EiceDRIVER™
2EDN7424
Fast Dual Channel 4 A Low-Side Gate Driver
Fast, precise, strong and compatible
•
Highly efficient SMPS enabled by 6 ns fast slew rates and 19 ns propagation delay precision for fast MOSFET
and GaN switching
•
1 ns channel-to-channel propagation delay accuracy enables safe use of two channels in parallel
•
Two independent 4 A channels enable numerous deployment options
•
Industry standard packages and pinout enable ease system-design upgrades
•
Qualified for industrial grade applications according to JEDEC (JESD47, J-STD20 and JESD22)
The new Reference in Ruggedness
•
4.2 V and 8 V UVLO (Under Voltage Lock Out) options ensure instant MOSFET protection under abnormal
conditions
•
-10 V control and enable input robustness delivers crucial safety margin when driving pulse-transformers or
driving MOSFETs in through hole packaging
•
5 A reverse current robustness eliminates the need for output protection circuitry.
Typical Applications
•
Server SMPS
•
TeleCom SMPS
•
DC-to-DC Converter
•
Bricks
•
Power Tools
•
Industrial SMPS
•
Motor Control
•
Solar SMPS
Example Topologies
•
Single and interleaved PFC
•
LLC, ZVS with pulse transformer
•
Synchronous Rectification
Description
The 2EDN7424 is an advanced dual-channel driver. It is suited to drive logic and normal level MOSFETs and
supports OptiMOSTM, CoolMOSTM, Standard Level MOSFETs, Superjunction MOSFETs, as well as IGBTs and GaN
Power devices.
Data Sheet
www.infineon.com
Please read the Important Notice and Warnings at the end of this document
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Fast Dual Channel 4 A Low-Side Gate Driver
The control and enable inputs are LV-TTL compatible (CMOS 3.3 V) with an input voltage range up to +22V.
4.2 V (Under Voltage Lock Out) options ensure instant MOSFET and GaN protection under abnormal conditions.
Under such circumstances, this UVLO mechanism provides crucial independence from whether and when other
supervisors circuitries detect abnormal conditions.
Each of the two outputs is able to sink and source 4 A currents utilizing a true rail-to-rail stage. This ensures very
low on resistance of 0.84 Ω up to the positive and 0.66 Ω down to the negative rail respectively. Very tight channel
to channel delay matching, typ. 2 ns, permits parallel use of two channels, leading to a source and sink capability
of 8 A. Industry leading reverse current robustness eliminates the need for Schottky diodes at the outputs and
reduces the bill-of-material.
The pinout of the 2EDN family is compatible with the industry standard. Two package variants, DSO 8-pin and
TSSOP 8-pin, allow optimization of PCB board space usage and thermal characteristics.
Load1
From Controller
VDD
Load2
2EDN7424
1 ENA
ENB 88
2 INA
OUTA 77
33 GND
VDD 66
4 INB
M1
Rg1
Rg2
M2
OUTB 55
CVDD
Data Sheet
2
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Table of Contents
Table of Contents
Fast Dual Channel 4 A Low-Side Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1
1.1
1.2
1.3
Product Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
Pin Configuration and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
4.1
4.2
4.3
4.4
4.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5
5.1
5.2
5.3
5.4
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7
Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8
8.1
8.2
Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PG-DSO-8-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PG-TSSOP-8-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Data Sheet
3
4
4
4
5
11
11
11
12
12
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Product Versions
1
Product Versions
The 2EDN7424 are available in 2 package versions.
Table 1
Product Versions
Package
Type.
UVLO
Control Input Part Number
IC Topside
Marking Code
4.2V
direct
2EDN7424F
2N7424AF
EiceDRIV
XXHYYWW
4.2V
direct
2EDN7424R
2N7424
AR_XXX
HYYWW
PG-DSO-8-60
PG-TSSOP-8-1
1.1
Undervoltage Lockout
The Undervoltage Lockout enables robust start-up and shutdown behavior.
Please refer to the functional description section for more details in Chapter 4 (Undervoltage Lockout (UVLO)).
1.2
Logic Version
The logic relations between inputs, enable pins and outputs are given in Table 2. The state of the driving output
is defined by the state of the respective input, if the enable inputs ENA and ENB are high (or left open). A logic
“low” at an enable input or an undervoltage lockout event, due to low voltage at VDD, causes the respective output
to be low too, regardless of the input signal.
Functional description is shown in Chapter 3 ( Block Diagram) and Chapter 4 (Input Configuration).
Data Sheet
4
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Product Versions
Table 2
Logic Table
Inputs
Output
1)
ENA
ENB
INA
INB
UVLO
OUTA
OUTB
x
x
x
x
active
L
L
L
L
x
x
inactive
L
L
H
L
L
x
inactive
L
L
H
L
H
x
inactive
H
L
L
H
x
L
inactive
L
L
L
H
x
H
inactive
L
H
H
H
L
L
inactive
L
L
H
H
H
L
inactive
H
L
H
H
L
H
inactive
L
H
H
H
H
H
inactive
H
H
1) Inactive means that VDD is above UVLO threshold voltage and release logic to control output stage.
Active means that UVLO disable active the output stages.
1.3
Package Versions
The logic and UVLO versions are available in2 different packages.
•
a standard PG-DSO-8-60 (designated by “F”)
•
a small PG-TSSOP-8-1 (designated by “R”)
Drawings can be viewed in Chapter 8 (Outline Dimensions).
Data Sheet
5
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Pin Configuration and Description
2
Pin Configuration and Description
The pin configuration for 2EDN7424F in the PG-DSO-8-60 package is shown in Figure 1. Drawings can be viewed
in Chapter 8 (PG-DSO-8-60).
1
ENA
2
INA
3
GND
4
INB
ENB
8
OUTA
7
VDD
6
OUTB
5
Figure 1
Pin Configuration PG-DSO-8-60, Top View
Table 3
Pin Configuration 2EDN7424F in the PG-DSO-8-60 Package
Pin
Symbol
Description
1
ENA
Enable input channel A
Logic input; if ENA is high or left open, OUTA is controlled by INA; ENA low causes OUTA low
2
INA
Input signal channel A
Logic input, controlling OUTA
3
GND
Ground
4
INB
Input signal channel B
Logic input, controlling OUTB
5
OUTB
Driver output channel B
Low-impedance output with source and sink capability
6
VDD
Positive supply voltage
Operating range 4.5 V to 20 V
7
OUTA
Driver output channel A
Low-impedance output with source and sink capability
8
ENB
Enable input channel B
Logic Input; if ENB is high or left open, OUTB is controlled by INB; ENB low causes OUTB low
Data Sheet
6
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Pin Configuration and Description
The pin configuration for 2EDN7424R in the PG-TSSOP-8-1 package is shown in Figure 2. Drawings can be viewed
in Chapter 8 (PG-TSSOP-8-1).
1
ENA
2
INA
3
GND
4
INB
Exposed
Pad
ENB
8
OUTA
7
VDD
6
OUTB
5
Figure 2
Pin Configuration PG-TSSOP-8-1, Top View
Table 4
Pin Configuration 2EDN7424R in the PG-TSSOP-8-1 Package
Pin
Symbol
Description
1
ENA
Enable input channel A
Logic input; if ENA is high or left open, OUTA is controlled by INA; ENA low causes OUTA low
2
INA
Input signal channel A
Logic input, controlling OUTA
3
GND
Ground1)
4
INB
Input signal channel B
Logic input, controlling OUTB
5
OUTB
Driver output channel B
Low-impedance output with source and sink capability
6
VDD
Positive supply voltage
Operating range 4.5 V to 20 V
7
OUTA
Driver output channel A
Low-impedance output with source and sink capability
8
ENB
Enable input channel B
Logic Input; if ENB is high or left open, OUTB is controlled by INB; ENB low causes OUTB low
1) Exposed Pad sink of PG-TSSOP-8-1 packages has to be connected to GND pin.
Data Sheet
7
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Block Diagram
3
Block Diagram
A simplified functional block diagram is given in Figure 3. Please refer to the functional description section for
more details in Chapter 4.
VDD
VDD
6
UVLO
VDD
400k
ENA
1
Logic A
INA
7
OUTA
5
OUTB
2
100k
GND
GND
VDD
VDD
400k
ENB 8
Logic B
INB 4
100k
GND
GND 3
GND
Figure 3
Data Sheet
Block Diagram,pull-up/pull-down resistor configuration
8
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Functional Description
4
Functional Description
4.1
Introduction
The 2EDN7424 is a fast dual-channel driver for low-side switches. Two true rail-to-rail output stages with very low
output impedance and high current capability are chosen to ensure highest flexibility and cover a high variety of
applications.
All inputs are compatible with LV-TTL signal levels. The threshold voltages with a typical hysteresis of 1.1 V are
kept constant over the supply voltage range.
Since the 2EDN7424 aims particularly at fast-switching applications, signal delays and rise/fall times have been
minimized. Special effort has been made towards minimizing delay differences between the 2 channels to very
low values of typically 2 ns.
4.2
Supply Voltage
The maximum supply voltage is 20 V. This high voltage can be valuable in order to exploit the full current
capability of 2EDN7424 when driving very large MOSFETs. The minimum operating supply voltage is set by the
undervoltage lockout function to a typical default value of 4.2 V. This lockout function protects power MOSFETs
from running into linear mode with subsequent high power dissipation.
4.3
Input Configuration
As described in Chapter 1, 2EDN7424 is available with respect to the logic configuration of the 4 input pins (input
plus enable).
The enable inputs are internally pulled up to a logic high voltage, i.e. the driver is enabled with these pins left
open. The direct PWM inputs are internally pulled down to a logic low voltage. This prevents a switch-on event
during power up and a not driven input condition. Version with inverted PWM input have an internal pull up
resistor to prevent unwanted switch-on.
All inputs are compatible with LV-TTL levels and provide a hysteresis of 1.1 V typ. This hysteresis is independent
of the supply voltage.
All input pins have a negative extended voltage range. This prevents cross current over single wires during GND
shifts between signal source (controller) and driver input.
4.4
Driver Outputs
The two rail-to-rail output stages realized with complementary MOS transistors are able to provide a typical 4 A
of sourcing and sinking current. This driver output stage has a shoot through protection and current limiting
behavior. After a switching event, current limitation is raised up to achieve the typical current peak for an
excellent fast reaction time of the following power MOS transistor.
The output impedance is very low with a typical value below 0.84 Ω for the sourcing p-channel MOS and 0.66 Ω
for the sinking n-channel MOS transistor. The use of a p-channel sourcing transistor is crucial for achieving true
rail-to-rail behaviour and avoiding a source follower’s voltage drop.
Gate Drive Outputs held active low in case of floating inputs ENx, INx or during startup or power down once UVLO
is not exceeded. Under any situation, startup, UVLO or shutdown, outputs are held under defined conditions.
Data Sheet
9
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Functional Description
4.5
Undervoltage Lockout (UVLO)
The Undervoltage Lockout function ensures that the output can be switched to its high level only if the supply
voltage exceeds the UVLO threshold voltage. Thus it can be guaranteed, that the switch transistor is not switched
on if the driving voltage is too low to completely switch it on, thereby avoiding excessive power dissipation.
The UVLO level is set to a typical value of 4.2 V (with hysteresis).
Data Sheet
10
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Characteristics
5
Characteristics
The absolute maximum ratings are listed in Table 5. Stresses beyond these values may cause permanent damage
to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
5.1
Absolute Maximum Ratings
Table 5
Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or Test Condition
Max.
Positive supply voltage
VVDD
-0.3
22
V
Voltage at pins INA, INB, ENA,
ENB
VIN
-10
22
V
Voltage at pins OUTA, OUTB
VOUT
-0.3
VVDD+0.3
V
Note 1)
Reverse current peak at pins
OUTA and OUTB
ISRCREV
5
Apk
< 500ns
ISNKREV
-5
Apk
Junction temperature
TJ
-40
150
°C
Storage temperature
TS
-55
150
°C
ESD capability
VESD
1.5
kV
Charged Device Mode
(CDM) 2)
ESD capability
VESD
2.5
kV
Human Body Model
(HBM) 3)
1) Voltage spikes resulting from reverse current peaks are allowed.
2) According to JESD22-C101
3) According to JESD22-A114
5.2
Thermal Characteristics
Table 6
Thermal Characteristics for PG-DSO-8-60 (Tamb=25°C)
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or Test Condition
Max.
Thermal resistance junctionambient 1)
RthJA25
125
K/W
Thermal resistance junctioncase (top) 2)
RthJC25
66
K/W
Thermal resistance junctionboard 3)
RthJB25
62
K/W
Characterization parameter
junction-top 4)
ΨthJC25
16
K/W
Characterization parameter
junction-board 5)
ΨthJB25
55
K/W
1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDECstandard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No
specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
Data Sheet
11
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Characteristics
3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to
control the PCB temperature, as described in JESD51-8.
4) The characterization parameter junction-top, estimates the junction temperature of a device in a real system and is
extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7).
5) The characterization parameter junction-board, estimates the junction temperature of a device in a real system and
is extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7).
Table 7
Thermal Characteristics for PG-TSSOP-8-1 (Tamb=25°C)
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or Test Condition
Max.
Thermal resistance junctionambient 1)
RthJA25
64
K/W
Thermal resistance junctioncase (top) 2)
RthJP25
56
K/W
Thermal resistance junctionboard 3)
RthJB25
55
K/W
Characterization parameter
junction-top 4)
ΨthJC25
9
K/W
Characterization parameter
junction-board 5)
ΨthJB25
13
K/W
1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDECstandard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No
specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to
control the PCB temperature, as described in JESD51-8.
4) The characterization parameter junction-top, estimates the junction temperature of a device in a real system and is
extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7).
5) The characterization parameter junction-board, estimates the junction temperature of a device in a real system and
is extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7).
5.3
Operating Range
Table 8
Operating Range
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or Test Condition
Min. defined by UVLO
Max.
Supply voltage
VVDD
4.5
20
V
Logic input voltage
VIN
-5
20
V
Junction temperature
TJ
-40
150
°C
1)
1) Continuous operation above 125 °C may reduce life time.
5.4
Electrical Characteristics
Unless otherwise noted, min./max. values of characteristics are the lower and upper limits respectively. They are
valid within the full operating range. The supply voltage is VVDD= 12 V. Typical values are given at TJ=25°C.
Data Sheet
12
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Characteristics
Table 9
Power Supply
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or Test Condition
VDD quiescent current
IVDDQU1
0.5
0.7
1.2
mA
OUT = high, VVDD= 12 V
VDD quiescent current
IVDDQU2
0.3
0.48
0.7
mA
OUT = low, VVDD= 12 V
Unit
Note or Test Condition
Table 10
Undervoltage Lockout
Parameter
Symbol
Values
Min.
Typ.
Max.
Undervoltage Lockout (UVLO) UVLOON
turn on threshold
3.9
4.2
4.5
V
Undervoltage Lockout (UVLO) UVLOOFF
turn off threshold
3.6
3.9
4.2
V
UVLO threshold hysteresis
Table 11
0.3
UVLOHYS
V
Logic Inputs INA, INB, ENA, ENB
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Input voltage threshold for
transition LH
VINH
1.9
2.1
2.3
V
Input voltage threshold for
transition HL
VINL
0.8
1.0
1.2
V
Input pull up resistor1)
RINH
400
kΩ
Input pull down resistor2)
RINL
100
kΩ
Note or Test Condition
1) Inputs with initial high logic level
2) Inputs with initial low logic level
Table 12
Static Output Caracteristics (see Figure 4)
Parameter
Symbol
High Level (Sourcing) Output
Resistance
RONSRC
High Level (Sourcing) Output
Current
ISRCPEAK
Low Level (Sinking) Output
Resistance
RONSNK
Low Level (Sinking) Output
Current
ISNKPEAK
Values
Unit
Note or Test Condition
ISRC = 50mA
Min.
Typ.
Max.
0.35
0.84
1.2
Ω
4.0
1)
A
0.66
1.0
Ω
-4.0
2)
A
0.28
ISNK = 50mA
1) Active limited by design at approx. 6.5Apk, parameter is not subject to production test - verified by design /
characterization, max. power dissipation must be observed
2) Active limited by design at approx. -6.5Apk, parameter is not subject to production test - verified by design /
characterization, max. power dissipation must be observed
Data Sheet
13
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Characteristics
Table 13
Dynamic Characteristics (see Figure 4, Figure 5 and Figure 6)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or Test Condition
Input/Enable to output
propagation delay
TPDlh
15
19
25
ns
CLOAD= 1.8 nF, VVDD= 12 V;
low to high transition at
Input/Enable
Input/Enable to output
propagation delay
TPDhl
15
19
25
ns
CLOAD= 1.8 nF, VVDD= 12 V
high to low transition at
Input/Enable
2
ns
Input/Enable to output
delta tPD
propagation delay mismatch
between the two channels on
the same IC
Rise Time
TRISE
—
6.4
10 1)
ns
CLOAD= 1.8 nF, VVDD= 12 V
Fall Time
TFAll
—
5.4
10 1)
ns
CLOAD= 1.8 nF, VVDD= 12 V
1)
ns
CLOAD= 1.8 nF, VVDD= 12 V
Minimum input pulse width
that changes output state
TPW
—
10
20
1) Parameter verified by design, not 100% tested in production.
Data Sheet
14
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Timing Diagrams
6
Timing Diagrams
Figure 4 shows the definition of rise, fall and delay times for the inputs of the non-inverting / direct version (with
Enable pin high or open).
ENx (constant high)
V INH
VIN L
INx
90%
OUT
10%
TPDON
Figure 4
TRISE
TPDOFF
TFALL
Propagation delay, rise and fall time, non-inverted
Figure 5 illustrates the undervoltage lockout function.
UVLOON
UVLOOFF
VDD
OUT
Figure 5
UVLO behaviour, input ENx and INx drives OUTx normally high
Figure 6 illustrates the minimum input pulse width that changes output state.
ENx (high)
VIN H
VINL
VIN H
INx
VINL
TPW
90%
OUTx
Figure 6
Data Sheet
TPW, minimum input pulse width that changes output state
15
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Typical Characteristics
7
Typical Characteristics
UVLO ON/OFF
vs
TEMPERATURE
4.5
UVLO HYSTERESIS
vs
TEMPERATURE
0.4
on value
off value
0.35
VDD delta [V]
VDD [V]
4.3
4.1
3.9
0.3
0.25
Inx, ENx high
Indication Outx
Inx, ENx high
Indication Outx
3.7
0.2
-50
Figure 7
0
50
100
T junction [°C]
150
-50
0
50
100
T junction [°C]
150
Undervoltage lockout (4.2V)
INPUT THRESHOLD INx to OUTx
vs
TEMPERATURE
INx HYSTERESIS
vs
TEMPERATURE
1.2
typ ON threshold
typ OFF threshold
1.1
2
VINx delta [V]
VINx [V]
2.5
1.5
1
1
VDD=12V
VDD=12V
0.9
0.5
-50
Figure 8
Data Sheet
0
50
100
T junction [°C]
-50
150
0
50
100
T junction [°C]
150
Input (INx) characteristic
16
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Typical Characteristics
INPUT THRESHOLD ENx to OUTx
vs
TEMPERATURE
ENx HYSTERESIS
vs
TEMPERATURE
1.2
typ ON threshold
typ OFF threshold
1.1
2
VENx delta [V]
VENx [V]
2.5
1.5
1
1
VDD=12V
VDD=12V
0.9
0.5
-50
Figure 9
0
50
100
T junction [°C]
-50
150
50
100
T junction [°C]
150
Input (ENx) characteristic
VINx to OUTx PROPAGATION DELAY
vs
TEMPERATURE
25
VINx to OUTx PROPAGATION DELAY
vs
TEMPERATURE
25
typ input rise-up
typ input rise-up
typ input fall-down
22.5
typ input fall-down
22.5
TPD [ns]
TPD [ns]
0
20
20
17.5
17.5
15
VDD=12V
Input 5V
VDD=12V
Input 3.3V
15
12.5
-50
Figure 10
Data Sheet
0
50
100
T junction [°C]
-50
150
0
50
100
T junction [°C]
150
Propagation delay (INx) on different input logic levels (see Figure 4)
17
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Typical Characteristics
VENx to OUTx PROPAGATION DELAY
vs
TEMPERATURE
25
VENx to OUTx PROPAGATION DELAY
vs
TEMPERATURE
25
typ input rise-up
typ input fall-down
typ input fall-down
22.5
TPD [ns]
22.5
TPD [ns]
typ input rise-up
20
17.5
20
17.5
VDD=12V
Enable 5V
VDD=12V
Enable 3.3V
15
-50
Figure 11
0
50
100
T junction [°C]
15
150
-50
0
50
100
T junction [°C]
150
Propagation delay (ENx) on different input logic levels (see Figure 4)
OUTx RISE/FALL TIME 10% - 90%
vs
TEMPERATURE
8.00
typ turn-on
typ turn-off
Time [ns]
7.00
6.00
5.00
VDD=12V
OUTx with 1.8nF load
4.00
-50
Figure 12
Data Sheet
0
50
100
T junction [°C]
150
Rise / fall times with load on output (see Figure 4)
18
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Typical Characteristics
CURRENT CONSUMPTION
vs
OPERATING SUPPLY VDD
CURRENT CONSUMPTION
vs
TEMPERATURE
0.80
OUTx High
0.70
OUTx Low
IDD [mA]
IDD [mA]
0.8
0.6
0.60
0.50
0.4
OUTx Low
0.2
VDD=12V
ENx NC
0.30
0
10
VDD [V]
20
-50
0
50
100
T junction [°C]
150
CURRENT CONSUMPTION
vs
FREQUENCY
50
Tamb 25°C
Input 50%@3.3V
Device self-heating
Load 1.8nF serial
40
I DD [mA]
OUTx High
0.40
Tj=25°C
ENx floating (VDD)
VDD 4,5V
30
VDD 12V
VDD 20V
20
10
0
0
Figure 13
Data Sheet
250
500
750
Frequency [kHz]
1000
Power consumption related to temperature, supply voltage and frequency
19
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Outline Dimensions
8
Outline Dimensions
Notes
1. For further information on package types, recommendation for board assembly, please go to:
http://www.infineon.com/cms/en/product/technology/packages/.
8.1
PG-DSO-8-60
Figure 8-1 PG-DSO-8-60 outline
Figure 8-2 PG-DSO-8-60 footprint
Data Sheet
20
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Outline Dimensions
0.3
12 ±0.3
5.2
8
1.75
6.4
2.1
Figure 8-3 PG-DSO-8-60 packaging
8.2
PG-TSSOP-8-1
Figure 8-4 PG-TSSOP-8-1 outline
Data Sheet
21
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Outline Dimensions
Figure 8-5 PG-TSSOP-8-1 footprint
Figure 8-6 PG-TSSOP-8-1 packaging
Data Sheet
22
Revision 2.0
2016-11-09
EiceDRIVER™
2EDN7424
Revision History
9
Revision History
Revision 2.0, 2016-11-09
Page/ Item Subjects (major changes since previous revision)
Responsible
Date
first version
Tobias Gerber 2016/11/09
Data Sheet
23
Revision 2.0
2016-11-09
Please read the Important Notice and Warnings at the end of this document
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2016-11-09
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.