0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AUIRFSL4010

AUIRFSL4010

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TO262-3

  • 描述:

    AUTOMOTIVE POWER MOSFET

  • 数据手册
  • 价格&库存
AUIRFSL4010 数据手册
AUIRFS4010 AUIRFSL4010   AUTOMOTIVE GRADE HEXFET® Power MOSFET   Features  Advanced Process Technology  Ultra Low On-Resistance  175°C Operating Temperature  Fast Switching  Repetitive Avalanche Allowed up to Tjmax  Lead-Free, RoHS Compliant  Automotive Qualified * Package Type AUIRFSL4010 TO-262 AUIRFS4010 D2-Pak 100V RDS(on) typ. 3.9m max. 4.7m 180A ID D D Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications Base part number VDSS S G G TO-262 AUIRFSL4010 D2Pak AUIRFS4010 G Gate S D D Drain Standard Pack Form Quantity Tube 50 Tube 50 Tape and Reel Left 800 S Source Orderable Part Number AUIRFSL4010 AUIRFS4010 AUIRFS4010TRL Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. Symbol Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 180 ID @ TC = 100°C IDM PD @TC = 25°C Continuous Drain Current, VGS @ 10V Pulsed Drain Current  Maximum Power Dissipation 127 720 375 VGS EAS IAR EAR dv/dt TJ TSTG Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited)  Avalanche Current  Repetitive Avalanche Energy  Peak Diode Recovery  Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Thermal Resistance   Symbol RJC RJA Parameter Junction-to-Case  Junction-to-Ambient (PCB Mount), D2 Pak Max. Units A W 2.5 ± 20 318 See Fig. 14, 15, 22a, 22b W/°C V mJ A mJ V/ns 31 -55 to + 175   300   °C  Typ. Max. Units ––– ––– 0.40 40 °C/W HEXFET® is a registered trademark of Infineon. *Qualification standards can be found at www.infineon.com 1 2017-08-23 AUIRFS/SL4010   Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units 100 ––– ––– V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.10 ––– V/°C Reference to 25°C, ID = 5mA  RDS(on) Static Drain-to-Source On-Resistance ––– 3.9 4.7 m VGS = 10V, ID = 106A  VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V gfs RG Forward Trans conductance Internal Gate Resistance IDSS Drain-to-Source Leakage Current 189 ––– ––– ––– 2.0 ––– ––– ––– 20 ––– ––– 250 S VDS = 25V, ID = 106A  VDS = 100V, VGS = 0V µA VDS = 100V,VGS = 0V,TJ =125°C IGSS Gate-to-Source Forward Leakage ––– ––– 100   Gate-to-Source Reverse Leakage ––– ––– -100 V(BR)DSS Drain-to-Source Breakdown Voltage V nA   Conditions VGS = 0V, ID = 250µA VDS = VGS, ID = 250µA VGS = 20V VGS = -20V Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 143 38 50 93 21 86 100 77 9575 660 270 215 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Coss eff.(ER) Effective Output Capacitance (Energy Related) ––– 757 ––– VDD = 65V ID = 106A ns RG= 2.7 VGS = 10V VGS = 0V VDS = 50V pF   ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 0V to 80V Coss eff.(TR) Effective Output Capacitance (Time Related) ––– 1112 ––– VGS = 0V, VDS = 0V to 80V Min. Typ. Max. Units ––– ––– 180 ––– ––– 720 ––– ––– ––– ––– ––– ––– ––– 72 81 210 268 5.3 1.3 ––– ––– ––– ––– ––– Diode Characteristics   Parameter Continuous Source Current IS (Body Diode) Pulsed Source Current ISM (Body Diode) VSD Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ID = 106A VDS = 50V nC   VGS = 10V Conditions MOSFET symbol showing the A integral reverse p-n junction diode. V TJ = 25°C,IS = 106A,VGS = 0V  TJ = 25°C VDD = 85V ns TJ = 125°C IF = 106A, TJ = 25°C di/dt = 100A/µs  nC   TJ = 125°C A TJ = 25°C  Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.057mH, RG = 25, IAS = 106A, VGS =10V. Part not recommended for use above this value. ISD 106A, di/dt 1319A/µs, VDD V(BR)DSS, TJ  175°C. Pulse width 400µs; duty cycle  2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994  R is measured at TJ approximately 90°C. RJC value shown is at time zero.        2 2017-08-23 AUIRFS/SL4010   1000 1000 VGS 15V 10V 8.0V 7.0V 5.0V 4.5V 4.3V 4.0V 100 BOTTOM VGS 15V 10V 8.0V 7.0V 5.0V 4.5V 4.3V 4.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 BOTTOM 100 1 60µs PULSE WIDTH Tj = 25°C 4.0V 4.0V 0.1 0.1 10 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 10 100 Fig. 2 Typical Output Characteristics R DS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 2.5 1000 100 T J = 175°C T J = 25°C 10 1 VDS = 50V 60µs PULSE WIDTH 0.1 ID = 106A VGS = 10V 2.0 1.5 1.0 0.5 2 3 4 5 6 7 -60 -40 -20 0 20 40 60 80 100 120 140160 180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig. 4 Normalized On-Resistance vs. Temperature Fig. 3 Typical Transfer Characteristics 100000 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd Coss = Cds + Cgd C, Capacitance (pF) Tj = 175°C V DS, Drain-to-Source Voltage (V) Fig. 1 Typical Output Characteristics C iss 10000 C oss 1000 C rss 100 ID = 106A 12.0 10.0 VDS = 80V VDS = 50V 8.0 6.0 4.0 2.0 0.0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 3 60µs PULSE WIDTH 0 25 50 75 100 125 150 175 200 225 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 2017-08-23 AUIRFS/SL4010   10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 1msec 100 10msec 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.1 0.2 0.6 1.0 1.4 1.8 1 VSD , Source-to-Drain Voltage (V) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 180 ID, Drain Current (A) 160 140 120 100 80 60 40 20 0 50 75 100 125 150 1000 130 Id = 5mA 125 120 115 110 105 100 95 -60 -40 -20 0 20 40 60 80 100 120 140160 180 175 T J , Temperature ( °C ) T C , Case Temperature (°C) Fg 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 1400 EAS , Single Pulse Avalanche Energy (mJ) 4.0 3.5 ID 12.5A 17A BOTTOM 106A 1200 3.0 Energy (µJ) 100 Fig 8. Maximum Safe Operating Area 200 25 10 VDS , Drain-to-Source Voltage (V) Fig. 7 Typical Source-to-Drain Diode Forward Voltage TOP 1000 2.5 2.0 1.5 1.0 0.5 0.0 0 20 40 60 80 100 800 600 400 200 0 120 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) VDS, Drain-to-Source Voltage (V) Fig 12. Maximum Avalanche Energy vs. Drain Current Fig 11. Typical COSS Stored Energy 4 100µsec   2017-08-23 AUIRFS/SL4010   Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 J 0.02 0.01 0.01 R1 R1 J 1 R2 R2 C 2 1 C 2 Ci= iRi Ci= iRi Ri (°C/W) i (sec) 0.17537 0.000343 0.22547 0.006073 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 0.05 10 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Avalanche Current vs. Pulse width Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 18a, 18b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 13, 14). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) 350 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 106A EAR , Avalanche Energy (mJ) 300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature   5 PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 2017-08-23 AUIRFS/SL4010 4.5 35 4.0 30 3.5 25 3.0 20 IRR (A) VGS(th) , Gate threshold Voltage (V)   ID = 250µA ID = 1.0mA 2.5 ID = 1.0A 2.0 IF = 70A V R = 85V TJ = 25°C TJ = 125°C 15 10 5 1.5 0 1.0 -75 -50 -25 0 0 25 50 75 100 125 150 175 200 Fig 16. Threshold Voltage vs. Temperature 1000 1100 IF = 106A V R = 85V IF = 70A VR = 85V 1000 TJ = 25°C TJ = 125°C 900 TJ = 25°C TJ = 125°C 800 20 QRR (nC) IRR (A) 800 Fig. 17 - Typical Recovery Current vs. dif/dt 35 25 600 diF /dt (A/µs) T J , Temperature ( °C ) 30 400 15 10 700 600 500 400 300 5 200 0 0 200 400 600 800 100 1000 0 200 diF /dt (A/µs) 400 600 800 1000 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 1100 IF = 106A VR = 85V 1000 900 TJ = 25°C TJ = 125°C QRR (nC) 800 700 600 500 400 300 200 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 20 - Typical Stored Charge vs. dif/dt   6 2017-08-23 AUIRFS/SL4010   Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp L VDS D.U.T RG IAS 20V tp DRIVER + V - DD A 0.01 Fig 22a. Unclamped Inductive Test Circuit Fig 23a. Switching Time Test Circuit I AS Fig 22b. Unclamped Inductive Waveforms Fig 23b. Switching Time Waveforms Id Vds Vgs Vgs(th) Qgs1 Qgs2 Fig 24a. Gate Charge Test Circuit   7 Qgd Qgodr Fig 24b. Gate Charge Waveform 2017-08-23 AUIRFS/SL4010   D2Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches)) D2Pak (TO-263AB) Part Marking Information Part Number AUIRFS4010 YWWA IR Logo XX  Date Code Y= Year WW= Work Week XX Lot Code   8 2017-08-23 AUIRFS/SL4010   TO-262 Package Outline (Dimensions are shown in millimeters (inches) TO-262 Part Marking Information Part Number AUIRFSL4010 YWWA IR Logo XX  Date Code Y= Year WW= Work Week XX Lot Code 9 2017-08-23 AUIRFS/SL4010   D2Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches)) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 10 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 2017-08-23 AUIRFS/SL4010   Qualification Information Automotive (per AEC-Q101) Comments: This part number(s) passed Automotive qualification. Infineon’s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. Qualification Level  Moisture Sensitivity Level   D2-Pak Machine Model Human Body Model   ESD MSL1 TO-262 Charged Device Model RoHS Compliant Class M4 (+/- 800V)† AEC-Q101-002 Class H3A (+/- 6000V)† AEC-Q101-001 Class C5 (+/- 2000V)† AEC-Q101-005 Yes † Highest passing voltage. Revision History Date Comments 10/27/2015   Updated datasheet with corporate template Corrected ordering table on page 1. 8/23/2017  Corrected part marking on pages 8,9 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved. IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.   11 2017-08-23
AUIRFSL4010 价格&库存

很抱歉,暂时无法提供与“AUIRFSL4010”相匹配的价格&库存,您可以联系我们找货

免费人工找货