EtronTech
EM6GD08EWAHH
256M x 8 bit DDR3 Synchronous DRAM (SDRAM)
Advance (Rev. 1.0, Jun. /2019)
Features
Overview
JEDEC
The 2Gb Double-Data-Rate-3 (DDR3) DRAMs is double
data rate architecture to achieve high-speed operation.
It is internally configured as an eight bank DRAM.
The 2Gb chip is organized as 32Mbit x 8 I/Os x 8 bank
devices. These synchronous devices achieve high speed
double-data-rate transfer rates of up to 1866 Mb/sec/pin
for general applications.
The chip is designed to comply with all key DDR3 DRAM
key features and all of the control and address inputs are
synchronized with a pair of externally supplied differential
clocks. Inputs are latched at the cross point of differential
clocks (CK rising and CK# falling). All I/Os are synchronized
with differential DQS pair in a source synchronous fashion.
These devices operate with a single 1.5V ±0.075V power
supply and are available in BGA packages.
Standard Compliant
Power
supplies:
VDD & VDDQ = +1.5V ±0.075V
Operating temperature: TC = -40~95°C (Industrial)
Supports JEDEC clock jitter specification
Fully synchronous operation
Fast clock rate: 667/800/933MHz
Differential Clock, CK & CK#
Bidirectional differential data strobe
- DQS & DQS#
8
internal banks for concurrent operation
8n-bit prefetch architecture
Pipelined internal architecture
Precharge & active power down
Programmable Mode & Extended Mode registers
Additive Latency (AL): 0, CL-1, CL-2
Programmable Burst lengths: 4, 8
Burst type: Sequential / Interleave
Output Driver Impedance Control
Average refresh period
- 8192 cycles/64ms (7.8us at -40°C ≦ TC ≦ +85°C)
- 8192 cycles/32ms (3.9us at +85°C ≦ TC ≦ +95°C)
Write
Leveling
ZQ
Calibration
Dynamic ODT (Rtt_Nom & Rtt_WR)
RoHS compliant
Auto Refresh and Self Refresh
78-ball 7.5 x 10.5 x 1.0mm FBGA package
- Pb and Halogen Free
Table 1. Ordering Information
Part Number
Clock Frequency
Data Rate
EM6GD08EWAHH-15IH
667MHz
1333Mbps/pin
EM6GD08EWAHH-12IH
800MHz
1600Mbps/pin
EM6GD08EWAHH-10IH
933MHz
1866Mbps/pin
WAH: indicates 7.5 x 10.5 x 1.0mm FBGA Package
H: indicates Generation Code
I: indicates Industrial Grade
H(last digit): indicates Pb and Halogen Free
Power Supply
VDD 1.5V, VDDQ 1.5V
VDD 1.5V, VDDQ 1.5V
VDD 1.5V, VDDQ 1.5V
Package
FBGA
FBGA
FBGA
Table 2. Speed Grade Information
Speed Grade
DDR3-1333
DDR3-1600
DDR3-1866
Clock Frequency
667MHz
800MHz
933MHz
CAS Latency
9
11
13
tRCD (ns)
tRP (ns)
13.5
13.75
13.91
13.5
13.75
13.91
Etron Technology, Inc.
No. 6, Technology Rd. V, Hsinchu Science Park, Hsinchu, Taiwan 30078, R.O.C.
TEL: (886)-3-5782345
FAX: (886)-3-5778671
Etron Technology, Inc. reserves the right to change products or specification without notice.
EtronTech
EM6GD08EWAHH
Figure 1. Ball Assignment (FBGA Top View)
1
2
3
A
VSS
VDD
B
VSS
C
…
7
8
9
NC
TDQS#
VSS
VDD
VSSQ
DQ0
DM/
TDQS
VSSQ
VDDQ
VDDQ
DQ2
DQS
DQ1
DQ3
VSSQ
D
VSSQ
DQ6
DQS#
VDD
VSS
VSSQ
E
VREFDQ
VDDQ
DQ4
DQ7
DQ5
VDDQ
F
NC
VSS
RAS#
CK
VSS
NC
G
ODT
VDD
CAS#
CK#
VDD
CKE
H
NC
CS#
WE#
A10/AP
ZQ
NC
J
VSS
BA0
BA2
NC
VREFCA
VSS
K
VDD
A3
A0
A12/BC#
BA1
VDD
L
VSS
A5
A2
A1
A4
VSS
M
VDD
A7
A9
A11
A6
VDD
N
VSS
RESET#
A13
A14
A8
VSS
Rev. 1.0
2
Jun. /2019
EtronTech
EM6GD08EWAHH
Figure 2. Block Diagram
CK
CK#
CKE
Row
Decoder
DLL
CLOCK
BUFFER
32M x 8
CELL ARRAY
(BANK #0)
Column Decoder
CS#
RAS#
CAS#
WE#
32M x 8
CELL ARRAY
(BANK #1)
Column Decoder
Row
Decoder
COMMAND
DECODER
CONTROL
SIGNAL
GENERATOR
Row
Decoder
RESET#
32M x 8
CELL ARRAY
(BANK #2)
Column Decoder
COLUMN
COUNTER
MODE
REGISTER
Row
Decoder
A10/AP
A12/BC#
32M x 8
CELL ARRAY
(BANK #3)
Column Decoder
A0-A9
A11
A13-A14
BA0-BA2
Row
Decoder
ADDRESS
BUFFER
32M x 8
CELL ARRAY
(BANK #4)
ZQ CAL
REFRESH
COUNTER
Row
Decoder
Column Decoder
32M x 8
CELL ARRAY
(BANK #5)
Column Decoder
DQS
DQS#
TDQS
TDQS#
RZQ
Row
Decoder
VSSQ
DATA
STROBE
BUFFER
32M x 8
CELL ARRAY
(BANK #6)
Column Decoder
DQ
Buffer
DQ0
Row
Decoder
~
DQ7
32M x 8
CELL ARRAY
(BANK #7)
Column Decoder
ODT
Rev. 1.0
3
DM
Jun. /2019
EtronTech
EM6GD08EWAHH
Figure 3. State Diagram
This simplified State Diagram is intended to provide an overview of the possible state transitions and the
commands to control them. In particular, situations involving more than one bank, the enabling or disabling of on-die
termination, and some other events are not captured in full detail
Power
On
Reset
Procedure
MRS,MPR,
Write
Leveling
Initialization
from any
RESET
state
ZQCL
MRS
ZQCL,ZQCS
Active
Power
Down
REF
ACT
Refreshing
Precharge
Power
Down
Activating
PD
PD X
E
Bank
Activating
WR
ITE
A
WRITE
TE
RI
W
RE
AD
A
AD
RE
ACT = Active
PRE = Precharge
PREA = Precharge All
MRS = Mode Register Set
REF = Refresh
RESET = Start RESET Procedure
Read = RD, RDS4, RDS8
Read A = RDA, RDAS4, RDAS8
Write = WR, WRS4, WRS8
Write A = WRA, WRAS4, WRAS8
ZQCL = ZQ Calibration Long
ZQCS = ZQ Calibration Short
PDE = Enter Power-down
PDX = Exit Power-down
SRE = Self-Refresh entry
SRX = Self-Refresh exit
MPR = Multi-Purpose Register
Idle
E
PD DX
P
ZQ
Calibration
Self
Refresh
S
SR RE
X
Power
applied
Writing
READ
Reading
READ
WRITE
READ A
WRITE A
RE
AD
A
ITE
R
W
PR
E
,P
RE
A
PRE, PREA
Automatic Sequence
Command Sequence
EA
PR
E,
PR
Writing
A
Reading
Precharging
Rev. 1.0
4
Jun. /2019
EtronTech
EM6GD08EWAHH
Ball Descriptions
Table 3. Ball Details
Symbol
Type
Description
CK, CK#
Input
Differential Clock: CK and CK# are driven by the system clock. All SDRAM input signals
are sampled on the crossing of positive edge of CK and negative edge of CK#. Output
(Read) data is referenced to the crossings of CK and CK# (both directions of crossing).
CKE
Input
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK signal. If CKE goes
LOW synchronously with clock, the internal clock is suspended from the next clock cycle
and the state of output and burst address is frozen as long as the CKE remains LOW.
When all banks are in the idle state, deactivating the clock controls the entry to the Power
Down and Self Refresh modes.
BA0-BA2
Input
Bank Address: BA0-BA2 define to which bank the BankActivate, Read, Write, or Bank
Precharge command is being applied.
A0-A14
Input
Address Inputs: Provide the row address (A0-14) for Active commands and the column
address (A0-9) for Read/Write commands to select one location out of the memory array
in the respective bank. (A10/AP and A12/BC# have additional functions). The address
inputs also provide the op-code during Mode Register Set commands.
A10/AP
Input
Auto-Precharge: A10 is sampled during Read/Write commands to determine whether
Autoprecharge should be performed to the accessed bank after the Read/Write operation.
(HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge
command to determine whether the Precharge applies to one bank (A10 LOW) or all
banks (A10 HIGH).
A12/BC#
Input
Burst Chop: A12/BC# is sampled during Read and Write commands to determine if burst
chop (on the fly) will be performed. (HIGH - no burst chop; LOW - burst chopped).
CS#
Input
Chip Select: CS# enables (sampled LOW) and disables (sampled HIGH) the command
decoder. All commands are masked when CS# is sampled HIGH. It is considered part of
the command code.
RAS#
Input
Row Address Strobe: The RAS# signal defines the operation commands in conjunction
with the CAS# and WE# signals and is latched at the crossing of positive edges of CK and
negative edge of CK#. When RAS# and CS# are asserted "LOW" and CAS# is asserted
"HIGH" either the BankActivate command or the Precharge command is selected by the
WE# signal. When the WE# is asserted "HIGH" the BankActivate command is selected
and the bank designated by BA is turned on to the active state. When the WE# is asserted
"LOW" the Precharge command is selected and the bank designated by BA is switched to
the idle state after the precharge operation.
CAS#
Input
Column Address Strobe: The CAS# signal defines the operation commands in
conjunction with the RAS# and WE# signals and is latched at the crossing of positive
edges of CK and negative edge of CK#. When RAS# is held "HIGH" and CS# is asserted
"LOW" the column access is started by asserting CAS# "LOW". Then, the Read or Write
command is selected by asserting WE# “HIGH" or “LOW".
WE#
Input
Write Enable: The WE# signal defines the operation commands in conjunction with the
RAS# and CAS# signals and is latched at the crossing of positive edges of CK and
negative edge of CK#. The WE# input is used to select the BankActivate or Precharge
command and Read or Write command.
DQS,
DQS#
Input /
Output
Bidirectional Data Strobe: Specifies timing for Input and Output data. Read Data Strobe
is edge triggered. Write Data Strobe provides a setup and hold time for data and DM. The
data strobes DQS are paired with DQS# to provide differential pair signaling to the system
during both reads and writes.
TDQS,
TDQS#
Output
Termination Data Strobe: When TDQS is enabled, DM is disabled, and the TDQS and
TDQS# balls provide termination resistance.
DM
Input
Rev. 1.0
Data Input Mask: Input data is masked when DM is sampled HIGH during a write cycle.
DM has an optional use as TDQS on the x8.
5
Jun. /2019
EtronTech
EM6GD08EWAHH
DQ0-DQ7
Input /
Output
Data I/O: The DQ0-DQ7 input and output data are synchronized with positive and negative
edges of DQS and DQS#. TheI/Os are byte-maskable during Writes.
ODT
Input
On Die Termination: ODT (registered HIGH) enables termination resistance internal to
the DDR3 SDRAM. When enabled, ODT is applied to each DQ, DQS, DQS#. The ODT
pin will be ignored if Mode-registers, MR1and MR2, are programmed to disable RTT.
RESET#
Input
Active Low Asynchronous Reset: Reset is active when RESET# is LOW, and inactive
when RESET# is HIGH. RESET# must be HIGH during normal operation. RESET# is a
CMOS rail to rail signal with DC high and low at 80% and 20% of VDD.
VDD
Supply
Power Supply: +1.5V 0.075V
VSS
Supply
Ground
VDDQ
Supply
DQ Power: +1.5V 0.075V
VSSQ
Supply
DQ Ground
VREFCA
Supply
Reference voltage for CA
VREFDQ
Supply
Reference voltage for DQ
ZQ
Supply
Reference pin for ZQ calibration.
NC
-
Rev. 1.0
No Connect: These pins should be left unconnected.
6
Jun. /2019
EtronTech
EM6GD08EWAHH
Operation Mode Truth Table
The following tables provide a quick reference of available DDR3 SDRAM commands, including CKE power-down
modes and bank-to-bank commands.
Table 4. Truth Table (Note (1), (2))
State CKEn-1
Command
(3)
CKEn DM BA0-2 A10/AP A0-9,11,13-14 A12/BC# CS# RAS# CAS# WE#
(4)
BankActivate
H
H
X
V
Single Bank Precharge
Any
L
L
H
H
H
H
X
V
L
V
All Banks Precharge
Any
H
H
X
V
H
V
V
L
L
H
L
V
L
L
H
L
H
H
X
V
L
V
V
L
H
L
L
H
H
X
V
L
H
H
X
V
L
V
L
L
H
L
L
V
H
L
H
L
L
H
H
X
V
H
V
V
L
H
L
L
H
H
X
V
H
V
L
L
H
L
L
H
H
X
V
H
V
H
L
H
L
L
H
H
H
X
V
L
V
V
L
H
L
H
H
X
V
L
V
L
L
H
L
H
H
H
X
V
L
V
H
L
H
L
H
H
H
X
V
H
V
V
L
H
L
H
H
H
X
V
H
V
L
L
H
L
H
Active
H
H
X
V
H
V
H
L
H
L
H
(Extended) Mode Register Set
Idle
H
H
X
V
L
L
L
L
No-Operation
Any
H
H
X
V
V
V
V
L
H
H
H
Device Deselect
Any
H
H
X
X
X
X
X
H
X
X
X
Refresh
Idle
H
H
X
V
V
V
V
L
L
L
H
SelfRefresh Entry
Idle
H
L
X
V
V
V
V
L
L
L
H
SelfRefresh Exit
Idle
L
H
X
X
X
X
X
H
X
X
X
V
V
V
V
L
H
H
H
X
X
X
X
H
X
X
X
V
V
V
V
L
H
H
H
X
X
X
X
H
X
X
X
Idle
Write (Fixed BL8 or BC4)
Row address
(4)
Active
(4)
Write (BC4, on the fly)
Active
Write (BL8, on the fly)
Active
(4)
Write with Autoprecharge
(Fixed BL8 or BC4)
Write with Autoprecharge
(BC4, on the fly)
Write with Autoprecharge
(BL8, on the fly)
(4)
Active
(4)
Active
(4)
Active
(4)
Read (Fixed BL8 or BC4)
Active
Read (BC4, on the fly)
Active
(4)
(4)
Read (BL8, on the fly)
Active
Read with Autoprecharge
(Fixed BL8 or BC4)
Read with Autoprecharge
(BC4, on the fly)
Read with Autoprecharge
(BL8, on the fly)
(4)
Active
(4)
Active
(4)
OP code
Power Down Mode Entry
Idle
H
L
X
Power Down Mode Exit
Any
L
H
X
V
V
V
V
L
H
H
H
Data Input Mask Disable
Active
H
X
L
X
X
X
X
X
X
X
X
Active
H
X
H
X
X
X
X
X
X
X
X
ZQ Calibration Long
Idle
H
H
X
X
H
X
X
L
H
H
L
ZQ Calibration Short
Idle
X
L
H
H
L
(5)
Data Input Mask Enable
H
H
X
X
L
X
NOTE 1: V=Valid data, X=Don't Care, L=Low level, H=High level
NOTE 2: CKEn signal is input level when commands are provided.
NOTE 3: CKEn-1 signal is input level one clock cycle before the commands are provided.
NOTE 4: These are states of bank designated by BA signal.
NOTE 5: DM can be enabled respectively.
Rev. 1.0
7
Jun. /2019
EtronTech
EM6GD08EWAHH
Functional Description
The DDR3 SDRAM is a high-speed dynamic random access memory internally configured as an eight-bank
DRAM. The DDR3 SDRAM uses an 8n prefetch architecture to achieve high speed operation. The 8n Prefetch
architecture is combined with an interface designed to transfer two data words per clock cycle at the I/O pins. A
single read or write operation for the DDR3 SDRAM consists of a single 8n-bit wide, four clock data transfer at the
internal DRAM core and two corresponding n-bit wide, one-half clock cycle data transfers at the I/O pins.
Read and write operation to the DDR3 SDRAM are burst oriented, start at a selected location, and continue for a
burst length of eight or a ‘chopped’ burst of four in a programmed sequence. Operation begins with the registration
of an Active command, which is then followed by a Read or Write command. The address bits registered coincident
with the Active command are used to select the bank and row to be activated (BA0-BA2 select the bank; A0-A14
select the row). The address bit registered coincident with the Read or Write command are used to select the
starting column location for the burst operation, determine if the auto precharge command is to be issued (via A10),
and select BC4 or BL8 mode ‘on the fly’ (via A12) if enabled in the mode register.
Prior to normal operation, the DDR3 SDRAM must be powered up and initialized in a predefined manner. The
following sections provide detailed information covering device reset and initialization, register definition, command
descriptions and device operation.
Figure 4. Reset and Initialization Sequence at Power-on Ramping
Ta
Tb
Tc
Td
Te
Tf
Tg
Th
Ti
Tj
Tk
CK#
CK
VDD
VDDQ
tCKSRX
T=200μs
T=500μs
RESET#
Tmin=10ns
tIS
CKE
tDLLK
tIS
COMMAND
Note 1
BA
tXPR
tMRD
tMRD
tMRD
tMOD
MRS
MRS
MRS
MRS
MR2
MR3
MR1
MR0
tZQinit
ZQCL
Note 1
VALID
tIS
ODT
VALID
tIS
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW
VALID
RTT
NOTE 1. From time point "Td" until "Tk " NOP or DES commands must be applied between MRS and ZQCL commands.
TIME BREAK
Rev. 1.0
8
Don't Care
Jun. /2019
EtronTech
EM6GD08EWAHH
Power-up and Initialization
The Following sequence is required for POWER UP and Initialization
1. Apply power (RESET# is recommended to be maintained below 0.2 x VDD, all other inputs may be undefined).
RESET# needs to be maintained for minimum 200us with stable power. CKE is pulled “Low” anytime before
RESET# being de-asserted (min. time 10ns). The power voltage ramp time between 300mV to VDDmin must be
no greater than 200ms; and during the ramp, VDD>VDDQ and (VDD-VDDQ)