SOC-3000/i
Scale-On-Chip ASIC Technical Specification Rev.B1
July 2002
Document order number: SOC-3000-0001-SP
2001 CybraTech (1998) Ltd. All rights reserved. CybraTech (1998) Ltd. reserves the right to alter the equipment specifications and descriptions in this publication without prior notice. No part of this publication shall be deemed to be part of any contract or warranty unless specifically incorporated by reference into such contract or warranty. The information contained herein is merely descriptive in nature, and does not constitute a binding offer for the sale of the product described herein.
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
TABLE OF CONTENTS
LIST OF FIGURES .................................................................................................................................. IV LIST OF TABLES ......................................................................................................................................V GENERAL ....................................................................................................................................................1 GENERAL DESCRIPTION ............................................................................................................................2 ADVANTAGES ............................................................................................................................................2 SPECIFICATIONS......................................................................................................................................3 ANALOG-TO-DIGITAL CONVERTER (ADC)...............................................................................................3 ADC Converter Main Channel – Wheatstone Bridge (Load Cell)........................................................3 ADC Converter Auxiliary Channel .......................................................................................................3 REFERENCE INPUTS ...................................................................................................................................4 DIGITAL INPUT ..........................................................................................................................................4 DIGITAL OUTPUT .......................................................................................................................................4 FLASH MEMORY ........................................................................................................................................4 CPU ...........................................................................................................................................................5 FREQUENCY SOURCE INPUT ......................................................................................................................5 POWER SUPPLY AND MONITOR .................................................................................................................5 ENVIRONMENTAL CONDITIONS .................................................................................................................5 ABSOLUTE MAXIMUM RATING* ...............................................................................................................6 OUTLINE DIMENSIONS...............................................................................................................................6 SCALE MAIN BOARD LAYOUT AND ASSEMBLY PROCESS PARAMETERS FOR SOC-3000........................7 PIN CONFIGURATION .............................................................................................................................9 CPU 80C51TBO .........................................................................................................................................21 MEMORY ORGANIZATION .......................................................................................................................22 Flash (Program & Non-Volatile Data) Memory Mapping and Usage ...............................................22 Application Program Start Address ....................................................................................................23 Serial Downloading (In-Circuit Programming)..................................................................................23 Using the Flash for Data Memory ......................................................................................................24 Data Memory Mapping .......................................................................................................................25 Memory Bank Select Register .............................................................................................................25 CPU SFRs and Configuration Registers (CFR)..................................................................................25 INSTRUCTION SET ....................................................................................................................................25 RESET ......................................................................................................................................................26 INTERRUPT VECTORS ..............................................................................................................................26 ADC CONTROLLER INTERFACE .......................................................................................................27 CONTROLLER REGISTERS ........................................................................................................................27 Semaphore Register.............................................................................................................................27 Control Register ..................................................................................................................................27 Revision B Page i July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Status/Data Registers ..........................................................................................................................28 OPERATION ..............................................................................................................................................29 KEYBOARD CONTROLLER................................................................................................................. 31 CONTROLLER REGISTERS ........................................................................................................................32 REGISTERS DESCRIPTION.........................................................................................................................32 Control Register ..................................................................................................................................32 Data Registers .....................................................................................................................................32 OPERATION ..............................................................................................................................................33 LCD CONTROLLER/DRIVER .............................................................................................................. 35 LCD Bias Generator............................................................................................................................36 Drive Mode Waveforms.......................................................................................................................36 REGISTERS DESCRIPTION.........................................................................................................................42 Control Register ..................................................................................................................................42 Data Registers .....................................................................................................................................43 OPERATION ..............................................................................................................................................44 LED PARALLEL DISPLAY CONTROLLER ...................................................................................... 45 REGISTERS DESCRIPTION.........................................................................................................................46 Semaphore Register.............................................................................................................................47 Data Registers .....................................................................................................................................47 OPERATION ..............................................................................................................................................48 LED SERIAL INTERFACE DISPLAY CONTROLLER..................................................................... 49 REGISTERS DESCRIPTION.........................................................................................................................50 Control Register ..................................................................................................................................51 Semaphore Register.............................................................................................................................51 Data Registers .....................................................................................................................................52 OPERATION ..............................................................................................................................................53 PROGRAMMABLE FREQUENCY CONTROLLER.......................................................................... 55 OPERATION ..............................................................................................................................................56 CONTROL REGISTERS DESCRIPTION ........................................................................................................56 WATCHDOG TIMER.............................................................................................................................. 57 OPERATION ..............................................................................................................................................57 CONTROL REGISTERS DESCRIPTION ........................................................................................................57 LOW VOLTAGE DETECTOR ............................................................................................................... 59 INTERRUPT REGISTER ..............................................................................................................................59 CONFIGURATION REGISTERS (CFR)............................................................................................... 61 SPECIAL FUNCTION REGISTERS (SFR) .......................................................................................... 65 GLOBAL CONFIGURATION REGISTER ......................................................................................................65 Operation.............................................................................................................................................65 CONTROLLERS CLOCK ENABLE REGISTER ..............................................................................................66 CONTROLLERS RESET REGISTERS .........................................................................................................67
Revision B
Page ii
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
I/O OPERATION.......................................................................................................................................69 8051-COMPATIBLE ON-CHIP PERIPHERALS..................................................................................71 PARALLEL I/O PORTS ..............................................................................................................................71 Timers/Counters..................................................................................................................................71 SOC-3000 INITIALIZATION ..................................................................................................................73 SOC-3000 HARDWARE DESIGN CONSIDERATIONS AND PERIPHERAL INTERFACE CONNECTIONS ........................................................................................................................................75 LOAD CELL INTERFACE ...........................................................................................................................75 4-Wire and 6-Wire Interfaces..............................................................................................................75 Load Cells Connected in Parallel .......................................................................................................77 Load Cell Impedance ..........................................................................................................................78 KEYBOARD INTERFACE ...........................................................................................................................78 LCD DISPLAY INTERFACE ......................................................................................................................79 LED DISPLAY INTERFACE .......................................................................................................................80 EXTERNAL INTERRUPT SOURCES ............................................................................................................80 Using the Vdet input:...........................................................................................................................80 Using Timer0 and Timer1 inputs: .......................................................................................................81 2 I C-COMPATIBLE INTERFACE ..................................................................................................................81 POWER SAVING SCHEMES .......................................................................................................................81 GROUNDING AND BOARD LAYOUT RECOMMENDATIONS .......................................................................82 IN-CIRCUIT EMULATOR (ICE) SYSTEM ..........................................................................................83 EXAMPLES OF PIN CONFIGURATION PROGRAMMING ............................................................85 EXAMPLE 1: CONFIGURING A 20-DIGIT LCD DISPLAY AND AN 8X8 KEYBOARD...................................85 EXAMPLE 2: CONFIGURING A 16-DIGIT LCD DISPLAY, AN 8X4 KEYBOARD, 8 OUTPUT AND 4 I/O PORTS ......................................................................................................................................................86 EXAMPLE 3: CONFIGURING A 21-DIGIT LED PARALLEL DISPLAY, AN 8X8 KEYBOARD AND 13 OUTPUT PORTS ........................................................................................................................................87 EXAMPLE 4: OUTPUTS AND I/O PORTS PROGRAMMING .........................................................................88
Revision B
Page iii
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
LIST OF FIGURES
FIGURE 1: FIGURE 2: FIGURE 3: FIGURE 4: FIGURE 5: FIGURE 6: FIGURE 7: FIGURE 8: FIGURE 9: FIGURE 10: FIGURE 11: FIGURE 12: FIGURE 13: FIGURE 14: FIGURE 15: FIGURE 16: FIGURE 17: FIGURE 18: FIGURE 19: FIGURE 20: FIGURE 21: FIGURE 22: FIGURE 23: FIGURE 24: FIGURE 25: FIGURE 26: FIGURE 27: FIGURE 28: FIGURE 29: FIGURE 30: FIGURE 31: SOC-3000 TYPICAL APPLICATION ........................................................................................ 1 SOC-3000 BLOCK DIAGRAM................................................................................................. 2 MECHANICAL OUTLINE DRAWING ........................................................................................ 6 MAIN BOARD PADS DIMENSIONS RECOMMENDATION ........................................................ 7 SOC-3000 PIN ARRANGEMENT ........................................................................................... 15 SOC-3000 LCD DISPLAY PIN CONFIGURATION ................................................................. 16 SOC-3000 LED DISPLAY PIN CONFIGURATION ................................................................. 17 CPU BLOCK DIAGRAM ........................................................................................................ 21 SOC-3000 PROGRAM MEMORY MAP .................................................................................. 22 SOC-3000/I STARTUP PROCEDURE .................................................................................... 24 SOC-3000 DATA MEMORY MAP ......................................................................................... 25 KEYBOARD MATRIX CONFIGURATION ................................................................................ 31 LCD CONTROLLER/DRIVER BLOCK DIAGRAM ................................................................... 35 STATIC DRIVE MODE WAVEFORMS..................................................................................... 37 1:2 MULTIPLEX DRIVE RATIO–1/2 BIAS WAVEFORMS ....................................................... 38 1:2 MULTIPLEX DRIVE RATIO–1/3 BIAS WAVEFORMS ....................................................... 39 1:3 MULTIPLEX DRIVE RATIO WAVEFORMS ....................................................................... 40 1:4 MULTIPLEX DRIVE RATIO WAVEFORMS ....................................................................... 41 BACKPLANE OUTPUTS PER LCD DIGIT ............................................................................... 43 LED PARALLEL DISPLAY CONTROLLER BLOCK DIAGRAM ................................................ 45 LED PARALLEL DISPLAY CONTROLLER TIMING DIAGRAM ............................................... 46 LED SERIAL INTERFACE DISPLAY BLOCK DIAGRAM ......................................................... 49 LED SERIAL INTERFACE CONTROLLER TIMING DIAGRAM ................................................. 50 CLOCK GENERATOR BLOCK DIAGRAM ............................................................................... 55 LOW VOLTAGE DETECTOR .................................................................................................. 59 4-WIRE LOAD-CELL CONNECTION ...................................................................................... 76 6-WIRE LOAD-CELL CONNECTION ...................................................................................... 76 MULTIPLE LOAD-CELL CONNECTION.................................................................................. 77 KEYBOARD INTERFACE ....................................................................................................... 78 LCD DISPLAY INTERFACE ................................................................................................... 79 LED PARALLEL DISPLAY INTERFACE ................................................................................. 80
Revision B
Page iv
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
LIST OF TABLES
TABLE 1: TABLE 2: TABLE 3: TABLE 4: TABLE 5: TABLE 6: TABLE 7: TABLE 8: TABLE 9: TABLE 10: TABLE 11: TABLE 12: TABLE 13: TABLE 14: TABLE 15: TABLE 16: TABLE 17: TABLE 18: TABLE 19: TABLE 20: TABLE 21: TABLE 22: TABLE 23: TABLE 24: TABLE 25: TABLE 26: TABLE 27: TABLE 28: TABLE 29: TABLE 30: TABLE 31: TABLE 32: TABLE 33: TABLE 34: TABLE 35: TABLE 36: TABLE 37: TABLE 38: TABLE 39: TABLE 40: TABLE 41: TABLE 42: TABLE 43: TABLE 44: SOC-3000 PIN CONFIGURATION FOR LCD DISPLAY .................................................................9 SOC-3000 PIN CONFIGURATION FOR LED DISPLAY ...............................................................12 NOTES ON SOC-3000 PIN CONFIGURATION.............................................................................15 SOC-3000 QUICK REFERENCE PIN CONFIGURATION FOR LCD DISPLAY ...............................18 SOC-3000 QUICK REFERENCE PIN CONFIGURATION FOR LED DISPLAY ...............................19 INTERRUPT VECTORS DESCRIPTION .........................................................................................26 ADC CONTROLLER REGISTERS DESCRIPTION .........................................................................27 ADC CONTROLLER INTERFACE SEMAPHORE REGISTER BIT DEFINITIONS .............................27 ADC CONTROLLER INTERFACE CONTROL REGISTER BIT FUNCTIONS ....................................28 ADC CONTROLLER INTERFACE DATA REGISTER BIT DEFINITIONS ....................................28 ADC CONTROLLER INTERFACE DATA REGISTER BIT FUNCTIONS ......................................28 ADC OUTPUT COUNTS VS. ADC SETTINGS ......................................................................30 KEYBOARD CONTROLLER REGISTERS DESCRIPTION ...........................................................32 KEYBOARD CONTROLLER CONTROL REGISTER BIT FUNCTIONS .........................................32 KEYBOARD CONTROLLER DATA REGISTER BIT DEFINITIONS .............................................33 MAXIMUM DISPLAY CAPACITY PER DISPLAY CONFIGURATION..........................................36 LCD BIAS CONFIGURATIONS ...............................................................................................36 LCD CONTROLLER/DRIVER REGISTERS DESCRIPTION ........................................................42 LCD CONTROLLER CONTROL REGISTER BIT FUNCTIONS ...................................................42 LCD CONTROLLER DATA REGISTER BIT DEFINITIONS – 20-DIGIT DISPLAY ......................43 LED PARALLEL DISPLAY CONTROLLER DRIVER REGISTERS DESCRIPTION .......................46 LED PARALLEL DISPLAY CONTROLLER SEMAPHORE REGISTER BIT DEFINITIONS ............47 LED PARALLEL DISPLAY CONTROLLER SEMAPHORE REGISTER BIT FUNCTIONS ..............47 LED PARALLEL CONTROLLER DATA REGISTER BIT DEFINITIONS ......................................47 LED SERIAL CONTROLLER DRIVER REGISTERS DESCRIPTION ............................................50 LED SERIAL INTERFACE DISPLAY CONTROL REGISTER BIT FUNCTIONS ...........................51 LED SERIAL INTERFACE DISPLAY DATA REGISTER BIT DEFINITIONS ................................52 CLOCK FREQUENCY CONTROL REGISTER BIT SETTINGS .....................................................56 WATCHDOG TIMER OPERATING PARAMETERS ....................................................................57 WATCHDOG TIMER COMMAND SEQUENCE ..........................................................................57 POWER-FAILURE INTERRUPT REGISTER BIT SETTINGS .......................................................59 CFR BIT ASSIGNMENT .........................................................................................................62 GLOBAL CFR REGISTER .......................................................................................................65 CLOCK ENABLE REGISTER ...................................................................................................66 CONTROLLERS CLOCK ENABLE REGISTER BIT FUNCTIONS.................................................67 CONTROLLERS RESET REGISTER ........................................................................................67 BIT-ORIENTED I/O PORTS ADDRESSES, PIN AND BIT ASSIGNMENT ....................................69 BYTE-ORIENTED OUTPUT PORTS ADDRESSES AND PIN ASSIGNMENT ................................69 AVAILABLE PINS ON THE 80C51 I/O PORT ..........................................................................71 I2C-COMPATIBLE INTERFACE HARDWARE INTERFACE .......................................................81 EXAMPLE 1: 20-DIGIT LCD DISPLAY, 8×8 KEYBOARD ......................................................85 EXAMPLE 2: 16-DIGIT LCD DISPLAY, 8×4 KEYBOARD, 8 OUTPUT, 4 I/O..........................86 EXAMPLE 3: 21-DIGIT LED DISPLAY, 8×8 KEYBOARD, 13 OUTPUT ..................................87 OUTPUT AND I/O PORTS PROGRAMMING .............................................................................88
Revision B
Page v
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
GENERAL
Features
Scale-On-Chip System
• Single-Chip Scale electronics • Full OIML R-76 compliance SOC-3000 - 3000 d SOC-3000i - 6000 d • Up to eight load cells • 6-wire load cell connection (including Sense inputs)
Peripherals
• 4 cycles/instruction • 120KByte, field-programmable Flash program and data memory • 4KByte RAM • 4KByte non-volatile Data Flash
Analog–to–Digital Converter
• Resolution-20 bits • Sample rate-5, 10, 20 samples per second • Programmable gain-0.5, 0.75, 1, 1.5, 2
Power
• Supports LCD and LED displays: LCD: Up to 20 digits (160 segments, 4×40) LED: Up to 24 digits • Keyboard: Up to 64 keys • Serial communication: RS-232/485 • I/O (set-points): Up to 40 lines • Temperature sensor input
CPU
• 5/3.3V operation, 15mA • Battery operation support • Power failure detector
Applications
• • • • Price computing scales Weighing indicators Counting scales Checkout scales
• Enhanced 80C51TBO
+5V
8 . . . . . 888
SEN+ SIG+ SEN– SIG– S 0-39 BP 0-3
LCD (20 digits) LED (21 digits) LED/LCD Module
TxD RxD
RS-232 Printer RS-485
Load Cell (Up to 8)
SOC-3000
I/O Set Point
8
VIN Buzzer KB 1-8 KBI 1-8 VInp 5V + 3.3V
Up to 64 keys
FIGURE 1: SOC-3000 TYPICAL APPLICATION
Revision B
Page 1
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
General Description
The SOC-3000 ASIC is an 84-pin, single-chip scale intended to replace present-day, multiple-component weighing scale electronic circuitry designs. It includes the pre-amplifier, ADC converter, display drivers, keyboard controller, serial communication, embedded CPU and field-programmable program and data memory. As a "stand-alone" unit it incorporates all scale hardware functions and represents a true breakthrough in scale manufacturing. It eliminates the risks, costs and inventory needs associated with discrete components. The SOC-3000 comes with a comprehensive software library, which implements hardware drivers, such as the display and keyboard, as well as most of the standard weighing functions. A complete development environment is available, enabling youto tailor and customize the application according to specific needs. The general SOC-3000 block diagram is presented in Figure 2.
Advantages
• • • • Generic OIML R-76 approval Minimize hardware and software development Significantly cuts time-to-market Reduces inventory needs
Ref+ RefDisplay
....
Display Controllers / Drivers LCD / LED 20 - 24 Digits
Load Cell
PGA
Delta - Sigma ADC 20 Bits MUX
MicroController Core And Peripherals
80C51TBO 120Kx8 Program/Data Flash 4K x 8 RAM Watchdog Timer 3x16-Bit Timers
Serial Communication
Aux. Channel
VDET
Power-Down Detector Internal Bandgap Reference
Power Supply Monitor I2C Compatible SPI Like Serial Interfaces UART
8
I/O
Frequency Controller
Keyboard Controller 8x8 8 8
Oscillator/ Resonator
Keyboard
FIGURE 2: SOC-3000 BLOCK DIAGRAM
Revision B
Page 2
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
SPECIFICATIONS
Analog-to-Digital Converter (ADC)
ADC Converter Main Channel – Wheatstone Bridge (Load Cell)
PARAMETER
Differential Input Voltage Programmable Gain Offset Drift vs. Temperature Gain Drift vs. Temperature Integral Non-linearity Common-Mode Rejection (CMR) Power Supply Rejection Output Noise Resolution Sample Rate 5 10 120 120 200 20 20
MIN
0 0.5
TYP
MAX
+10 2 20 4
UNIT
mV
COMMENTS
Up to 8 load cell ppm/ºC ppm/ºC Of full scale
0.004 % dB dB nVp-t-p bit Samples/s
±1 count
ADC Converter Auxiliary Channel
PARAMETER
Analog Input Voltage Offset Drift Gain Drift Resolution Sample Rate 5 10
MIN
0
TYP
MAX
0.8 20 4 20 20 V
UNIT
COMMENTS
ppm/ºC ppm/ºC Bit Samples/s
Revision B
Page 3
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Reference Inputs
PARAMETER
Reference Input
MIN
TYP
MAX
5
UNIT
V
COMMENTS
Ratiometric
Digital Input
PARAMETER
VIH (Input High Voltage) VIL (Input Low Voltage) XTAL Input VIH (Input High Voltage) VIL (Input Low Voltage)
MIN
2 0.0 2.5
TYP
MAX
5 0.8
UNIT
V V V V
COMMENTS
TTL Level excluding XTAL TTL Level excluding XTAL VDD = 3.3V VDD = 3.3V
0.4
Digital Output
For LCD Display mode:
PARAMETER
VOH (Output High Voltage) VOL (Output Low Voltage) 0.0
MIN TYP MAX UNIT
5 VLCD V V
COMMENTS
LCD Output set by user by external resistors LCD Output set by user by external resistors
For I/O mode:
PARAMETER
VOH (Output High Voltage) VOL (Output Low Voltage) 0.0
MIN TYP MAX UNIT
3.3 0.8 V V
COMMENTS
Flash Memory
PARAMETER
Endurance Data Retention Erase Full Memory Single Block (4kByte) Program Byte
MIN
10,000 100
TYP
100,000
MAX
UNIT
Cycles Years
100 25 20
ms ms us
Revision B
Page 4
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
CPU
PARAMETER
Enhanced 80C51TBO Reset Signal Threshold Start-Up Time • • • From Power On From Idle Mode From Power Down 500 1 1 500 1 3.98 V ms ms ms ms ms
MIN TYP MAX UNIT
COMMENTS
Oscillator power-down not through OSCEN bit. Oscillator power-down through OSCEN bit.
From Watchdog Reset
Frequency Source Input
PARAMETER
Frequency Level
MIN
TYP
MAX
16
UNIT
MHz
COMMENTS
Crystal oscillator or resonator
Power Supply and Monitor
PARAMETER
Input Voltage Monitor Power Fail Input Monitor Level Analog Voltage Input (AVCC) Digital Voltage Input (VCC) Power Supply Current (IIN) CPU Freq. = 16 MHz CPU Freq. = 8 MHz CPU Freq. = 4 MHz CPU Freq. = 2 MHz CPU Freq. = 1 MHz CPU Freq. = 0.5 MHz 4.75 3.00 5.00 3.30 21 15 12 11 10 10
MIN
4.50
TYP
MAX
4.75 2.21 5.25 3.60
UNIT
V V V V mA mA mA mA mA mA
COMMENTS
Set by external resistors
5V and 3.3V . Without connected I/O ports All controllers operating. Depends on the software program and the Flash memory utilization.
Environmental Conditions
PARAMETER
Temperature
MIN
-10 -20
TYP
20 20
MAX
40 70 95
UNIT
ºC ºC %
COMMENTS
Full performance Operation Non-condensing
Humidity
0
Revision B
Page 5
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Absolute Maximum Rating*
PARAMETER
AVCC VDD VCC Input Signal Voltage Operating Temperature Storage Temperature Lead Temperature Manual soldering Reflow soldering –20 –20
MIN
TYP
MAX
6 4 6 3.6 +70 +85 300 225
UNIT
V V V V ºC ºC ºC ºC
COMMENTS
Analog power Digital power Power
Soldering for 10 seconds 60 seconds
* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a
stress rating only. The functional operation of the device under these or any other conditions outside of the range listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the reliability of the device.
Outline Dimensions
The outline dimensions of the SOC-3000 PLCC-84 case is shown in Figure 3.
0.045 X 45º (1.143) PIN 1 Indicates relative locations of Pin 1
1.150 (29.20) Sq. 1.158 (29.41) 1.185 (30.09) Sq. 1.155 (30.35)
FIGURE 3: MECHANICAL OUTLINE DRAWING
Revision B
Page 6
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Scale Main Board Layout And Assembly Process Parameters For SOC-3000
1. 2. 3. Pad definition will be according to Figure 4. Solder mask opening should be 3mil (total 6 mil). Board finish may be HAL (hot air leveling), immersion gold over nickel or immersion. Verify that the SOC-3000 components are packaged in hermetically sealed package. If the packaging is damaged or has been opened, perform the following drying procedure to assure that SOC-3000 components are completely dry: • Components drying procedure: Place the SOC-3000 components in their tray and put them into a baking oven to dry at a temperature of 105ºC for a minimum of 6 hours. Reflow temperature profile should be set according to the paste parameters. Maximum reflow temperature should be less than 225 ºC. Recommended paste: Koki, AIM, Multicore a. Type 3 b. NC c. RMA or equivalent
4.
5. 6. 7.
FIGURE 4: PCB BOARD LAYOUT (Dimensions are in milli inches (mil))
Revision B
Page 7
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
PIN CONFIGURATION
The SOC-3000 pin configuration for LCD and LED displays is presented in Table 1 and Table 2, respectively, followed by a glossary of terms used in the tables. General notes on SOC-3000 pin configuration are presented in Table 3, page 15. The physical pin arrangement is shown in Figure 5, page 15. The physical pin configuration for an LCD display is shown in Figure 6, page 16, followed by a quick reference table in Table 4, page 18. The physical pin configuration for a LED display is shown in Figure 7, page 17, followed by a quick reference table in Table 5, page 19. TABLE 1:
PIN
1 2 3 4 5 6 7
SOC-3000 PIN CONFIGURATION FOR LCD DISPLAY
DESCRIPTION
Keyboard Controller Input See “Keyboard Controller”, page 31
NAME
KIN4 KIN3 KIN2 KIN1 KIN0 VDD BUZZER / P1.7 (CPU) P1.5 (CPU) P1.4 (CPU) XTAL OUT XTAL IN TXD RXD
2 DESCRIPTION PULL-UP FUNCTION RESISTOR
I.O 15.3 I.O 15.4 I.O 15.5 I.O 15.6 I.O 15.7 I/O, See “I/O Operation”, page 65 50k
nd
Digital Power Supply Buzzer 25k
8 9 10 11 12 13 14 15 16 17 18 19 20 21
CPU I/O Port See Note 11 Frequency Clock Source
10k
Serial Communication Tx Serial Communication Rx P3.4 (CPU) 100k CPU I/O Ports, or: 50k P3.4 – Timer 0
PWR_OFF / Power Off Control P3.4/Timer 0
MAIN_DET / Battery/AC power supply detector input P3.5 (CPU) P3.5 /Timer1 EL / P1.6 (CPU) VLCD BP1 BP2 BP3 BP4 Electro-luminescent light control See Note 11 LCD Display voltage LCD Display Multiplexer Backplanes, See “LCD Controller/Driver”, page 35 OUT 4.0 OUT 4.1 OUT 4.2 OUT 4.3 I/O See “I/O Operation”, page 69 P1.6 (CPU)
Revision B
Page 9
July, 2002
CybraTech (2000) Ltd.
PIN
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37
SOC-3000/i Scale-On-Chip ASIC
DESCRIPTION
nd
Technical Specification
NAME
2 DESCRIPTION PULL-UP FUNCTION RESISTOR
OUT 5.0 OUT 5.1 OUT 5.2 OUT 6.0 OUT 6.1 OUT 6.2 OUT 6.3 OUT 7.0 OUT 7.1 OUT 7.2 OUT 7.3 OUT 8.0 OUT 8.1 OUT 8.2 OUT 8.3 OUT 9.0 OUT 9.1 OUT 9.2 I/O See “I/O Operation”, page 69
LCD Display Segment See “LCD Controller/Driver”, page 35
OUT 10.0 OUT 11.0 OUT 11.1 OUT 11.2 OUT 11.3 OUT 12.0 OUT 12.1 OUT 12.2 OUT 12.3 OUT 12.4 OUT 13.0
Revision B
Page 10
July, 2002
CybraTech (2000) Ltd.
PIN
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
SOC-3000/i Scale-On-Chip ASIC
DESCRIPTION
nd
Technical Specification
NAME
S38 S39 S40 VCC RESET GND VDET/ INT0~ SIG2+ SIG2– AGND SEN– SIG1– SIG1+ SEN+ AVCC KOUT7 KOUT6 KOUT5 KOUT4 KOUT3 KOUT2 KOUT1 KOUT0 KIN7 KIN6 KIN5
2 DESCRIPTION PULL-UP FUNCTION RESISTOR
OUT 13.1 OUT 13.2 OUT 13.3
Power Supply Reset Digital Ground Power voltage detector input / Interrupt 0 Input 2nd AD channel input signal + 2nd AD channel input signal – Analog Ground Load cell sense input – Load cell signal input – Load cell signal input + Load cell sense input + Analog power supply Keyboard Controller Inputs See “Keyboard Controller”, page 31 I.O 14.0 I.O 14.1 I.O 14.2 I.O 14.3 I.O 14.4 I.O 14.5 I.O 14.6 I.O 14.7 Keyboard Controller Inputs See “Keyboard Controller”, page 31 I.O 15.0 I.O 15.1 I.O 15.2 I/O See “I/O Operation”, page 69 50k 50k
Revision B
Page 11
July, 2002
CybraTech (2000) Ltd. TABLE 2:
PIN
1 2 3 4 5 6 7
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
SOC-3000 PIN CONFIGURATION FOR LED DISPLAY
DESCRIPTION
Keyboard Controller Input See “Keyboard Controller”, page 31
NAME
KIN4 KIN3 KIN2 KIN1 KIN0 VDD BUZZER / P1.7 (CPU) P1.5 (CPU) P1.4 (CPU) XTAL OUT XTAL IN TXD RXD
2 DESCRIPTION PULL-UP FUNCTION RESISTOR
I.O 15.3 I.O 15.4 I.O 15.5 I.O 15.6 I.O 15.7 I/O See “I/O Operation”, page 69 50k
nd
Digital Power Supply Buzzer P1.7=’1’ – ON P1.7=’0’ – OFF See Note 10, 11 CPU I/O Port. See Note 11 Frequency Clock Source 25k
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
10k
Serial Communication Tx Serial Communication Rx P3.4 (CPU) CPU I/O port, or: P3.4 – Timer 0 P3.5 – Timer 1 See Note 11 See Note 11 100k 50k
PWR_OFF / Power Off Control P3.4 / Timer 0
MAIN_DET / Battery/AC power supply detector input P3.5 (CPU) P3.5 / Timer 1 EL NC OUT 4.0 OUT 4.1 OUT 4.2 OUT 4.3 SEG A1 SEG B1 SEG C1 SEG D1 SEG E1 SEG F1 SEG G1 SEG DP1 SEG A2 SEG B2 SEG C2 SEG D2 Display Segment Out, see “LED Parallel Display Controller Block Diagram”, page 45 Electro-luminescent light control Not Used Outputs. OUT 4.0 OUT 4.1 OUT 4.2 OUT 4.3 OUT 5.0 OUT 5.1 OUT 5.2 OUT 6.0 OUT 6.1 OUT 6.2 OUT 6.3 OUT 7.0 OUT 7.1 OUT 7.2 OUT 7.3 OUT 8.0 P1.6 (CPU)
I/O See “I/O Operation”, page 69
Revision B
Page 12
July, 2002
CybraTech (2000) Ltd.
PIN
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
SOC-3000/i Scale-On-Chip ASIC
DESCRIPTION
nd
Technical Specification
NAME
SEG E2 SEG F2 SEG G2 SEG DP2 SEG A3 SEG B3 SEG C3 SEG D3 SEG E3 SEG F3 SEG G3 SEG DP3 DIG 1 DIG 2 DIG 3 DIG 4 DIG 5 DIG 6 DIG 7 OUT 12.0 OUT 12.1 OUT 12.2 OUT 12.3 OUT 12.4
2 DESCRIPTION PULL-UP FUNCTION RESISTOR
OUT 8.1 OUT 8.2 OUT 8.3 OUT 9.0 OUT 9.1 OUT 9.2 Output, I/O See “I/O Operation”, page 69
Display Segment Out, see “LED Parallel Display Controller Block Diagram”, page 45.
Display Digit Mux Control See “LED Parallel Display Controller”, page 45 OUT 10.0 OUT 11.0 OUT 11.1 OUT 11.2 OUT 11.3 Output See “I/O Operation”, page 69 I/O See “I/O Operation”, page 69
LED Serial Interface Display Module Clock, Data, Strobe and Blank LED_SI_Data See “LED Serial Interface Display Controller”, page 49. LED_SI_ST LED_SI_CLK LED_SI_BL VCC RESET GND VDET/ INT0~ SIG2+ SIG2– AGND SEN– Power Supply Reset Digital Ground Power voltage detector input / Interrupt 0 Input 2 2
nd nd
OUT 13.0 OUT 13.1 OUT 13.2 OUT 13.3
I/O See “I/O Operation”, page 69
50k
ADC channel input signal + ADC channel input signal –
Analog Ground Load cell sense input –
Revision B
Page 13
July, 2002
CybraTech (2000) Ltd.
PIN
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
SOC-3000/i Scale-On-Chip ASIC
DESCRIPTION
nd
Technical Specification
NAME
SIG1– SIG1+ SEN+ AVCC KOUT7 KOUT6 KOUT5 KOUT4 KOUT3 KOUT2 KOUT1 KOUT0 KIN7 KIN6 KIN5
2 DESCRIPTION PULL-UP FUNCTION RESISTOR
Load cell signal input – Load cell signal input + Load cell sense input + Analog power supply Keyboard Controller Output, See “Keyboard Controller”, page 31 I.O 14.0 I.O 14.1 I.O 14.2 I.O 14.3 I.O 14.4 I.O 14.5 I.O 14.6 I.O 14.7 Keyboard Controller Input, See “Keyboard Controller”, page 31 I.O 15.0 I.O 15.1 I.O 15.2 I/O See “I/O Operation”, page 69 50k
GLOSSARY OF TERMS
TERM
BP CLK DIG I.O KIN KOUT P/PWR REG RX SEG SI TX
DEFINITION
Backplane Clock Digit Input/Output Keyboard In Keyboard Out Power Register Receive Segment Serial Interface Transmit
Revision B
Page 14
July, 2002
CybraTech (2000) Ltd. TABLE 3:
#
1 2 3 4 5
SOC-3000/i Scale-On-Chip ASIC NOTES ON SOC-3000 PIN CONFIGURATION
Technical Specification
COMPONENT
LCD Controller/Driver LED Controller Output Pins Input Pins VDET • • • Bit programmable Voh @ Io = 1.5mA Bit programmable
REMARKS
CMOS–3.3V CMOS–3.3V • • • Less than 5V Threshold level – 2.1V. The input (on the analog chip) tolerates input voltage applied while the SOC-3000 is powered off.
6 7 8 9 10 11
VDD VCC AVCC Keyboard Controller Buzzer Port 1.x
3.3V ±5% 5V ±5% 5V ±5% Bit programmable P1.7 is used as the BUZZER control pin. During power-up the SOC-3000 asserts 3 pulses on this line. Manipulation of this pin should be made using BIT mapping of the port, since bits P1.0-P1.1 are allocated to the bank select register.
P11 P12
P1 P84
PIN 1 IDENTIFIER
P75 P74
SOC3000 PLCC84
P32 P33 P53 P54
FIGURE 5: SOC-3000 PIN ARRANGEMENT
Revision B
Page 15
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
FIGURE 6: SOC-3000 LCD DISPLAY PIN CONFIGURATION
Revision B
Page 16
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
FIGURE 7: SOC-3000 LED DISPLAY PIN CONFIGURATION
Revision B
Page 17
July, 2002
CybraTech (2000) Ltd. TABLE 4:
PIN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
SOC-3000 QUICK REFERENCE PIN CONFIGURATION FOR LCD DISPLAY
PIN
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
NAME
KIN4 / I.O 15.3 KIN3 / I.O 15.4 KIN2 / I.O 15.5 KIN1 / I.O 15.6 KIN0 / I.O 15.7 VDD BUZZER / P1.7 P1.5 (CPU) P1.4 (CPU) XTAL OUT XTAL IN TXD RXD PWR_OFF / P3.4 (CPU) / Timer 0 MAIN_DET / P3.5 (CPU) / Timer 1 EL / P1.6 (CPU) VLCD BP1 / OUT 4.0 BP2 / OUT 4.1 BP3 / OUT 4.2 BP4 / OUT 4.3
NAME
S1 / OUT 5.0 S2 / OUT 5.1 S3 / OUT 5.2 S4 / OUT 6.0 S5 / OUT 6.1 S6 / OUT 6.2 S7 / OUT 6.3 S8 / OUT 7.0 S9 / OUT 7.1 S10 / OUT 7.2 S11 / OUT 7.3 S12 / OUT 8.0 S13 / OUT 8.1 S14 / OUT 8.2 S15 / OUT 8.3 S16 / OUT 9.0 S17 / OUT 9.1 S18 / OUT 9.2 S19 S20 S21
PIN
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 S22 S23 S24 S25 S26
NAME
PIN
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 GND
NAME
VDET / INT 0~ SIG2+ SIG2– AGND SEN– SIG1– SIG1+ SEN+ AVCC KOUT7 / I.O 14.0 KOUT6 / I.O 14.1 KOUT5 / I.O 14.2 KOUT4 / I.O 14.3 KOUT3 / I.O 14.4 KOUT2 / I.O 14.5 KOUT1 / I.O 14.6 KOUT0 / I.O 14.7 KIN7 / I.O 15.0 KIN6 / I.O 15.1 KIN5 / I.O 15.2
S27 / OUT 10.0 S28 / OUT 11.0 S29 / OUT 11.1 S30 / OUT 11.2 S31 / OUT 11.3 S32 / OUT 12.0 S33 / OUT 12.1 S34 / OUT 12.2 S35 / OUT 12.3 S36 / OUT 12.4 S37 / OUT 13.0 S38 / OUT 13.1 S39 / OUT 13.2 S40 / OUT 13.3 VCC RESET
Revision B
Page 18
July, 2002
CybraTech (2000) Ltd. TABLE 5:
PIN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
SOC-3000 QUICK REFERENCE PIN CONFIGURATION FOR LED DISPLAY
PIN
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
NAME
KIN4 / I.O 15.3 KIN3 / I.O 15.4 KIN2 / I.O 15.5 KIN1 / I.O 15.6 KIN0 / I.O 15.7 VDD BUZZER / P1.7 P1.5 (CPU) P1.4 (CPU) XTAL OUT XTAL IN TXD RXD PWR_OFF / P3.4 / Timer 0 MAIN_DET / P3.5 / Timer 1 EL / P1.6 Not Connected OUT / OUT 4.0 OUT / OUT 4.1 OUT / OUT 4.2 OUT / OUT 4.3
NAME
SEG A1 / OUT 5.0 SEG B1 / OUT 5.1 SEG C1 / OUT 5.2 SEG D1 / OUT 6.0 SEG E1 / OUT 6.1 SEG F1 / OUT 6.2 SEG G1 / OUT 6.3 SEG DP1 / OUT 7.0 SEG A2 / OUT 7.1 SEG B2 / OUT 7.2 SEG C2 / OUT 7.3 SEG D2 / OUT 8.0 SEG E2 / OUT 8.1 SEG F2 / OUT 8.2 SEG G2 / OUT 8.3 SEG DP2 / OUT 9.0 SEG A3 / OUT 9.1 SEG B3 / OUT 9.2 SEG C3 SEG D3 SEG E3
PIN
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
NAME
SEG F3 SEG G3 SEG DP3 DIG 1 DIG 2 DIG 3 / OUT 10.0 DIG 4 / OUT 11.0 DIG 5 / OUT 11.1 DIG 6 / OUT 11.2 DIG 7 / OUT 11.3 OUT 12.0 OUT 12.1 OUT 12.2 OUT 12.3 OUT 12.4 OUT 13.0 OUT 13.1 OUT 13.2 OUT 13.3 VCC RESET
PIN
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 GND
NAME
VDET / INT 0 ~ SIG2+ SIG2– AGND SEN– SIG1– SIG1+ SEN+ AVCC KOUT7/I.O 14.0 KOUT6/I.O 14.1 KOUT5/I.O 14.2 KOUT4/I.O 14.3 KOUT3/I.O 14.4 KOUT2/I.O 14.5 KOUT1/I.O 14.6 KOUT0/I.O 14.7 KIN7/I.O 15.0 KIN6/I.O 15.1 KIN5/I.O 15.2
Revision B
Page 19
July, 2002
CybraTech (2000) Ltd. .
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Revision B
Page 20
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
CPU 80C51TBO
The reference source for data given here is “M8051TBO Technical Specifications”, Virtual IP Group, Inc., Version M8051TS97DF01. Refer to this manual for complete CPU specification.
Features
• • • • • • • • • • 8-bit CPU Compatible with standard 80C31 Four 8-bit I/O ports Three 16-bit timers On-chip oscillator and clock circuitry 256-byte on-chip, 8051-compatible SFR RAM 64Kbyte program memory with bank switching 4Kbyte XDATA RAM for data memory High-speed architecture of 4 cycles/instruction Dual data pointers
Advantages
• Fast running and improved performance • No wasted clock and memory cycles • Works efficiently with all types of peripheral devices • Improved power consumption characteristics • On-chip Power-On/Reset
Architecture
The CPU block diagram is presented in Figure 8.
P1.0 to P1.7
Port Latch
Timer 2
B Register ALU Reg. 1 ALU Reg. 2
PSW Interrupt Logic
ALU
Stack Pointer DPTR1 PC Address Reg. Address Bus
Serial Port 0
Timer 1
Timed Access
Buffer
SFR RAM Address
P3.0 to P3.7
Port 3
256 Bytes SFR 8 RAM
PC Increm ent Program Counter DPTR0
Port Latch
Timer 0
Port Latch
RST
XTAL2
Reset Control
O scillator
XTAL1
Clocks and M ory Control em
PSE N ALE
Power Control Register
Data Bus
FIGURE 8: CPU BLOCK DIAGRAM
Revision B
Page 21
July, 2002
P2.0 to P2.7
Port 2
Interrupt Reg. Instruction Decoder
Port 0
Accum ulator
AD0 to AD7
Port 1
CybraTech (2000) Ltd. .
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Memory Organization
The SOC-3000 is an 8051-compatible device with an 80C310 memory chip. As with all such devices, the SOC-3000 has separate address spaces for Program and Data memory. They are: • Flash memory – memory space containing non-volatile, in-circuit re-programmable code and data (such as calibration data). The code in the Flash memory may be in-circuit programmed at a byte level, although it must first be erased, the erasing being performed in page blocks. The program memory space can be in-circuit programmed through the serial port. RAM memory – Random Access memory used as “scratchpad memory” for the software.
•
Flash (Program & Non-Volatile Data) Memory Mapping and Usage
The 8051-compatible SOC-3000 supports a maximum code space of 64K. Programs larger than 64K are handled by bank switching to select one of a number of code banks residing at one physical address. In the SOC-3000, there is one 32K Common-Program Area mapped from address 0000H to 7FFFH (Figure 9) and three 32K code banks mapped from code address 8000H to FFFFH (Figure 9). The code banks are selected using bits in a memory- mapped address. The Flash memory may be dynamically allocated between the Program and the Non-Volatile Data memory. This eliminates the need of external EEPROM usually used for storing calibration parameters and other non-volatile variable data. The Flash memory is built of 4K Bytes of erasable blocks whose boundary is located at 4k address (multiples of 1000H).
FFFFH F800H Flash Data M ory em
ROM Bank 1 32K
ROM Bank 2 32K
ROM Bank 3 32K
8000H
7FFFH
FFFH
ROM Com mon Area 32K
4K Reserved by System
0000H
FIGURE 9: SOC-3000 PROGRAM MEMORY MAP
Revision B
Page 22
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Application Program Start Address
The start address of the application program should be located at 1000H, as the first 4kBytes are reserved for the SOC-3000/I system.
Serial Downloading (In-Circuit Programming)
As part of its embedded boot software the SOC-3000 facilitates serial code and data download via the standard UART serial port. Serial download mode is automatically entered upon power-up or reset if one of the following conditions exist: 1. No valid program is programmed in the Flash memory. 2. A request for download process was initiated via the UART during the first 200 ms after power-up/reset. Once in this mode, you can download code or data files into the Flash memory, while the device is located on its target board. The is the PC serial download utility, CybraTech Cloader executable, is provided together with the device and its documentation and software library. The SOC-3000/I may be programmed only if, within 200ms after power-up or RESET, it establishes communication with the Cloader executable, or if the application program is not available or not valid (checksum error). Figure 10describes the startup procedure of the SOC-3000.
Revision B
Page 23
July, 2002
CybraTech (2000) Ltd. .
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Power-Up / Reset
Start Programming mode
Yes
Is Cloader Communicating ?
No
200 ms elapsed ?
Yes
Is the Application Program OK?
No
No
Yes
Start Application Program
FIGURE 10: SOC-3000/I STARTUP PROCEDURE
Using the Flash for Data Memory
The Flash memory may be used for storing non-volatile data. To update the data area while the program is running, the Flash must be defined as DATA area instead of as CODE area. CybraTech Flash Manager software manages this process in an efficient and reliable manner. It provides the means to read, write, erase and update the Flash Data area. A detailed description of the CybraTech Flash Manager function is included in the SOC-3000 Software Function Library user manual, document number: SOC-0000-SW01-OM.
Revision B
Page 24
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Data Memory Mapping
The SOC-3000 “scratchpad” data memory is stored in 4Kbyte RAM mapped as XDATA, as shown in Figure 11, in addition to the CPU 256-byte RAM.
8FFFH Reserved 8C00H 8BFFH
External RAM 3K
8000H
FIGURE 11: SOC-3000 DATA MEMORY MAP
Memory Bank Select Register
The memory bank select register is implemented using the 80C51TBO Port 1 bits P1.0 – P1.1. P1.0 is the least significant bit. Manipulation of other Port 1 I/O pins must be carried out without affecting these bits. NOTE: The page register is WRITE ONLY! Reading P1.0-P1.1 may result in an ambiguous result.
CPU SFRs and Configuration Registers (CFR)
The CPU SFRs (Special Function Registers) are compatible with the 8051 instruction set. For more information, please refer to “M8051TBO Technical Specifications”. The CPU controls the peripherals and their operating modes through Configuration Registers (CFR) mapped as XDATA. The CFR registers for each peripheral are described below in Table 32, page 62.
Instruction Set
All instructions in the 8051-compatible SOC-3000 instruction set perform the same functions as in the 8051. They identically oversee bit and flag operations and other status functions. Only the clock configuration differs. For absolute timing of real time events, the timing of software loops can be calculated. However, counter/timers default to run at the older 12 clocks per increment. In this way, timer-based events occur at the standard intervals with software executing at higher speed. Timers optionally can run at 4 clocks per increment to take advantage of faster processor operation.
Revision B
Page 25
July, 2002
CybraTech (2000) Ltd. .
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
In the SOC-3000, the MOVX instruction may take only two machine cycles or eight oscillator cycles, while the “MOV direct, direct” instruction uses three machine cycles or 12 oscillator cycles. Thus, the execution times of the two instructions differ. This is because the SOC-3000 usually uses one instruction cycle for each instruction byte. Note that a machine cycle requires just four clocks, and provides one ALE pulse per cycle. Many instructions require only one cycle, but some require five.
Reset
The Reset signal is generated by an internal circuitry in the ASIC. The signal thresholds are: RESET Falling edge on Vcc=3.98V. RESET Rising edge on Vcc=4.19V. The hystheresis of the RESET signal is set so that normal operation of the internal Flash memory is guaranteed.
Interrupt Vectors
The interrupt vectors of the SOC-3000/I are shifted compared with the interrupt vectors of a standard 80C51TBO vectors by an offset of 1000H. Table 6 details the SOC-3000/I interrupt vectors: TABLE 6: INTERRUPT VECTORS DESCRIPTION
FLAG
IE0 TF0 IE1 TF1 RI + TI TF2 + EXF2
INTERRUPT SOURCE
External Interrupt 0 Timer 0 Overflow External Interrupt 1 Timer 1 Overflow Serial Port Timer 2 Overflow
VECTOR LOCATION
1003H 100BH 1013H 101BH 1023H 102BH
PRIORITY
1 (Highest) 2 3 4 5 6
Revision B
Page 26
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
ADC CONTROLLER INTERFACE
Features
• Resolution – 20 bit • Programmable gain –0.5, 0.75, 1, 1.5, 2 • Programmable sample rate of 5, 10 or 20 samples per second • Voltage detection input and alarm
Controller Registers
ADC Converter (ADC) controller interface includes a semaphore register (one byte), a control register (two bytes) and a data/status register (four bytes). The ADC controller registers are defined in Table 7. TABLE 7: ADC CONTROLLER REGISTERS DESCRIPTION
FUNCTION
Controller Clock Enable Controller RESET Semaphore Register Data Registers Control Register
ADDRESS
C200H C406H E100H E103H to E106H E101H to E102H
BIT
7 All 0-1 All All
REMARKS
1 = Enable 0 =Disable 0xFF = Reset Read/Write Read only Write only
Semaphore Register
The semaphore register bit definitions are shown in Table 8. TABLE 8:
ADDRESS
E100H
ADC CONTROLLER INTERFACE SEMAPHORE REGISTER BIT DEFINITIONS
BIT 7 … BIT 2
Don’t Care
BIT 1
BIT 0 (LSB)
Tx Semaphore Rx Semaphore (Controller to ADC Converter) (ADC Converter to Controller)
Control Register
The control register bit definitions and its functions and are given in Table 9, page 28.
Revision B
Page 27
July, 2002
CybraTech (2000) Ltd. . TABLE 9:
1
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
ADC CONTROLLER INTERFACE CONTROL REGISTER BIT FUNCTIONS
BIT FUNCTION
0 = Disable 1 = Enable Don’t Care 00 = 20 Hz (default) & F.S=100,000 Counts 01 = 10 Hz & F.S. = 200,000 Counts 10 = 10 Hz& F.S. = 100,000 Counts 11 = 5 Hz& F.S. = 200,000 Counts 000 = 0.50 001 = 0.75 010 = 1.00 011 = 1.50 100 = 2.00 111 = Power Down 0 = Main (default) channel 1 = Secondary channel Don’t Care Don’t Care
BYTE # ADDRESS
E101H
SETTINGS
0 Interrupt Enable (LSB) 1-7 Don’t Care Sample Rate
2
E102H
0-1
(bit 0 – LSB)
2-4
Gain
Power Down 5 6 7 ADC Channel Don’t Care Don’t Care
Status/Data Registers
The data register bit definitions are shown in Table 10. The bit functions are described in Table 11. TABLE 10: ADC CONTROLLER INTERFACE DATA REGISTER BIT DEFINITIONS
BYTE # ADDRESS BIT 7
1 2 3 4 E103H E104H E105H E106H D7 D15
BIT 6
D6 D14
BIT 5
D5 D13 SR1 0
BIT 4
D4 D12 SR0 0
BIT 3
D3 D11 D19 0
BIT 2
D2 D10 D18 0
BIT 1
D1 D9 D17 CH
BIT 0 (LSB)
D0 D8 D16 G2/PD2
G1/PD1 G0/PD0 0 0
TABLE 11: ADC CONTROLLER INTERFACE DATA REGISTER BIT FUNCTIONS
BIT
Di ADC Reading Data D0 = LSB D19 = MSB Sample Rate Gain/Power Down Active ADC Channel
FUNCTION
SRi Gi/PDi CH
Revision B
Page 28
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Operation
Initialization: To enable the ADC controller interface: 1. Enable the ADC controller interface clock source in Clock Enable register C200H: Set C200H, Bit 7 to 1. 2. Reset the ADC controller interface: Write FF to register C406H. 3. Set the Configuration registers (CFR) address for ADC controller interface function: CFR address C10CH = 1FH. 4. Enable interrupt: Set E101H, Bit 0 to 1. 5. Check the semaphore byte at address E100H. If Receive semaphore bit at E100H is Ready (Bit 0 = 0), signaling the CPU that the ADC controller can receive data, the CPU performs the following operations: a. Sets the Transmit semaphore bit at E100H to Busy (Bit 1 = 1) to prevent transmission of data from the ADC controller. b. Programs the control register E101–E102H of the ADC controller to initialize controller operation. Normal operation: 6. After the ADC controller has been initialized, the following operations are performed: a. The CPU resets the Transmit semaphore bit at E100H to Ready (Bit 1 = 0) to signal the ADC controller that it can now transmit data. b. The ADC controller sets the Receive semaphore bit at E100H to Busy (Bit 0 = 1) to prevent further data transmission to the controller. c. The ADC controller sends ADC converter data to data registers at E103H to E106H. 7. After sending the data of registers E103H to E106H, the ADC controller resets the Receive semaphore bit at E100H to Ready (Bit 0 = 0), signaling the CPU that the controller can now receive new data. One ADC controller operation cycle is now complete. Steps 6 through 7 are repeated cyclically. The ADC internal counts output is dependent upon the input signal, the gain and the operation mode setting. Table 12 defines the relation between the internal counts output of the zero signal input of the full-scale signal and the ADC settings.
Revision B
Page 29
July, 2002
CybraTech (2000) Ltd. .
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
TABLE 12: ADC OUTPUT COUNTS VS. ADC SETTINGS
GAIN SAMPLE RATE * (HZ)
20 10 10 5 0.75 20 10 10 5 1.0 20 10 10 5 1.5 20 10 10 5 2.0 20 10 10 5
ADC RESOLUTION MODE * (IN COUNTS)
100,000 100,000 200,000 200,000 100,000 100,000 200,000 200,000 100,000 100,000 200,000 200,000 100,000 100,000 200,000 200,000 100,000 100,000 200,000 200,000
ADC OUTPUT AT ZERO SIGNAL INPUT (COUNTS)
153,200 153,200 306,400 306,400 153,200 153,200 306,400 306,400 153,200 153,200 306,400 306,400 153,200 153,200 306,400 306,400 153,200 153,200 306,400 306,400
MAXIMUM FULL-SCALE INPUT (MILLI-VOLTS)
10 10 10 10 10 10 10 10 10 10 10 10 6.6 6.6 6.6 6.6 5 5 5 5
ADC OUTPUT (COUNTS)
0.5
205,000 205,000 412,000 412,000 231,000 231,000 464,000 464,000 257,000 257,000 514,000 514,000 257,000 257,000 514,000 514,000 257,000 257,000 514,000 514,000
* ADC Resolution mode is defined in Table 9, Register E102H, bits 0-1 – Sample Rate.
Revision B
Page 30
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
KEYBOARD CONTROLLER
Features
• Supports up to 64 keys (8×8) • Programmable anti-bounce mechanism (4-18 ms) • Automatic key matrix scanning • Automatically detects excessively long or constant key depression • When Interrupt mode enabled, generates an interrupt when any key is pressed or released
KIN 0 KIN 1 KIN 2
Functional Description
Keyboard Controller Matrix Configuration
The keyboard matrix configuration showing the 8 × 8 matrix is given in Figure 12. The key values at each junction are in hexadecimal.
KIN 3
KIN 4
KIN 5
KIN 6
KIN 7
KOUT 0
* 00
01
02
03
04
05
06
07
KOUT 1
10
11
12
13
14
15
16
17
KOUT 2
20
21
22
23
24
25
26
27
KOUT 3
30
31
32
33
34
35
36
37
KOUT 4
40
41
42
43
44
45
46
47
KOUT 5
50
51
52
53
54
55
56
57
KOUT 6
60
61
62
63
64
65
66
67
KOUT 7
70
71
72
73
74
75
76
77
*Key values are in hexadecimal. FIGURE 12: KEYBOARD MATRIX CONFIGURATION
Revision B
Page 31
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Controller Registers
Keyboard controller interface includes a control register (one byte) and a data/status register (two bytes). The Keyboard controller registers are defined in Table 13. TABLE 13: KEYBOARD CONTROLLER REGISTERS DESCRIPTION
FUNCTION
Controller Clock Enable Controller RESET Data Registers Control Register
ADDRESS
C200H C400H F100H to F101H F100H
BIT
2 All All All
REMARKS
1= Enable 0= Disable 0xFF = Reset Read only Write only
Registers Description
Control Register
The keyboard control register bit definitions, functions, and settings are displayed in Table 14. TABLE 14: KEYBOARD CONTROLLER CONTROL REGISTER BIT FUNCTIONS
ADDRESS
F100H
BIT
FUNCTION
000 = 4 ms 001 = 6 ms 010 = 8 ms 011 = 10 ms 100 = 12 ms 101 = 14 ms 110 = 16 ms 111 = 18 ms
SETTINGS
0-2 Anti-Bounce Timeout (bit 0 -LSB)
3 4-7
Interrupt Enable/Disable Don’t Care
0 = Enable 1 = Disable (default) Don’t Care
Data Registers
Keyboard data is stored in two 8-bit registers. The data register bit functions are shown in Table 15.
Revision B
Page 32
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
NOTE
When Control Register Address F101H, bit 7 is set to 1 (Released), key-code value bits 0 to 6 in address F101H are meaningless. TABLE 15: KEYBOARD CONTROLLER DATA REGISTER BIT DEFINITIONS
BYTE # ADDRESS
1 F100H
BIT 7
X
BIT 6
X
BIT 5
X
BIT 4
X
BIT 3
X
BIT 2
X
BIT 1
X
BIT 0 (LSB)
Key Error 0 = Legal 1 = Error D0
2
F101H
Release Sign 0 = Pressed 1 = Released
D6
D5
D4
D3
D2
D1
Operation
At power on, the keyboard controller is reset and the scanning rate is set to 10 µs. Initialization: To enable the keyboard controller: 1. Enable the keyboard controller clock source in Clock Enable register C200H: Set C200H, Bit 2 to 1. 2. Reset the keyboard controller: Write FF to register C400H. 3. Set CFR address for keyboard controller function: CFR addresses C10DH and C10EH = FF (Table 32, page 62). This causes the following results: • Enables keyboard input pins (1 to 5 and 82 to 84) (Table 32; page 62; Table 1, page 9; Table 2, page 12) • Enables keyboard output pins (74 to 81) (Table 32, Table 1, Table 2) 4. Enable keyboard interrupt: Set F100H, Bit 3 to 0. 5. Set anti-bounce timeout: Set F100H, Bits 0, 1 and 2, as shown in Table 14. Normal Operation: 6. Read keyboard key-code value bits, as follows: • Read register F100H, Bit 0: If 0, key-code value is legal. If 1, key-code value is illegal (Error). • Read key code from register F101H, bits 0 to 6: When key pressed, values are valid. • Read F101H, bit 7: If 0, key pressed and keyboard values (bits 0 to 6) are valid. If 1, key released and keyboard values are meaningless.
Revision B
Page 33
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
LCD CONTROLLER/DRIVER
Features
• Selectable backplane drive configuration, static or multiplex drive ratios of 1:2, 1:3 or 1:4 • Selectable display bias configuration, static, or 1/2 bias or 1/3 bias • Internal LCD bias generation with voltagefollower buffers • Drives up to 40 segments with the capacity to generate 20 numeric characters • 20 × 8-bit memory display data • User-selected LCD voltages
Functional Description
The SOC-3000 LCD controller/driver interfaces to LCD (Liquid Crystal Display) with low multiplex rates. The controller/driver generates drive signals for static drive mode (no multiplexing) or multiplexed LCDs with multiplex drive ratios of 1:2, 1:3 or 1:4, depending on the number of backplane outputs. The driver supports up to four backplanes, each supporting 40 segments. The LCD Controller/Driver block diagram is shown in Figure 13. The driver supports numeric, alphanumeric and dot matrix display configurations. The number of characters of each type that can be displayed depends on the number of backplanes and the number of segments required per character. The maximum display capacity for each display configuration is shown in Table 16.
VDD
Backplane O utputs
R
Display Segm ent O utputs
– + Display Latch
R
– +
LCD Voltage Selector Shift Register
R
VLCD
LCD Bias G enerator
FIGURE 13: LCD CONTROLLER/DRIVER BLOCK DIAGRAM
Revision B
Page 35
0 to 39
BP0
BP1
BP2
BP3
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
TABLE 16: MAXIMUM DISPLAY CAPACITY PER DISPLAY CONFIGURATION
NUMBER OF BACKPLANES
4 3 2 1
SEGMENTS OR SYMBOLS
160 120 80 40
NUMERIC (7 SEGMENTS)
20 15 10 5
LCD Bias Generator
The operative LCD voltage is derived from VDD – VLCD (Figure 13). The three resistors connected in series between VDD and VLCD in the bias generator function as a voltage divider to produce 1/2 (for the 1:2 multiplex drive ratio) and 1/3 (for the 1:2, 1:3 and 1:4 multiplex drive ratio) biasing voltages. The bias configuration for each of the multiplex drive ratios is given in Table 17. For additional information on LCD drivers refer to LCD driver components datasheets such as Phillips PCF8756. TABLE 17: LCD BIAS CONFIGURATIONS
MULTIPLEX DRIVE MODE
Static 1:2 1:2 1:3 1:4
# BACKPLANES
1 2 2 3 4
# LEVELS
2 3 4 4 4
BIAS CONFIGURATION
Static 1/2 1/3 1/3 1/3
Drive Mode Waveforms
The waveforms for the Static drive mode are given in Figure 14, page 37. The waveforms for the 1:2 Multiplex Drive Ratio–1/2 Bias are given in Figure 15, page 38. The waveforms for the 1:2 Multiplex Drive Ratio–1/3 Bias are given in Figure 16, page 39. The waveforms for the 1:3 Multiplex Drive Ratio are given in Figure 17, page 40. The waveforms for the 1:4 Multiplex Drive Ratio are given in Figure 18, page 41.
Revision B
Page 36
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
T Frame
VDD
Technical Specification
Backplane 0
VLCD
Driver Waveforms
Segment n On
VDD
VLCD
VDD
Segment n+1 Off
VLCD
+ VOPER
Segment On
0V
LCD Segment Waveforms On/Off
– VOPER
+ VOPER
Segment Off
0V
– VOPER
FIGURE 14: STATIC DRIVE MODE WAVEFORMS
Revision B
Page 37
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Backplane 0
Backplane 1
Driver Waveforms
Segment n
Segment n+1
LCD Segment Waveforms On/Off
Segment On
Segment Off
FIGURE 15: 1:2 MULTIPLEX DRIVE RATIO–1/2 BIAS WAVEFORMS
Revision B
Page 38
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
T Frame
Backplane 0
Backplane 1
Driver Waveforms
Segment n
Segment n+1
LCD Segment Waveforms On/Off
Segment On
Segment Off
FIGURE 16: 1:2 MULTIPLEX DRIVE RATIO–1/3 BIAS WAVEFORMS
Revision B
Page 39
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
T Frame
Backplane 0
Backplane 1
Driver Waveforms
Backplane 2
Segment n
Segment n+1
Segment n+2
Segment On
LCD Segment Waveforms On/Off
Segment Off
FIGURE 17: 1:3 MULTIPLEX DRIVE RATIO WAVEFORMS
Revision B
Page 40
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
T Frame
Backplane 0
Backplane 1
Driver Waveforms
Backplane 2
Backplane 3
Segment n
Segment n+1
Segment n+2
Segment n+3
LCD Segment Waveforms On/Off
Segment On
Segment Off
FIGURE 18: 1:4 MULTIPLEX DRIVE RATIO WAVEFORMS
Revision B
Page 41
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Registers Description
LCD controller /driver command and data are stored in a 21-byte × 8-bit, static display RAM with one control register and 20 data registers. The controller registers are defined in Table 18. TABLE 18: LCD CONTROLLER/DRIVER REGISTERS DESCRIPTION
FUNCTION
Controller Clock Enable Controller RESET Data Registers Control Register
ADDRESS
C200H C401H C801H to C814H C800H
BIT
0 All All All
REMARKS
1= Enable 0= Disable 0xFF = Reset Write only Read/Write
Control Register
The control-register bit definitions and functions are displayed in Table 19. The Type definitions are Static and Dynamic: Static bits update only after an external Reset and first chip select (first command write cycle). Dynamic bits can be updated at any time. TABLE 19: LCD CONTROLLER CONTROL REGISTER BIT FUNCTIONS
ADDRESS
C800H
BIT
NAME
UPDATE
FUNCTION
SETTINGS
0-1 M0 and M1 After Reset Only ( 0LSB)
Bits 0 (M0) and 1 (M1) set 00 = Static (5 seven-segment the multiplex drive ratio. digits) 01 = 1:2 (10 seven-segment digits) 10 = 1:3 (15 seven-segment digits) 11 = 1:4 (20 seven-segment digits) Sets the bias voltage. Sets LCD display operation. Bits 4 (X0), 5 (X1) and 6 (X2) set the refresh clock frequency. 0 = 1/2 1 = 1/3 0 = Disable 1 = Enable 000 = 52 Hz 001 = 104 Hz 010 = 156 Hz 011 = 208 Hz 100 = 62 Hz 101 = 125 Hz 110 = 178 Hz 111 = 250 Hz
2 3 4-6
B E X0 (LSB), X1 and X2
After Reset Only Anytime After Reset Only
7
C
Anytime
Sets the command operating mode.
0 = Continuous Data Reading 1= Command Only
Revision B
Page 42
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Data Registers
LCD display data is stored in a 20-byte × 8-bit RAM. The number of registers used depends on the number of digits displayed, 5, 10, 15 or 20. The data register bit definitions for a 20-digit display, for which the entire RAM is used, are shown in Table 20. TABLE 20: LCD CONTROLLER DATA REGISTER BIT DEFINITIONS – 20-DIGIT DISPLAY
Byte # 1 2 … 20 Address C801H C802H … C814H Bit 7 DP DP … DP Bit 6 g g … g Bit 5 f f … f Bit 4 e e … e Bit 3 d d … d Bit 2 c c … c Bit 1 b b … b Bit 0 a a … a
For other displays, Data Registers utilization is as follows: • For 15-digit command, write data to C801H to C80FH • For 10-digit command, write data to C801H to C80AH • For 5-digit command, write data to C801H to C805H Each byte in the register defines a seven-segment digit and decimal point (DP). Each bit of a register address corresponds to a segment of each digit, as shown in Figure 19. When the bit is set to 1, it is on. When it is set to 0, it is off. Figure 19 also shows the backplane outputs per LCD digit for each multiplex drive ratio.
BP 0
a f g b f g
BP 0
a
BP 1
BP 0
a
BP 0
a b g f g b
b
f
BP 1
e c
BP 2
c d DP
BP 1
e c d
BP 2
e
c d DP
e
d
DP
BP 3
DP
Static
1:2 M ultiplex
1:3 Multiplex
1:4 Multiplex
FIGURE 19: BACKPLANE OUTPUTS PER LCD DIGIT
Revision B
Page 43
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Operation
Initialization: At power on, the LCD controller performs the following operations: 1. Resets its backplane and segment outputs to VDD. After power on, the actual operating LCD voltage VOPER is set according to the multiplexing drive mode and the bias generator. 2. After reset, the LCD pins are routed to the Output function. To enable the LCD controller: 1. Enable the LCD controller clock source in Clock Enable register C200H: Set C200H, Bit 0 to 1. 2. Reset the LCD controller: Write FF to register C401H. 3. Set CFR addresses for LCD controller function: CFR addresses C101H to C10BH = 00H (Table 32, page 62). This enables LCD controller output pins (18 to 61) (Table 32, page 62; Table 1, page 9). Normal Operation: 4. Write data to LCD data registers C801H to C814H. 5. Set Write command in LCD control register C800H. 6. Repeat steps 4 and 5 for new data. The trigger for sending the data out to the display interface is: Programming the control register at address C800H AND writing data to the LCD data registers (C801H to C814H).
Revision B
Page 44
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
LED PARALLEL DISPLAY CONTROLLER
Features
• Supports up to 21 digits (7 segments + Decimal Point) • Power-save by LED refresh mechanism • Programmable-display data registers • Supports common-anode, seven-segment LED
Reg. Address
Seg a–1 Seg b–1 Seg c–1 Seg d–1 Seg e–1 Seg f–1 Seg g–1 DP–1 D101
a f g e d e DP d b f g e DP d
Functional Description
The LED display block diagram showing the relationship between the 21-digit LED display, the SOC-3000 LED controller and the data register is given in Figure 20. The LED Controller timing diagram is shown in Figure 21.
D104
a b g e DP d f g e DP d b f g e DP d
D102
a b f
D103
a
D105
a b f
D106
a b g e DP f
D107
a b g
c
c
c
c
c
c
c d DP
DIG 1
DIG 2 D109
a
DIG 3 D10A
a
DIG 4 D10B
a
DIG 5 D10C
a
DIG 6 D10D
a
DIG 7 D10E
a
Reg. Address
Seg a–2 Seg b–2 Seg c–2 Seg d–2 Seg e–2 Seg f–2 Seg g–2 DP–2
D108
a f g e d e DP b f
b g
f g e DP d
b
f g e DP d
b
f g e DP d
b
f g e DP d
b
f g e DP d
b
c
c d
c
c
c
c
c DP
DIG 1
DIG 2 D110
a
DIG 3 D111
a
DIG 4 D112
a
DIG 5 D113
a
DIG 6 D114
a
DIG 7 D115
a
Reg. Address
Seg a–3 Seg b–3 Seg c–3 Seg d–3 Seg e–3 Seg f–3 Seg g–3 DP–3
D10F
a f g e d e DP b f
b g
f g e DP d
b
f g e DP d
b
f g e DP d
b
f g e DP d
b
f g e DP d
b
c
c d
c
c
c
c
c DP
DIG 1
DIG 2
DIG 3
DIG 4
DIG 5
DIG 6
DIG 7
Seg a–1 Seg b–1 Seg c–1 Seg d–1 Seg e–1 Seg f–1 Seg g–1 DP–1
Seg a–2 Seg b–2 Seg c–2 Seg d–2 Seg e–2 Seg f–2 Seg g–2 DP–2
Seg a–3 Seg b–3 Seg c–3 Seg d–3 Seg e–3 Seg f–3 Seg g–3 DP–3
SOC–3000
FIGURE 20: LED PARALLEL DISPLAY CONTROLLER BLOCK DIAGRAM
Revision B
Page 45
DIG DIG DIG DIG DIG DIG DIG
1 2 3 4 5 6 7
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
SEGMENT
500 µs
500 µs
30 µs
30 µs
DIG 1
440 µs
60 µs
DIG 2 440 µs
FIGURE 21: LED PARALLEL DISPLAY CONTROLLER TIMING DIAGRAM
Registers Description
The LED controller registers are defined in Table 21. TABLE 21: LED PARALLEL DISPLAY CONTROLLER DRIVER REGISTERS DESCRIPTION
FUNCTION
Controller Clock Enable Controller RESET Semaphore Bit Data Registers
ADDRESS
C200H C402H D100H D101H to D115H
BIT
1 All 0 All
REMARK
1= Enable 0= Disable 0xFF = Reset Read only Write only
LED display data is stored in a 21-byte × 8-bit static display RAM. The display RAM has one Read-only semaphore register containing the semaphore byte and 21 Write-only data registers. All 22 bytes (one semaphore byte and 21 data bytes) must be written before any new data is applied.
Revision B
Page 46
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Semaphore Register
The Semaphore register bit definitions are shown in Table 22. TABLE 22: LED PARALLEL DISPLAY CONTROLLER SEMAPHORE REGISTER BIT DEFINITIONS
ADDRESS
D100H
BIT 7
X
BIT 6
X
BIT 5
X
BIT 4
X
BIT 3
X
BIT 2
X
BIT 1
X
BIT 0 (LSB)
E
Only Bit 0, the Semaphore bit, is active in the LED Controller control register (Table 23). The semaphore is used to synchronize the access to the control registers. TABLE 23: LED PARALLEL DISPLAY CONTROLLER SEMAPHORE REGISTER BIT FUNCTIONS
BIT
0
NAME
E
TYPE
Read-only
FUNCTION
Semaphore bit
SETTINGS
0 = Ready 1 = Busy
Data Registers
LED data is stored in a 21-byte × 8-bit RAM. The data is organized in three groups of seven digits, as follows: • Group 1: D101H to D107H - multiplexed on SEC A1 to DP1 Pins. • Group 2: D108H to D10EH - multiplexed on SEC A2 to DP2 Pins. • Group 3: D10FH to D115H - multiplexed on SEC A3 to DP3 Pins. The data register bit definitions for a 21-digit display are shown in Table 24. TABLE 24: LED PARALLEL CONTROLLER DATA REGISTER BIT DEFINITIONS
GROUP
1
BYTE #
1 2 3 to 7
ADDRESS
D101H D102H D103H to D107H D108H D109H D10AH to D10EH D10FH D110H D111H to D115H
BIT 7
DP DP DP DP DP DP DP DP DP
BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 (LSB)
g g g g g g g g g f f f f f f f f f e e e e e e e e e d d d d d d d d d c c c c c c c c c b b b b b b b b b a a a a a a a a a
2
8 9 10 to 14
3
15 16 17 to 21
Note: The trigger for sending the data to the display hardware is writing data to address D115H. Revision B Page 47 July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Operation
At power-on or reset the LED Parallel display controller is disabled. Initialization: To enable the LED Parallel display controller: 1. Enable the controller clock source in Clock Enable register C200H: Set C200H, Bit 1 to 1. 2. Reset the controller: Write FF to register C402H. 3. Set CFR addresses for LED Parallel display controller function: CFR addresses C103H to C109H = 55H, CFR address C10A = 15H (Table 32, page 62). These result in the following operations: • Enable LED parallel display controller output pins (22 to 52) (Table 32, page 62; Table 2, page 12). • Check semaphore bit in LED parallel display controller semaphore register at address D100H. Normal Operation: 4. If semaphore bit is Ready (Bit 0 set to 0), write data to Data register addresses D101H to D115H. 5. Set Write command: Write 01H to D100H. The trigger for sending the data out to the display serial interface is: • Programming the semaphore register at address D100H AND writing data to the 21 data registers (D101H to D115H). OR • Programming the semaphore register at D100H AND writing data to the last data register at D115H. As soon as the controller starts to send the data, it sets the semaphore bit to 1, indicating that it is busy. When the controller finishes data output, it resets the semaphore bit to 0, indicating that it is available for a new operation.
Revision B
Page 48
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
LED SERIAL INTERFACE DISPLAY CONTROLLER
Features
• • • • • Supports up to 24 digits Serial interface Programmable control-signal polarity Programmable data registers Supports common-anode, seven-segment LED
Functional Description
The LED Serial Interface display comprises three groups of eight digits. The controller diagram showing the division of the 24-byte register into three eight-byte groups and the operation cycle is given in Figure 22. The LED Serial Interface Display Controller timing diagram is shown in Figure 23. The clock rate is 2 MHz.
Group 1
Seg a Seg b Seg c Seg d Seg e Seg f Seg g DP
Digit 8
a f g e d e DP b f
Digit 7
a b g e DP f
Digit 6
a b g e DP f
Digit 5
a b g e DP f
Digit 4
a b g e DP f
Digit 3
a b g e DP f
Digit 2
a b g e DP f
Digit 1
a b g
c
c d
c d
c d
c d
c d
c d
c d DP
Group 2
Seg a Seg b Seg c Seg d Seg e Seg f Seg g DP
Digit 8
a f g e d e DP b f
Digit 7
a b g e DP f
Digit 6
a b g e DP f
Digit 5
a b g e DP f
Digit 4
a b g e DP f
Digit 3
a b g e DP f
Digit 2
a b g e DP f
Digit 1
a b g
c
c d
c d
c d
c d
c d
c d
c d DP
Group 3
Seg a Seg b Seg c Seg d Seg e Seg f Seg g DP
Digit 8
a f g e d e DP b f
Digit 7
a b g e DP f
Digit 6
a b g e DP f
Digit 5
a b g e DP f
Digit 4
a b g e DP f
Digit 3
a b g e DP f
Digit 2
a b g e DP f
Digit 1
a b g
c
c d
c d
c d
c d
c d
c d
c d DP
Cycle 1
0
0
0
0
0
0
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Digit 1 Cycle 8
1 0 0 0 0 0 0 0 X X X
Group 1
X X X X X X X X
Group 2
X X X X X X X X
Group 3
X X X X X
The controller transmits cycles 1 to 8 continuously.
FIGURE 22: LED SERIAL INTERFACE DISPLAY BLOCK DIAGRAM
Revision B
Page 49
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
20 µs
BLAN / K
BLANK
20 µs
t = 400 µs
STR OBE /
STR OBE
20 µs
t1 = 8 µs
CLO / CK DATA
CLOCK
FIGURE 23: LED SERIAL INTERFACE CONTROLLER TIMING DIAGRAM
Registers Description
The LED Serial controller registers description is given in Table 25. TABLE 25: LED SERIAL CONTROLLER DRIVER REGISTERS DESCRIPTION
FUNCTION
Controller Clock Enable Controller RESET Semaphore register Data Registers Group 1 Group 2 Group 3 Control Register
ADDRESS
C200H C403H D201H D201H to D208H D209H to D210H D211H to D218H D200H
BIT
5 All 1= Enable 0= Disable
REMARKS
0xFF = Reset Read only Write Only Write Only Write Only Read/Write
LED data is stored in a 24-byte × 8-bit static display RAM. The data registers are divided into three groups, each group containing eight bytes with the segment data for eight digits. Thus, the LED display can be formatted to display eight, 16 or 24 digits. The display RAM has one Read/Write control register containing the Command byte and a Read-only semaphore byte that informs the system if the display is Busy or Ready to initiate writing of LED data. The semaphore byte address also serves as first address of the Write-only data register. The trigger for sending the data out to the display serial interface is programming the control register at address D200H. As soon as the controller starts to send data, it sets the semaphore byte to FFH, indicating that it is busy. The data is sent serially, Group 1 Digit 8 (left-most digit of the first group) mostsignificant bit (MSB) first, and continuously until Group 3 Digit 1 least-significant bit (LSB) last.
Revision B
Page 50
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
When the controller has finished data output, it resets the semaphore byte to 0, indicating that it is available for a new operation.
Control Register
The definitions and functions of the control-register Command-byte bits are displayed in Table 26. TABLE 26: LED SERIAL INTERFACE DISPLAY CONTROL REGISTER BIT FUNCTIONS
ADDRESS
D200H
BIT
0C (LSB) 1 2 3 4 5 6 7 X
NAME
FUNCTION
Command bit N/A Sets the Blank polarity. Sets the Strobe polarity. Sets the Clock polarity. Enables and disables the display.
SETTINGS
0 = Command Only 1 = Command + Data Don’t Care 0 = Negative Logic 1 = Positive Logic 0 = Negative Logic 1 = Positive Logic 0 = Negative Logic 1 = Positive Logic 0 = Disable Display 1 = Enable Display
Blank Polarity Strobe Polarity Clock Polarity E Block N/A
0 = Close communication Opens communication or blocks the hardware communication lines. 1 = Open communication N/A Don’t Care
Semaphore Register
The semaphore byte is located at address D201H, which is the first address of the Write-only data register. This address is Read-only for the semaphore byte. The semaphore byte bit definitions are identical. The settings are: • Controller is Busy: Bits 0 to 7 set to 1 (FFH). • Controller is Ready: Bits 0 to 7 set to 0 (00H).
Revision B
Page 51
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Data Registers
The display data is stored in a 24-byte × 8-bit RAM area. The data register bit definitions for a 21-digit display are shown in Table 27. The registers are Write-only. TABLE 27: LED SERIAL INTERFACE DISPLAY DATA REGISTER BIT DEFINITIONS
GROUP DIGIT BYTE ADDRESS BIT 7 BIT 6 # # (MSB) #
1 8 7 6 5 4 3 2 1 2 8 7 6 5 4 3 2 1 3 8 8 8 8 8 8 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 D201H D202H D203H D204H D205H D206H D207H D208H D209H D20AH D20BH D20CH D20DH D20EH D20FH D210H D211H D212H D213H D214H D215H D216H D217H D218H DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP g g g g g g g g g g g g g g g g g g g g g g g g
BIT 5
f f f f f f f f f f f f f f f f f f f f f f f f
BIT 4
e e e e e e e e e e e e e e e e e e e e e e e e
BIT 3
d d d d d d d d d d d d d d d d d d d d d d d d
BIT 2
c c c c c c c c c c c c c c c c c c c c c c c c
BIT 1 BIT 0 (LSB)
b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a a a a a a a a a a a A a a a a a a a
Revision B
Page 52
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Operation
At power-on or reset the LED Serial Interface display controller is disabled. Initialization: To enable the LED Serial Interface display controller: 1. Enable the controller clock source in Clock Enable register C200H: Set C200H, Bit 5 to 1. 2. Reset the controller: Write FF to register C403H. 3. Check CFR address for LED serial Interface display controller function: CFR address C101H = AA (Table 32, page 62). This results in the following operations: • Enables serial controller output pins (58 to 61) (Table 32, page 62) • Check semaphore byte at address D201H. Normal Operation: 4. If semaphore byte is Ready (Bits 0 to 7 set to 0), write data to Data register addresses D201H to D218H. 5. Set Write command at the controller Control register address D200H. 6. Repeat steps 4 and 5 for new data.
Revision B
Page 53
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
PROGRAMMABLE FREQUENCY CONTROLLER
Features
• Programmable CPU clock frequency: 16, 8, 4, 2, 1 or 0.5 MHz • Driven by a 16-MHz resonator or crystal oscillator
Functional Description
Dividing the 16-MHz frequency source according to the control register setting generates the CPU clock frequency. The CPU clock can be set to 16, 8, 4, 2, 1 or 0.5 MHz.
Functions
• Generates independent clocks for the CPU and Switching CPU frequency: controllers (ADC converter, display, • To switch from the 16-MHz frequency to any keyboard, watchdog timer, etc.) other frequency, program the frequencycontroller control register as shown in Clock Generator Block Diagram Table 28. The clock generator block diagram is presented in • To switch from any frequency (other than Figure 24. 16 MHz) to another frequency, first switch to 16 MHz and then switch to the desired frequency.
16 MHz Clock
16 MHz (Default)
1/2
8 MHz
1/2
4 MHz
1/2
2 MHz
1/2
1 MHz
1/2
0.5 MHz
FIGURE 24: CLOCK GENERATOR BLOCK DIAGRAM
Revision B
Page 55
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Operation
At Power on or Reset, the CPU frequency clock output is set to 16 MHz. The clocks for the controllers is fixed and derived directly from the external frequency source. The Frequency controller setting derives the CPU clock, as defined in Table 28.
Control Registers Description
The clock frequency is programmed from a single 8-bit control register. The address of the clock frequency control register is E800H. The bit settings at E800H that define the clock frequency are given in Table 28. TABLE 28: CLOCK FREQUENCY CONTROL REGISTER BIT SETTINGS
ADDRESS
E800H
BIT 7
BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
(LSB) Don’t Care 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1
CPU CLOCK
16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 0.5 MHz
Revision B
Page 56
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
WATCHDOG TIMER
Functions
The purpose of the watchdog timer is to generate a CPU reset at specified intervals. If the SOC-3000 software does not interrupt the watchdog cycle and instead enters an erroneous state, the watchdog time carries out its CPU reset one second after the software was supposed to make its interrupt. The erroneous state may be due to a programming error. The watchdog may be disabled or retriggered via its control register.
Functional Description
The operating parameters of the watchdog timer are presented in Table 29.
TABLE 29: WATCHDOG TIMER OPERATING PARAMETERS
PARAMETER
Time Constant Trigger Enable/Disable Power Up Mode 1 second By the control register (WDI) By the control register (ENWD) Disabled
VALUE
Operation
The application software controls the watchdog operation. It is automatically disabled in the In-circuit Emulator (ICE) mode and after power-up or reset. The application software should activate the watchdog as soon as it starts normal operation after power-on or reset conditions. The watchdog timer should be periodically re-triggered during normal operation, before the timer expires. Expiration of the watchdog timer resets the CPU. If required, disabling the watchdog timer clock input can disable the watchdog. Table 30 describes the operation of the watchdog timer. TABLE 30: WATCHDOG TIMER COMMAND SEQUENCE
# COMMAND
C200H F800H C200H
ADDRESS
BIT
3 all 3
SETTING
1= Enable 0= Disable FFH 0
1 Enable Watchdog 2 Re-trigger Timer 3 Disable Watchdog
Control Registers Description
Setting the Clock Enable register (C200H), bit 3 to 1 enables the watchdog timer. Setting the Clock Enable register (C200H), bit 3 to 0 disables the watchdog timer. Writing FFH to address F800H re-triggers the watchdog. Revision B Page 57 July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
LOW VOLTAGE DETECTOR
The low voltage detector is a supervisory circuit in which the Power Fail Input (Vdet) is compared to an internal 2.23 V reference (Figure 25). The comparator output goes low when the voltage at Vdet is less than or equal to 2.23 V and Bit 1 of register E400H equals 0. Vdet is usually driven by an external voltage divider, which senses the unregulated DC input to the system 5V regulator. The voltage divider ratio can be chosen such that the voltage at Vdet falls below 2.23 V several milliseconds before the +5V supply falls below 4.75V. INT0 is normally used to interrupt the microprocessor so that data can be stored in non-volatile memory before VCC falls below 4.75 V and the RESET output goes low. The Power Fail Comparator output returns to High when Vdet>2.27V.
DC Unreg.
Vin
REG
VCC
Recom ended m Values for Resistors
1% 133K
R1
Vdet
SOC-3000 Power Fail Comparator
+
INTØ
1% 100K
R2
–
INTØ INTØ
5.19V (Typ.) 5.3V (Typ.)
INTØ goes low if Vdet < 2.23V.
FIGURE 25: LOW VOLTAGE DETECTOR
Interrupt Register
The address of the power-supply interrupt register is E400H (Read/Write). The bit settings at E400H that define the power failure interrupt and flag are given in Table 31. TABLE 31: POWER-FAILURE INTERRUPT REGISTER BIT SETTINGS
ADDRESS BIT BIT BIT BIT BIT BIT BIT 1 BIT 0 (LSB) 7 6 5 4 3 2 POWER FAIL FLAG INTERRUPT ENABLE
E400H Don’t Care 0 = If VDET < VREF 1 = Normal 0 = Enabled 1 = Disabled
Revision B
Page 59
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Revision B
Page 60
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
CONFIGURATION REGISTERS (CFR)
Programming the configuration registers (CFR) in the CPU sets the SOC-3000 pin functions. The CFR registers include control and configuration registers that provide the interface between the CPU and the other on-chip peripherals, such as the keyboard, LED and LCD controllers and input/output ports. Each peripheral operates as designated in the CFR registers, where each register may be programmed to perform alternative functions. (See “Examples of Pin Configuration Programming”, on page 85). The complete CFR-register bit assignment for all peripherals and input/output and corresponding PLCC-84 pins are given on the following pages in Table 32.
Revision B
Page 61
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
TABLE 32: CFR BIT ASSIGNMENT
PLCC-84 PIN
61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 C106H C105H C104H C103H C102H
REG ADD.
C101H
BIT
7-6 5-4 3-2 1-0 7 6 5-4 3-2 1-0 7-6 5-4 3-2 1-0 7-6 5-4 3-2 1-0 7-6 5-4 3-2 1-0 7-6 5-4 00=LCD Display S40 00=LCD Display S39 00=LCD Display S38 00=LCD Display S37 0=LCD Display S36 0=LCD Display S35 00=LCD Display S34 00=LCD Display S33 00=LCD Display S32 00=LCD Display S31 00=LCD Display S30 00=LCD Display S29 00=LCD Display S28 00=LCD Display S27 00=LCD Display S26 00=LCD Display S25 00=LCD Display S24 00=LCD Display S23 00=LCD Display S22 00=LCD Display S21 00=LCD Display S20 00=LCD Display S19 00=LCD Display S18
BIT SETTINGS PER FUNCTION
10=LED-SI-BLANK 10=LED-SI- STROBE 10=LED-SI- STROBE 10=LED-SI- CLK 1=OUT 12.4 1=OUT 12.3 10=OUT 12.2 10=OUT 12.1 10=OUT 12.0 01=LED Display DIG 7 01=LED Display DIG 6 01=LED Display DIG 5 01=LED Display DIG 4 01=LED Display DIG 3 01=LED Display DIG 2 01=LED Display DIG 1 01=LED Display SEG DP3 01=LED Display SEG G3 01=LED Display SEG F3 01=LED Display SEG E3 01=LED Display SEG D3 01=LED Display SEG C3 01=LED Display SEG B3 10=OUT 9.2 10=OUT 11.3 10=OUT 11.2 10=OUT 11.1 10=OUT 11.0 10=OUT 10.0 11=OUT 13.3 11=OUT 13.2 11=OUT 13.1 11=OUT 13.0
NOTES
SI = Serial Interface
CLK = Clock
DIG = Digit
SEG = Segment DP = Decimal Point
Revision B
Page 62
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
PLCC-84 PIN
38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
REG ADD.
BIT
3-2 1-0 00=LCD Display S17 00=LCD Display S16 00=LCD Display S15 00=LCD Display S14 00=LCD Display S13 00=LCD Display S12 00=LCD Display S11 00=LCD Display S10 00=LCD Display S9 00=LCD Display S8 00=LCD Display S7 00=LCD Display S6 00=LCD Display S5 00=LCD Display S4 00=LCD Display S3 00=LCD Display S2 00=LCD Display S1
BIT SETTINGS PER FUNCTION
01=LED Display SEG A3 01=LED Display SEG DP2 01=LED Display SEG G2 01=LED Display SEG F2 01=LED Display SEG E2 01=LED Display SEG D2 01=LED Display SEG C2 01=LED Display SEG B2 01=LED Display SEG A2 01=LED Display SEG DP1 01=LED Display SEG G1 01=LED Display SEG F1 01=LED Display SEG E1 01=LED Display SEG D1 01=LED Display SEG C1 01=LED Display SEG B1 01=LED Display SEG A1 10=OUT 6.2 10=OUT 6.1 10=OUT 6.0 10=OUT 5.2 10=OUT 5.1 10=OUT 5.0 10=OUT 8.1 11=OUT 8.0 11=OUT 7.3 11=OUT 7.2 11=OUT 7.1 11=OUT 7.0 11=OUT 6.3 10=OUT 9.1 10=OUT 9.0 11=OUT 8.3 11=OUT 8.2
NOTES
C107H
7-6 5-4 3-2 1-0
C108H
7-6 5-4 3-2 1-0
C109H
7-6 5-4 3-2 1-0
C10AH
5-4 3-2 1-0
Revision B
Page 63
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
PLCC-84 PIN
21 20 19 18 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 74
REG ADD.
C10BH
BIT
6-5 4-3 2 1-0 00=BP4 00=BP3 0=BP2 00=BP1 FFH 0=I.O 15.7 0=I.O 15.6 0=I.O 15.5 0=I.O 15.4 0=I.O 15.3 0=I.O 15.2 0=I.O 15.1 0=I.O 15.0 0=I.O 14.7 0=I.O 14.6 0=I.O 14.5 0=I.O 14.4 0=I.O 14.3 0=I.O 14.2 0=I.O 14.1 0=I.O 14.0 1=KIN0 1=KIN1 1=KIN2 1=KIN3 1=KIN4 1=KIN5 1=KIN6 1=KIN7 01=VPP
BIT SETTINGS PER FUNCTION
10=OUT 4.3 10=OUT 4.2
NOTES
BP = Backplane
1=OUT 4.1 10=OUT 4.0 Must be always 0xFF KIN = Keyboard In I.O = Input/Output
C10CH C10DH
7-0 7 6 5 4 3 2 1 0
C10EH
7 6 5 4 3 2 1 0
1=KOUT0 1=KOUT1 1=KOUT2 1=KOUT3 1=KOUT4 1=KOUT5 1=KOUT6 1=KOUT7
KOUT = Keyboard Out
Revision B
Page 64
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
SPECIAL FUNCTION REGISTERS (SFR)
The SOC-3000/i includes Special Function Registers (SFR) that enable the device hardware controllers and reset them. Each controller description details its specific SFR operation. This section details all the SFR registers and functions. All these registers are mapped as XDATA memory area.
Global Configuration Register
Register 0C100H is used as a general enable/disable of pin allocation to all the hardware controllers in the SOC-3000/i. Upon power-up or reset this register is cleared, disabling all the hardware controllers. Writing 0xFF to the register activates the allocation of pins to hardware controller, as defined by programming the CFR registers. TABLE 33: GLOBAL CFR REGISTER
ADDRESS
C100H
FUNCTION
Enable / Disable pin allocation
REMARKS
0x00 – Enable 0xFF - Disable
Operation
1. Upon power-up or reset, the Global CFR register is set, disabling all pin allocation to the hardware controllers. 2. Initialize the CFR registers according to the required hardware configuration as described in section “
Revision B
Page 65
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Configuration Registers (CFR)” page 61. 3. Initialize the hardware controllers. 4. Enable the Global CFR Register: Write 0x00 to address C100H.
Controllers Clock Enable Register
Register C200H controls the clock source to the hardware controllers in the SOC-3000/i. Each controller operation may be disabled by inhibiting its clock. TABLE 34: CLOCK ENABLE REGISTER
ADDRESS
C200H
BIT 7
ADC
BIT 6
0
BIT 5
SLED
BIT 4
0
BIT 3
WDT
BIT 2
KBD
BIT 1
PLED
BIT 0 (LSB)
LCD
Revision B
Page 66
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
TABLE 35: CONTROLLERS CLOCK ENABLE REGISTER BIT FUNCTIONS
BIT
0 (LSB) 1 2 3 4 5 6 7
NAME
LCD PLED KBD W DT SLED AD
TYPE
R ead- Write
FUNCTION
Enable LCD display controller clock
SETTINGS
0 = Disable 1 = Enable 0 = Disable 1 = Enable 0 = Disable 1 = Enable 0 = Disable 1 = Enable Always 0. 0 = Disable 1 = Enable Always 0. 0 = Disable 1 = Enable
R ead-Write Enable parallel LED display controller
clock
R ead-Write Enable keyboard controller clock R ead-Write Enable watch-dog timer clock R ead-Write None. Set always to 0. R ead-Write Enables serial LED display controller R ead-Write None. Set always to 0. R ead-Write Enables ADC controller clock
Controllers RESET Registers
The SFRs listed in Table 36 provides the mechanism to reset the hardware controllers of the SOC-3000/i. TABLE 36: CONTROLLERS RESET REGISTER
ADDRESS
C400H C401H C402H C403H C406H
TYPE
FUNCTION
SETTINGS
0xFF = Reset 0xFF = Reset 0xFF = Reset 0xFF = Reset 0xFF = Reset
Write only Keyboard controller reset Write only LCD display controller reset Write only Parallel LED display controller reset Write only Serial LED display controller reset Write only ADC controller reset
Revision B
Page 67
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Revision B
Page 68
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
I/O OPERATION
I/O operation is determined by the configuration registers (CFR) programming. The I/O ports are composed of two groups: • Byte-Oriented Output Ports – Data written to the port is byte oriented (writing FFH to the port will set it to HIGH, and writing 00H to the port will set it to LOW). • Bit-Oriented Input/Output (I/O) Ports – Data written to the port is byte oriented (FFH–to set the port, 00H–to reset the port). Data read from the port is bit-oriented (only the port allocated bit is set/reset). Table 44, the I/O ports groups, addresses and corresponding PLCC-84 pins are described in Table 37 and Table 38. TABLE 37: BIT-ORIENTED I/O PORTS ADDRESSES, PIN AND BIT ASSIGNMENT
PLCC-84 PIN I/O PORT NAME PORT ADDRESS
F22A F22B F22C F22D F22E F22F F230 F231 F232 F233 F234 F235 F236 F237 F238 F239
BIT ASSIGNMENT (LSB)
0000000x 000000x0 00000x00 0000x000 000x0000 00x00000 0x000000 x0000000 0000000x 000000x0 00000x00 0000x000 000x0000 00x00000 0x000000 x0000000
5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 74
I.O 15.7 I.O 15.6 I.O 15.5 I.O 15.4 I.O 15.3 I.O 15.2 I.O 15.1 I.O 15.0 I.O 14.7 I.O 14.6 I.O 14.5 I.O 14.4 I.O 14.3 I.O 14.2 I.O 14.1 I.O 14.0
TABLE 38: BYTE-ORIENTED OUTPUT PORTS ADDRESSES AND PIN ASSIGNMENT
PLCC-84 PIN
61 60 59
I/O FUNCTION
OUT 13.3 OUT 13.2 OUT 13.1
PORT ADDRESS
F205 F206 F207
Revision B
Page 69
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
PLCC-84 PIN
58 57 56 55 54 53 52 51 50 49 48 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18
I/O FUNCTION
OUT 13.0 OUT 12.4 OUT 12.3 OUT 12.2 OUT 12.1 OUT 12.0 OUT 11.3 OUT 11.2 OUT 11.1 OUT 11.0 OUT 10.0 OUT 9.2 OUT 9.1 OUT 9.0 OUT 8.3 OUT 8.2 OUT 8.1 OUT 8.0 OUT 7.3 OUT 7.2 OUT 7.1 OUT 7.0 OUT 6.3 OUT 6.2 OUT 6.1 OUT 6.0 OUT 5.2 OUT 5.1 OUT 5.0 OUT 4.3 OUT 4.2 OUT 4.1 OUT 4.0
PORT ADDRESS
F208 F209 F20A F20B F20C F20D F20E F20F F210 F211 F212 F213 F214 F215 F216 F217 F218 F219 F21A F21B F21C F21D F21E F21F F220 F221 F222 F223 F224 F225 F226 F227 F228
Revision B
Page 70
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
8051-COMPATIBLE ON-CHIP PERIPHERALS
This section describes the standard 8051 peripheral devices available to the user. These functions are fully compatible with the standard 8051 CPUs and are controlled via the standard 8051 Special Function Registers (SFRs).
Parallel I/O Ports
Some of the parallel I/O ports of the 80C51TBO core are available on the SOC-3000 pins. Most of the ports are already allocated to specific functions. However, the application design may require allocating different functions to these pins. Table 39 list the available pins, 80C51 I/O port, default function and special precaution needed when changing the function of the pin. TABLE 39: AVAILABLE PINS ON THE 80C51 I/O PORT
PIN #
7 8 9 14 15 16
80C51 PORT
P1.7 P1.5 P1.4 P3.4 / Timer 0 P3.5 / Timer 1 P1.6
DEFAULT FUNCTION
Buzzer None None None None None
SPECIAL PRECAUTIONS
After power-up the SOC-3000 asserts 3 pulses on this pin
Used in CybraTech application for power-off control in low-power applications Used in CybraTech application for detecting power source (AC/Battery) Used in CybraTech application to control LCD electro-luminescent backlight operation
The I/O ports are controlled and accessible using the 80C51TBO Special Function Registers as described in its device specification.
Timers/Counters
The 80C51 Timers/Counters external inputs are available for use on SOC-3000 pin #14 (Timer 0) and pin #15 (Timer 1). Using the timers is via the 80C51 Special Function Registers (SFRs) as described in the 80C51TBO specification.
Revision B
Page 71
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Revision B
Page 72
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
SOC-3000 INITIALIZATION
At power-up or after RESET the SOC-3000 performs the following procedures: • Disabling all the peripheral controllers of the ASIC. • Setting the CFR and control registers to their default values. • Start the boot program (ROM mask in the chip) that checks if the chip is programmed or not. If the chip is programmed it starts running the program starting at address 1000H. Otherwise, it toggles the buzzer signal (pin 7) HIGH/LOW three times to signal that the chip is erased and waits for software download via the serial communication port. To initialize the SOC-3000: 1. Program the SOC-3000 pin configuration in the CFR registers. • For general pin configuration for an LCD display, refer to Table 1, page 9. For a quick reference, refer to Table 4, page 18. • For general pin configuration for a LED display, refer to Table 2, page 12. For a quick reference, refer to Table 5, page 19. • For CFR bit assignment, refer to Table 32, page 62. For examples of CFR bit assignment, refer to “Example of Pin Configuration Programming”, on page 85. 2. Initialize the peripheral controllers used by the application. 3. Write 0x00 to the global CFR register at address C100H. This activates all CFR registers and completes SOC-3000 initialization.
Revision B
Page 73
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
SOC-3000 HARDWARE DESIGN CONSIDERATIONS AND PERIPHERAL INTERFACE CONNECTIONS
Load Cell Interface
The SOC-3000 supports a wide range of load-cell connection configurations, each based on various combinations of the following connection options: • 4-wire or 6-wire interface • Up to eight load cells connected in parallel • Load cell impedance range of 350 to 1000 ohms Individually and in combination, these connection options enable the SOC-3000 to function on a wide range of application platforms, each having different power consumption and system configuration requirements, while using the same electronic hardware.
4-Wire and 6-Wire Interfaces
The SOC-3000 interface to the load cell carries the following electrical signals: • SIG + (Signal Input +) • SIG – (Signal Input –) • SEN + (Excitation voltage / Sense input +) • SEN – (Excitation voltage / Sense input –) A typical 4-wire load-cell connection, in which the distance between the load cells and the SOC-3000 chip is small, as in a standard retail scale, is shown in Figure 26. However, in platforms requiring long wires between the load cell and the electronic hardware, such as weighing bridges, the voltage drop over the cables is significant and affects accuracy. The 6-wire interface eliminates this error factor by using the sense wires, as shown in Figure 27. The sense wires serve as a reference for the ADC converter, thus eliminating the voltage drop over the long excitation-voltage wires.
Revision B
Page 75
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Load Cell Cable (4-Wires)
Regulated 5V
Reg.
Unregulated Power
73 AVcc 72 SEN + 71 SIG + 70 SIG 69 SENAGND 68
SOC-3000
FIGURE 26: 4-WIRE LOAD-CELL CONNECTION
Load Cell Cable (6-Wires) Regulated 5V Sense Wire 73 AVcc 72 SEN + 71 SIG + 70 SIG 69 SENAGND 68 Unregulated Power
Reg.
SOC-3000
Sense Wire
AGND
FIGURE 27: 6-WIRE LOAD-CELL CONNECTION
Revision B
Page 76
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Load Cells Connected in Parallel
The SOC-3000 may be connected to up to eight load cells connected in parallel. Multiple load cells are required in heavy load applications, such as weigh bridges, that require from two to eight load cells. Load cells connected in parallel typically result in lower output impedance, which decreases in direct proportion to the number of load cells. This results in a higher excitation current and higher sensitivity to factors that throw load cells out of balance. The SOC-3000 eliminates this problem with its high Common Mode Rejection Ratio (CMRR), which allows the connection of a large number of load cells (up to eight) without losing measurement accuracy. The multiple load-cell connection is shown in Figure 28.
IMPORTANT
The load cells should be matched before connecting them to the SOC-3000 to ensure the same initial offset, span and impedance. This will eliminate error factors that are beyond the control of SOC-3000 electronics.
NOTE
These large weighing platforms may also require a 6-wire interface connection, as described above, on page 75.
LO AD Cells Connection Regulated 5V 73 AVcc ( ) Output
JUNCTION BOX
* Trimming
72 SEN + 71 SIG + 70 SIG -
Up to 8 Load Cells ( ) Zero Offset
SOC-3000
* Trimming
69 SENAG ND 68
AGND
FIGURE 28: MULTIPLE LOAD-CELL CONNECTION
Revision B
Page 77
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Load Cell Impedance
Most load cells have output impedance of 350 ohms. However, in power-restricted applications, load cells of higher impedance, typically a 1000-ohm bridge, are used to reduce the cell’s power consumption. The SOC-3000 CMRR minimizes the error resulting from this high bridge impedance and ensures full and accurate performance under this limiting condition. The result is economical power consumption without sacrificing weighing accuracy.
Keyboard Interface
The SOC-3000 supports direct connection of a keyboard of up to 64 keys arranged in an 8 × 8 matrix. The hardware interface with an example of a scale keyboard is shown in Figure 29. The keyboard controller (“Keyboard Controller”, page 31) automatically scans the matrix by asserting a high signal on the output lines (KOUT 0 to 7) and reading the input lines (KIN 0 to 7). The key hardware code, which is the code returned by the keyboard controller when the key is pressed, is shown in Figure 12, page 31. The keyboard controller has a programmable anti-bounce mechanism, in which different delays can be programmed to avoid erroneous key activation due to bouncing of the keys. The delay can be set to a discrete value from 4 to 18 milliseconds, in two-millisecond increments. For programming the anti-bounce mechanism, see Table 14, page 32.
Scale Keyboard
KOUT7
/ 7 4 1
* 8 5 2 0 W S X
9 6 3 Enter E D C
+ ± % = ◊ R F V
F1 F2 F3 F4
Bsp
F5 F6 F7 F8 Esc Y H N CM M+ O U J M CE MR P I K L
KOUT6
KOUT5
KOUT4
KOUT3
.
Q A Z
KOUT2
T G B
KOUT1
KOUT0
74
75
76
77
78
79
80
81
82 KIN7
83 KIN6
84 KIN5
1 KIN4
2 KIN3
3 KIN2
4 KIN1
5 KIN0
PIN # Signal
FIGURE 29: KEYBOARD INTERFACE
Revision B
Page 78
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
LCD Display Interface
The SOC-3000 interface supports LCD displays as follows: • Up to four backplanes, each driving 40 LCD segments • Static, 1/2-bias and 1/3-bias display options • Electro-luminescent (EL) lighting control The hardware interface is shown in Figure 30. The SOC-3000 is equipped with bias generators with voltage-followers buffers that generate the LCD bias voltages and backplane multiplexing signals. Thus, LCD displays can be directly connected to the SOC-3000 without any external component.
LCD DISPLAY
Backplane Multiplexer 1 2 3 4 1 2
Segment Inputs 40
PIN # Signal
18 19 20 21
22 23
61 S40
(Up to 4 Backplanes)
(Up to 40 Segments)
SOC-3000
FIGURE 30: LCD DISPLAY INTERFACE
Revision B
Page 79
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
LED Display Interface
The SOC-3000 interface supports LED displays as follows: • Up to 21 digits each comprising eight segments–seven-segment digit plus Decimal Point (DP) • Three digit groups, Weight, Price, and Total • Automatic hardware refresh mechanism to reduce power consumption The hardware interface is shown in Figure 31. The LED display is directly connected to the SOC-3000 with the addition of only the LED display drivers.
Pin 46 . . . . . Pin 52
Digit Driver (ULN2003)
HiCurrent Drivers (DY9953)
Pin 22 . . . . . Pin 45
A3-G3,DP3 A2-G2,DP2 A1-G1,DP1 Segment Drivers (ULN2003) 8 8 8
FIGURE 31: LED PARALLEL DISPLAY INTERFACE
External Interrupt Sources
External interrupt sources may be connected to the SOC-3000 using the following pins: a. Vdet / INT0~. b. P3.4 / Timer-counter 0 input. c. P3.5 / Timer-counter 1 input.
Using the Vdet input:
The Vdet input is connected to INT0 of the 80C51TBO core. In battery-operated equipment this input is connected to the battery voltage divider and used to detect low battery voltage.
Revision B
Page 80
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Other interrupt sources may be connected to this input using open-collector drivers operating in negative logic mode (‘0’ is active interrupt). A low voltage input triggers the INT0. The application software applies a mechanism to determine whether the interrupt was generated by low battery voltage or by other interrupt source.
Using Timer0 and Timer1 inputs:
SOC-3000 pin #14 is connected to the 80C51 Timer 0 input and pin #15 is connected to Timer1 input. These inputs may be used for counting or timer operations, or as additional interrupt inputs to the device. Using these inputs as interrupt inputs requires that the appropriate timer be set to 0xFE. The next event causes the counter to increase to 0xFF and triggers the Timer 0 (or timer 1) interrupt.
I2C-Compatible Interface
The SOC-3000 may supports a 2-wire I2C compatible serial interface. The I2C-compatible interface shares its pins with the CPU I/O pins (P1.4, P1.5) and is implemented in software. Table 40 provides the hardware interface information: TABLE 40: I2C-COMPATIBLE INTERFACE HARDWARE INTERFACE
PIN#
8 9
NAME
SDATA SCLOCK Serial Data I/O pin Serial Clock pin
DESCRIPTION
Power Saving Schemes
SOC-3000/i provides several means for power saving for battery-operated systems: a. Set the CPU to IDLE or POWERDOWN operating modes – see detailed description in the M8051TBO Technical Specification, Power Management section. b. Disable unused hardware controllers – by disabling the controller clock via the “Controllers Clock Enable Register (C200H)”, see tables 33 and 34. c. Reduce the CPU frequency to minimum while idle by using the Frequency Controller. The CPU frequency may be increased on the fly to 16MHz when an interrupt or an event occurred. d. Switch the power to the load cell using the I/O pins of the SOC and an external switch.
Revision B
Page 81
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Grounding and Board Layout Recommendations
As with all high-resolution data converters, special attention must be paid to grounding and to the PCB layout of SOC-3000 based designs in order to achieve optimum performance from the Analog-To-Digital Converter. Four-layer boards are recommended where the outer layers are ground layers covering the whole surface, and the inner layers are used for routing the signal lines. The same ground plane should be used for both the digital and analog grounds. Keep all ground connection as short as possible. Make sure that the return paths of the signals are as close as possible to the paths that the currents took to reach their destinations. Avoid digital signals flowing under the analog components area. Wherever possible, avoid large discontinuities in the ground plane, since they force the return signals to travel on a longer path. An example of correct implementation is routing all signals through the inner layers and keeping the outer layers for ground. If you plans to connect fast logic signals (rise/fall time < 5ns) to any of the SOC-3000 digital inputs, add a series resistor to each relevant line in order to keep rise and fall times longer than 5ns at the SOC-3000 input pins. A value of 100 Ω or 200 Ω is usually sufficient to prevent high-speed signals from capacitive coupling into the SOC-3000 and affecting the accuracy of the ADC.
Revision B
Page 82
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
IN-CIRCUIT EMULATOR (ICE) SYSTEM
The In-Circuit Emulator (ICE-3000) system provides full emulation of the SOC-3000 device. It includes a plug-in pod that replaces the SOC-3000 device thus enabling full emulation of the device in the target board. It emulates the SOC-3000 device in real-time simplifying the hardware-software integration process. The ICE-3000 is composed of 3 elements: a. DS-51 emulator. b. SOC-3000 Personality Probe. c. Windows-based software debugger. The system enables you to access all SOC-3000 device registers and memory locations and debug the application using free run or breakpoints and single step execution control.
Revision B
Page 83
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Revision B
Page 84
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
EXAMPLES OF PIN CONFIGURATION PROGRAMMING
The following pages show examples of pin configuration programming, as follows: • Example 1 shows a 20-digit LCD display and an 8×8 keyboard. • Example 2 shows a 16-digit LCD display, an 8×4 keyboard, 8 output ports and 4 I/O ports. • Example 3 shows a 21-digit LED Parallel display, an 8×8 keyboard and 13 output ports. • Example 4 shows the pin programming for all output and I/O ports.
Example 1: Configuring a 20-digit LCD Display and an 8x8 Keyboard
• 20-digit LCD display support implies allocation of the whole LCD driver output pins to the LCD display, using 4 backplanes and 40 segments. Thus, pins 18-61 should be assigned to the LCD controller/driver. • 8x8 keyboard support implies allocation of the whole keyboard I/O pins to the keyboard controller. Thus, pins 1-5 and 74-84 should be assigned to the keyboard controller. Table 41 lists the CFR registers affected and their required values. TABLE 41: EXAMPLE 1: 20-DIGIT LCD DISPLAY, 8×8 KEYBOARD
FUNCTION
LCD Display
CFR REGISTER ADDRESS & VALUE
C101H = 00H C102H = 00H C103H = 00H C104H = 00H C105H = 00H C106H = 00H C107H = 00H C108H = 00H C109H = 00H C10AH = 00H C10BH = 00H C10DH = FFH C10EH = FFH
PORT / SEGMENT
S37 – S40 S32 – S36 S28 – S31 S24 – S27 S20 – S23 S16 – S19 S12 – S15 S8 – S11 S4 – S7 S1 – S3 BP1 – BP4 KIN0 – KIN7 KOUT0 – KOUT7
AFFECTED PINS
58 – 61 53 – 57 49 – 52 45 – 48 41 – 44 37 – 40 33 – 36 29 – 32 25 – 28 22 – 24 18 – 21 1 – 5; 82 – 84 74 – 81
Keyboard Matrix
Revision B
Page 85
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Example 2: Configuring a 16-digit LCD Display, an 8x4 Keyboard, 8 Output and 4 I/O Ports
• 16-digit LCD display support implies partial allocation of the LCD driver output pins to the LCD display, using 4 backplanes and 32 segments. Thus, pins 18-52 should be assigned to the LCD controller/driver. • 8x4 keyboard support implies partial allocation of the keyboard I/O pins to the keyboard controller. Thus, pins 1-5 and 78-84 should be assigned to the keyboard controller. • 8 output ports will be implemented using the 8 pins of the LCD driver that are not used for the display. Thus, pins 53-61 should be assigned as Output ports. • 4 I/O ports will be implemented using the 4 pins of the keyboard input matrix that are not used by the keyboard. Thus, pins 74-77 should be assigned as I/O ports. Table 42 lists the CFR registers affected and their required values. TABLE 42: EXAMPLE 2: 16-DIGIT LCD DISPLAY, 8×4 KEYBOARD, 8 OUTPUT, 4 I/O
FUNCTION
LCD Display
CFR REGISTER ADDRESS & VALUE
C102H = E8H C103H = 00H C104H = 00H C105H = 00H C106H = 00H C107H = 00H C108H = 00H C109H = 00H C10AH = 00H C10BH = 00H C10DH = FFH C10EH = F0H C101H = FFH C102H = E8H C10E = F0H
PORT / SEGMENT
S32 S28 – S31 S24 – S27 S20 – S23 S16 – S19 S12 – S15 S8 – S11 S4 – S7 S1 – S3 BP1 – BP4 KIN0 – KIN7 KOUT4 – KOUT7 P13.0 – P13.3 P12.1 – P12.4 KOUT4 – KOUT7 P14.0 – P14.3
AFFECTED PINS
53 49 – 52 45 – 48 41 – 44 37 – 40 33 – 36 29 – 32 25 – 28 22 – 24 18 – 21 1 – 5; 82 – 84 78 – 81 58 –61 54 – 57 78 – 81 74 – 77
Keyboard Matrix Output Ports I/O Ports
Revision B
Page 86
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Example 3: Configuring a 21-digit LED Parallel Display, an 8x8 Keyboard and 13 Output Ports
• 21-digit LED parallel display support implies full allocation of the LED parallel display controller output pins to the LED parallel display. Thus, pins 22-52 should be assigned to the LED parallel display controller. • 8x8 keyboard support implies full allocation of the keyboard I/O pins to the keyboard controller. Thus, pins 1-5 and 74-84 should be assigned to the keyboard controller. • 13 output ports will be implemented using the available OUTPUT ports available in the ASIC. Thus, pins 53-61 should be assigned as Output ports. Table 43 lists the CFR registers affected and their required values. TABLE 43: EXAMPLE 3: 21-DIGIT LED DISPLAY, 8×8 KEYBOARD, 13 OUTPUT
FUNCTION
LED Display
CFR REGISTER ADDRESS & VALUE
C103H = 55H C104H = 55H C105H = 55H C106H = 55H C107H = 55H C108H = 55H C109H = 55H C10AH = 15H C10DH = FFH C10EH = FFH C101H = FFH C102H = EAH C10BH = 56H
PORT / SEGMENT
DIG4 – 7 SEG DP3; DIG1 - 3 SEG D3 – G3 SEG DP2; A3 – C3 SEG D2 – G2 SEG DP1; A2 – C2 SEG D1 – G1 SEG A1 – C1 KIN0 – KIN7 KOUT0 – KOUT7 P13.0 – P13.3 P12.0 – P12.4 P4.0 – P4.3
AFFECTED PINS
49 – 52 45 – 48 41 – 44 37 – 40 33 – 36 29 – 32 25 – 28 22 – 24 1 – 5; 82 – 84 74 – 81 58 –61 53 – 57 18 – 21
Keyboard Matrix Output Ports
Revision B
Page 87
July, 2002
CybraTech (2000) Ltd.
SOC-3000/i Scale-On-Chip ASIC
Technical Specification
Example 4: Outputs and I/O Ports Programming
• • Output ports support implies full allocation of the LCD display controller output pins to the OUTPUT function. Thus, pins 18-61 should be assigned to the OUTPUT controller. I/O ports support implies full assignment of the Keyboard controller pins to the I/O ports. Thus, pins 1 – 5 and 74 – 84 should be assigned to the I/O controller. TABLE 44: OUTPUT AND I/O PORTS PROGRAMMING
FUNCTION
OUTPUT ports
CFR REGISTER ADDRESS & VALUE
C101H = FFH C102H = EAH C103H = AAH C104H = 80H C106H = 2AH C107H = FCH C108H = FFH C109H = EAH C10AH = 2AH C10BH = 56H C10DH = 00H C10EH = 00H
PORT / SEGMENT
P13.0 – P13.4 P12.0 – P12.4 P11.0 – P11.3 P10.0 P9.0 – P9.2 P8.0 – P8.3 P7.0 – P7.3 P6.0 – P6.3 P5.0 – P5.2 P4.0 – P4.3 P15.0 – P15.7 P14.0 – P14.7
AFFECTED PINS
58 – 61 53 - 57 49 – 52 48 37 – 39 33 – 36 29 – 32 25 – 28 22 – 24 18 - 21 1 – 5; 82 - 84 74 - 81
I/O Ports
Revision B
Page 88
July, 2002
USA Tedea-Huntleigh Incorporated 20630 Plummer Street Chatsworth, California 91311 U.S.A. Tel: +1-818-701-2700 Fax: +1-818-701-2799 Email: sales@tedea-huntleigh.com UK Tedea-Huntleigh Europe Ltd. 37 Portmanmoor Road Cardiff CF24 5HE United Kingdom Tel: +44 (0) 29-20460231 Fax: +44 (0) 29-20462173 Email: sales@tedea-huntleigh.co.uk
Germany Tedea-Huntleigh GmbH Mümlingweg 18 D-64297 Darmstadt-Eberstadt Germany Tel:+49-6151-94460 Fax:+49-6151-944640 France SEEA sa. 16 Rue Francis Vovelle 28000 Chartres France Tel: +33-2-37-33-31-20 Fax: +33-2-37-33-31-29
Taiwan Integrated Solutions Ltd. Tel: +886-2-2649-7254 Fax: +886-2-2649-7253
CybraTech (1998) Ltd. 5a Hazoran St., PO Box 8381 Netanya, 42506 ISRAEL Tel: +972-9-8638832 Fax: +972- 9-8638822 Email: info@cybratech.co.il Website: www.cybratech.com
Document order number: SOC-3000-0001-SP