................................................................................21 14.5.2. FIR Filters ............................................................................................................................................21 14.5.3. IIR Filters .............................................................................................................................................23 3901090316 Rev. 003 Page 4 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.6. PROGRAMMABLE DIAGNOSTIC SETTINGS .................................................................................................24 14.6.1. RESONFAULT Parameter ...................................................................................................................24 14.6.2. EEHAMHOLE Parameter ....................................................................................................................24 14.7. LOCK.........................................................................................................................................................24 14.7.1. MLXLOCK Parameter .........................................................................................................................24 14.7.2. LOCK Parameter .................................................................................................................................24 15. MLX90316 SELF DIAGNOSTIC.......................................................................................................... 25 16. SERIAL PROTOCOL........................................................................................................................... 27 16.1. INTRODUCTION .........................................................................................................................................27 16.2. SERIAL PROTOCOL MODE ...................................................................................................................27 16.3. MOSI (MASTER OUT SLAVE IN) ...............................................................................................................27 16.4. MISO (MASTER IN SLAVE OUT) ...............................................................................................................27 16.5. /SS (SLAVE SELECT) .................................................................................................................................27 16.6. MASTER START-UP ...................................................................................................................................27 16.7. SLAVE START-UP ......................................................................................................................................27 16.8. TIMING ......................................................................................................................................................28 16.9. SLAVE RESET ............................................................................................................................................29 16.10. FRAME LAYER ..........................................................................................................................................29 16.10.1. Command Device Mechanism ..........................................................................................................29 16.10.2. Data Frame Structure ......................................................................................................................29 16.10.3. Timing ..............................................................................................................................................29 16.10.4. Data Structure ..................................................................................................................................30 16.10.5. Angle Calculation.............................................................................................................................30 16.10.6. Error Handling.................................................................................................................................30 17. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 31 17.1. ANALOG OUTPUT WIRING WITH THE MLX90316 IN SOIC PACKAGE .......................................................31 17.2. ANALOG OUTPUT WIRING WITH THE MLX90316 IN TSSOP PACKAGE ....................................................31 17.3. PWM LOW SIDE OUTPUT WIRING ............................................................................................................32 17.4. SERIAL PROTOCOL ....................................................................................................................................32 17.4.1. SPI Version – Single Die ......................................................................................................................32 17.4.2. SPI Version – Dual Die ........................................................................................................................33 17.4.3. Non SPI Version (Standard Version)....................................................................................................34 18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 35 19. ESD PRECAUTIONS........................................................................................................................... 35 20. PACKAGE INFORMATION................................................................................................................. 36 20.1. 20.2. 20.3. 20.4. 20.5. 20.6. SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................36 SOIC8 - PINOUT AND MARKING ...............................................................................................................36 SOIC8 - IMC POSITIONNING .....................................................................................................................37 TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................38 TSSOP16 - PINOUT AND MARKING ..........................................................................................................39 TSSOP16 - IMC POSITIONNING ................................................................................................................39 21. DISCLAIMER ....................................................................................................................................... 41 3901090316 Rev. 003 Page 5 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 3. Glossary of Terms − Abbreviations − Acronyms Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G TC: Temperature Coefficient (in ppm/Deg.C.) NC: Not Connected PWM: Pulse Width Modulation %DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF) ADC: Analog-to-Digital Converter DAC: Digital-to-Analog Converter LSB: Least Significant Bit MSB: Most Significant Bit DNL: Differential Non-Linearity INL: Integral Non-Linearity RISC: Reduced Instruction Set Computer ASP: Analog Signal Processing DSP: Digital Signal Processing ATAN: trigonometric function: arctangent (or inverse tangent) IMC: Integrated Magneto-Concentrator (IMC®) CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) EMC: Electro-Magnetic Compatibility 4. Pinout Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SOIC-8 Analog / PWM VDD Test 0 Switch Out Not Used Out Test 1 VDIG VSS (Ground) Serial Protocol VDD Test 0 /SS SCLK MOSI / MISO Test 1 VDIG VSS (Ground) Analog / PWM VDIG1 VSS1 (Ground1) VDD1 Test 01 Switch Out2 Not Used2 Out2 Test 12 VDIG2 VSS2 (Ground2) VDD2 Test 02 Switch Out1 Not Used1 Out1 Test 11 TSSOP-16 Serial Protocol VDIG1 VSS1 (Ground1) VDD1 Test 01 /SS2 SCLK2 MOSI2 / MISO2 Test 12 VDIG2 VSS2 (Ground2) VDD2 Test 02 /SS1 SCLK1 MOSI1 / MISO1 Test 11 For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 17). 3901090316 Rev. 003 Page 6 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 5. Absolute Maximum Ratings Parameter Supply Voltage, VDD (overvoltage) Reverse Voltage Protection Positive Output Voltage – Standard Version (Analog or PWM) Positive Output Voltage – SPI Version Positive Output Voltage (Switch Out) Output Current (IOUT) Reverse Output Voltage Reverse Output Current Operating Ambient Temperature Range, TA Storage Temperature Range, TS Magnetic Flux Density + 20 V − 10 V + 10 V + 14 V (200 s max − TA = + 25°C) VDD + 0.3V + 10 V + 14 V (200 s max − TA = + 25°C) ± 30 mA − 0.3 V − 50 mA − 40°C … + 150°C − 40°C … + 150°C ± 700 mT Value Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability. 6. Detailed Description As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density parallel to the IC surface (i.e. B//) is sensed through the Tria⊗is™ sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC® yellow disk on Figure 4). Hall Plates Figure 4 - Tria⊗is™ sensor front-end (4 Hall plates + IMC® disk) 3901090316 Rev. 003 Page 7 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface. While a magnet (diametrically magnetized) rotates above the IC as described on Figure 3, the sensing stage provides two differential signals in quadrature (sine and cosine − Figure 5 and Figure 6) 400 300 200 BX & BY (G) 100 0 -100 -200 -300 -400 0 90 180 BX 270 360 450 Alpha (Degree) 540 BY 630 720 Figure 5 – Magnetic Flux Density – BX ∝ cos(α) & BY ∝ sin(α) 2000 1500 1000 VX & VY (mV) 500 0 -500 -1000 -1500 -2000 0 90 180 VX 270 360 450 Alpha (Degree) 540 VY 630 720 Figure 6 – Tria⊗is™ sensor front-end − Output signals − VX ∝ BX ∝ cos(α) & VY ∝ BY ∝ sin(α) 3901090316 Rev. 003 Page 8 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC Those Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier). The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the angular position from the two raw signals (after so-called front-end compensation steps) through the following operation: α = ATAN ⎜ ⎜ ⎛ VY ⎞ ⎟ ⎟ ⎝ VX ⎠ The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes. In the MLX90316, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm). Due to the fact that the ″ATAN″ operation is performed on the ratio ″VY/VX″, the angular information is intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position sensor based on conventional linear Hall sensors. In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet). Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as: • • • an analog output level through a 12 bit DAC followed by a buffer a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz) a digital Serial Protocol (SP − 14 bits computed angular information available) For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic: Vout(α) = ClampLo Vout(α) = Voffset + Gain × α Vout(α) = ClampHi for α ≤ αmin for αmin ≤ α ≤ αmax for α ≥ αmax where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user. The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration depending on the linearity requirement. A digital output is also available and used as a programmable angular switch. The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC). The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316 daughterboard and software tools (DLL − User Interface). 3901090316 Rev. 003 Page 9 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 7. MLX90316 Electrical Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Nominal Supply Voltage Supply Current(6) POR Level Output Current Symbol VDD Idd VDD POR Iout Slow Fast mode(7) mode(7) 2 -8 -20 12 12 24 1 1 96 1.5 97 1 1.5 97 98 4(10) 99 100 0 1 10 10 Test Conditions Min 4.5 Typ 5 8.5 13.5 2.7 Max 5.5 11 16 3 8 20 15 15 45 ∞(9) ∞(9) 3 Units V mA mA V mA mA mA mA mA kΩ kΩ %VDD %VDD %VDD %VDD %VDD %VDD %VDD %VDD %VDD %VDD Supply Under Voltage Analog Output mode PWM Output mode Vout = 0 V Vout = 5 V Vout = 14 V (TA = 25°C) Pull-down to Ground Pull-up to 5V(8) Pull-up load RL ≥ 10 kΩ Pull-down load RL ≥ 10 kΩ Pull-up Low Side RL ≥ 10 kΩ Push-Pull (IOUT = -20mV) Push-Pull (IOUT = 20mV) Pull-down load RL ≥ 10 kΩ Pull-up load RL ≥ 10 kΩ Pull-down load RL ≥ 10 kΩ Pull-up load RL ≥ 10 kΩ Broken VSS(11) & Pull-down load RL ≤ 10 kΩ Broken VSS(11) & Pull-up load RL ≥ 1kΩ Broken VDD(11) & Pull-down load RL ≥ 1kΩ Broken VDD & Pull-up load to 5V Output Short Circuit Current Ishort Output Load Analog Saturation Output Level RL Vsat_lo Vsat_hi VsatD_lo VsatD_hi Diag_lo Digital Saturation Output Level Active Diagnostic Output Level Diag_hi BVSSPD BVSSPU BVDDPD BVDDPU Passive Diagnostic Output Level (Broken Track Diagnostic) (10) No Broken Track diagnostic MLX 90316 Electrical Specification continues… the dual version, the supply current is multiplied by 2 section 14.4.1 for details concerning Slow and Fast mode 8 Applicable for output in Analog and PWM (Open-Drain) modes 9 RL < ∞ for output in PWM mode 10 For detailed information, see also section 15 11 Not Valid for the SPI Version 7 See 6 For 3901090316 Rev. 003 Page 10 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC …MLX 90316 Electrical Specification Clamped Output Level Switch Out(13) Clamp_lo Clamp_hi Sw_lo Sw_hi Programmable Programmable Pull-up Load 1.5k to 5V Pull-up Load 1.5k to 5V 0 0 0.55 3.65 100 100 1.1 4.35 %VDD(12) %VDD(12) V V As an illustration of the previous table, the MLX90316 fits the typical classification of the output span described on the Figure 7. 100 % 90 % 80 % 70 % 96 % 92 % 88 % Diagnostic Band (High) Clamping High Output Level 60 % 50 % 40 % 30 % 20 % 10 % 0% 12 % 8% 4% Linear Range Clamping Low Diagnostic Band (Low) Figure 7 - Output Span Classification 12 Clamping 13 levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi) See section 14.1.4 for the application diagram Page 11 of 41 Data Sheet April 07 3901090316 Rev. 003 MLX90316 Rotary Position Sensor IC 8. MLX90316 Isolation Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Only valid for the package code GO i.e. dual die version. Parameter Isolation Resistance Symbol Test Conditions Between 2 dies Min 4 Typ Max Units MΩ 9. MLX90316 Timing Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Main Clock Frequency Sampling Rate Step Response Time Watchdog Start-up Cycle Analog Output Slew Rate PWM Frequency Digital Output Rise Time Digital Output Fall Time FPWM Ts Wd Tsu Symbol Ck Fast Slow Fast Slow Fast Test Conditions Slow mode(14) mode(14) mode(15) mode(15) mode(14), mode(14), Filter=5(15) Filter=0(15) mode(14) 200 100 100 120 2.2 1.8 1.9 1000 400 Min Typ 7 20 600 200 4 600 5 15 Max Units MHz MHz μs μs ms μs ms ms V/ms Hz μs μs μs μs See Section 15 Slow and Fast COUT = 42 nF COUT = 100 nF PWM Output Enabled Mode 5 – 10nF, RL = 10 kΩ Mode 7 – 10nF, RL = 10 kΩ Mode 5 – 10nF, RL = 10 kΩ Mode 7 – 10nF, RL = 10 kΩ 15 See 14 See section 14.4.1 for details concerning Slow and Fast mode section 14.5 for details concerning Filter parameter 3901090316 Rev. 003 Page 12 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 10. MLX90316 Accuracy Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter ADC Resolution on the raw signals sine and cosine Thermal Offset Drift #1(17) Symbol RADC Fast Test Conditions Slow Mode(16) Mode(16) Thermal Offset Drift at the DSP input (excl. DAC and output stage) Temperature suffix S, E and K Temperature suffix L Thermal Offset Drift #2 (to be considered only for the analog output mode) Thermal Drift of Sensitivity Mismatch(18) Intrinsic Linearity Error(19) Analog Output Resolution Le RDAC Thermal Offset Drift of the DAC and Output Stage Temperature suffix S, E and K Temperature suffix L Temperature suffix S, E and K Temperature suffix L TA = 25°C 12 bits DAC (Theoretical – Noise free) INL DNL Output stage Noise Noise pk-pk(20) Ratiometry Error PWM Output Resolution PWM Jitter(21) Serial Protocol Output Resolution 16 Min Typ 15 14 Max Units bits bits -60 -90 +60 +90 LSB15 LSB15 - 0.3 - 0.4 - 0.3 - 0.5 -1 0.025 -4 0.05 1 0.05 0.03 0.1 -0.1 0 0.025 + 0.3 + 0.4 + 0.3 + 0.5 1 %VDD %VDD % % Deg %VDD/LSB +4 2 0.06 0.2 0.1 LSB LSB %VDD Deg Deg %VDD %DC/LSB Clamped Output RG = 9, Slow mode, Filter=5 RG = 9, Fast mode, Filter=0 RPWM JPWM RSP 12 bits (Theoretical – Jitter free) RG = 6, FPWM = 250 Hz – 800Hz 14 bits – 360 Deg. mapping (Theoretical – Jitter free) 0.2 0.022 %DC Deg/LSB 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to 0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed. 17 For instance, Thermal Offset Drift #1 equal ± 60LSB15 yields to max. ± 0.3 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details. This is only valid if automatic gain is set (See Section 14.4.2) 18 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details. 19 The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved with the multi point end-user calibration that is available on the MLX90316. 20 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in application mode (Section 14.5). 21 Jitter is defined by ± 3 σ for 1000 successive acquisitions and the slope of the transfer curve is 100%DC/360 Deg. 3901090316 Rev. 003 Page 13 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 11. MLX90316 Magnetic Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Magnetic Flux Density Magnet Temperature Coefficient Symbol B TCm Test Conditions Min 20 -2400 Typ 50 Max 70(23) 0 Units mT ppm/°C 12. MLX90316 CPU & Memory Specification The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz. Parameter ROM RAM EEPROM Symbol Test Conditions Min Typ 10 256 128 Max Units kB B B 23 Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error. 3901090316 Rev. 003 Page 14 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 13. MLX90316 End-User Programmable Items Parameter Output Mode PWMPOL1 PWM_Freq CLOCKWISE DP LNR_S0 LNR_A_X LNR_A_Y LNR_A_S LNR_B_X LNR_B_Y LNR_B_S LNR_C_X LNR_C_Y LNR_C_S CLAMP_HIGH CLAMP_LOW KD KDHYST DEADZONE FHYST MELEXISID1 MELEXISID2 MELEXISID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 HIGHSPEED FSWAP FILTER FILTER A1 FILTER A2 ARGC AUTO_RG RoughGain RGThresL RGThresH EEHAMHOLE RESONFAULT MLXLOCK LOCK 3901090316 Rev. 003 Comments Define the output stage mode PWM Polarity PWM Frequency Discontinuity Point Initial Slope AX Coordinate AY Coordinate AS Coordinate BX Coordinate BY Coordinate BS Coordinate CX Coordinate CY Coordinate CS Coordinate Clamping High Clamping Low Switch Out Hysteresis on the Switch Out Default Values SPI PPA PPD # bit 3 1 16 1 15 16 16 16 16 16 16 16 16 16 16 16 16 16 8 8 8 16 16 16 8 16 16 1 1 8 16 16 1 1 8 4 4 16 2 1 1 4 N/A 4 7 0 N/A N/A 1 1000h N/A N/A 1kHz 0 0 0 1 0h 0h 0h 0h 0h N/A N/A N/A 8000h 0 0 0 0h 0% 10% 10% 0h 100%/360d 80%/360d 80%/360d FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh 0h N/A N/A N/A FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh 0h N/A N/A N/A 8% 0% 10% 10% 8% 100% 90% 90% FFFFh FFFFh FFFFh FFFFh 0 N/A N/A N/A 0 0 0 0 4 0 0 0 MLX MLX MLX MLX MLX MLX MLX MLX MLX MLX MLX MLX 1 1 1 1 6 19 16 20 MLX MLX MLX MLX 0 1 0 1 1 1 0 1 5 0 2 5 6600h N/A N/A N/A 2A00h N/A N/A N/A 0 1 1 1 0 1 1 1 9 0 3 0 0 0 0 0 15 15 15 15 3131h 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 Filter coefficient A1 for FILTER=6 Filter coefficient A2 for FILTER=6 Auto Gain at Start Up Automatic Rough Gain Selection Page 15 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14. Description of End-User Programmable Items 14.1. Output Mode The MLX90316 output type is defined by the Output Mode parameter. Parameter Analog Output Mode PWM Output Mode Serial 14.1.1. Analog Output Mode The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor. 14.1.2. PWM Output Mode If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width Modulation (PWM). In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor to VDD. In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up resistor to VDD. The PWM polarity is selected by the PWMPOL1 parameter: • • PWMPOL1 = 0 for a low level at 100% PWMPOL1 = 1 for a high level at 100% Value 2, 4 5 7 N/A Description Analog Rail-to-Rail Low Side (NMOS) Push-Pull Low Side (NMOS) The PWM frequency is selected by the PWM_Freq parameter. PWM Frequency Code Oscillator Mode Low Speed High Speed Pulse-Width Modulation Frequency (Hz) 100 35000 200 17500 50000 500 7000 20000 1000 3500 10000 For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz. 14.1.3. Serial Protocol Output Mode The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. See the dedicated Serial Protocol section for a full description (Section 16). 3901090316 Rev. 003 Page 16 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.1.4. Switch Out Parameter KD KDHYST Value 0…359.9999 0 … 1.4 Unit deg deg The switch is activated (Sw_lo) when the digital angle is greater than the value stored in the KD parameter. This angle refers to the internal angular reference linked to the parameter DP and not to the absolute physical 0° angle. The KDHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if the digital angle is greater than KD+KDHYST. It is deactivated if the digital angle is less than KD-KDHYST. The mandatory application diagram to use this feature is depicted in the Figure 8. See section 7 for the electrical characteristic. If the Switch feature is not used in the application, the output pin needs to be connected to the ground. 5V MLX90316 175 Ω SWITCH OUT 1k5 to uC I/O Port 100 nF 125 Ω 6kΩ ECU Figure 8 – Application Diagram for the Switch Out 3901090316 Rev. 003 Page 17 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.2. Output Transfer Characteristic Parameter CLOCKWISE DP LNR_A_X LNR_B_X LNR_C_X LNR_A_Y LNR_B_Y LNR_C_Y LNR_S0 LNR_A_S LNR_B_S LNR_C_S CLAMP_LOW CLAMP_HIGH DEADZONE 14.2.1. CLOCKWISE Parameter The CLOCKWISE parameter defines the magnet rotation direction. • • CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin order direction for the TSSOP16 package. CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin order direction for the TSSOP16 package. 0 1 Value CCW CW deg deg Unit 0 … 359.9999 0 … 359.9999 0 … 100 0 … 17 -17 … 0 … 17 0 … 100 0 … 100 0 … 359.9999 % %/deg %/deg % % deg Refer to the drawing in the IMC positioning sections (Section 20.3 and 20.6). 14.2.2. Discontinuity Point (or Zero Degree Point) The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any location of the trigonometric circle. The DP is used as reference for all the angular measurements. 360° 0° The placement of the discontinuity point (0 point) is programmable. Figure 9 - Discontinuity Point Positioning 3901090316 Rev. 003 Page 18 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.2.3. LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the MLX90316 transfer function from the digital angle value to the output voltage is described by the drawing below. Six segments can be programmed but the clamping levels are necessarily flat. Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or five point calibration will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time. 100 % CLAMPHIGH LNR_C_Y Clamping High C Slope LNR_C_S B LNR_B_Y Slope LNR_B_S A LNR_A_Y Slope LNR_S0 Slope LNR_A_S CLAMPLOW Clamping Low 0% 0 LNR_A_X LNR_B_X LNR_C_X 360 (Deg.) 14.2.4. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In SPI mode, the resolution is 14bits or 0.022deg over 360deg. 14.2.5. DEADZONE Parameter The dead zone is defined as the angle window between 0 and 359.9999. When the digital angle lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See 14.6.1). 14.3. Identification Parameter Value Unit 0 … 65535 MELEXSID1 MELEXSID2 0 … 65535 MELEXSID3 0 … 65535 0 … 255 CUSTUMERID1 CUSTUMERID2 0 … 65535 CUSTUMERID3 0 … 65535 Identification number: 40 bits freely useable by Customer for traceability purpose. 3901090316 Rev. 003 Page 19 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.4. Sensor Front-End Parameter HIGHSPEED ARGC AUTO_RG RoughGain RGThresL RGThresH 14.4.1. HIGHSPEED Parameter The HIGHSPEED parameter defines the main frequency for the DSP. • HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock. • HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock. For better noise performance, the Slow Mode must be enabled. 14.4.2. ARGC, AUTO_RG, RoughGain Parameters AUTO_RG and ARGC parameters enable the automatic gain control (AGC) of the analog chain. The AGC loop is based on (VX)²+ (VY)² = (Amplitude)² = (Radius)² and it targets an amplitude of 90% of the ADC input span. At Start-Up phase, the gain stored in the parameter RoughGain is always used. Depending of the AUTO_RG and ARGC settings, the AGC regulation acts as follow: • If ARGC is set, the regulation proceeds by jump to reach the target gain. Note that this regulation is only valid if the starting gain does not saturate the ADC. Melexis recommendation is to use RoughGain ≤ 3 if ARGC=1. • If ARGC is “0” and AUTO_RG is set to “1”, the regulation adapts every cycle by one gain code the current gain to reach the 90% ADC span target. Note that if the value of RoughGain is too far from the actual gain, the chip will enter the normal operating mode (after the Start-Up phase) with an incorrect gain which will cause the device to go in diagnostic low (field too low/field too high – See section 15). • If ARGC and AUTO_RG are “0”, the AGC regulation is off and the gain used is the value stored in the parameter RoughGain. Melexis does not advise the use of this mode. The parameter AUTO_RG activates the automatic regulation during normal operation of the device as background task. Melexis strongly recommend to set ARGC = “1”, AUTO_RG = “1” and RoughGain ≤ 3 for all types of application. If the magnetic specifications of the application are well known and under control, the appropriate RoughGain can also be programmed with ARGC set to “0” and AUTO_RG to “1”. Please note that the angular errors listed in the section 10 are only valid if the AUTO_RG is activated. AUTO_RG avoids also the saturation of the analog chain and the associated linearity error. The current gain (RG) can be read out with the PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude). Value 0 = Slow mode 1 = Fast mode 0 = disable 1 = enable 0 = disable 1 = enable 0 … 15 0 … 15 0 … 15 Unit 3901090316 Rev. 003 Page 20 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.4.3. RGThresL, RGThresH Parameters RGThresL & RGThresH define the boundaries within the gain setting (Rough Gain) is allowed to vary. Outside this range, the output is set in diagnostic low. 14.5. FILTER Parameter FHYST FILTER FSWAP Value 0 … 11 ; step 0.04 0… 6 0 1 Unit deg The MLX90316 includes 3 types of filters: • Hysteresis Filter: programmable by the FHYST parameter • Low Pass FIR Filters controlled with the Filter parameter • Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and FILTER A2 Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the filtering is active on the output transfer function. 14.5.1. Hysteresis Filter The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level. Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not wish this feature, please set it to “0”. 14.5.2. FIR Filters The MLX90316 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described below: yn = 1 ∑a i =0 j ∑a x i =0 j i n −i i 3901090316 Rev. 003 Page 21 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC The characteristics of the filters no 0 to 5 is given in the Table 1. Filter No (j) Type Coefficients a0… a5 Title 90% Response Time 99% Response Time Efficiency RMS (dB) Efficiency P2P (dB) 0 Disable N/A No Filter 1 1 0 0 3 4 Finite Impulse Response 110000 121000 133100 111100 Extra Light Light 2 3 4 4 2 3 4 4 2.9 4.0 4.7 5.6 2.9 3.6 5.0 6.1 Table 1 - FIR Filters Selection Table FIR and HYST Filters : Step response Comparative Plot 40000 x(n) fir(n) hyst(n) 36000 1 2 5 122210 5 5 6.2 7.0 38000 [0..65535] Scale 34000 32000 30000 0 5 10 15 Milliseconds 20 25 30 FIR and HYST Filter : Gaussian white noise response 40200 40150 40100 [0..65535] Scale 40050 40000 39950 39900 39850 39800 0 50 Milliseconds 100 150 x(n) fir(n) hyst(n) Figure 10 - Step Response and Noise Response for FIR (No 3) and FHYST=10 3901090316 Rev. 003 Page 22 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.5.3. IIR Filters The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90316 is given in Figure 11. Only the parameter A1 and A2 are configurable (See Table 2). b0 = 1 x(n) Z-1 b1 = 2 -a1 Z-1 y(n) Z-1 b2 = 1 Figure 11 - IIR Diagram Filter No Type Title 90% Response Time Efficiency RMS (dB) Efficiency P2P (dB) Coefficient A1 Coefficient A2 Z-1 -a2 2nd 11 9.9 12.9 26112 10752 16 11.4 14.6 28160 12288 6 Order Infinite Impulse Response (IIR) Medium & Strong 26 40 52 13.6 15.3 16.2 17.1 18.8 20 29120 30208 31296 12992 13952 14976 100 >20 >20 31784 15412 Table 2 - IIR Filter Selection Table The Figure 12 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2. IIR Filter - Gaussian White Noise Response 40200 40150 [0…65535] Scale 40100 40050 40000 39950 39900 39850 39800 0 50 Time 100 150 x(n) y(n) Figure 12 - Noise Response for the IIR Filter 3901090316 Rev. 003 Page 23 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 14.6. Programmable Diagnostic Settings Parameter RESONFAULT EEHAMHOLE 14.6.1. RESONFAULT Parameter This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to activate the self diagnostic modes (See section 15). Note that in the User Interface (MLX90316UI), the RESONFAULT is split in two bits: • DRESONFAULT: disable the reset in case of a fault. • DOUTINFAULT: disable output in diagnostic low in case of fault. 14.6.2. EEHAMHOLE Parameter The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory recovery). Value 0 1 0 3131h Unit 14.7. Lock Parameter MLXLOCK LOCK Value 0 1 0 1 Unit 14.7.1. MLXLOCK Parameter MLXLOCK locks all the parameters set by Melexis. 14.7.2. LOCK Parameter LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values anymore. Note that the lock bit should be set by the solver function “MemLock”. 3901090316 Rev. 003 Page 24 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 15. MLX90316 Self Diagnostic The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes (“fail-safe”). Action ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD) ROM CRC Error (Operation Background task) RAM Test Fail (Start up) Calibration Data CRC Error (Start-Up) Hamming Code Recovery Error (Start-Up) Calibration Data CRC Error (Operation - Background) Dead Zone ADC Clipping (ADC Output is 0000h or 7FFFh) Radius Overflow ( > 100% ) or Radius Underflow ( < 50 % ) Fine Gain Clipping (FG < 0d or > 63d) Rough Offset Clipping (RO is < 0d or > 127d) Rough Gain Clipping (RG < RGTHRESLOW or RG > RGTHRESHIGH) DAC Monitor (Digital to Analog converter) CPU Reset (24) Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low CPU Reset Hamming Code Recovery CPU Reset CPU Reset Set Outputs in Diagnostic low. Normal Operation until the “dead zone” is left. Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low See also 14.4.2 (50 % - 100 %) No magnet / field too high See also 14.4.2 Immediate recovery if the “dead zone” is left Effect on Outputs Diagnostic low(25) Immediate Diagnostic low Remark All the outputs are already in Diagnostic low - (start-up) Diagnostic low All the outputs are already in Diagnostic low (start-up) Start-Up Time is increased by 3 ms if successful recovery See 14.6.2 Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset MLX90316 Fault Mode continues… Immediate Diagnostic low 24 CPU reset means 1. 2. 3. 4. Core Reset (same as Power-On-Reset). It induces a typical start up time. Periphery Reset (same as Power-On-Reset) Fault Flag/Status Lost The reset can be disabled by clearing the RESONFAULT bit (See 14.6.1) 25 Refer to section 7 for the Diagnostic Output Level specifications Page 25 of 41 Data Sheet April 07 3901090316 Rev. 003 MLX90316 Rotary Position Sensor IC …MLX90316 Fault Mode Fault Mode ADC Monitor (Analog to Digital Converter) Action Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset At Start-Up, wait Until VDD > 3V. During operation, CPU Reset after 3 ms debouncing Firmware Flow Error Read/Write Access out of physical memory Write Access to protected area (IO and RAM Words) Unauthorized entry in “SYSTEM” Mode VDD > 7 V CPU Reset CPU Reset CPU Reset CPU Reset Set Output High Impedance (Analog) Effect on Outputs Immediate Diagnostic low Remark ADC Inputs are Shorted Undervoltage Mode - VDD < POR level => Outputs high impedance - POR level < VDD < 3 V => Outputs in Diagnostic low. Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Pull down resistive load => Diag. Low Pull up resistive load => Diag. High(25) Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Intelligent Watchdog (Observer) 100% Hardware detection 100% Hardware detection 100% Hardware detection 100% Hardware detection VDD > 9.4 V IC is switched off (internal supply) CPU Reset on recovery CPU Reset on recovery 100% Hardware detection Broken VSS(26) Broken VDD(26) CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High 100% Hardware detection. Pull down load ≤ 10 kΩ to meet Diag Low spec: - < 2% VDD (temperature suffix S and E) - < 4% VDD ( temperature suffix K) - contact Melexis for temperature suffix L No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd. 26 Not Valid for SPI Version 3901090316 Rev. 003 Page 26 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 16. Serial Protocol 16.1. Introduction The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO): • • • /SS pin is a 5 V tolerant digital input SCLK pin is a 5 V tolerant digital input MOSI-MISO pin is a 5 V tolerant open drain digital input/output The basic knowledge of the standard SPI specification is required for the good understanding of the present section. 16.2. SERIAL PROTOCOL Mode • • CPHA = 1 CPOL = 0 even clock changes are used to sample the data active-Hi clock The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the bit at the Master’s input stage. 16.3. MOSI (Master Out Slave In) The Master sends a command to the Slave to get the angle information. 16.4. MISO (Master In Slave Out) The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kΩ pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of the MLX90316. 16.5. /SS (Slave Select) The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and Master in case of communication error. 16.6. Master Start-Up /SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer. 16.7. Slave Start-Up The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance) until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while starting up. 3901090316 Rev. 003 Page 27 of 41 Data Sheet April 07 MLX90316 Rotary Position Sensor IC 16.8. Timing To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer. Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive. t6 SCLK t1 t1 t7 t1 t1 t1 t2 t4 t9 t5 MOSI/ MISO /SS 2 Startbytes Byte 0 Byte 1 Byte 2 Byte 7 Timings t1 t2 t4 t5 t5 t6 t7 t9 TStartUp Min(27) 2.3 μs / 6.9 μs 12.5 μs / 37.5 μs 2.3 μs / 6.9 μs 300 μs / 1500 μs 0μs 2.3 μs / 6.9 μs 15 μs / 45 μs - Max -
MLX90316KDC-SPI 价格&库存

很抱歉,暂时无法提供与“MLX90316KDC-SPI”相匹配的价格&库存,您可以联系我们找货

免费人工找货