0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
1ED3491MC12MXUMA1

1ED3491MC12MXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOP-16

  • 描述:

  • 数据手册
  • 价格&库存
1ED3491MC12MXUMA1 数据手册
1ED34x1Mc12M (1ED-X3 Analog) EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet Single-channel 5.7 kV (rms) isolated gate driver IC with adjustable DESAT and soft-off Features • • • • • • • • • • • • • • 650 V, 1200 V, 1700 V, 2300 V IGBTs, SiC, and Si MOSFETs 40 V absolute maximum output supply voltage ±3 A, ±6 A, and ±9 A typical sinking and sourcing peak output current Separate source and sink outputs for hard switching and with active Miller clamp/clamp driver Adjustment pins for parameter configuration from input side Precise VCEsat detection (DESAT) with fault output and adjustable filter time and leading edge blanking time with resistor at ADJB pin Adjustable IGBT soft turn-off after desaturation detection with resistor at ADJA pin Operation at high ambient temperature up to 125 °C with over-temperature shut down at 160 °C (±10 °C) Tight IC-to-IC propagation delay matching (tPDD,max = 30 ns) Undervoltage lockout protection with hysteresis for input and output side with active shut-down High common-mode transient immunity CMTI = 200 kV/µs Small space-saving DSO-16 fine-pitch package with large creepage distance (>8 mm) Safety certification - UL 1577 recognized (File E311313) with VISO,test = 6840 V (rms) for 1 s, VISO = 5700 V (rms) for 60 s - VDE 0884-11 approval (Certificate no. 40053980) with VIORM = 1767 V (peak, reinforced) Evaluation board available EVAL-1ED3491MX12M Potential applications • • • • • • • • Industrial motor drives - compact, standard, premium, servo drives Solar inverters UPS systems Welding Commercial and agricultural vehicles (CAV) Commercial air-conditioning (CAC) High-voltage isolated DC-DC converters Isolated switch mode power supplies (SMPS) PG-DSO-16 Product validation Qualified for industrial applications according to the relevant tests of JEDEC47/20/22. Datasheet www.infineon.com/gdisolated Please read the Important Notice and Warnings at the end of this document 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet Device information Device information Product type Output current CLAMP type1) Isolation class Marking OPN 1ED3431MC12M 3 A (typ) CLAMP reinforced 3431MC12 1ED3431MC12MXUMA1 1ED3461MC12M 6 A (typ) CLAMPDRV reinforced 3461MC12 1ED3461MC12MXUMA1 1ED3491MC12M 9 A (typ) CLAMPDRV reinforced 3491MC12 1ED3491MC12MXUMA1 1ED3431MU12M 3 A (typ) CLAMP UL 1577 3431MU12 1ED3431MU12MXUMA1 1ED3461MU12M 6 A (typ) CLAMPDRV UL 1577 3461MU12 1ED3461MU12MXUMA1 1ED3491MU12M 9 A (typ) CLAMPDRV UL 1577 3491MU12 1ED3491MU12MXUMA1 1) Please refer to Chapter 4.5.4.1 for circuit connection to avoid damage to the gate driver IC Description The 1ED34x1Mc12M family (X3 Analog) consists of galvanically isolated single channel gate driver ICs in a small PG-DSO-16 package with a large creepage and clearance of 8 mm. The gate driver ICs provide a typical peak output current of 3 A, 6 A, and 9 A. Adjustable control and protection functions are included to simplify the design of highly reliable systems. All parameter adjustments are done from the input side, including adjustable DESAT filter time, leading edge blanking time, and soft-off current level with only two resistors.. All logic I/O pins are supply voltage dependent 3.3 V or 5 V CMOS compatible and can be directly connected to a microcontroller. The data transfer across the galvanic isolation is realized by the integrated coreless transformer technology. VCC1 VCC2H IN,H DESAT,H RDYC, FLT_N EiceDRIVERTM ON,H DESAT SoftOff ADJ,H OFF.H CLAMP,H GND2,H CPU GND1 VEE2,H VCC1 VCC2,L IN,L DESAT,L RDYC, FLT_N ADJ,L EiceDRIVERTM ON,L DESAT SoftOff OFF,L CLAMP,L GND2,L GND1 Figure 1 Datasheet VEE2,L Typical application 2 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet Table of contents Table of contents Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Related products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Pin configuration and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 3.1 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Pin functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 4 4.1 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.3.3.1 4.4 4.4.1 4.4.2 4.5 4.5.1 4.5.2 4.5.2.1 4.5.2.2 4.5.2.2.1 4.5.3 4.5.4 4.5.4.1 4.5.5 4.6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Start-up and fault clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Input side undervoltage lockout, VCC1 UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output side under-voltage lockout, VCC2 UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Input side logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 IN non-inverting driver input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 RDYC ready status output, fault-off and fault clear input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 RDYC fault-off input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 RDYC fault clear input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 FLT_N status output and fault-off input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 FLT_N fault-off input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 DESAT behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 DESAT filter and leading edge blanking time adjustment with ADJB . . . . . . . . . . . . . . . . . . . . . . . . 19 Gate driver output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Turn-on behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Turn-off and fault turn-off behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Hard switching turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Soft turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Soft-off current source adjustment with ADJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Active shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Active Miller clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 CLAMP output types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Switch-off timeout until forced switch-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Short circuit clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 5.1 5.2 5.3 5.4 5.4.1 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Operating parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Voltage supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Datasheet 3 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet Table of contents 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.4.8 5.4.9 Logic input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Analog input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Active Miller clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Soft-off current source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Over-temperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6 6.1 6.2 Insulation characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Certified according to VDE 0884-11 reinforced insulation (Certificate no. 40053980) . . . . . . . . . . . 41 Recognized under UL 1577 (File E311313) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8 8.1 8.2 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Reference layout for thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Printed circuit board guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Datasheet 4 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 1 Block diagram 1 Block diagram VCC1 IN UVLO1 2 UVLO2 PWM logic 7 TX opt. 14 VCC2 10 CLAMP CLAMPDRV 12 ON 11 OFF 13 DESAT 15 GND2 CLAMP control and detection RX VEE2 1 VCC2 FLT_N 6 Output control with hardswitching and SoftOff 1 RDYC 5 VEE2 LOGIC 1 TRX TRX LOGIC VCC2 ADJB 4 ADJA 3 DESAT control and detection 2 1 GND1 Figure 2 Datasheet 1 VEE2 8 9 16 GND1 VEE2 VEE2 Block diagram 5 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 2 Related products 2 Related products Note: Please consider the gate driver IC power dissipation and insulation requirements for the selected power switch and operating condition. Product group Product name Description ™ IKQ75N120CS6 High Speed 1200 V, 75 A IGBT with anti-parallel diode in TO247-3 IKW15N120BH6 High Speed 1200 V, 15 A IGBT with anti-parallel diode in TO247 IHW40N120R5 Reverse conducting 1200 V, 40 A IH IGBT with integrated diode in TO247 TRENCHSTOP IGBT Discrete CoolSiC™ SiC IMBF170R650M1 MOSFET Discrete IMBG120R045M1H ™ CoolSiC SiC MOSFET Module TRENCHSTOP™ IGBT Modules Datasheet 1700 V, 650 mΩ SiC MOSFET in TO263-7 package 1200 V, 45 mΩ SiC MOSFET in TO263-7 package IMZ120R350M1H 1200 V, 350 mΩ SiC MOSFET in TO247-4 package FS45MR12W1M1_B11 EasyPACK™ 1B 1200 V / 45 mΩ sixpack module FF23MR12W1M1_B11 EasyDUAL™ 1B 1200 V, 23 mΩ half-bridge module FF6MR12W2M1_B11 EasyDUAL™ 2B 1200 V, 6 mΩ half-bridge module F3L11MR12W2M1_B74 EasyPACK™ 2B 1200 V, 11 mΩ 3-Level module in Advanced NPC (ANPC) topology F4-23MR12W1M1_B11 EasyPACK™ 1B 1200 V, 23 mΩ fourpack module F4-100R17N3E4 EconoPACK™ 3 1700 V, 100 A fourpack IGBT module F4-200R17N3E4 EconoPACK™ 3 1700 V, 200 A fourpack IGBT module FS150R17N3E4 EconoPACK™ 3 1700 V, 150 A sixpack IGBT module FF650R17IE4 PrimePACK™ 3 1700 V, 650 A half-bridge dual IGBT module FF1000R17IE4 PrimePACK™ 3 1700 V, 1000 A half-bridge dual IGBT module FF1200R17IP5 PrimePACK™ 3+ 1700 V, 1200 A dual IGBT module FF1500R17IP5 PrimePACK™ 3+ 1700 V, 1500 A dual IGBT module FF1500R17IP5R PrimePACK™ 3 1700 V, 1500 A dual IGBT module FF1800R17IP5 PrimePACK™ 3+ 1700 V, 1800 A dual IGBT module FP10R12W1T7_B11 EasyPIM™ 1B 1200 V, 10 A three phase input rectifier PIM IGBT module FS100R12W2T7_B11 EasyPACK™ 2B 1200 V, 100 A sixpack IGBT module FP150R12KT4_B11 EconoPIM™ 3 1200V three-phase PIM IGBT module FS200R12KT4R_B11 EconoPACK™ 3 1200 V, 200 A sixpack IGBT module 6 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 3 Pin configuration and functionality 3 Pin configuration and functionality The pin assignment at the gate driver IC generally differentiates between the input side and the output side. Table 1 General pin assignment Pins Designation 1 to 8 input side, input logic signal side, or low voltage side 9 to 16 output side, driver power side, or high voltage side For simplicity reasons the driver is described as an IGBT driver. For use with MOSFETs and other power switches simply replace any mentioning of collector and emitter with their corresponding pin names. 3.1 Pin configuration Table 2 Pin configuration table abbreviations Abbreviation Description Pin type PWR Power supply and gate current output pins I/O Digital input and output pin I Digital input pin GND Ground reference pin AI Analog input pin Buffer type OD Open drain output CMOS CMOS compatible input threshold levels PP Push/pull output buffer special Special output/input function, see individual description Pull device PD Pull-down resistor CS Current source Table 3 Pin configuration Pin no. Pin name Pin type Buffer type Pull device Function 1 GND1 GND – – Ground input side 2 VCC1 PWR – – Positive power supply input side 3 ADJA AI special CS Parameter adjust set A 4 ADJB AI special CS Parameter adjust set B 5 RDYC I/O OD, CMOS – Combined ready output, high active and fault clear input and soft-off input, low active 6 FLT_N I/O OD, CMOS – Fault output, low active and soft- off input, low active CMOS PD, 40 kΩ Non inverted driver input 7 IN I (table continues...) Datasheet 7 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 3 Pin configuration and functionality Table 3 (continued) Pin configuration Pin no. Pin name Pin type Buffer type Pull device Function 8 GND1 GND – – Ground input side 9 VEE2 GND – – Negative power supply output side 10 CLAMP PWR OD – Active Miller clamping, open drain to VEE2 (1ED3431M only) 10 CLAMPDRV PWR PP – Active miller clamping, clamp driver for external MOSFET (1ED3461M, 1ED3491M) 11 OFF PWR, AI OD – Driver sink output 12 ON PWR, AI OD – Driver source output 13 DESAT AI special CS, 500 µA Enhanced desaturation protection 14 VCC2 PWR – – Positive power supply output side 15 GND2 AI – – Signal ground output side 16 VEE2 GND – – Negative power supply output side Figure 3 Figure 4 Datasheet 1 GND1 VEE2 16 2 VCC1 GND2 15 3 ADJA VCC2 14 4 ADJB 5 RDYC ON 12 6 FLT_N OFF 11 7 IN 8 GND1 DESAT 13 CLAMP 10 VEE2 9 PG-DSO-16 (top view) with CLAMP 1 GND1 VEE2 16 2 VCC1 GND2 15 3 ADJA 4 ADJB 5 RDYC ON 12 6 FLT_N OFF 11 7 IN 8 GND1 VCC2 14 DESAT 13 CLAMPDRV 10 VEE2 9 PG-DSO-16 (top view) with CLAMPDRV 8 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 3 Pin configuration and functionality 3.2 Pin functionality GND1 Reference ground of the input side. Connect direct to input signal ground. VCC1 Positive power supply terminal of the input side, connect to 5 V or 3.3 V for proper operation. Place a decoupling capacitor close to this pin and GND1. ADJA and ADJB parameter adjust input for set A or B The pins ADJA and ADJB are used to adjust two sets of independent parameters of output functions. Connect a resistor between 1.33 kΩ and 28.0 kΩ to GND1 to adjust each parameter. All valid resistor values belong to the E96-series with 1% tolerance. Connecting ADJA to GND1 uses a default value for soft switch-off. Connecting it to VCC1 is disabling the gate driver IC. Connecting ADJB to GND1 is disabling the gate driver IC. Connecting it to VCC1 is setting the function to minimum values. RDYC ready status output, fault-off input and fault-clear input Open-drain output reports the correct operation of the device, ready output is high active. Fault-clear input and fault-off input clears a gate driver fault or switch the gate driver output to off with fault-off function, input is low active. Connect to a microcontroller with 5 V or 3.3 V I/O with an external pull-up resistor to VCC1. A typical value for this resistor is 2.2 kΩ. The RDCY signal is referenced to GND1. FLT_N fault output and fault-off input Open-drain output reports the failures related to operating of the inverter system to the microcontroller, fault output is active low. Fault-off input switch the gate driver output to off with fault-off function, input is low active. Connect to a microcontroller with 5 V or 3.3 V I/O with an external pull-up resistor to VCC1. A typical value for this resistor is 2.2 kΩ. The FLT_N signal is referenced to GND1. IN non inverting gate driver input IN input controls the output of the gate driver IC, the IGBT is turned on if IN is set to high. Connect to a PWM output of the microcontroller with 5 V or 3.3 V IO. An internal pull-down resistor ensures IGBT off-state if not connected. A minimum pulse width of typical 103 ns is defined to make the gate driver IC robust against glitches at IN. VEE2 Negative power supply terminal of the output side. Connect to a voltage of 0 V to -25 V referenced to GND2 for proper operation. Place a decoupling capacitor close to the following pins: • VCC2 and VEE2 • GND2 and VEE2 If no negative supply voltage is used, all VEE2 pins have to be connected to GND2. CLAMP Miller clamp output, CLAMPDRV Miller clamp pre-driver output CLAMP: High-current clamp output to hold the gate voltage low during collector-emitter-voltage rise. Connect directly to the gate of the IGBT. CLAMPDRV: Clamp pre-driver output for the use of an external clamp switch. Connect directly to the gate of a n-channel MOSFET. Datasheet 9 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 3 Pin configuration and functionality OFF driver output High-current driver sink output to discharge the gate of the external IGBT.The gate driver IC also sinks the Soft-off current at this pin. Connect to the gate of the IGBT via a chosen turn-off gate resistor. ON driver output High-current driver source output to charge the gate of the external IGBT and turn it on and sense input for the CLAMP function. Connect to the gate of the IGBT via a chosen turn-on gate resistor. DESAT enhanced desaturation detection input Desaturation detection input to monitor the IGBT collector-emitter voltage (VCE) to detect desaturation caused by short circuit events. Connect to the collector of the driven IGBT via a series connection of a protection resistor and a high-voltage diode. The DESAT signal is referenced to GND2. VCC2 Positive power supply terminal of the output side. Connect to sufficient supply voltage referenced to GND2 for proper operation. Place a decoupling capacitor close to the following pins: • VCC2 and VEE2 • VCC2 and GND2 GND2 reference ground Reference ground of the output side. Connect to common voltage of a bipolar supply and the emitter of the IGBT. Place a decoupling capacitor close to the following pins: • VCC2 and GND2 • GND2 and VEE2 Datasheet 10 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description 4 Functional description The 1ED34x1Mc12M family (X3 Analog) consists of galvanically isolated single channel gate driver ICs with adjustable feature parametrization by two simple resistors. All adjustments can be done from the low voltage input side. To start-up the gate driver IC for normal operation both input and output sides of the gate driver IC need to be powered. The 1ED34x1Mc12M family (X3 Analog) is designed to support various supply configurations on the input and output side. On the output side unipolar and bipolar supply is possible. The output stage is realized as rail-to-rail. There the gate driver voltage follows the supply voltage without an additional voltage drop. In addition it provides an easy clamping of the gate voltage during short circuit of an external IGBT. The RDYC status output reports correct operation of the gate driver IC like sufficient voltage supply. The FLT_N status output reports failures in the application like desaturation detection. To ensure safe operation the gate driver IC is equipped with an input and output side under-voltage lockout circuit. The UVLO levels are optimized for IGBTs. The desaturation detection circuit protects the external IGBT from destruction at a short circuit. The gate driver IC reacts on a DESAT fault by turning off the IGBT with the adjustable soft-off method. The soft turn-off function is used to switch-off the external IGBT in overcurrent conditions in a soft-controlled manner to protect the IGBT against collector emitter over-voltages. An active Miller clamp function protects the IGBT from parasitic turn-on in fast switching applications. 4.1 Start-up and fault clearing For normal operation both input and output sides of the gate driver IC need to be powered. A low level at the FLT_N pin always indicates a fault condition. In this case the IC starts internal mechanisms for fault clearing. Input side start-up 1. Voltage at VCC1 reaches the input UVLO threshold: input side of gate driver IC starts operating 2. FLT_N follows input supply voltage 3. Records resistor programmable function from ADJA and ADJB 4. Waits until output side is powered 5. Initiates internal start-up: Transfers configured values to output side 6. Performs internal self-test The start-up delay takes approx. 200 µs and is part of the complete start-up time tSTART1. Output side start-up 1. Voltage at VCC2 reaches the output UVLO threshold: output side of gate driver IC starts operating 2. Activates OFF gate driver output: connected gate stays discharged 3. Waits until input side is powered 4. Initiates internal start-up: Receives configured values from input side 5. Performs internal self-test The start-up delay takes approx. 200 µs and is part of the complete start-up time tSTART2. The gate driver IC releases RDYC to high to signal a successful start-up and its readiness to operate. The gate driver IC will follow the status of the IN signal. Clearing a fault with RDYC to low cycle 1. 2. Set IN to low Set RDYC to low for a duration longer than the fault clear time tCLRMIN Datasheet 11 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description 3. 4. Release RDYC to high a. If the source of the fault is no longer present, FLT_N is released to high b. If another fault source is active, FLT_N stays low and the cycle needs to be repeated Continue PWM operation 4.2 Supply The 1ED34x1Mc12M family (X3 Analog) is designed to support various supply configurations. The input side can be used with a 3.3 V or 5 V supply. The output side requires either an unipolar supply (VEE2 = GND2) or a bipolar supply. • Individual supply voltages between VCC2 and GND2 or GND2 and VEE2 shall not exceed 25 V. • The total supply voltage between VCC2 and VEE2 shall not exceed 35 V. To ensure safe operation of the gate driver IC, it is equipped with an input and output side undervoltage lockout circuit. Unipolar supply In unipolar supply configuration the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2. GND2 and VEE2 are connected together and this common potential is connected to the IGBT emitter. +3V3 10k 10k VCC1 VCC2 100n 1k DESAT SGND GND1 ON IN IN RDYC OFF 1R 1R RDYC FLT_N FLT_N ADJA ADJB Figure 5 +15V 1µ CLAMP GND2 VEE2 Application example with unipolar supply (1ED3431M) Bipolar supply For bipolar supply the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2 and a negative voltage of -8 V or -15 V at VEE2 relative to GND2. Between VCC2 and VEE2 the maximum potential difference is 35 V. +3V3 SGND 10k 10k VCC1 VCC2 100n RDYC FLT_N IN OFF 1R 1R RDYC FLT_N ADJA ADJB Figure 6 1k DESAT GND1 ON IN +15V 1µ CLAMP GND2 1µ VEE2 -8V Application example with bipolar supply (1ED3431M) Negative supply prevents a parasitic turn-on due to the additional voltage margin to the gate turn-on threshold. Datasheet 12 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description VEE2 over GND2 supply connection check The gate driver IC has a built-in connection check for VEE2. A loss of VEE2 connection will be detected and signaled via RDYC. 4.2.1 Input side undervoltage lockout, VCC1 UVLO To ensure correct operation of the input side and safe operation of the application the gate driver IC is equipped with an input supply undervoltage lockout for VCC1. UVLO behavior during start-up: 1. The voltage at the supply terminal VCC1 reaches the VUVLO1H threshold 2. The gate driver IC reads the ADJA and ADJB resistor values and transfers the configuration to the output side 3. The IC releases the RDYC output to high and is ready to operate. The start-up delay takes approx. 200 µs and is part of the complete start-up time tSTART1. UVLO behavior during shut-down: • If the supply voltage VVCC1 of the input side drops below VUVLO1L the RDYC signal is switched to low and the output will be switched off. The fault signal FLT_N follows the input supply voltage. IN VUVLO1H VCC1 VCC2 VUVLO1L tPDRDYC tSTART1 ON+OFF RDYC tUV1LRDYC tPDRDYC FLT_N Figure 7 UVLO VCC1 behavior 4.2.2 Output side under-voltage lockout, VCC2 UVLO To ensure correct operation of the output side and safe operation of the IGBT in the application, the gate driver IC is equipped with an output supply undervoltage lockout for VCC2 versus GND2. UVLO behavior during start-up: • If the voltage at the supply terminal VCC2 reaches the VUVLO2H threshold the RDYC output is released to high and the gate driver IC is ready to operate. The start-up delay takes approx. 200 µs and is part of the complete start-up time tSTART2. UVLO behavior during shut-down: • If the supply voltage VVCC2 of the output side drops below VUVLO2L the RDYC signal is switched to low and the output will be switched off. Datasheet 13 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description IN VCC1 VUVLO2H VUVLO2L VCC2 ON+OFF tPDRDYC tUV2LOFF RDYC tSTART2 tUV2LRDYC FLT_N Figure 8 UVLO VCC2 behavior Any VUVLO2L event will lead to a fault-off and a RDYC low level. Depending of the level of the voltage drop, the gate driver IC either stays in a not ready state and waits for the supply voltage to recover, or it will fully reset the gate driver IC. Both variants differ in the necessary delay of RDYC release after the supply voltage has recovered. After a reset, the gate driver IC needs to fully restart until it becomes ready again. Datasheet 14 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description 4.3 Input side logic The input threshold levels are always CMOS compliant. The threshold levels are 30% of VCC1 for low level and 70% of VCC1 for high level. The 1ED34x1Mc12M family (X3 Analog) has three input pins (IN, ADJA, ADJB) and two I/O pins (RDYC, FLT_N) at the input side. 4.3.1 IN non-inverting driver input The input pin has a positive logic. To turn on the associated IGBT apply a logic high signal at the IN pin. A minimum pulse width of typical 103 ns is defined to make the IC robust against glitches at IN. 4.3.2 RDYC ready status output, fault-off and fault clear input The RDYC pin is a logic input and open drain output and has three different functions: • RDYC as ready status output of all ready sources • RDYC as fault-off input • RDYC as fault clear input In a typical application the RDYC pins of all gate driver ICs in the inverter are connected together and form a single wire RDYC signal. An external pull-up resistor is required to ensure RDYC status output during operation. Ready sources • • • • • the input side is properly supplied, VCC1 supply above UVLO1 threshold the output side is properly supplied with a positive voltage, VCC2 supply above UVLO2 threshold no VEE2 over GND2 failure Internal signal transmission is operating nominal the ON pin monitoring of the gate driver is below VEE2 + 2 V, IGBT has to be off at start-up 4.3.2.1 RDYC fault-off input Pulling RDYC to low disables the operation of the gate driver IC. The gate driver IC ignores IN signals as long as the RDYC pin stays low and the IC uses its fault-off function to switch-off the IGBT. The defined minimum pulse width makes the IC robust against glitches at RDYC. The gate driver ignores pulses with a shorter duration. IN RDYC tRDYCMIN tPDRDYC ON+OFF Figure 9 tSSIO tRDYCMIN tSSIO VEE2 + 2V RDYC short pulse behavior of external manipulation of the RDYC pin After an external RDYC low signal the IC is actively pulling RDYC to low until the voltage at ON pin falls below the VEE2+2 V threshold. The RDYC fault-off input is active low. Datasheet 15 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description 4.3.2.2 RDYC fault clear input Setting RDYC to low for longer than the fault clear time tCLRMIN will reset the stored fault signal at pin FLT_N with the rising edge of RDYC. Additionally the following conditions have to be met as well: • PWM IN pin level needs to be low, • voltage at ON pin has dropped below the VEE2+2 V threshold, and • triggering fault condition is no longer present. The typical fault clear time tCLRMIN is 1.0 µs. IN FLT event FLT_N tDESATFLT ON+OFF tDESATFLT VEE2 + 2V tSSIO tSSIO RDYC >tCLRMIN Figure 10 >tCLRMIN RDYC fault clear timing RDYC VIH FLT_N Figure 11 RDYC fault clear rising edge to FLT_N 4.3.3 FLT_N status output and fault-off input The FLT_N pin is a logic input and open drain output and has two different functions: • FLT_N as fault-status output for fault sources • FLT_N as fault-off input In a typical application the FLT_N pins of all gate driver ICs in the inverter are connected together and form a single wire FLT_N signal. An external pull-up-resistor is required to ensure FLT_N status output during operation. Fault sources The following fault sources can trigger a FLT_N pin to low and initiate a fault turn-off: • desaturation detection of IGBT • gate driver over temperature protection 4.3.3.1 FLT_N fault-off input Pulling FLT_N to low disables the operation of the gate driver IC. The gate driver IC ignores IN signals as long as the FLT_N pin stays low and the IC uses its fault-off function to switch-off the IGBT. The defined minimum pulse width makes the gate driver IC robust against glitches at FLT_N. After a low at the FLT_N pin either internally or externally applied, the fault event is latched until cleared. Datasheet 16 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description The FLT_N fault-off input is active low. IN FLT_N tFLT_NMIN tFLT_NMIN tPDFLT_N ON+OFF RDYC >tCLRMIN Figure 12 Datasheet >tCLRMIN FLT_N short pulse behavior of external manipulation of the FLT_N pin cleared by RDYC 17 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description 4.4 Desaturation protection The desaturation detection circuit protects the external IGBT from destruction at a short circuit. The desaturation protection follows the given sequence: 1. Voltage at DESAT pin reaches DESAT threshold level, for a period of time exceeding the filter time 2. Gate driver IC output switches the external IGBT off, using the soft-off method 3. Gate driver IC switches FLT_N pin to low to indicate the fault to a connected microcontroller 4. Short circuit situation is resolved • after the voltage at the ON pin has dropped below the VEE2+2 V threshold, • no other fault condition is present, • the input has been turned off and • the fault has been cleared using the RDYC low cycle method VCC2 +15V D A CVCC2 DESAT RDESAT DDESAT LOGIC FLT_off OFF RG GND2 Figure 13 DESAT circuit (only relevant pins shown) The 1ED34x1Mc12M family (X3 Analog) has a fixed DESAT threshold level of typical 9.18 V. If lower threshold levels are required, the DESAT resistor can be increased. Larger DESAT resistor values lead to lower DESAT threshold voltages. The threshold voltage reduction is equal to the DESAT current multiplied by the DESAT resistance. The high-precision internal current source results in a minimum impact on the DESAT detection variation. 4.4.1 DESAT behavior The DESAT function offers a leading edge blanking time and filters to optimize the DESAT detection for application usage. The leading edge blanking inhibits threshold detection during an IGBT turn on phase. The typical IGBT turn on behavior starts with charging of the gate, commutation of the application load current and finally VCE voltage decrease to VCEsat voltage levels. To prevent the gate driver IC from detecting a false DESAT event, leading edge blanking pauses the DESAT circuit until the time tDESATleb has elapsed. Following the leading edge blanking time, the gate driver IC forces the DESAT current into the external DESAT circuit. The current typically flows through a protection resistor, a fast high voltage diode and the collector-emitter path of the IGBT. The resulting voltage at the DESAT pin is the sum of the voltage drop across this path. During a short circuit condition, the VCE voltage increases, resulting in a reverse polarity condition of the DESAT diode. The remaining DESAT current also increases the voltage level at the DESAT pin and triggers the DESAT threshold. If the pin voltage level stays above the threshold for the duration of the DESAT filter time tDESATfilter, the gate driver IC registers the DESAT event and acts accordingly. Datasheet 18 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description The internal processing time after DESAT threshold crossing, filtering and beginning of fault-off is defined as tDESATOUT. The duration of the gate discharge during fault-off is defined as tFLTOFFtot and is depending on the soft-off function and the gate load. IN tPDRDYC tPDON tFLTOFFtot OUT tDESATfilter tDESATOUTS VDESAT tDESATleb DESAT VCE tDESATFLT FLT_N RDYC >tCLRMIN Figure 14 DESAT timing with leading edge blanking, filter and reaction times 4.4.2 DESAT filter and leading edge blanking time adjustment with ADJB The ADJB pin configures the DESAT leading edge blanking time and DESAT filter time: • A resistor from ADJB to GND1 sets the DESAT leading edge blanking time and the DESAT filter time used during DESAT detection • Use resistors from the E96 resistor-series with 1% tolerance values to achieve accurate parameter configuration • The gate driver IC reads the resistor value once during start-up • Connecting ADJB to GND1 inhibits the gate driver operation and stops the start-up sequence • Connecting ADJB to VCC1 disables the filtering resulting in minimum response times Table 4 DESAT filter time set up DESAT filter timing ADJB adjustment 1 2 3 4 5 6 7 Resistance at ADJB < 1.33 kΩ to GND1 1.05 kΩ or tied to GND1 1.58 kΩ 1.91 kΩ 2.26 kΩ 2.74 kΩ 3.32 kΩ 4.02 kΩ 4.87 kΩ typ. tDESATleb 650 ns 650 ns 650 ns 650 ns 650 ns 650 ns 650 ns 1775 ns 1975 ns 2375 ns 2775 ns 3175 ns 3575 ns 3975 ns typ. tDESATfilter Datasheet stopped 0 inhibit 650 ns gate 1575 ns driver operatio n 19 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description Table 4 DESAT filter time set up DESAT filter timing ADJB adjustment 9 10 11 12 13 14 15 default Resistance at ADJB 5.90 kΩ to GND1 7.15 kΩ 8.66 kΩ 10.7 kΩ 13.7 kΩ 17.4 kΩ 23.2 kΩ 28.0 kΩ >45.3 kΩ or tied to VCC1 typ. tDESATleb 1150 ns 1150 ns 1150 ns 1150 ns 1150 ns 1150 ns 1150 ns 1150 ns 400 ns typ. tDESATfilter 3975 ns 3575 ns 3175 ns 2775 ns 2375 ns 1975 ns 1775 ns 1575 ns 225 ns Datasheet 8 20 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description 4.5 Gate driver output The gate driver output side uses MOSFETs to provide a rail-to-rail output. Therefore, the gate drive voltage follows the supply voltage closely. Due to the low internal voltage drop, the switching behavior of the IGBT is predominantly governed by the external gate resistor. The gate driver IC offers separate sink and source outputs to adapt the gate resistor for turn-on and turn-off separately without additional bypass components. The cell value x in the following table is placeholder for high or low and indicates that this pin does not influence the resulting gate driver output state. The arrow (→) in cells indicate the transition initiated by the pin of the logic input and gate driver supply pins resulting in a transition to the gate driver output state as listed. Table 5 Driver output state including transition behavior Logic input and gate driver supply IN RDYC FLT_N Gate driver output VCC1 VCC2 ON OFF Static gate driver output state: on and off high high high high high high tri-state low high high high high tri-state low Transition to not ready and static not ready state x high → low high high high → tri-state → fault off x low high high high tri-state low Transition to fault and static fault state x high high → low high high → tri-state → fault off x high low high high tri-state low Transition with VCC1 power loss and unsupplied input side x x x high → low high → tri-state → fault off x x x low high tri-state low Transition with VCC2 power loss and unsupplied output side x x x x high → low → tri-state → fault off x x x x low tri-state active shut down Datasheet 21 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description 4.5.1 Turn-on behavior The 1ED34x1Mc12M family (X3 Analog) is optimized for hard switching turn-on. A turn-on command switches the ON pin internally to VCC2. 4.5.2 Turn-off and fault turn-off behavior The gate driver IC supports different turn-off sequences to adapt to different applications and IGBT currents during normal switching operation and in the case of a fault. Table 6 Turn-off reason Turn-off sequences Turn-off sequence Remark Hard switching normal off Soft turn-off X fault turn-off X adjustable via ADJA The gate driver fault turn-off behavior can be configured with the ADJA pin Once started, the fault turn-off sequence cannot be interrupted by an IN = low turn-off signal. FLT_N or RDYC tPDRDYCS, tPDFLT_NS VOUT = 80% ON + OFF (soft-off) Figure 15 Fault turn-off sequence initiated by FLT_N or RDYC VDESAT DESAT tDESATfilter,n tDESATOUTS VOUT = 80% ON + OFF (soft-off) Figure 16 Fault turn-off sequence initiated by DESAT event 4.5.2.1 Hard switching turn-off The gate driver IC supports hard switching turn-off during normal switching operation. Switching the IGBT gate off by turning on the discharge MOSFET in the output stage, the OFF pin is switched to VEE2 pin. 4.5.2.2 Soft turn-off The soft turn-off function protects the IGBT against collector-emitter overvoltage during turn off in an overcurrent condition. It turns-off the IGBT with a reduced gate current to reduce the di/dt induced overvoltage.. The IGBT gate is connected via OFF to an internal current sink circuit. The discharge current is typically lower than the hard switch-off current used for normal operation. Since soft turn-off is a single event after a failure, the gate driver IC can handle the additional power dissipation internally. Soft turn-off can be configured with the ADJA pin. The function is only active during fault turn-off. The adjustable range depends on the current strength of the gate driver IC: Datasheet 22 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description • • • 1ED3431M: 15 mA - 233 mA 1ED3461M: 29 mA - 466 mA 1ED3491M: 44 mA - 699 mA 4.5.2.2.1 Soft-off current source adjustment with ADJA The ADJA pin configures the Soft-off function and current level: • A resistor from ADJA pin to GND1 sets the Soft-off current level for the fault-off function • Use resistors from the E96 resistor-series with 1% tolerance values to achieve accurate parameter configuration • The gate driver IC reads the resistor value once during start-up • Connecting ADJA to GND1 results in a Soft-off function for fault-off with a predefined value • Connecting ADJA to VCC1 inhibits the gate driver operation and stops the start-up sequence Table 7 Soft-off set up Soft-off adjustment with ADJA default 0 1 2 3 4 5 6 7 Resistance from < 1.05 kΩ ADJA to GND1 or tied to GND1 1.33 kΩ 1.58 kΩ 1.91 kΩ 2.26 kΩ 2.74 kΩ 3.32 kΩ 4.02 kΩ 4.87 kΩ typ. ICSOFF 1ED3431M 146 mA 15 mA 29 mA 44 mA 58 mA 73 mA 87 mA 102 mA 116 mA typ. ICSOFF 1ED3461M 291 mA 29 mA 58 mA 87 mA 116 mA 146 mA 175 mA 204 mA 233 mA typ. ICSOFF 1ED3491M 437 mA 44 mA 87 mA 131 mA 175 mA 218 mA 262 mA 306 mA 349 mA Table 7 Soft-off set up Soft-off adjustment with ADJA 9 10 11 12 13 14 15 stopped Resistance from 5.90 kΩ ADJA to GND1 7.15 kΩ 8.66 kΩ 10.7 kΩ 13.7 kΩ 17.4 kΩ 23.2 kΩ 28.0 kΩ >45.3 kΩ or tied to VCC1 typ. ICSOFF 1ED3431M 131 mA 146 mA 160 mA 175 mA 189 mA 204 mA 218 mA 233 mA typ. ICSOFF 1ED3461M 262 mA 291 mA 320 mA 349 mA 379 mA 408 mA 437 mA 466 mA inhibit gate driver operation typ. ICSOFF 1ED3491M 393 mA 437 mA 480 mA 524 mA 568 mA 612 mA 655 mA 699 mA Datasheet 8 23 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description 4.5.3 Active shut-down The active shut-down feature ensures a safe IGBT off-state, if the output chip is not supplied. It protects the IGBT against a floating gate. The IGBT gate is always clamped via OFF to VEE2. 4.5.4 Active Miller clamp The 1ED34x1Mc12M family (X3 Analog) is equipped with an active Miller clamp function to protect the IGBT from parasitic turn-on in fast switching applications. After a turn-off command the gate driver IC follows the implemented sequence: 1. Discharge of the IGBT gate while monitoring the voltage level at the ON pin 2. Detection of a voltage at the ON pin less than a level of VEE2 + 2.0 V 3. Filtering of the detection to avoid false CLAMP activation and not to influence regular turn-off behavior 4. Activating clamp function to keep IGBT gate at VEE2 level 4.5.4.1 CLAMP output types The CLAMP output stage offers two operating modes: • direct gate clamping with an open drain output for medium clamping current, 1ED3431M variants • pre-driver output, to clamp IGBT gate with external transistor for high clamping current, 1ED3461M and 1ED3491M variants Direct gate clamping Direct gate clamping with an open drain output is tailored for direct clamping of IGBT gate to VEE2. The output current capability is typically 2 A. Useful IGBT current rating for direct gate clamping is a collector current of typically smaller than 100 A. Connect the CLAMP pin directly to the gate with low inductive tracks. +3V3 SGND 10k 10k VCC1 VCC2 100n DESAT GND1 ON IN RDYC FLT_N IN FLT_N ADJB Datasheet OFF 1k 1R 1R RDYC ADJA Figure 17 +15V 1µ CLAMP GND2 VEE2 Application example with unipolar supply (1ED3431M) 24 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description IN tPDOFF VVEE2 +2V ON tCLAMPfilter tONCLAMP OFF CLAMP CLAMP tri state Figure 18 CLAMP active low CLAMP tri state Direct clamp output behavior Pre-driver output Track inductance and clamp output resistance reduces the clamping capability for large IGBTs. In this case, select the pre-driver output product variant with an external MOSFET. The external small signal n-channel MOSFET transistor in combination with the pre-driver output enables clamping of high gate currents. Connect the MOSFET between the CLAMPDRV output, VEE2 pin, and IGBT gate. Due to the pre-driver configuration the clamp current is only limited by the external clamp MOSFET transistor. Depending on the external MOSFET a Miller current clamping up to 20 A can be reached. The clamping MOSFET has to be placed close to the IGBT gate to minimize track resistance and inductance. +3V3 SGND 10k 10k VCC1 VCC2 100n RDYC FLT_N GND1 IN FLT_N ADJB Datasheet OFF 1R 1R RDYC ADJA Figure 19 1k DESAT ON IN +15V 1µ CLAMPDRV GND2 1µ VEE2 -8V Application example with bipolar supply and CLAMP pre-driver output (1ED3461M, 1ED3491M) 25 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description IN tPDOFF VVEE2 +2V ON tCLAMPfilter tONCLAMP OFF CLAMPDRV CLAMP DRV low CLAMP DRV active high Figure 20 Clamp pre-driver output behavior 4.5.5 Switch-off timeout until forced switch-off CLAMP DRV low The gate driver IC is equipped with a switch-off timeout monitoring feature. In case the pin monitoring comparator has not registered an off-state within the timeout time this feature activates a forced switch-off. The monitoring feature secures the IGBT switch-off in case of a connection failure between the OFF output and the IGBT gate or a faulty gate resistor. In a forced switch-off all available output switch-off paths (OFF and CLAMP/CLAMPDRV) will be used to hard switch-off the IGBT after such an event. OFF activated VVEE2 +2V ON (soft-off) tCTSOOS ON (hard switch-off) VVEE2 +2V tCTT TO switch-off inactive Figure 21 tCTT TO switch-off active Switch-off timeout behavior The timing diagram shows the switch-off timeout behavior from the moment of OFF output activation until the timeout has elapsed and the CLAMP output is activated. 4.6 Short circuit clamping The integrated short circuit clamping diode limits the IGBT gate over voltage during a short circuit. The over voltage is typically triggered by the capacitive feedback of the Miller capacitance. The internal diodes from ON and CLAMP to VCC2 limit the gate driver voltage to a value slightly higher than the supply voltage. These diode paths are rated for a maximum current of 0.75 A and the duration of 6 µs. Add an external Schottky diode if higher currents are expected or a tighter clamping is desired. Also use an external diode if the active Miller clamping circuit uses the pre-driver output configuration. Datasheet 26 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 4 Functional description VCC2 +15V VCC2 ON ON OFF OFF CLAMP Figure 22 Datasheet +15V CLAMP GND2 GND2 VEE2 VEE2 Short circuit clamping circuitry 27 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters 5 Electrical parameters 5.1 Absolute maximum ratings Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 8, GND2 for pins 9 to 16). Table 8 Absolute maximum ratings Parameter Symbol Values Min. Max. Unit Note / Test Condition Input to output offset voltage VOFFSET – 2300 V VVEE2,max-VVEE2,min with VVEE2,max ≥ VGND1 ≥ VVEE2,min1) 2) Supply voltage input side VVCC1 -0.3 6.5 V – Logic input voltage (IN) VLogicIN -0.3 6.5 V – Logic input voltage (RDYC, FLT_N) VLogicRF -0.3 6.5 V – Logic input voltage (ADJA, ADJB) VLogicAD -0.3 6.5 V – Open drain logic output current (RDYC, FLT_N) ILogicOC – 10 mA – Positive supply voltage output side VVCC2 -0.3 40 V – Negative supply voltage output side VVEE2 -40 0.3 V – Maximum supply voltage difference output side (VVCC2 - VVEE2) Vmax2 – 40 V – DESAT input voltage VDESAT -0.3 VVCC2 +0.3 V – CLAMP input voltage VCLAMP VVEE2 -0.3 VVCC2 +0.3 V 3) Maximum CLAMP output current ICLAMP – 2.4 t < 5 µs Gate driver output voltage (ON, OFF) VOUT VVEE2 -0.3 Vmax2 +0.3 V – Maximum CLAMP to VCC2 diode IGBT short circuit clamping time tCLP – 6 µs ICLAMP/OUT = 0.75 A Junction temperature TJ -40 150 °C – Storage temperature TStg -55 150 °C – Power dissipation, input side PD,IN – 100 mW @TA = 25 °C Power dissipation, output side PD,OUT – 700 mW @TA = 25°C4) ESD capability: Human body model VESDHBM – 2 kV 5) ESD capability: Charged device model VESDCDM – 500 V 6) 1) 2) 3) 4) A for functional operation only See also Chapter 6 on page 41 May be exceeded during short circuit clamping. Derating the power above 65°C with 8 mW/°C Datasheet 28 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters 5) 6) According to ANSI/ESDA/JEDEC-JS-001-2017 (discharging a 100 pF capacitor through a 1.5 kΩ series resistor). According to ANSI/ESDA/JEDEC-JS-002-2014 (TC = test condition in volt) 5.2 Thermal parameters Thermal performance may change significantly with layout and heat dissipation of components in close proximity. Figure 23 Reference layout for thermal data (Two layer PCB; copper thickness 35 μm; left: top layer; right: bottom layer) The PCB layout represents the reference layout used for the thermal characterization. Pins 1 and 8 (GND1) and pins 9 and 16 (VEE2) require ground plane connections for achieving maximum power dissipation. The 1ED34x1Mc12M family (X3 Analog) is conceived to dissipate most of the heat generated through these pins. Table 9 Thermal parameters Parameter Symbol Value Unit Note / Test Condition Thermal resistance junction to ambient RTHJA,OUT 122 K/W 8 K/W @TA = 65°C, PD, OUT = 400 mW, PD, IN = 50 mW, 4 layer test PCB, PG-DSO-16 Characterization parameter junction ΨJtop to package top input side 5.3 Note: Operating parameters Within the operating range the IC operates as described in the functional description. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 8, GND2 for pins 9 to 16). Table 10 Operating parameters Parameter1) Symbol Values Min. Max. Unit Note / Test Condition Supply voltage input side VVCC1 3.0 5.5 V – Logic input voltages (IN, RDYC, FLT_N) VLogicIN -0.3 5.5 V – Positive supply voltage output side VVCC2 13 25 V – Negative supply voltage output side VVEE2 -25 0 V – (table continues...) Datasheet 29 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters Table 10 (continued) Operating parameters Parameter1) Symbol Values Min. Max. Unit Note / Test Condition Supply voltage difference output side (VVCC2 - VVEE2) Vmax2 13 35 V – Ambient temperature TA -40 125 °C 2) Switching frequency fSW 0 250 kHz max PD applies Common mode transient immunity |CMTI| 0 200 V/ns VOFFSET,test = 1500 V 1) 2) Parameter is not subject to production test - verified by design/characterization TJ has to be below over temperature protection temperature TOTPOFF Datasheet 30 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters 5.4 Note: Electrical characteristics The electrical characteristics include the spread of values in supply voltages, load, and junction temperatures within the operating parameters unless specified otherwise. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 8, GND2 for pins 9 to 16). 5.4.1 Voltage supply Table 11 Voltage supply Parameter Symbol Values Min. VCC1 UVLO threshold Typ. Unit Note or Test Condition Max. VUVLO1H – 2.95 3.05 V – VUVLO1L 2.6 2.8 – V – VCC1 UVLO hysteresis (VUVLO1H - VUVLO1L) VHYS1 0.1 0.14 – V – VCC1 quiescent current IQ1 – 2.4 4.0 mA VVCC1 = 3.3 V, IN = High, RDYC = High, FLT_N = High VCC1 operating current IO1 – 2.4 4.0 mA VVCC1 = 3.3 V, IN = 16 kHz, 50%, RDYC = High, FLT_N = High VCC2 UVLO threshold VUVLO2H,0 – 12.0 12.6 V VUVLO2L,0 10.4 11.0 – V VCC2 UVLO hysteresis (VUVLO2H,0 - VUVLO2L,0) VHYS2,0 0.75 1.0 – V VEE2 not connected detection threshold VVEE2,NC – 0.5 – V VVEE2 - VGND2 VCC2 quiescent current IQ2 – 3.9 5 mA VVCC2 = 15 V, VVEE2 = -8 V, OUT = High, DESAT = Low VCC2 operating current IO2 – 3.9 5 mA VVCC2 = 15 V, VVEE2 = -8 V, OUT = 16 kHz, 50%, DESAT = Low, CLOAD = 100 pF Datasheet 31 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters 5.4.2 Logic input and output Table 12 Logic input and output Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Logic low input voltage (IN, RDYC, FLT_N) VLogicINL – – 30 % of VVCC1 Logic high input voltage (IN, RDYC, FLT_N) VLogicINH 70 – – % of VVCC1 Logic low output voltage (RDYC, VRDYC5, FLT_N) VFLT_N5 – – 300 mV ISINK = 5 mA Logic input pull down resistor (IN) RINPD 33 40 47 kΩ – Logic input pull down resistor (RDYC, FLT_N) RRDYCPD, RFLT_NPD 0.8 1.0 1.2 MΩ – 5.4.3 Analog input Resistor values outside of the 1% tolerance range results in the gate driver IC selecting either the lower or higher step for the corresponding function. Table 13 Analog input Parameter1) Symbol Values Min. Analog input resistor (ADJA, ADJB) Datasheet Typ. Note or Test Condition kΩ all resistor values are from the E96-series with 1% tolerance Max. RADJx0 – 1.33 – RADJx1 – 1.58 – RADJx2 – 1.91 – RADJx3 – 2.26 – RADJx4 – 2.74 – RADJx5 – 3.32 – RADJx6 – 4.02 – RADJx7 – 4.87 – RADJx8 – 5.90 – RADJx9 – 7.15 – RADJx10 – 8.66 – RADJx11 – 10.7 – RADJx12 – 13.7 – RADJx13 – 17.4 – RADJx14 – 23.2 – RADJx15 – 28.0 – 32 Unit 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters 1) Parameter is not subject to production test - verified by design/characterization Datasheet 33 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters 5.4.4 Note: Gate driver High and low level output currents are absolute values without an information of current direction. Table 14 Gate driver Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition High level output voltage VON0 – VVCC2 + 0.87 VVCC2 + 1.01 V ION = 500 mA1) High level output peak current 1ED3431M ION 2.6 3.8 – A 2) 3) C High level output on resistance 1ED3431M RDSON,H 0.51 1.12 2.24 Ω ION = 67 mA3) Low level output peak current 1ED3431M IOFF 2.0 2.5 – A 2) 4) C Low level ouput on resistance 1ED3431M RDSON,L 0.31 0.82 1.64 Ω IOFF = 67 mA4) High level output peak current 1ED3461M ION 5.2 7.5 – A 2) 3) C High level output on resistance 1ED3461M RDSON,H 0.26 0.56 1.13 Ω ION = 133 mA3) Low level output peak current 1ED3461M IOFF 4.0 5.0 – A 2) 4) C Low level ouput on resistance 1ED3461M RDSON,L 0.16 0.41 0.83 Ω IOFF = 133 mA4) High Level output peak ION current 1ED3491M 7.9 11 – A 2) 3) C High level output on resistance 1ED3491M RDSON,H 0.17 0.38 0.75 Ω ION = 200 mA3) Low Level output peak current 1ED3491M IOFF 6.0 7.5 – A 2) 4) C Low level ouput on resistance 1ED3491M RDSON,L 0.11 0.28 0.55 Ω IOFF = 200 mA4) Active Shut Down Voltage OFF 1ED3431M VACTSD5) – – VVEE2 +2.4 V IOUT = 67 mA,VVCC2 open Active Shut Down Voltage OFF 1ED3461M VACTSD5) – – VVEE2 +2.4 V IOUT = 133 mA,VVCC2 open Active Shut Down Voltage OFF 1ED3491M VACTSD5) – – VVEE2 +2.4 V IOUT = 200 mA,VVCC2 open 1) 2) 3) 4) LOAD = 33 nF LOAD = 33 nF LOAD = 68 nF LOAD = 68 nF LOAD = 100 nF LOAD = 100 nF Integrated diode ON vs. VCC2 clamping test Parameter is not subject to production test - verified by design/characterization IN = High, ON = High; VCC2-ON = 15 V; RG = 0.1 Ω; VCC2 = 15 V; VEE2 = -8 V IN = Low, OFF = Low; OFF-VEE2 = 15 V; RG = 0.1 Ω; VCC2 = 15 V; VEE2 = -8 V Datasheet 34 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters 5) With reference to VEE2 5.4.5 Active Miller clamp Table 15 Active Miller clamp Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. VCLAMPH0 – VVCC2 +1.5 VVCC2 +1.63 V ICLAMP = 500 mA1) 2) VCLAMPH1 – VVCC2 +0.9 VVCC2 +1.1 V ICLAMP = 50 mA1) 2) Clamp-driver high VCLAMPDH1 level output voltage V (1ED3461M, 1ED3491M) CLAMPDH2 VVEE2+7.5 VVEE2+9.5 VVEE2+11.5 V ICLAMPH = 5 mA3) VVEE2+4.5 VVEE2+6.7 – V ICLAMPH = 50 mA3) Clamp-driver high level ICLAMPH output peak current (1ED3461M, 1ED3491M) 0.20 0.27 – A 4) VCC2 = 15 V; VEE2 = Clamp/Clamp-driver output low level current ICLAMPL,2 1.1 1.8 – A Clamp/Clamp-driver output low level current ICLAMPL,5 2.2 3.5 – A Clamp/Clamp-driver output low level ON resistance RDSON,CLP 0.50 0.85 1.35 Ω ICLAMPL = 200 mA Clamp threshold voltage VON_CLAMP 1.5 2.0 2.5 V Related to VEE2 Clamp filter time tCLAMPfilter 195 235 275 ns 16 + tCLAMPfilter 23 + tCLAMPfilter 35 + tCLAMPfilter ns 4) 5) C CLAMP reaction time in tCLAMPD_ON 24 + CLAMP driver mode tCLAMPfilter 35 + tCLAMPfilter 53 + tCLAMPfilter ns 4) 6) C Switch-off time-out time tCTT – 2.4 – µs 4) Switch-off time-out soft-off offset time tCTSOOS – 2.4 – µs 4) additional time-out High level clamp voltage CLAMP reaction time in tCLAMP_ON CLAMP mode 1) 2) 3) 4) 5) 0 V; CCLAMP = 100 nF; RCLAMP = 1 Ω 4) VCC2 = 15 V; VEE2 = 0 V; VCLAMP = 2 V; CCLAMP = 100 nF; RCLAMP = 0.1 Ω 4) VCC2 = 15 V; VEE2 = 0 V; VCLAMP = 5 V; CCLAMP = 100 nF; RCLAMP = 0.1 Ω LOAD = 100 pF LOAD = 100 pF delay during soft-off Integrated diode CLAMP vs. VCC2 clamping test only valid for direct clamping: IN = High, OUT = High only valid for clamp pre-driver output: IN = Low, OUT = Low Parameter is not subject to production test - verified by design/characterization CLAMP mode reaction time specified with 3.3 kΩ pull-up from CLAMP to 3.3 V, from CLAMP threshold until reaching 0.8 V (falling) at CLAMP pin Datasheet 35 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters 6) CLAMP driver mode reaction time specified from CLAMP threshold until reaching 0.8 V (rising) at CLAMP(DRV) pin 5.4.6 Dynamic characteristics Dynamic characteristics are measured with VVCC1 = 5 V, VVCC2 = 15 V and VVEE2 = -8 V unless specified otherwise. Table 16 Dynamic characteristics Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Input pulse suppression time IN tINMIN 98 103 108 ns – Input pulse suppression time RDYC/FLT_N for enable / fault off tRDYCMIN, tFLT_NMIN 85 100 115 ns – Input pulse width RDYC for FLT_N reset (Fault clear time) tCLRMIN – 1.0 1.2 µs Input IN to output propagation delay ON tPDON 226 244 270 ns CLOAD = 100 pF, VIN = 70%, VOUT=20% Input IN to output propagation delay OFF tPDOFF 218 236 262 ns CLOAD = 100 pF, VIN = 30%, VOUT=80% Input to output tPDISTO propagation delay distortion (tPDOFF - tPDON) -23 -8 7 ns CLOAD = 100 pF Input IN to output propagation delay distortion between any devices (tPDON-tPDON) or (tPDOFF-tPDOFF) tPDD – – 30 ns 1) same conditions State synchronization time between input and output tSSIO – – 13 µs 1) Input RDYC to output on propagation delay tPDRDYC 447 523 600 ns CLOAD = 100 pF; IN high; VRDYC = 70%, VOUT=20% Input RDYC or FLT_N to Soft-off output propagation delay tPDRDYCS, tPDFLT_NS 323 361 407 ns CLOAD = 100 pF, VSignal = 30%, VOUT=80%, Soft-off function ICSOFF,15 Input RDYC or FLT_N to hard switch-off output propagation delay tPDRDYCH, tPDFLT_NH 303 342 384 ns CLOAD = 100 pF, VSignal = 30%, VOUT=80%, OFF function Rise time 1ED3431M tRISE – 15 30 ns CLOAD = 1 nF, VOUT: 20% to 80% (VIN, VVCC1, VVCC2 and VVEE2, CLOAD, TA) (table continues...) Datasheet 36 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters Table 16 (continued) Dynamic characteristics Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Fall time 1ED3431M tFALL – 15 30 ns CLOAD = 1 nF, VOUT: 80% to 20% Rise time 1ED3461M tRISE – 15 30 ns CLOAD = 2.2 nF, VOUT: 20% to 80% Fall Time 1ED3461M tFALL – 15 30 ns CLOAD = 2.2 nF, VOUT: 80% to 20% Rise Time 1ED3491M tRISE – 15 30 ns CLOAD = 3.3 nF, VOUT: 20% to 80% Fall Time 1ED3491M tFALL – 15 30 ns CLOAD = 3.3 nF, VOUT: 80% to 20% 1) Parameter is not subject to production test - verified by design/characterization 5.4.7 Desaturation protection All parameters valid for VCC1 = 5 V, VCC2 = 15 V, and VEE2 = 0 V unless specified otherwise. Table 17 Desaturation protection Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. DESAT charge current IDESATC 470 500 525 µA VDESAT = 0 V DESAT voltage divider resistance RDVD 259 312.5 366 kΩ between DESAT and GND2 pins DESAT clamp and discharge ON resistance RDSON,D – 7.7 25.0 Ω IDESATD = 200 mA DESAT threshold level VDESAT 8.88 9.18 9.48 V – DESAT leading edge blanking time tDESATleb,d 356 400 444 ns tDESATleb,s 597 650 703 ns tDESATleb,l 1077 1150 1223 ns ADJB depending, VON 20% rising to VDESAT = 1 V, CLOAD = 100 pF, CDESAT = 2 pF, 225 263 ns ADJB = VCC1 ADJB depending DESAT filter time (default) tDESATfilter,def 190 DESAT filter time (ADJB tDESATfilter,A adjustable) tDESATfilter,B 1476 1575 1684 ns 1667 1775 1895 ns tDESATfilter,C 1857 1975 2105 ns tDESATfilter,D 2238 2375 2526 ns tDESATfilter,E 2619 2775 2947 ns tDESATfilter,F 3000 3175 3368 ns (table continues...) Datasheet 37 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters Table 17 (continued) Desaturation protection Parameter Symbol Values Min. DESAT sense to FLT_N low delay Typ. Max. Note or Test Condition tDESATfilter,G 3381 3575 3789 ns tDESATfilter,H 3762 3975 4211 ns tDESATFLT 623 743 883 ns VFLT_N = 30%, IFLT _N = 5 mA, tDESATfilter,def, CFLT_N = 100 pF 287 + tDESATfilter 333 + tDESATfilter 382 + tDESATfilter ns VOUT = 80%, CLOAD = 100 pF, ICSOFF,15 DESAT sense to OFF low tDESATOUTS delay, Soft-off Datasheet Unit 38 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters 5.4.8 Soft-off current source Soft-off current source values specified at OFF pin at VOFF = 3 V with unipolar supply of VVCC2 = 15 V. Table 18 Current source turn-off Parameter Symbol Values Min. Soft-off current source current 1ED3431M Soft-off current source current 1ED3461M Typ. Unit Note or Test Condition depends on resistor value at ADJA Max. ICSOFF,0 10 15 19 mA ICSOFF,1 24 29 36 mA ICSOFF,2 35 44 52 mA ICSOFF,3 47 58 70 mA ICSOFF,4 58 73 87 mA ICSOFF5 70 87 105 mA ICSOFF,6 82 102 122 mA ICSOFF,7 93 116 140 mA ICSOFF,8 105 131 157 mA ICSOFF,9 116 146 175 mA ICSOFF,10 128 160 192 mA ICSOFF,11 140 175 210 mA ICSOFF,12 151 189 227 mA ICSOFF,13 163 204 245 mA ICSOFF,14 175 218 262 mA ICSOFF,15 186 233 280 mA ICSOFF,0 22 29 36 mA ICSOFF,1 45 58 72 mA ICSOFF,2 70 87 105 mA ICSOFF,3 93 116 140 mA ICSOFF,4 116 146 175 mA ICSOFF,5 140 175 210 mA ICSOFF,6 163 204 245 mA ICSOFF,7 186 233 280 mA ICSOFF,8 210 262 314 mA ICSOFF,9 233 291 349 mA ICSOFF,10 256 320 384 mA ICSOFF,11 280 349 419 mA ICSOFF,12 303 379 454 mA ICSOFF,13 326 408 489 mA ICSOFF,14 349 437 524 mA depends on resistor value at ADJA (table continues...) Datasheet 39 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 5 Electrical parameters Table 18 (continued) Current source turn-off Parameter Symbol Values Min. Soft-off current source current 1ED3491M Typ. 373 466 559 mA ICSOFF,0 34 44 54 mA ICSOFF,1 70 87 105 mA ICSOFF,2 105 131 157 mA ICSOFF,3 140 175 210 mA ICSOFF,4 175 218 262 mA ICSOFF,5 210 262 314 mA ICSOFF,6 245 306 367 mA ICSOFF,7 280 349 419 mA ICSOFF,8 314 393 472 mA ICSOFF,9 349 437 524 mA ICSOFF,10 384 480 577 mA ICSOFF,11 419 524 629 mA ICSOFF,12 454 568 681 mA ICSOFF,13 489 612 734 mA ICSOFF,14 524 655 786 mA ICSOFF,15 559 699 839 mA Over-temperature protection Table 19 Over-temperature protection Symbol Values Min. Over-temperature protection level 1) Max. ICSOFF,15 5.4.9 Parameter1) Unit TOTPOFF 150 Typ. 160 Unit Max. 170 Note or Test Condition depends on resistor value at ADJA Note or Test Condition °C Parameter is not subject to production test - verified by design/characterization Datasheet 40 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 6 Insulation characteristics 6 Insulation characteristics The following isolation classes are available for the 1ED34x1Mc12M family (X3 Analog). Table 20 Product isolation classes Product name Marking Insulation characteristics Values specified in UL values 1ED34x1MU12M 34x1MU12 UL 1577 certified insulation - Table 23 1ED34x1MC12M 34x1MC12 Reinforced insulation Table 22 Table 23 Table 21 Safety limiting values This coupler is suitable for rated insulation only within the given safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Description Symbol Characteristic Unit Maximum ambient safety temperature TS 150 °C PSI 100 mW PSO 1000 mW Maximum input-side power dissipation at TA = 25°C Maximum output-side power dissipation at TA = 25°C1) Maximum driver output current (ON, OFF)2) 1ED3431MC 1ED3461MC 1ED3491MC 1) 2) IOUT A 2.4 4.8 7.2 IC output-side power dissipation is derated linearly at 8 mW/°C above 65 °C Maximum pulse length of t = 5 µs 6.1 Certified according to VDE 0884-11 reinforced insulation (Certificate no. 40053980) Valid for parts with part name 1ED34x1MC12M, x indicate different variants. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Table 22 Reinforced insulation according to VDE 0884-11 Description Symbol Characteristic Unit Installation classification per EN 60664-1, Table 1 for rated mains voltage ≤ 150 V (rms) for rated mains voltage ≤ 300 V (rms) for rated mains voltage ≤ 600 V (rms) for rated mains voltage ≤1000 V (rms) – I-IV I-IV I-III I-II Climatic classification 40/125/21 – Pollution degree (EN 60664-1) 2 – Minimum external clearance CLR >8 mm Minimum external creepage CPG >8 mm Minimum comparative tracking index CTI 400 – (table continues...) Datasheet 41 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 6 Insulation characteristics Table 22 (continued) Reinforced insulation according to VDE 0884-11 Description Symbol Characteristic Unit Apparent charge, method a Vpd(ini),a = VIOTM, Vpd(m) = 1.6 × VIORM, tini = 1 min qC 109 Ω Maximum rated transient isolation voltage VIOTM 8000 V (peak) Maximum repetitive insulation voltage VIORM 1767 V (peak) Maximum surge isolation voltage for reinforced isolation VTEST = VIOSM × 1.6 VIOSM 6875 V (peak) Insulation capacitance CIO 1.7 pF 6.2 Recognized under UL 1577 (File E311313) Table 23 Recognized under UL 1577 Description Symbol Characteristic Unit Insulation withstand voltage/1 min VISO 5700 V (rms) Insulation test voltage/1 s VISO, TEST 6840 V (rms) Datasheet 42 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 7 Package information Package information 1) 1) 6.4 7.5 0.35 x 45° ° 8 0°... 0.15±0.05 Stand Off (2.35) 2.65 Max 7 (0.25) Seating plane Coplanarity 9 1 8 Bottom View 9 16 8 1 10.3 16 0.7±0.2 Pin1 Marking 0.65 2) 0.33±0.08 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width All dimensions are in units mm The drawing is in compliance with ISO 128-30, Projection Method 1 [ ] Figure 24 Datasheet PG-DSO-16-28/33 - 300 mil 16-pin fine pitch plastic green dual small outline package 43 1.10 2021-10-08 EiceDRIVER™ 1ED34x1Mc12M Enhanced Datasheet 8 Application notes 8 Application notes 8.1 Reference layout for thermal data Figure 25 Reference layout for thermal data (Two layer PCB; copper thickness 35 μm; left: top layer; right: bottom layer) The PCB layout represents the reference layout used for the thermal characterization. Pins 1 and 8 (GND1) and pins 9 and 16 (VEE2) require ground plane connections for achieving maximum power dissipation. The 1ED34x1Mc12M family (X3 Analog) is conceived to dissipate most of the heat generated through these pins. 8.2 Printed circuit board guidelines Following factors should be taken into account for an optimum PCB layout. • Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits. • The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained to increase the effective isolation and reduce parasitic coupling. • In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept as short as possible. Revision history Revision history Reference Description v2.1 (2021-02-15) • • • • (2021-09-01) New version number schema: Target/Preliminary datasheet: 0.XY; Final datasheet: 1.XY 1.10 (2021-10-08) • • • Datasheet Change footnotes to table notes added param VOFFSET update package drawing to latest revision update certification status Certification information update (VDE certification) Fix unit and conditions in certification table according to standards Related product table update 44 1.10 2021-10-08 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2021-10-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2021 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IFX-fiz1584344472005 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
1ED3491MC12MXUMA1 价格&库存

很抱歉,暂时无法提供与“1ED3491MC12MXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
1ED3491MC12MXUMA1
  •  国内价格
  • 250+44.86281
  • 500+43.74333

库存:920

1ED3491MC12MXUMA1
  •  国内价格
  • 2+46.01354
  • 250+44.86281
  • 500+43.74333

库存:920