EiceDRIVER™
1EDN751x/1EDN851x
Features
Fast, Precise, Strong and Compatible
•
5 ns slew rate to support high speed Superjunction MOSFET (like CoolMos™ C7) or GaN devices
•
19 ns propagation delay precision for fast MOSFET and GaN switching
•
8 A sink and 4 A source driver capability enables fast switching for very high efficiency applications and
powers low ohmic MOSFET
•
Industry standard packages and pinout ease system-design upgrades
The New Reference in Ruggedness
•
4.2 V and 8 V UVLO (Under Voltage Lock Out) options ensure instant MOSFET protection under abnormal
conditions
•
-10 V input voltage capability delivers robustness and crucial safety margin when device is driven from pulsetransformers
•
5 A reverse current robustness eliminates the need for output protection circuitry
Applications
•
Server SMPS (Switch Mode Power Supplies)
•
TeleCom SMPS
•
DC-to-DC Converter
•
Bricks
•
Power Tools
•
Industrial SMPS
•
Motor Control
Example Topologies
•
Synchronous Rectification
•
Power Factor Correction PFC (DCM, CCM)
•
LLC, ZVS in combination with pulse transformer for isolation
Description
The 1EDN7x/1EDN8x is an advanced single-channel driver. It is suited to drive logic and normal level MOSFETs
and supports OptiMOSTM, CoolMOSTM, Standard Level MOSFETs, Superjunction MOSFETs, as well as IGBTs and
GaN Power devices.
Data Sheet
Please read the Important Notice and Warnings at the end of this document
www.infineon.com/1EDN
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Description
The control and enable inputs are LV-TTL compatible (CMOS 3.3 V) with an input voltage range from -5 V to +20 V.
-10 V input pin robustness protects the driver against latch-up or electrical overstress which can be induced by
parasitic ground inductances. This greatly enhances system stability.
4.2 V and 8 V UVLO (Under Voltage Lock Out) options ensure instant MOSFET and GaN protection under abnormal
conditions. Under such circumstances, this UVLO mechanism provides crucial independence from whether and
when other supervisors circuitries detect abnormal conditions.
The output is able to sink 8 A and source 4 A currents utilizing a true rail-to-rail stage. This ensures very low onresistance of 0.85 Ω up to the positive and 0.35 Ω down to the negative rail respectively. Industry-leading reverse
current robustness eliminates the need for Schottky diodes at the outputs and reduces the bill-of-material.
The pinout of the 1EDN family is compatible with the industry standard. Three package variants, SOT23 6-pin, 5pin and WSON 6-pin, allow optimization of PCB board space usage and thermal characteristics.
Load
VDD
From Controller
1EDN751x/
1EDN851x
IN+
VDD
IN-
OUT_SRC
GND
OUT_SNK
Rg1
M1
Rg 2
CVDD
Figure 1
Data Sheet
Typical application
2
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Table of Contents
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1
1.1
1.2
Product Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Undervoltage Lockout Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Package Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Pin Configuration and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4
4.1
4.2
4.3
4.4
4.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Driver Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10
10
10
10
11
5
5.1
5.2
5.3
5.4
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
12
12
14
14
6
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7
Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8
Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Data Sheet
3
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Product Versions
1
Product Versions
The 1EDN751x/1EDN851x is available in 2 different Undervoltage Lockout and 3 package versions.
Table 1
Package
Product Versions
Type. UVLO
Part Number
IC Topside
Marking Code
4.2 V
1EDN7511B
71
8V
1EDN8511B
81
4.2 V
1EDN7512B
72
4.2 V
1EDN7512G
1N7512
AG_XXX
HYYWW
PG-SOT23-6-2
PG-SOT23-5-1
PG-WSON-6-1
1.1
Undervoltage Lockout Versions
The 2 Undervoltage Lockout versions are indicated by the variable x in the product version 1EDNz:
•
z=7: lower voltage for logic level MOSFETs (typ. 4.2 V)
•
z=8: higher voltage for standard and superjunction MOSFETs (typ. 8.0 V)
Please refer to the functional description section for more details in Chapter 4.5
Data Sheet
4
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Product Versions
1.2
Package Versions
Following versions regarding UVLO and output configuration are available.
•
a standard SOT-23; 6 pin (1EDN7511B and 1EDN8511B)
•
a standard SOT-23; 5 pin (1EDN7512B)
•
a leadless WSON-6; 6 pin (1EDN7512G)
Data Sheet
5
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Pin Configuration and Description
2
Pin Configuration and Description
The pin configuration for the PG-SOT23-6-2 package is shown in Figure 2. Pin description is given below in
Table 2. For functional details, please read Chapter 4.
1
VDD
IN+
6
2
OUT_SRC
IN-
5
3
OUT_SNK
GND
4
Figure 2
Pin Configuration PG-SOT23-6-2 (top side view)
Table 2
Pin Configuration
Symbol
Description
IN+
Non-inverting Input
Logic Input; if IN+ is low or left open causes OUT low
IN-
Inverting Input
Logic Input; if IN- is high or left open, causes OUT low
GND
Ground
VDD
Positive Supply Voltage
Operating range 4.5 V to 20 V
OUT_SNK
Driver Output Sink
Low-impedance output with sink capability
OUT_SRC
Driver Output Source
Low-impedance output with source capability
Note:
Data Sheet
The pin configuration in the PG-SOT23-6-2 features separated source and sink outputs.
6
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Pin Configuration and Description
The pin configuration for the PG-SOT23-5-1 package is shown in Figure 3. Pin description is given below in
Table 3. For functional details, please read Chapter 4.
1
VDD
2
GND
3
IN+
OUT
5
IN-
4
Figure 3
Pin Configuration PG-SOT23-5-1 (top side view)
Table 3
Pin Configuration
Symbol
Description
IN+
Non-inverting Input
Logic Input; if IN+ is low or left open causes OUT low
IN-
Inverting Input
Logic Input; if IN- is high or left open, causes OUT low
GND
Ground
VDD
Positive Supply Voltage
Operating range 4.5 V to 20 V
OUT
Driver Output
Low-impedance output and sink capability
Note:
Data Sheet
Package PG-SOT23-5-1 features a shorted source sink output.
7
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Pin Configuration and Description
The pin configuration for the PG-WSON-6-1 package is shown in Figure 4. Pin description is given below in
Table 4. For functional details, please read Chapter 4.
IN+
1
6
IN-
GND
2
5
GND
VDD
3
4
OUT
Figure 4
Pin Configuration PG-WSON-6-1 (top side view)
Table 4
Pin Configuration
Symbol
Description
IN+
Non-inverting Input
Logic Input; if IN+ is low or left open causes OUT low
IN-
Inverting Input
Logic Input; if IN- is high or left open, causes OUT low
GND
Ground
VDD
Positive Supply Voltage
Operating range 4.5 V to 20 V
OUT
Driver Output
Low-impedance output with source and sink capability
Note:
1. Package PG-WSON-6-1 has a combined source sink output.
2. Exposed pad of PG-WSON-6-1 package has to be connected to GND pin.
Data Sheet
8
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Block Diagram
3
Block Diagram
A simplified functional block diagram for the PG-SOT23-6-2 is given in Figure 5. This version has separated source
and sink outputs.
VCC
UVLO
IN+
active
filter
Logic
GND
OUT_SRC
VCC
active
filter
IN-
OUT_SNK
GND
Figure 5
Block Diagram 1EDN7511B and 1EDN8511B
A simplified functional block diagram for PG-WSON-6-1 is depicted in Figure 6. This version has one common
output.
VCC
UVLO
IN+
act ive
filter
GND
Logic
VCC
IN-
OUT
act ive
filter
GND
Figure 6
Data Sheet
Block Diagram 1EDN7512B 1EDN7512G
9
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Functional Description
4
Functional Description
4.1
Introduction
The 1EDN751x/1EDN851x is a fast single-channel driver for low-side switches. Rail-to-rail output stages with very
low output impedance and high current capability are chosen to ensure highest flexibility and cover a high variety
of applications.
The focus on robustness at the input and output side gives this device an additional safety margin in critical
abnormal situations. An extended negative voltage range protects input pins against ground shifts. No current
flows over the ESD structure in the IC during a negative input level. Output is robust against reverse current. The
interaction with the power MOSFET, even reverse reflected power will be handled by the strong internal output
stage.
Inputs are compatible with LV-TTL signal levels. The threshold voltages with a typical hysteresis of 1.1 V are kept
constant over the supply voltage range.
Since the 1EDN751x/1EDN851x aims particularly at fast-switching applications, signal delays and rise/fall times
have been minimized to support low switching losses in the MOSFET.
4.2
Supply Voltage
The maximum supply voltage is 20 V. This high voltage can be valuable in order to exploit the full current
capability of 1EDN751x/1EDN851x when driving very large MOSFETs. The minimum operating supply voltage is
set by the undervoltage lockout function to a typical default value of 4.2 V or of 8 V. This lockout function protects
power MOSFETs from running into linear mode with subsequent high power dissipation.
4.3
Driver Inputs
The non-inverting input is internally pulled down to a logic low voltage. The inverting input is internally pulled up
to a logic high voltage. This prevents a switch-on event during power-up and a not-driven input condition.
All inputs are compatible with LV-TTL levels and provide a hysteresis of typically 1.1 V. This hysteresis is
independent of the supply voltage.
All input pins have a negative extended voltage range. This prevents cross-current over signal wires during GND
shifts between signal source (controller) and driver input.
4.4
Driver Outputs
The rail-to-rail output stage realized with complementary MOS transistors is able to provide a typical 4 A of
sourcing and 8 A sinking current. This asymmetrical push-pull stage enables a perfect “brake before make” (turn
off ist faster than turn on) condition, which is needed in half-bridge power MOSFET stages.
This driver output stage has a shoot-through protection and current limiting behavior.
The output impedance is very low with a typical value below 0.85 Ω for the sourcing p-channel MOS and 0.35 Ω
for the sinking n-channel MOS transistor. The use of a p-channel sourcing transistor is crucial for achieving true
rail-to-rail behavior and avoiding a source follower’s voltage drop.
The gate drive output is held low actively in case of floating inputs or during startup or power down once UVLO is
not exceeded. Under any situation, startup, UVLO or shutdown, the output is held under defined conditions.
Data Sheet
10
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Functional Description
4.5
Undervoltage Lockout (UVLO)
The Undervoltage Lockout function ensures that the output can be switched to its high level only if the supply
voltage exceeds the UVLO threshold voltage. Thus it can be guaranteed, that the switch transistor is not switched
on if the driving voltage is too low to completely switch it on, thereby avoiding excessive power dissipation.
The UVLO level is set to a typical value of 4.2 V / 8 V (with hysteresis). UVLO of 4.2 V is normally used for logic level
based MOSFETs. For higher level, like standard and high voltage superjunction MOSFETS, an UVLO voltage of
typically 8 V is available.
Data Sheet
11
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Characteristics
5
Characteristics
The absolute maximum ratings are listed in Table 5. Stresses beyond these values may cause permanent damage
to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
5.1
Absolute Maximum Ratings
Table 5
Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or Test Condition
Max.
Positive supply voltage
VVDD
-0.3
22
V
Voltage at pins IN+, IN-
VIN
-10
22
V
-0.3
VVDD+0.3
V
Note1)
-2
VVDD+0.3
V
Repetitive pulse < 200ns2)
-5
5
Apk
< 500 ns
Voltage at pins OUT, OUT_SRC, VOUT
OUT_SNK
Reverse current peak at pins
OUT, OUT_SRC/OUT_SNK
ISNK_rev
ISRC_rev
Junction temperature
TJ
-40
150
°C
Storage temperature
TS
-55
150
°C
ESD capability
VESD
1.5
kV
Charged Device Mode
(CDM) 3)
ESD capability
VESD
2.5
kV
Human Body Model
(HBM) 4)
Unit
Note or Test Condition
1)
2)
3)
4)
Voltage spikes resulting from reverse current peaks are allowed.
Values are verified by characterization on bench.
According to JESD22-C101
According to JESD22-A114
5.2
Thermal Characteristics
Table 6
Thermal Characteristics
Parameter
Symbol
Values
Min.
Typ.
Max.
PG-SOT23-6-2, Tamb=25°C
Thermal resistance junctionambient 1)
RthJA25
170
K/W
Thermal resistance junctioncase (top) 2)
RthJC25
81
K/W
Thermal resistance junctionboard 3)
RthJB25
52
K/W
Characterization parameter
junction-case (top)4)
ΨthJC25
14
K/W
Data Sheet
12
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Characteristics
Table 6
Thermal Characteristics (continued)
Parameter
Symbol
Values
Min.
Characterization parameter
junction-board 5)
Typ.
Unit
Note or Test Condition
Max.
ΨthJB25
51
K/W
Thermal resistance junctionambient 1)
RthJA25
180
K/W
Thermal resistance junctioncase (top) 2)
RthJC25
76
K/W
Thermal resistance junctionboard 3)
RthJB25
60
K/W
Thermal resistance junctionbottom (heat sink)6)
RthJB25
16
K/W
Characterization parameter
junction-case (top) 4)
ΨthJB25
14
K/W
Characterization parameter
junction-board 5)
ΨthJB25
52
K/W
Thermal resistance junctionambient 1)
RthJA25
63
K/W
Thermal resistance junctioncase (top) 2)
RthJP25
83
K/W
Thermal resistance junctionboard 3)
RthJB25
16
K/W
Thermal resistance junctionbottom (heat sink) 6)
RthJB25
16
K/W
Characterization parameter
junction-top 4)
ΨthJC25
9
K/W
Characterization parameter
junction-board 5)
ΨthJB25
15
K/W
PG-SOT23-5-1, Tamb=25°C
PG-WSON-6-1, Tamb=25°C
1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard,
high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to
control the PCB temperature, as described in JESD51-8.
4) The characterization parameter junction-top, estimates the junction temperature of a device in a real system and is
extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7).
5) The characterization parameter junction-board, estimates the junction temperature of a device in a real system and is
extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7).
6) The junction-to-bottom thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No
specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
Data Sheet
13
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Characteristics
5.3
Operating Range
Table 7
Operating Range
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or Test Condition
Min defined by UVLO
Max.
Supply voltage
VVDD
4.5
20
V
Logic input voltage
VIN
-5
20
V
Junction temperature
TJ
-40
150
°C
1)
1) Continuous operation above 125 °C may reduce life time.
5.4
Electrical Characteristics
Unless otherwise noted, min./max. values of characteristics are the lower and upper limits respectively. They are
valid within the full operating range. The supply voltage is VVDD= 12 V. Typical values are given at TJ=25°C.
Table 8
Power Supply
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or Test Condition
Max.
VDD quiescent current
IVDDqu1
0.4
mA
OUT = high, VVDD= 12 V
VDD quiescent current
IVDDqu2
0.37
mA
OUT = low, VVDD= 12 V
Unit
Note or Test Condition
Table 9
Undervoltage Lockout for Logic Level MOSFET
Parameter
Symbol
Values
Min.
Typ.
Max.
Undervoltage Lockout (UVLO)
turn on threshold
UVLOon
3.9
4.2
4.5
V
Undervoltage Lockout (UVLO)
turn off threshold
UVLOoff
3.6
3.9
4.2
V
UVLO threshold hysteresis
UVLOhys
Table 10
0.3
V
Undervoltage Lockout for Standard and Superjunction MOSFET Version
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Undervoltage Lockout (UVLO)
turn on threshold
UVLOon
7.4
8.0
8.6
V
Undervoltage Lockout (UVLO)
turn off threshold
UVLOoff
6.5
7.0
7.5
V
UVLO threshold hysteresis
UVLOhys
—
1.0
—
V
Data Sheet
14
Note or Test Condition
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Characteristics
Table 11
Logic Inputs IN+, IN-
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Input voltage threshold for
transition LH
VINH
1.9
2.1
2.3
V
Input voltage threshold for
transition HL
VINL
0.8
1.0
1.2
V
Input pull up resistor1)
RIN H
400
kΩ
Input pull down resistor2)
RIN L
100
kΩ
Note or Test Condition
1) Inputs with initial high logic level
2) Inputs with initial low logic level
Table 12
Static Output Caracteristics
Parameter
Symbol
High Level (Sourcing) Output
Resistance
Ron_SRC
High Level (Sourcing) Output
Current
ISRC_peak
Low Level (Sinking) Output
Resistance
Ron_SNK
Low Level (Sinking) Output
Current
ISNK_Peak
Values
Unit
Note or Test Condition
ISRC = 50 mA
Min.
Typ.
Max.
0.42
0.85
1.46
Ω
4.0
1)
A
0.35
0.64
Ω
-8.0
2)
A
0.18
ISNK = 50 mA
1) Active limited by design at approx. 5.2 Apk, parameter is not subject to production test - verified by design /
characterization, max. power dissipation must be observed
2) Active limited by design at approx. -10.4 Apk, parameter is not subject to production test - verified by design /
characterization, max. power dissipation must be observed
Table 13
Dynamic Characteristics (see Figure 7, Figure 8, Figure 9)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or Test Condition
Input to output propagation
delay
TPDON
15
19
25
ns
CLOAD= 1.8 nF, VVDD= 12 V
Input to output propagation
delay
TPDOFF
15
19
25
ns
CLOAD= 1.8 nF, VVDD= 12 V
Rise Time
TRISE
—
6.5
111)
ns
CLOAD= 1.8 nF, VVDD= 12 V
1)
ns
CLOAD= 1.8 nF, VVDD= 12 V
ns
CLOAD= 1.8 nF, VVDD= 12 V
Fall Time
TFAll
—
4.5
9
Minimum input pulse width
that changes output state
TPW
—
6
10
1) Parameter verified by design, not 100% tested in production.
Data Sheet
15
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Timing Diagrams
6
Timing Diagrams
Figure 7 shows the definition of rise, fall and delay times for the inputs. This is also valid for the inverted control.
VIN H
VINL
IN-
Lo w Lo gic Level
VIN H
VINL
IN+
90%
90%
OUT
10%
10%
TPDON
TRIS E
TPDOF F
TFAL L
ENx
Figure 7
Propagation Delay, Rise and Fall Time, Non-inverted
Figure 8 illustrates the undervoltage lockout function.
UVLOon
UVLOoff
VDD
OUT
Figure 8
UVLO Behaviour, Input INx Drives OUT Normally High.
Figure 9 illustrates the minimum input pulse width that changes output state.
IN-
( static low level)
V INH
IN+
V INL
TPW
90%
OUT
Figure 9
Data Sheet
TPW, minimum input pulse width that changes output state.
16
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Typical Characteristics
7
Typical Characteristics
UVLO ON/OFF
vs
TEMPERATURE
UVLO HYSTERESIS
vs
TEMPERATURE
0.6
4.5
on value
off value
4.3
VDD delta [V]
VDD [V]
0.4
4.1
0.2
3.9
IN+ high, IN- low
Indication Outx
IN+ high, IN- low
Indication Outx
0
3.7
-50
Figure 10
0
50
100
T junction [°C]
-50
150
0
50
100
T junction [°C]
150
Undervoltage Lockout 1EDN7x (4.2 V)
UVLO ON/OFF
vs
TEMPERATURE
8.8
UVLO HYSTERESIS
vs
TEMPERATURE
on value
1.1
off value
8.4
VDD delta [V]
VDD [V]
8
7.6
7.2
0.9
0.7
6.8
IN+ high, IN- low
Indication Outx
IN+ high, IN0.5
6.4
-50
Figure 11
Data Sheet
0
50
100
T junction [°C]
-50
150
0
50
100
T junction [°C]
150
Undervoltage Lockout 1EDN8x (8 V)
17
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Typical Characteristics
VINL / VINH to OUTx
vs
TEMPERATURE
INx HYSTERESIS
vs
TEMPERATURE
1.2
typ ON threshold
2.7
typ OFF threshold
2.3
VINx delta [V]
VINx [V]
1.1
1.9
1.5
1
1.1
VDD=12V
VDD=12V
0.9
0.7
-50
Figure 12
0
50
100
T junction [°C]
-50
150
25
typ turn-off
typ turn-on
typ turn-on
22.5
TPD [ns]
22.5
20
20
17.5
17.5
VDD=12V
Input 5V
VDD=12V
Input 3.3V
15
15
-50
Figure 13
Data Sheet
150
VINx to OUT PROPAGATION DELAY
vs
TEMPERATURE
typ turn-off
TPD [ns]
50
100
T junction [°C]
Input (INx) Characteristic
VINx to OUT PROPAGATION DELAY
vs
TEMPERATURE
25
0
0
50
100
T junction [°C]
-50
150
0
50
100
T junction [°C]
150
Propagation Delay (INx) on Different Input Logic Levels (See Figure 7)
18
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Typical Characteristics
OUTx RISE/FALL TIME 10% - 90%
vs
TEMPERATURE
8
typ turn-on
Time [ns]
7
typ turn-off
6
5
4
VDD=12V
OUTx with 1.8nF load
3
-50
Figure 14
Data Sheet
0
50
100
T junction [°C]
150
Rise / Fall Times with Load on Output
19
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Typical Characteristics
CURRENT CONSUMPTION
vs
TEMPERATURE
0.45
CURRENT CONSUMPTION
vs
OPERATING SUPPLY VDD
0.6
0.43
OUT Low
0.5
OUT Low
0.41
IDD [mA]
IDD [mA]
OUT High
OUT High
0.39
0.4
0.3
VDD=12V
IN+ to 12V
IN- to GND
0.37
0.2
0.35
Tj=25°C
0.1
-50
0
50
100
T junction [°C]
150
10
VDD [V]
20
CURRENT CONSUMPTION
vs
FREQUENCY
50
Tamb 25°C
Input 50%@3.3V
Device self-heating
Load 1.8nF serial
40
I DD [mA]
0
VDD 4,5V
30
VDD 12V
VDD 20V
20
10
0
0
Figure 15
Data Sheet
250
500
750
Frequency [kHz]
1000
Power Consumption Related to Temperature, Voltage Supply and Frequency
20
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Typical Characteristics
REVERSE CURRENT @OUT
with OUT HIGH
vs REVERSE VOLTAGE
REVERSE CURRENT @OUTx
with OUT LOW
vs REVERSE VOLTAGE
8.0
-2.0
Test Conditions:
Tj = 25°C,
1µs positive Pulse
fsw = 1kHz
5W
-3.5
6.5
10 W
IOUT [A]
IOUT [A]
-5.0
-6.5
15 W
-8.0
7.5 W
5W
20 W
Test Conditions:
Tj = 25°C,
200ns negative Pulse
fsw = 1kHz
-11.0
-12.5
-14.0
-2.25
Data Sheet
5.0
3.5
-9.5
Figure 16
10 W
2.0
2.5 W
0.5
-2.00
-1.75
-1.50
-1.25
VOUT [V]
-1.00
0.75
-0.75
1.00
1.25
VOUT - VDD [V]
1.50
1.75
Output OUTx with reverse current and resulting power dissipation
21
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Outline Dimensions
8
Outline Dimensions
Figure 17
PG-SOT23-6-2 Outline Dimensions
Figure 18
PG-SOT23-6-2 Footprint Dimensions
Data Sheet
22
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Outline Dimensions
Figure 19
PG-SOT23-6-2 Packaging Dimensions
Figure 20
PG-SOT23-5-1 Outline Dimensions
Data Sheet
23
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Outline Dimensions
Figure 21
PG-SOT23-5-1 Footprint Dimensions
Figure 22
PG-SOT23-5-1 Packaging Dimensions
Data Sheet
24
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Outline Dimensions
Figure 23
PG-WSON-6-1 Outline Dimensions
Figure 24
PG-WSON-6-1 Footprint Dimensions
Data Sheet
25
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Outline Dimensions
Figure 25
PG-WSON-6-1 Packaging Dimensions
Notes
1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:
http://www.infineon.com/cms/en/product/technology/packages/.
2. Pin description and orientation is located in Chapter 2.
Data Sheet
26
Rev. 2.1
2017-10-02
EiceDRIVER™
1EDN751x/1EDN851x
Revision History
9
Revision History
Rev. 2.1, 2017-10-02
Page/ Item Subjects (major changes since previous revision)
Responsible
Date
updated from version 1.0
15
Symbols correction Ron_SRC, Ron_SNK, ISRC_peak, ISNK_Peak : Table 12
15
Adding max. and min. values of Ron_SRC, Ron_SNK: Table 12
16
Insert pulse timing diagram: Figure 9
23
Restructured dimensional tolerances in drawing: Figure 20
Tobias Gerber 2016/10/28
Data Sheet
27
Rev. 2.1
2017-10-02
Please read the Important Notice and Warnings at the end of this document
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2017-10-02
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2017 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Please note that this product is not qualified
according to the AEC Q100 or AEC Q101 documents of
the Automotive Electronics Council.
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.