0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
1EDN7512B

1EDN7512B

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT753

  • 描述:

    1EDN7512B

  • 数据手册
  • 价格&库存
1EDN7512B 数据手册
EiceDRIVER™ 1EDN751x/1EDN851x Features Fast, Precise, Strong and Compatible • 5 ns slew rate to support high speed Superjunction MOSFET (like CoolMos™ C7) or GaN devices • 19 ns propagation delay precision for fast MOSFET and GaN switching • 8 A sink and 4 A source driver capability enables fast switching for very high efficiency applications and powers low ohmic MOSFET • Industry standard packages and pinout ease system-design upgrades The New Reference in Ruggedness • 4.2 V and 8 V UVLO (Under Voltage Lock Out) options ensure instant MOSFET protection under abnormal conditions • -10 V input voltage capability delivers robustness and crucial safety margin when device is driven from pulsetransformers • 5 A reverse current robustness eliminates the need for output protection circuitry Applications • Server SMPS (Switch Mode Power Supplies) • TeleCom SMPS • DC-to-DC Converter • Bricks • Power Tools • Industrial SMPS • Motor Control Example Topologies • Synchronous Rectification • Power Factor Correction PFC (DCM, CCM) • LLC, ZVS in combination with pulse transformer for isolation Description The 1EDN7x/1EDN8x is an advanced single-channel driver. It is suited to drive logic and normal level MOSFETs and supports OptiMOSTM, CoolMOSTM, Standard Level MOSFETs, Superjunction MOSFETs, as well as IGBTs and GaN Power devices. Data Sheet Please read the Important Notice and Warnings at the end of this document www.infineon.com/1EDN Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Description The control and enable inputs are LV-TTL compatible (CMOS 3.3 V) with an input voltage range from -5 V to +20 V. -10 V input pin robustness protects the driver against latch-up or electrical overstress which can be induced by parasitic ground inductances. This greatly enhances system stability. 4.2 V and 8 V UVLO (Under Voltage Lock Out) options ensure instant MOSFET and GaN protection under abnormal conditions. Under such circumstances, this UVLO mechanism provides crucial independence from whether and when other supervisors circuitries detect abnormal conditions. The output is able to sink 8 A and source 4 A currents utilizing a true rail-to-rail stage. This ensures very low onresistance of 0.85 Ω up to the positive and 0.35 Ω down to the negative rail respectively. Industry-leading reverse current robustness eliminates the need for Schottky diodes at the outputs and reduces the bill-of-material. The pinout of the 1EDN family is compatible with the industry standard. Three package variants, SOT23 6-pin, 5pin and WSON 6-pin, allow optimization of PCB board space usage and thermal characteristics. Load VDD From Controller 1EDN751x/ 1EDN851x IN+ VDD IN- OUT_SRC GND OUT_SNK Rg1 M1 Rg 2 CVDD Figure 1 Data Sheet Typical application 2 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Table of Contents Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 1.1 1.2 Product Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Undervoltage Lockout Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Package Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin Configuration and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 4.1 4.2 4.3 4.4 4.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 10 10 10 11 5 5.1 5.2 5.3 5.4 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 12 14 14 6 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7 Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Data Sheet 3 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Product Versions 1 Product Versions The 1EDN751x/1EDN851x is available in 2 different Undervoltage Lockout and 3 package versions. Table 1 Package Product Versions Type. UVLO Part Number IC Topside Marking Code 4.2 V 1EDN7511B 71 8V 1EDN8511B 81 4.2 V 1EDN7512B 72 4.2 V 1EDN7512G 1N7512 AG_XXX HYYWW PG-SOT23-6-2 PG-SOT23-5-1 PG-WSON-6-1 1.1 Undervoltage Lockout Versions The 2 Undervoltage Lockout versions are indicated by the variable x in the product version 1EDNz: • z=7: lower voltage for logic level MOSFETs (typ. 4.2 V) • z=8: higher voltage for standard and superjunction MOSFETs (typ. 8.0 V) Please refer to the functional description section for more details in Chapter 4.5 Data Sheet 4 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Product Versions 1.2 Package Versions Following versions regarding UVLO and output configuration are available. • a standard SOT-23; 6 pin (1EDN7511B and 1EDN8511B) • a standard SOT-23; 5 pin (1EDN7512B) • a leadless WSON-6; 6 pin (1EDN7512G) Data Sheet 5 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Pin Configuration and Description 2 Pin Configuration and Description The pin configuration for the PG-SOT23-6-2 package is shown in Figure 2. Pin description is given below in Table 2. For functional details, please read Chapter 4. 1 VDD IN+ 6 2 OUT_SRC IN- 5 3 OUT_SNK GND 4 Figure 2 Pin Configuration PG-SOT23-6-2 (top side view) Table 2 Pin Configuration Symbol Description IN+ Non-inverting Input Logic Input; if IN+ is low or left open causes OUT low IN- Inverting Input Logic Input; if IN- is high or left open, causes OUT low GND Ground VDD Positive Supply Voltage Operating range 4.5 V to 20 V OUT_SNK Driver Output Sink Low-impedance output with sink capability OUT_SRC Driver Output Source Low-impedance output with source capability Note: Data Sheet The pin configuration in the PG-SOT23-6-2 features separated source and sink outputs. 6 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Pin Configuration and Description The pin configuration for the PG-SOT23-5-1 package is shown in Figure 3. Pin description is given below in Table 3. For functional details, please read Chapter 4. 1 VDD 2 GND 3 IN+ OUT 5 IN- 4 Figure 3 Pin Configuration PG-SOT23-5-1 (top side view) Table 3 Pin Configuration Symbol Description IN+ Non-inverting Input Logic Input; if IN+ is low or left open causes OUT low IN- Inverting Input Logic Input; if IN- is high or left open, causes OUT low GND Ground VDD Positive Supply Voltage Operating range 4.5 V to 20 V OUT Driver Output Low-impedance output and sink capability Note: Data Sheet Package PG-SOT23-5-1 features a shorted source sink output. 7 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Pin Configuration and Description The pin configuration for the PG-WSON-6-1 package is shown in Figure 4. Pin description is given below in Table 4. For functional details, please read Chapter 4. IN+ 1 6 IN- GND 2 5 GND VDD 3 4 OUT Figure 4 Pin Configuration PG-WSON-6-1 (top side view) Table 4 Pin Configuration Symbol Description IN+ Non-inverting Input Logic Input; if IN+ is low or left open causes OUT low IN- Inverting Input Logic Input; if IN- is high or left open, causes OUT low GND Ground VDD Positive Supply Voltage Operating range 4.5 V to 20 V OUT Driver Output Low-impedance output with source and sink capability Note: 1. Package PG-WSON-6-1 has a combined source sink output. 2. Exposed pad of PG-WSON-6-1 package has to be connected to GND pin. Data Sheet 8 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Block Diagram 3 Block Diagram A simplified functional block diagram for the PG-SOT23-6-2 is given in Figure 5. This version has separated source and sink outputs. VCC UVLO IN+ active filter Logic GND OUT_SRC VCC active filter IN- OUT_SNK GND Figure 5 Block Diagram 1EDN7511B and 1EDN8511B A simplified functional block diagram for PG-WSON-6-1 is depicted in Figure 6. This version has one common output. VCC UVLO IN+ act ive filter GND Logic VCC IN- OUT act ive filter GND Figure 6 Data Sheet Block Diagram 1EDN7512B 1EDN7512G 9 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Functional Description 4 Functional Description 4.1 Introduction The 1EDN751x/1EDN851x is a fast single-channel driver for low-side switches. Rail-to-rail output stages with very low output impedance and high current capability are chosen to ensure highest flexibility and cover a high variety of applications. The focus on robustness at the input and output side gives this device an additional safety margin in critical abnormal situations. An extended negative voltage range protects input pins against ground shifts. No current flows over the ESD structure in the IC during a negative input level. Output is robust against reverse current. The interaction with the power MOSFET, even reverse reflected power will be handled by the strong internal output stage. Inputs are compatible with LV-TTL signal levels. The threshold voltages with a typical hysteresis of 1.1 V are kept constant over the supply voltage range. Since the 1EDN751x/1EDN851x aims particularly at fast-switching applications, signal delays and rise/fall times have been minimized to support low switching losses in the MOSFET. 4.2 Supply Voltage The maximum supply voltage is 20 V. This high voltage can be valuable in order to exploit the full current capability of 1EDN751x/1EDN851x when driving very large MOSFETs. The minimum operating supply voltage is set by the undervoltage lockout function to a typical default value of 4.2 V or of 8 V. This lockout function protects power MOSFETs from running into linear mode with subsequent high power dissipation. 4.3 Driver Inputs The non-inverting input is internally pulled down to a logic low voltage. The inverting input is internally pulled up to a logic high voltage. This prevents a switch-on event during power-up and a not-driven input condition. All inputs are compatible with LV-TTL levels and provide a hysteresis of typically 1.1 V. This hysteresis is independent of the supply voltage. All input pins have a negative extended voltage range. This prevents cross-current over signal wires during GND shifts between signal source (controller) and driver input. 4.4 Driver Outputs The rail-to-rail output stage realized with complementary MOS transistors is able to provide a typical 4 A of sourcing and 8 A sinking current. This asymmetrical push-pull stage enables a perfect “brake before make” (turn off ist faster than turn on) condition, which is needed in half-bridge power MOSFET stages. This driver output stage has a shoot-through protection and current limiting behavior. The output impedance is very low with a typical value below 0.85 Ω for the sourcing p-channel MOS and 0.35 Ω for the sinking n-channel MOS transistor. The use of a p-channel sourcing transistor is crucial for achieving true rail-to-rail behavior and avoiding a source follower’s voltage drop. The gate drive output is held low actively in case of floating inputs or during startup or power down once UVLO is not exceeded. Under any situation, startup, UVLO or shutdown, the output is held under defined conditions. Data Sheet 10 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Functional Description 4.5 Undervoltage Lockout (UVLO) The Undervoltage Lockout function ensures that the output can be switched to its high level only if the supply voltage exceeds the UVLO threshold voltage. Thus it can be guaranteed, that the switch transistor is not switched on if the driving voltage is too low to completely switch it on, thereby avoiding excessive power dissipation. The UVLO level is set to a typical value of 4.2 V / 8 V (with hysteresis). UVLO of 4.2 V is normally used for logic level based MOSFETs. For higher level, like standard and high voltage superjunction MOSFETS, an UVLO voltage of typically 8 V is available. Data Sheet 11 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Characteristics 5 Characteristics The absolute maximum ratings are listed in Table 5. Stresses beyond these values may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.1 Absolute Maximum Ratings Table 5 Absolute Maximum Ratings Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Positive supply voltage VVDD -0.3 22 V Voltage at pins IN+, IN- VIN -10 22 V -0.3 VVDD+0.3 V Note1) -2 VVDD+0.3 V Repetitive pulse < 200ns2) -5 5 Apk < 500 ns Voltage at pins OUT, OUT_SRC, VOUT OUT_SNK Reverse current peak at pins OUT, OUT_SRC/OUT_SNK ISNK_rev ISRC_rev Junction temperature TJ -40 150 °C Storage temperature TS -55 150 °C ESD capability VESD 1.5 kV Charged Device Mode (CDM) 3) ESD capability VESD 2.5 kV Human Body Model (HBM) 4) Unit Note or Test Condition 1) 2) 3) 4) Voltage spikes resulting from reverse current peaks are allowed. Values are verified by characterization on bench. According to JESD22-C101 According to JESD22-A114 5.2 Thermal Characteristics Table 6 Thermal Characteristics Parameter Symbol Values Min. Typ. Max. PG-SOT23-6-2, Tamb=25°C Thermal resistance junctionambient 1) RthJA25 170 K/W Thermal resistance junctioncase (top) 2) RthJC25 81 K/W Thermal resistance junctionboard 3) RthJB25 52 K/W Characterization parameter junction-case (top)4) ΨthJC25 14 K/W Data Sheet 12 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Characteristics Table 6 Thermal Characteristics (continued) Parameter Symbol Values Min. Characterization parameter junction-board 5) Typ. Unit Note or Test Condition Max. ΨthJB25 51 K/W Thermal resistance junctionambient 1) RthJA25 180 K/W Thermal resistance junctioncase (top) 2) RthJC25 76 K/W Thermal resistance junctionboard 3) RthJB25 60 K/W Thermal resistance junctionbottom (heat sink)6) RthJB25 16 K/W Characterization parameter junction-case (top) 4) ΨthJB25 14 K/W Characterization parameter junction-board 5) ΨthJB25 52 K/W Thermal resistance junctionambient 1) RthJA25 63 K/W Thermal resistance junctioncase (top) 2) RthJP25 83 K/W Thermal resistance junctionboard 3) RthJB25 16 K/W Thermal resistance junctionbottom (heat sink) 6) RthJB25 16 K/W Characterization parameter junction-top 4) ΨthJC25 9 K/W Characterization parameter junction-board 5) ΨthJB25 15 K/W PG-SOT23-5-1, Tamb=25°C PG-WSON-6-1, Tamb=25°C 1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a. 2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. 3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. 4) The characterization parameter junction-top, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7). 5) The characterization parameter junction-board, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7). 6) The junction-to-bottom thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. Data Sheet 13 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Characteristics 5.3 Operating Range Table 7 Operating Range Parameter Symbol Values Min. Typ. Unit Note or Test Condition Min defined by UVLO Max. Supply voltage VVDD 4.5 20 V Logic input voltage VIN -5 20 V Junction temperature TJ -40 150 °C 1) 1) Continuous operation above 125 °C may reduce life time. 5.4 Electrical Characteristics Unless otherwise noted, min./max. values of characteristics are the lower and upper limits respectively. They are valid within the full operating range. The supply voltage is VVDD= 12 V. Typical values are given at TJ=25°C. Table 8 Power Supply Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. VDD quiescent current IVDDqu1 0.4 mA OUT = high, VVDD= 12 V VDD quiescent current IVDDqu2 0.37 mA OUT = low, VVDD= 12 V Unit Note or Test Condition Table 9 Undervoltage Lockout for Logic Level MOSFET Parameter Symbol Values Min. Typ. Max. Undervoltage Lockout (UVLO) turn on threshold UVLOon 3.9 4.2 4.5 V Undervoltage Lockout (UVLO) turn off threshold UVLOoff 3.6 3.9 4.2 V UVLO threshold hysteresis UVLOhys Table 10 0.3 V Undervoltage Lockout for Standard and Superjunction MOSFET Version Parameter Symbol Values Unit Min. Typ. Max. Undervoltage Lockout (UVLO) turn on threshold UVLOon 7.4 8.0 8.6 V Undervoltage Lockout (UVLO) turn off threshold UVLOoff 6.5 7.0 7.5 V UVLO threshold hysteresis UVLOhys — 1.0 — V Data Sheet 14 Note or Test Condition Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Characteristics Table 11 Logic Inputs IN+, IN- Parameter Symbol Values Unit Min. Typ. Max. Input voltage threshold for transition LH VINH 1.9 2.1 2.3 V Input voltage threshold for transition HL VINL 0.8 1.0 1.2 V Input pull up resistor1) RIN H 400 kΩ Input pull down resistor2) RIN L 100 kΩ Note or Test Condition 1) Inputs with initial high logic level 2) Inputs with initial low logic level Table 12 Static Output Caracteristics Parameter Symbol High Level (Sourcing) Output Resistance Ron_SRC High Level (Sourcing) Output Current ISRC_peak Low Level (Sinking) Output Resistance Ron_SNK Low Level (Sinking) Output Current ISNK_Peak Values Unit Note or Test Condition ISRC = 50 mA Min. Typ. Max. 0.42 0.85 1.46 Ω 4.0 1) A 0.35 0.64 Ω -8.0 2) A 0.18 ISNK = 50 mA 1) Active limited by design at approx. 5.2 Apk, parameter is not subject to production test - verified by design / characterization, max. power dissipation must be observed 2) Active limited by design at approx. -10.4 Apk, parameter is not subject to production test - verified by design / characterization, max. power dissipation must be observed Table 13 Dynamic Characteristics (see Figure 7, Figure 8, Figure 9) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Input to output propagation delay TPDON 15 19 25 ns CLOAD= 1.8 nF, VVDD= 12 V Input to output propagation delay TPDOFF 15 19 25 ns CLOAD= 1.8 nF, VVDD= 12 V Rise Time TRISE — 6.5 111) ns CLOAD= 1.8 nF, VVDD= 12 V 1) ns CLOAD= 1.8 nF, VVDD= 12 V ns CLOAD= 1.8 nF, VVDD= 12 V Fall Time TFAll — 4.5 9 Minimum input pulse width that changes output state TPW — 6 10 1) Parameter verified by design, not 100% tested in production. Data Sheet 15 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Timing Diagrams 6 Timing Diagrams Figure 7 shows the definition of rise, fall and delay times for the inputs. This is also valid for the inverted control. VIN H VINL IN- Lo w Lo gic Level VIN H VINL IN+ 90% 90% OUT 10% 10% TPDON TRIS E TPDOF F TFAL L ENx Figure 7 Propagation Delay, Rise and Fall Time, Non-inverted Figure 8 illustrates the undervoltage lockout function. UVLOon UVLOoff VDD OUT Figure 8 UVLO Behaviour, Input INx Drives OUT Normally High. Figure 9 illustrates the minimum input pulse width that changes output state. IN- ( static low level) V INH IN+ V INL TPW 90% OUT Figure 9 Data Sheet TPW, minimum input pulse width that changes output state. 16 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Typical Characteristics 7 Typical Characteristics UVLO ON/OFF vs TEMPERATURE UVLO HYSTERESIS vs TEMPERATURE 0.6 4.5 on value off value 4.3 VDD delta [V] VDD [V] 0.4 4.1 0.2 3.9 IN+ high, IN- low Indication Outx IN+ high, IN- low Indication Outx 0 3.7 -50 Figure 10 0 50 100 T junction [°C] -50 150 0 50 100 T junction [°C] 150 Undervoltage Lockout 1EDN7x (4.2 V) UVLO ON/OFF vs TEMPERATURE 8.8 UVLO HYSTERESIS vs TEMPERATURE on value 1.1 off value 8.4 VDD delta [V] VDD [V] 8 7.6 7.2 0.9 0.7 6.8 IN+ high, IN- low Indication Outx IN+ high, IN0.5 6.4 -50 Figure 11 Data Sheet 0 50 100 T junction [°C] -50 150 0 50 100 T junction [°C] 150 Undervoltage Lockout 1EDN8x (8 V) 17 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Typical Characteristics VINL / VINH to OUTx vs TEMPERATURE INx HYSTERESIS vs TEMPERATURE 1.2 typ ON threshold 2.7 typ OFF threshold 2.3 VINx delta [V] VINx [V] 1.1 1.9 1.5 1 1.1 VDD=12V VDD=12V 0.9 0.7 -50 Figure 12 0 50 100 T junction [°C] -50 150 25 typ turn-off typ turn-on typ turn-on 22.5 TPD [ns] 22.5 20 20 17.5 17.5 VDD=12V Input 5V VDD=12V Input 3.3V 15 15 -50 Figure 13 Data Sheet 150 VINx to OUT PROPAGATION DELAY vs TEMPERATURE typ turn-off TPD [ns] 50 100 T junction [°C] Input (INx) Characteristic VINx to OUT PROPAGATION DELAY vs TEMPERATURE 25 0 0 50 100 T junction [°C] -50 150 0 50 100 T junction [°C] 150 Propagation Delay (INx) on Different Input Logic Levels (See Figure 7) 18 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Typical Characteristics OUTx RISE/FALL TIME 10% - 90% vs TEMPERATURE 8 typ turn-on Time [ns] 7 typ turn-off 6 5 4 VDD=12V OUTx with 1.8nF load 3 -50 Figure 14 Data Sheet 0 50 100 T junction [°C] 150 Rise / Fall Times with Load on Output 19 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Typical Characteristics CURRENT CONSUMPTION vs TEMPERATURE 0.45 CURRENT CONSUMPTION vs OPERATING SUPPLY VDD 0.6 0.43 OUT Low 0.5 OUT Low 0.41 IDD [mA] IDD [mA] OUT High OUT High 0.39 0.4 0.3 VDD=12V IN+ to 12V IN- to GND 0.37 0.2 0.35 Tj=25°C 0.1 -50 0 50 100 T junction [°C] 150 10 VDD [V] 20 CURRENT CONSUMPTION vs FREQUENCY 50 Tamb 25°C Input 50%@3.3V Device self-heating Load 1.8nF serial 40 I DD [mA] 0 VDD 4,5V 30 VDD 12V VDD 20V 20 10 0 0 Figure 15 Data Sheet 250 500 750 Frequency [kHz] 1000 Power Consumption Related to Temperature, Voltage Supply and Frequency 20 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Typical Characteristics REVERSE CURRENT @OUT with OUT HIGH vs REVERSE VOLTAGE REVERSE CURRENT @OUTx with OUT LOW vs REVERSE VOLTAGE 8.0 -2.0 Test Conditions: Tj = 25°C, 1µs positive Pulse fsw = 1kHz 5W -3.5 6.5 10 W IOUT [A] IOUT [A] -5.0 -6.5 15 W -8.0 7.5 W 5W 20 W Test Conditions: Tj = 25°C, 200ns negative Pulse fsw = 1kHz -11.0 -12.5 -14.0 -2.25 Data Sheet 5.0 3.5 -9.5 Figure 16 10 W 2.0 2.5 W 0.5 -2.00 -1.75 -1.50 -1.25 VOUT [V] -1.00 0.75 -0.75 1.00 1.25 VOUT - VDD [V] 1.50 1.75 Output OUTx with reverse current and resulting power dissipation 21 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Outline Dimensions 8 Outline Dimensions Figure 17 PG-SOT23-6-2 Outline Dimensions Figure 18 PG-SOT23-6-2 Footprint Dimensions Data Sheet 22 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Outline Dimensions Figure 19 PG-SOT23-6-2 Packaging Dimensions Figure 20 PG-SOT23-5-1 Outline Dimensions Data Sheet 23 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Outline Dimensions Figure 21 PG-SOT23-5-1 Footprint Dimensions Figure 22 PG-SOT23-5-1 Packaging Dimensions Data Sheet 24 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Outline Dimensions Figure 23 PG-WSON-6-1 Outline Dimensions Figure 24 PG-WSON-6-1 Footprint Dimensions Data Sheet 25 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Outline Dimensions Figure 25 PG-WSON-6-1 Packaging Dimensions Notes 1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/cms/en/product/technology/packages/. 2. Pin description and orientation is located in Chapter 2. Data Sheet 26 Rev. 2.1 2017-10-02 EiceDRIVER™ 1EDN751x/1EDN851x Revision History 9 Revision History Rev. 2.1, 2017-10-02 Page/ Item Subjects (major changes since previous revision) Responsible Date updated from version 1.0 15 Symbols correction Ron_SRC, Ron_SNK, ISRC_peak, ISNK_Peak : Table 12 15 Adding max. and min. values of Ron_SRC, Ron_SNK: Table 12 16 Insert pulse timing diagram: Figure 9 23 Restructured dimensional tolerances in drawing: Figure 20 Tobias Gerber 2016/10/28 Data Sheet 27 Rev. 2.1 2017-10-02 Please read the Important Notice and Warnings at the end of this document Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™. Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2017-10-02 Published by Infineon Technologies AG 81726 Munich, Germany © 2017 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
1EDN7512B 价格&库存

很抱歉,暂时无法提供与“1EDN7512B”相匹配的价格&库存,您可以联系我们找货

免费人工找货
1EDN7512B
    •  国内价格
    • 1+3.36312
    • 10+2.77020
    • 30+2.46888
    • 100+2.17728
    • 500+2.00232
    • 1000+1.91484

    库存:9

    1EDN7512B
      •  国内价格 香港价格
      • 1+10.613671+1.27400
      • 10+6.0253010+0.72324
      • 50+4.6292050+0.55566
      • 100+4.17199100+0.50078
      • 500+3.86175500+0.46354
      • 1000+3.796431000+0.45570
      • 2000+3.755612000+0.45080
      • 4000+3.714794000+0.44590

      库存:3000