AUTOMOTIVE GRADE
AUIRGPS4070D0
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
Low VCE (on) Trench IGBT Technology
Low Switching Losses
6µs SCSOA
Square RBSOA
100% of the parts tested for ILM
Positive VCE (on) Temperature Coefficient
Soft Recovery Co-pak Diode
Lead-Free, RoHS Compliant
Automotive Qualified *
C
VCES = 600V
IC = 160A, TC = 100°C
tsc 6µs, TJ(MAX) = 175°C
G
VCE(on) typ. = 1.70V
E
n-channel
C
Benefits
High Efficiency in a Wide Range of Applications
Suitable for Applications in the Low to Mid-Range Frequencies
Rugged Transient Performance for Increased Reliability
Excellent Current Sharing in Parallel Operation
Low EMI
Base Part Number
Package Type
AUIRGPS4070D0
PG-TO274-3-903
GC
E
PG-TO274-3-903
G
Gate
C
Collector
Standard Pack
Form
Quantity
Tube
E
Emitter
Orderable Part Number
25
AUIRGPS4070D0
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
otherwise specified.
VCES
IC @ TC = 25°C
IC @ TC = 100°C
INOMINAL
ICM
ILM
IF NOMINAL
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Nominal Current
Pulse Collector Current, VGE = 15V
Clamped Inductive Load Current, VGE = 20V
Diode Nominal Current
Diode Maximum Forward Current
Continuous Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
600
240
160
120
360
480
120
480
±20
±30
750
375
Units
V
A
V
W
-55 to +175
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
RJC (IGBT)
RJC (Diode)
RCS
RJA
Parameter
Thermal Resistance Junction-to-Case (each IGBT)
Thermal Resistance Junction-to-Case (each Diode)
Thermal Resistance, Case-to-Sink (flat, greased surface)
Thermal Resistance, Junction-to-Ambient (typical socket mount)
Typ.
–––
–––
0.24
–––
Max.
0.20
0.45
–––
40
Units
°C/W
* Qualification standards can be found at www.infineon.com
1
V 2.4
2018-12-03
AUIRGPS4070D0
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Parameter
V(BR)CES
600
—
Collector-to-Emitter Breakdown Voltage
—
0.74
V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage
—
1.7
Collector-to-Emitter Saturation Voltage
VCE(on)
—
2.0
—
2.1
4.0
—
Gate Threshold Voltage
VGE(th)
—
-16
Threshold
Voltage
temp.
coefficient
VGE(th)/TJ
gfe
—
87
Forward Transconductance
—
1.0
Collector-to-Emitter Leakage Current
ICES
—
2.0
—
1.8
VFM
Diode Forward Voltage Drop
—
1.9
—
—
Gate-to-Emitter Leakage Current
IGES
Max. Units
Conditions
—
V
VGE = 0V, IC = 500µA
—
V/°C VGE = 0V, IC = 5mA (25°C-175°C)
2.0
IC = 120A, VGE = 15V, TJ = 25°C
V
—
IC = 120A, VGE = 15V, TJ = 150°C
—
IC = 120A, VGE = 15V, TJ = 175°C
6.5
V
VCE = VGE, IC = 5.6mA
— mV/°C VCE = VGE, IC = 5.6mA (25°C-175°C)
—
S
VCE = 50V, IC = 120A
200
µA VGE = 0V, VCE = 600V
—
mA VGE = 0V, VCE = 600V,TJ = 175°C
2.1
IF = 120A
V
—
IF = 120A, TJ = 175°C
±100
nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max.
Qg
Total Gate Charge (turn-on)
—
250
375
Qge
Gate-to-Emitter Charge (turn-on)
—
65
98
Qgc
Gate-to-Collector Charge (turn-on)
—
100
150
Eon
Turn-On Switching Loss
—
5.7
6.7
Turn-Off Switching Loss
—
4.2
5.2
Eoff
Etotal
Total Switching Loss
—
9.9
11.9
td(on)
Turn-On delay time
—
40
60
Rise time
—
125
155
tr
td(off)
Turn-Off delay time
—
140
170
tf
Fall time
—
120
170
Eon
Turn-On Switching Loss
—
6.4
—
Eoff
Turn-Off Switching Loss
—
4.7
—
Etotal
Total Switching Loss
—
11.1
—
td(on)
Turn-On delay time
—
40
—
tr
Rise time
—
110
—
td(off)
Turn-Off delay time
—
160
—
tf
Fall time
—
125
—
Cies
Input Capacitance
—
7600
—
Coes
Output Capacitance
—
510
—
Cres
Reverse Transfer Capacitance
—
230
—
RBSOA
Reverse Bias Safe Operating Area
SCSOA
Short Circuit Safe Operating Area
Erec
trr
Irr
Reverse Recovery Energy of the Diode
Diode Reverse Recovery Time
Peak Reverse Recovery Current
Units
nC
Conditions
IC = 120A
VGE = 15V
VCC = 400V
mJ
ns
IC = 120A, VCC = 400V, VGE = 15V
RG = 4.7, L = 87µH, TJ = 25°C
Energy losses include tail & diode
reverse recovery
mJ
ns
pF
FULL SQUARE
6
—
—
µs
—
—
—
1740
210
45
—
—
—
µJ
ns
A
IC = 120A, VCC = 400V, VGE = 15V
RG = 4.7, L = 87µH, TJ = 175°C
Energy losses include tail & diode
reverse recovery
VGE = 0V
VCC = 30V
f = 1.0Mhz
TJ = 175°C, IC = 480A
VCC = 480V, Vp ≤ 600V
Rg = 4.7, VGE = +20V to 0V
VCC = 400V, Vp ≤ 600V
Rg = 5.0, VGE = +15V to 0V
TJ = 175°C
VCC = 400V, IF = 120A
VGE = 15V, Rg = 4.7, L = 87µH
Notes:
VCC = 80% (VCES), VGE = 20V, L = 3.5µH, RG = 47 tested in production ILM 400A.
Pulse width limited by max. junction temperature.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
R is measured at TJ approximately 90°C.
Calculated continuous current based on maximum allowable junction temperature. Package IGBT current limit is 195A.
Package diode current limit is120A. Note that current limitations arising from heating of the device leads may occur.
2
V 2.4
2018-12-03
AUIRGPS4070D0
800
250
700
200
600
500
IC (A)
Ptot (W)
150
100
400
300
200
50
100
0
0
25
50
75
100
125
150
0
175
20
40
60
80 100 120 140 160 180
TC (°C)
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs.
Case Temperature
1000
1000
10µsec
100
100
IC (A)
IC (A)
100µsec
1msec
10
DC
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
1
0.1
1
10
100
10
1000
100
VCE (V)
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE = 20V
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
480
480
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
420
360
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
420
360
300
ICE (A)
ICE (A)
300
240
240
180
180
120
120
60
60
0
0
0
2
4
6
8
10
V CE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 20µs
3
1000
0
2
4
6
8
10
V CE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 20µs
V 2.4
2018-12-03
AUIRGPS4070D0
480
360
300
420
-40°C
25°C
175°C
360
300
IF (A)
ICE (A)
480
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
420
240
240
180
180
120
120
60
60
0
0
2
4
6
8
0
10
0.0
V CE (V)
10
10
8
8
ICE = 60A
ICE = 120A
ICE = 195A
4
4.0
5.0
ICE = 60A
ICE = 120A
6
ICE = 195A
4
2
2
0
0
5
10
15
5
20
10
15
20
V GE (V)
V GE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
10
480
8
ICE = 60A
ICE = 120A
420
ICE = 195A
360
TJ = -40°C
TJ = 25°C
300
TJ = 175°C
6
ICE (A)
VCE (V)
3.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 20µs
VCE (V)
VCE (V)
2.0
V F (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 20µs
6
1.0
4
240
180
120
2
60
0
0
5
10
15
V GE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
4
20
4
6
8
10
12
14
V GE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 20µs
V 2.4
2018-12-03
AUIRGPS4070D0
25
1000
Swiching Time (ns)
Energy (mJ)
20
15
EON
10
EOFF
5
tdOFF
tF
100
tR
tdON
0
0
50
100
150
200
10
250
0
IC (A)
50
100
150
200
250
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 0.087mH; VCE = 400V, RG = 4.7; VGE = 15V
16
Fig. 14 - Typ. Switching Loss vs. IC
TJ = 175°C; L = 0.087mH; VCE = 400V, RG = 4.7; VGE = 15V
10000
14
12
Swiching Time (ns)
EON
Energy (mJ)
10
8
EOFF
6
1000
tdOFF
tF
100
tR
4
tdON
2
10
0
0
10
20
30
40
50
0
60
10
20
30
40
50
60
RG ( )
Rg ( )
Fig. 15 - Typ. Energy Loss vs. RG
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 0.087mH; VCE = 400V, ICE = 120A; VGE = 15V TJ = 175°C; L = 0.087mH; VCE = 400V, ICE = 120A; VGE = 15V
45
45
RG = 4.7
35
40
RG =
IRR (A)
IRR (A)
40
30
35
30
RG = 20
25
25
RG = 50
20
20
0
50
100
150
IF (A)
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 175°C
5
200
250
0
10
20
30
40
50
60
RG (
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 175°C
V 2.4
2018-12-03
AUIRGPS4070D0
45
10000
9000
240A
40
35
QRR (nC)
IRR (A)
8000
30
4.7
10
7000
20
120A
50
6000
5000
60A
25
4000
3000
20
200
400
600
300
800
400
500
diF /dt (A/µs)
700
800
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 175°C
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 120A; TJ = 175°C
24
3000
20
Time (µs)
2000
1200
1000
Isc
16
800
Tsc
12
600
1000
8
400
500
4
1500
50
100
150
200
11
12
13
14
15
16
VGE (V)
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 175°C
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
VGE, Gate-to-Emitter Voltage (V)
16
Cies
10000
Capacitance (pF)
10
IF (A)
100000
1000
Coes
100
Cres
10
VCES = 400V
VCES = 300V
12
8
4
0
0
100
200
300
400
500
VCE (V)
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
200
9
250
Current (A)
RG = 4.7
RG = 10
RG = 20
RG = 50
2500
Energy (µJ)
600
diF /dt (A/µs)
0
50
100
150
200
250
300
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 120A
V 2.4
2018-12-03
AUIRGPS4070D0
Thermal Response ( ZthJC )
1
D = 0.50
0.1
0.20
Ri (°C/W)
0.10
0.05
0.01
J
0.02
0.01
0.001
1E-005
J
1
R2
R2
R3
R3
R4
R4
C
2
1
3
2
4
3
4
Ci= iRi
Ci= iRi
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
R1
R1
C
I (sec)
0.00442
0.000014
0.04530
0.000165
0.08912
0.004938
0.06121
0.026150
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1
Thermal Response ( ZthJC )
D = 0.50
0.1
0.20
0.10
Ri (°C/W)
0.05
0.01
0.02
0.01
J
R1
R1
J
1
R2
R2
R3
R3
R4
R4
C
1
2
2
3
3
4
4
Ci= iRi
Ci= iRi
0.001
1E-005
0.00948
0.000013
0.12750
0.000134
0.18573
0.003167
0.12730
0.020010
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
C
I (sec)
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
7
V 2.4
2018-12-03
AUIRGPS4070D0
L
L
VCC
DUT
0
80 V +
-
1K
DUT
VCC
Rg
Gate Charge Circuit
RBSO A Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
L
4X
DC
-5V
VCC
DUT /
DRIVER
DUT
VCC
Rg
RSH
Switching Loss
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.3 - S.C. SOA Circuit
R = VCC
C force
ICM
100K
DUT
VCC
D1
22K
C sense
Rg
G force
DUT
0.0075µF
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
8
V 2.4
AUIRGPS4070D0
180
600
tf
500
150
500
120
300
200
60
VCE (V)
90% ICE
120
90% ICE
300
200
30
10% VCE
0
0
60
100
0
-30
0
0.5
1
1.5
Eon Loss
-100
-30
0
0.5
time(µs)
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
140
500
QRR
100
400
80
tRR
Vce (V)
IF (A)
40
20
0
Peak
IRR
0.10
0.60
1.10
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 175°C using Fig. CT.4
9
VCE
1600
1200
ICE
200
800
100
400
0
-40
-60
-0.40
2000
300
60
-20
1.5
time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
120
1
Ice (A)
0
30
10% VCE
Eoff Loss
-100
90
10%ICE
10% ICE
100
150
TEST CURRENT
400
90
ICE (A)
VCE (V)
400
180
tr
ICE (A)
600
0
-100
-4.00
0.00
4.00
8.00
-400
12.00
Time (uS)
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
V 2.4
2018-12-03
AUIRGPS4070D0
Case Outline and Dimensions-PG-TO274-3-903 (Dimensions are shown in millimeters (inches))
PG-TO274-3-903 -Part Marking Information
Part Number
AUGPS4070D0
YWWA
IR Logo
XX
Date Code
Y = Year
WW = Work Week
A = Automotive, Lead Free
XX
Lot Code
10
V 2.4
2018-12-03
AUIRGPS4070D0
Qualification Information
Automotive
(per AEC-Q101)
This part number(s) passed Automotive qualification. Infineon’s Industrial
and Consumer qualification level is granted by extension of the higher
Automotive level.
Qualification Level
Moisture Sensitivity Level
PG-TO274-3-903
Human Body Model
ESD
Charged Device Model
N/A
Class H3B(+/‐ 8000)
AEC-Q101-001
Class C3 (+/‐ 2000)†
AEC-Q101-005
Yes
RoHS Compliant
†
†
Highest passing voltage.
Revision History
Revision
Date
Subjects (major changes since last revision)
2.0
12/12/2016
Final Datasheet.
2.1
08/31/2017
Corrected typo error on part marking.
2.2
11/14/2017
Updated with IFX nomenclature.
2.3
07/19/2018
Updated with minor changes.
2.4
12/03/2018
Updated with package outline.
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2015
All Rights Reserved.
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third
party.
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of
the product of Infineon Technologies in customer’s applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of
customer’s technical departments to evaluate the suitability of the product for the intended application and the
completeness of the product information given in this document with respect to such application.
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies office.
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
11
V 2.4
2018-12-03