BFP405
Low Noise Silicon Bipolar RF Transistor
• For low current applications
3
• For oscillators up to 12 GHz
2
4
• Minimum noise figure NFmin = 1.25 dB at 1.8 GHz
1
Outstanding Gms = 23 dB at 1.8 GHz
• Pb-free (RoHS compliant) and halogen-free package
with visible leads
• Qualification report according to AEC-Q101 available
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BFP405
Marking
ALs
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
SOT343
Maximum Ratings at TA = 25 °C, unless otherwise specified
Parameter
Symbol
Collector-emitter voltage
VCEO
Value
Unit
V
TA = 25 °C
4.5
TA = -55 °C
4.1
Collector-emitter voltage
VCES
15
Collector-base voltage
VCBO
15
Emitter-base voltage
VEBO
1.5
Collector current
IC
25
Base current
IB
3
Total power dissipation1)
Ptot
75
mW
Junction temperature
TJ
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
TStg
-65 ... 150
mA
TS ≤ 110 °C
1T
S is
measured on the emitter lead at the soldering point to the pcb
1
2013-09-19
BFP405
Thermal Resistance
Parameter
Symbol
Junction - soldering point1)
RthJS
Value
Unit
530
K/W
Electrical Characteristics at T A = 25 °C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
4.5
5
-
V
ICES
-
-
10
μA
ICBO
-
-
100
nA
IEBO
-
-
1
μA
hFE
60
95
130
DC Characteristics
Collector-emitter breakdown voltage
V(BR)CEO
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 15 V, VBE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
-
IC = 5 mA, VCE = 4 V, pulse measured
1For
the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation)
2
2013-09-19
BFP405
Electrical Characteristics at TA = 25 °C, unless otherwise specified
Symbol
Values
Parameter
Unit
min.
typ.
max.
18
25
-
Ccb
-
0.05
0.1
Cce
-
0.24
-
Ceb
-
0.29
-
NFmin
-
1.25
-
dB
Gms
-
23
-
dB
14
18.5
-
IP3
-
15
-
P-1dB
-
5
-
AC Characteristics (verified by random sampling)
Transition frequency
fT
GHz
IC = 10 mA, VCE = 3 V, f = 2 GHz
Collector-base capacitance
pF
VCB = 2 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Collector emitter capacitance
VCE = 2 V, f = 1 MHz, VBE = 0 ,
base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Minimum noise figure
IC = 2 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZSopt
Power gain, maximum stable1)
IC = 5 mA, VCE = 2 V, ZS = ZSopt ,
ZL = ZLopt , f = 1.8 GHz
|S21|2
Insertion power gain
VCE = 2 V, IC = 5 mA, f = 1.8 GHz,
ZS = ZL = 50 Ω
Third order intercept point at output2)
dBm
VCE = 2 V, IC = 5 mA, f = 1.8 GHz,
ZS = ZL = 50 Ω
1dB compression point at output
IC = 5 mA, VCE = 2 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
1G
ms = |S21 / S12 |
value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
2IP3
3
2013-09-19
BFP405
Total power dissipation P tot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(tp)
10 3
90
mW
RthJS
Ptot
70
60
50
K/W
40
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
30
20
10
0
0
30
60
°C
90
10 2 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
TS
s
10
tp
Permissible Pulse Load
Collector-base capacitance Ccb = ƒ(VCB)
Ptotmax/PtotDC = ƒ(tp)
f = 1MHz
10 1
0.3
CCB
P totmax/PtotDC
pF
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-
0.2
0.15
0.1
0.05
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
0
tp
0.5
1
1.5
2
2.5
3
V
4
VCB
4
2013-09-19
0
BFP405
Transition frequency fT = ƒ(IC)
Power gain Gma, Gms, |S21|2 = ƒ (f)
f = 2 GHz
VCE = 3 V, IC = 5 mA
VCE = parameter in V
26
44
GHz
dB
4V
3V
22
36
2V
20
32
18
28
Gms
G
fT
1.5V
16
24
1V
14
20
12
16
10
12
8
8
0.5V
6
4
0
4
8
12
mA
16
|S21|²
Gma
4
0
0
22
1
2
3
4
5
6
7
8 GHz
IC
10
f
Power gain Gma, Gms = ƒ (IC)
VCE = 3V
Power gain Gma, Gms = ƒ (VCE )
f = parameter in GHz
f = parameter in GHz
IC = 5 mA
40
40
0.15GHz
dB
dB
0.15GHz
0.45GHz
32
0.9GHz
28
1.5GHz
24
0.45GHz
28
G
G
32
1.9GHz
1.5GHz
24
2.4GHz
20
2.4GHz
20
16
3.5GHz
16
12
5.5GHz
12
8
0.9GHz
3.5GHz
5.5GHz
8
10GHz
10GHz
4
0
0
4
4
8
12
16
20
mA
0
0
26
IC
1
2
3
4
V
6
VCE
5
2013-09-19
BFP405
Noise figure F = ƒ(IC)
Noise figure F = ƒ(IC)
VCE = 2 V, ZS = ZSopt
VCE = 2 V, f = 1.8 GHz
4
4
dB
3
3
2.5
2.5
F
F
dB
2
2
1.5
1.5
f = 6 GHz
f = 5 GHz
f = 4 GHz
f = 3 GHz
f = 2.4 GHz
f = 1.8 GHz
f = 0.9 GHz
1
0.5
0
0
2
4
6
8
mA
ZS = 50 Ohm
ZS = ZSopt
1
0.5
0
0
12
2
4
6
mA
8
IC
12
IC
Noise figure F = ƒ(f)
Source impedance for min.
VCE = 1 V, ZS = ZSopt
noise figure vs. frequency
VCE = 3 V, IC = 2 mA / 5 mA
3
+j50
dB
+j25
+j100
+j10
2
F
4GHz
3GHz
1.8GHz
5GHz
0
1.5
IC = 5 mA
IC = 2 mA
1
10
6GHz
25
0.9GHz
50
2mA
5mA
-j10
0.5
100
-j25
-j100
-j50
0
0
1
2
3
4
GHz
6
f
6
2013-09-19
BFP405
SPICE GP Model
For the SPICE Gummel Poon (GP) model as well as for the S-parameters
(including noise parameters) please refer to our internet website
www.infineon.com/rf.models.
Please consult our website and download the latest versions before actually
starting your design. You find the BFP405 SPICE GP model in the internet
in MWO- and ADS-format, which you can import into these circuit simulation tools
very quickly and conveniently. The model already contains the package parasitics
and is ready to use for DC and high frequency simulations. The terminals of the
model circuit correspond to the pin configuration of the device. The model
parameters have been extracted and verified up to 6 GHz using typical devices.
The BFP405 SPICE GP model reflects the typical DC- and RF-performance
within the limitations which are given by the SPICE GP model itself. Besides the DC
characteristics all S-parameters in magnitude and phase, as well as noise figure
(including optimum source impedance, equivalent noise resistance and flicker noise)
and intermodulation have been extracted.
7
2013-09-19
Package SOT343
8
BFP405
2013-09-19
BFP405
Edition 2009-11-05
Published by Infineon Technologies AG,
85579 Neubiberg, Germany
© Infineon Technologies AG 2009.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be
considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of
non-infringement, regarding cicuits, descriptions and charts stated herein.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon
Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that device
or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons may be
endangered.
9
2013-09-19