BFP620F
Low Noise SiGe:C Bipolar RF Transistor
• High gain low noise RF transistor
3
• Based on Infineon's reliable high volume
2
4
1
Silicon Germanium technology
• Outstanding noise figure NFmin = 0.7 dB at 1.8 GHz
Outstanding noise figure NF min = 1.3 dB at 6 GHz
• Maximum stable gain
Gms = 21 dB at 1.8 GHz
Top View
4
Gma = 10 dB at 6 GHz
3
XYs
• Pb-free (RoHS compliant) and halogen-free thin small
1
flat package (1.4 x 0.8 x 0.59 mm) with visible leads
2
Direction of Unreeling
• Qualification report according to AEC-Q101 available
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BFP620F
Marking
R2s
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
TSFP-4
Maximum Ratings at TA = 25 °C, unless otherwise specified
Parameter
Symbol
Collector-emitter voltage
VCEO
Value
Unit
V
TA = 25 °C
2.3
TA = -55 °C
2.1
Collector-emitter voltage
VCES
7.5
Collector-base voltage
VCBO
7.5
Emitter-base voltage
VEBO
1.2
Collector current
IC
80
Base current
IB
3
Total power dissipation1)
Ptot
185
mW
Junction temperature
TJ
150
°C
Storage temperature
TStg
mA
TS ≤ 96°C
1T
S is
-55 ... 150
measured on the emitter lead at the soldering point to the pcb
1
2013-09-09
BFP620F
Thermal Resistance
Parameter
Symbol
Junction - soldering point1)
RthJS
Value
Unit
290
K/W
Values
Unit
Electrical Characteristics at T A = 25 °C, unless otherwise specified
Parameter
Symbol
min.
typ.
max.
2.3
2.8
-
V
ICES
-
-
10
µA
ICBO
-
-
100
nA
IEBO
-
-
3
µA
hFE
110
180
270
DC Characteristics
Collector-emitter breakdown voltage
V(BR)CEO
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 7.5 V, VBE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
-
IC = 50 mA, VCE = 1.5 V, pulse measured
1For
the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation)
2
2013-09-09
BFP620F
Electrical Characteristics at TA = 25 °C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
fT
-
65
-
Ccb
-
0.12
0.2
Cce
-
0.2
-
Ceb
-
0.45
-
AC Characteristics (verified by random sampling)
Transition frequency
GHz
IC = 50 mA, VCE = 1.5 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 2 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Collector emitter capacitance
VCE = 2 V, f = 1 MHz, VBE = 0 ,
base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Minimum noise figure
dB
NFmin
IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt
-
0.7
-
IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt
-
1.3
-
Gms
-
21
-
dB
Gma
-
10
-
dB
Power gain, maximum stable1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Power gain, maximum available1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
|S21e|2
Transducer gain
dB
IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
-
19.5
-
f = 6 GHz
-
9.5
-
IP3
-
25
-
P-1dB
-
14
-
Third order intercept point at output2)
dBm
VCE = 2 V, IC = 50 mA, ZS =ZL =50 Ω, f = 1.8 GHz
1dB compression point at output
IC = 50 mA, VCE = 2 V, ZS =ZL =50 Ω, f = 1.8 GHz
1G
1/2
ma = |S21e / S12e| (k-(k²-1) ), Gms
2IP3 value depends on termination of
= |S21e / S12e|
all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
3
2013-09-09
BFP620F
Total power dissipation P tot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(tp)
10 3
200
mW
160
K/W
RthJS
Ptot
140
120
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 2
100
80
60
40
20
0
0
15
30
45
60
75
90 105 120 °C
10 1 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
TS
s
10
tp
Permissible Pulse Load
Collector-base capacitance Ccb = ƒ(VCB )
Ptotmax/PtotDC = ƒ(tp )
f = 1MHz
10 1
0.4
P totmax/ PtotDC
pF
CCB
0.3
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
0.25
0.2
0.15
0.1
0.05
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
0
tp
1
2
3
4
5
6
V
8
VCB
4
2013-09-09
0
BFP620F
Third order Intercept Point IP3=ƒ(IC)
Transition frequency fT= ƒ(IC)
(Output, ZS=ZL=50Ω)
f = 1GHz
VCE = parameter, f =1.8GHz
VCE = Parameter in V
30
70
GHz
2.3V
dBm
60
1.7V
1 to 2.3
55
20
50
fT
IP3
1.4V
15
45
0.8
40
0.8V
10
35
1.1V
30
25
5
20
15
0
10
0.3
0.5
5
-5
0
10
20
30
40
50
60
70 mA
0
0
90
10
20
30
40
50
60
70
80 mA
IC
100
IC
Power gain Gma, Gms = ƒ(IC )
Power Gain Gma, Gms = ƒ(f),
VCE = 1.5V
|S21|² = f (f)
f = Parameter in GHz
VCE = 1.5V, IC = 50mA
50
30
dB
dB
0.9
26
40
24
35
1.8
G
G
22
20
30
18
2.4
16
3
14
4
12
5
10
6
25
20
|S21|²
Gma
15
10
8
6
0
Gms
10
20
30
40
50
60
70 mA
5
0
90
IC
1
2
3
4
GHz
6
f
5
2013-09-09
BFP620F
Power gain Gma, Gms = ƒ (VCE )
Noise figure F = ƒ(IC )
IC = 50mA
VCE = 1.5V, ZS = ZSopt
f = Parameter in GHz
30
dB
3
0.9
24
2.5
1.8
G
20
2.4
2
3
16
4
F [dB]
5
12
1.5
6
8
1
4
f = 6GHz
f = 5GHz
f = 4GHz
f = 3GHz
f = 2.4GHz
f = 1.8GHz
f = 0.9GHz
0.5
0
-4
0.2
0.6
1
1.4
V
1.8
2.6
0
0
VCE
Noise figure F = ƒ(IC )
VCE = 1.5V, f = 1.8 GHz
10
20
30
40
50
60
70
80
I [mA]
c
Noise figure F = ƒ(f)
VCE = 1.5V, ZS = ZSopt
3
2.5
2.5
2
2
IC = 50mA
F [dB]
F [dB]
1.5
1.5
IC = 5.0mA
1
1
Z = 50Ω
S
Z =Z
S
Sopt
0.5
0.5
0
0
0
10
20
30
40
50
60
70
80
1
Ic [mA]
2
3
4
5
6
7
f [GHz]
6
2013-09-09
BFP620F
Source impedance for min.
noise figure vs. frequency
VCE = 1.5V, IC = 5.0mA/50.0mA
1
1.5
2
0.5
0.4
3
0.3
4
0.2
2.4GHz
5
1.8GHz
3GHz
10
0.1
0.1
0
0.2 0.3 0.4 0.5
1
1.5
4GHz
−0.1
2
3
4 5
5GHz
−10
6GHz
−0.2
Ic = 5.0mA
−0.3
−5
−4
−3
I = 50mA
−0.4
c
−2
−0.5
−1.5
−1
7
2013-09-09
Package TSFP-4
8
BFP620F
2013-09-09
BFP620F
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office ().
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.
9
2013-09-09