BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Gilbert based quad homodyne 24 GHz downconverter with integrated
IF filters and programmable gain base band amplifiers
Single ended RF terminals
Low single side band noise figure: NFssb = 10 dB typ.
High downconverter P1dB input compression point: -6 dBm typ.
Low LO input power required: -6 dBm
On chip LO level and temperature sensors
Muliplexed output of analog sensor signals
Integrated saturation detectors for downconverters and IF amplifiers
Disable mode for downconverter and base band amplifiers via SPI
IF chain testability
Single supply voltage: 3.3 V typ.
Low power consumption: 610 mW typ.
200 GHz bipolar SiGe:C technology b7hf200
Fully ESD protected device
VQFN-32-9 leadless plastic package including lead-tip-inspection (LTI)
feature
Description
The BGT24AR4 is a Silicon Germanium MMIC, accommodating four separate homodyne receiver chains. Each
receiver consists of a downconverter operating in the 24 GHz ISM band. LO buffer amplifiers are included to
relax LO drive requirements. IF signal filtering and amplification is provided on chip.
Saturation detectors for downconverter- and IF output signals as well as an IF chain test feature are integrated
for monitoring purposes.
A temperature- and LO power sensor signal is accessible through a multiplexed analog output.
The following functionalities can be controlled via the 32 bit SPI bus:
•
•
•
Enabling of downconverter and base band amplifiers
Selection of base band amplifiers’ gain
Selection of the sensor signal being available through the analog output
Product Validation
Qualified for Automotive Applications. Product Validation according to AEC-Q100/101
Product Name
Package
Chip
Marking
BGT24AR4
VQFN32-9
T1825
BGT24AR4
Data Sheet
www.infineon.com
Please read the Important Notice and Warnings at the end of this document
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
Revision History
Figure 1
BGT24AR4 Block Diagram
Revision History
Revision History: 2019-12-05, Revision 3.4
Previous Revision:2019-10-31, Revision 3.3
Page
Subjects (major changes since last revision)
7
RF frequency range extended typ. and max. value
8
IF output impedance fixed min. value
10
LO frequency range extended typ. and max. value
Data Sheet
2
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
Table of contents
Table of contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
RX Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
LO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
IF Saturation Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Sensor Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
4
Sensor Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Data Sheet
3
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
List of tables
List of tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Data Sheet
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
I/O internal circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SPI Data Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Specification for SPI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Truth Table AMUX1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Sensor Configuration2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
List of figures
List of figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Data Sheet
BGT24AR4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Timing Diagram of the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Package Outline (Top, Side and Bottom View) of VQFN32-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Marking Layout VQFN32-9 (example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Tape of VQFN32-9, Ø Reel: 330 mm, Pieces / Reel: 3000, Reels / Box: 1 . . . . . . . . . . . . . . . . . . . . . . . . 19
5
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
1 Electrical Characteristics
1
Electrical Characteristics
1.1
Absolute Maximum Ratings
Table 1
Absolute Maximum Ratings
TA = -40 °C to 125 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise
specified)
Parameter
Symbol
Values
Min.
Typ.
Unit
Test Note or Test Condition
Max.
Supply voltage
VCC
-0.3
–
VCC
+0.3
V
■
–
DC voltage at RF pins
VDCRF
–
–
0
V
■
MMIC provides short
circuit to GND for LO_IN
and RX1 to RX4 pins
RF input power
PRF
–
–
0
dBm
■
–
LO input power
PLO
–
–
12
dBm
■
–
Voltage applied to none-RF
pins(1)
VIO
-0.3
–
VCC
+0.3
V
■
–
Total power dissipation
PDISS
–
–
1200
mW
■
–
Junction temperature
TJ
-40
–
170
°C
■
–
Ambient temperature range
TA
-40
–
125
°C
■
TA = temperature at
package soldering point
Storage temperature range
TSTG
-50
–
125
°C
■
–
(1)
For SPI_EN, SPI_DI, SPI_CLK the applied voltage may exceed given ratings als long as current into these
pins is limited to ISPI = 1 mA
Attention: Stresses exceeding the maximum values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods of time may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause
irreversible damage to the integrated circuit.
Attention: Integrated protection functions are designed to prevent IC destruction under fault conditions as
described in the data sheet. Fault conditions are considered as “outside” normal operating
range. Protection functions are not designed for continuous repetitive operation.
Attention: Test ■ means that the parameter is not subject to production test. It was verified by design /
characterization.
Note:
Data Sheet
No permanent damage of the device is possible due to an undefined SPI state
6
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
1 Electrical Characteristics
1.2
ESD Integrity
Table 2
ESD Integrity
Parameter
Symbol
Values
Min.
Typ.
Unit
Test Note or Test Condition
Max.
ESD robustness HBM(1)
VESD-HBM
-1
–
1
kV
■
All pins
ESD robustness, CDM(2)
VESD-CDM
-500
–
500
V
■
All pins
-750
–
750
■
Package corner pins
(1)
(2)
According to ANSI/ESDA/JEDEC JS-001 (R = 1.5kOhm, C = 100pF) for Electrostatic Discharge Sensitivity
Testing, Human Body Model (HBM)-Component Level
According to JEDEC JESD22-C101 Field-Induced Charged Device Model (CDM), Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
Please note that this result is subject to:
•
lot variations within the manufacturing process as specified by Infineon
•
changes in the specific test setup
Attention: Test ■ means that the parameter is not subject to production test. It was verified by design /
characterization.
1.3
Power Supply
Table 3
Electrical Characteristics
TA = -40 °C ... 125 °C, positive current flowing into pin (unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Unit
Test Note or Test Condition
Max.
Supply voltage
VCC
3.135
3.3
3.465
V
–
Supply current
ICC
–
185
220
mA
SPI state: 0025 CC25 Hex;
no RF signal present
Supply current standby
mode
ICCstandby
–
–
35
mA
SPI state: 0000 CC00 Hex
1.4
RX Characteristics
Table 4
Electrical Characteristics
VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz including a
matching structure and package footprint provided by Infineon using the high frequency laminate Rogers
4350B (see AN358)
Parameter
RF frequency range
Data Sheet
Symbol
fRF
Values
Min.
Typ.
24.00
24.15
7
Unit
Test Note or Test Condition
GHz
■
Max.
24.3
–
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
1 Electrical Characteristics
Table 4
Electrical Characteristics (continued)
VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz including a
matching structure and package footprint provided by Infineon using the high frequency laminate Rogers
4350B (see AN358)
Parameter
Symbol
Values
Min.
Typ.
Unit
Test Note or Test Condition
Max.
RF input impedance
ZRF
–
50
–
Ω
■
Single ended including
off chip compensation
Input return loss RF port
RX1, RX4
RX2, RX3
RLRF
12
9
–
–
–
–
dB
■
VCC = 3.3 V,
TA = 25 °C,
PLO = 0 dBm
RF/RF isolation (channel
separation)
IRF,RF
35
–
–
dB
■
not valid for RX1/ RX2
RFRX1/ RFRX2 isolation
(channel separation)
IRF_RX1,RF_RX2
32
–
–
dB
■
–
LO/RF leakage
LLO,RF
–
–
-27
dBm
■
PLO = 0 dBm
Mixer’s P1dB @ RF inputs
P1dB IN
-7
-6
–
dBm
■
–
RX channel gain:
power gain
voltage gain
GP
GV
39.2
47
42.2
50
48.2
56
dB
At IF load
300 Ω differential
RX channel gain variation
ΔG
-1
0
1
dB
Channel to channel
RX channel phase variation
Δφ
-3
0
3
deg
Channel to channel
RX channel noise figure
NF
–
10.0
14.1
dB
At IF load
300 Ω differential
RX channel output full scale
VRX
1.2
–
–
VPP
At IF load
300 Ω differential
RX channel spurious free
range at output full scale
aRX
50
–
–
dBc
–
IF VGA gain adjustment range RVGA
-18
–
0
dB
With 6 dB gain steps
IF high pass filter’s cut off
frequency
525
600
675
kHz
3 dB definition
–
2nd
–
–
■
–
fcut off
IF high pass filter’s lower
slope order
IF output impedance
ZIF
250
300
350
Ω
■
–
IF test signal frequency
fIF
100
–
5000
kHz
■
–
IF test signal level
VIF
2
4
6
mVRMS ■
–
IF test signal input
impedance
ZIF,test
500
1000
1400
Ω
–
Data Sheet
8
■
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
1 Electrical Characteristics
Table 4
Electrical Characteristics (continued)
VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz including a
matching structure and package footprint provided by Infineon using the high frequency laminate Rogers
4350B (see AN358)
Parameter
Symbol
Values
Min.
Typ.
Unit
Test Note or Test Condition
Max.
IF output common mode
voltage
VIF_CM
1.4
–
2.4
V
At IF load 300 Ω
differential, steady state
IF test voltage conversion
gain
GIF_TEST
34
39
44
dB
At f = 2 MHz, IF load 300
Ω differential, max. gain
settings
Step response
VmaxIF_CM
characteristics: Maximum
overshoot voltage at single IF
line in reference to GND
–
–
VIF_CM
+0.76
V
■
At IF load 300 Ω
differential
Step response
VminIF_CM
characteristics: Minimum
overshoot voltage at single IF
line in reference to GND
VIF_CM
-0.93
–
–
V
■
At IF load 300 Ω
differential
Step response
characteristics: Maximum
slew rate
SR
–
–
106
V/µs
■
At IF load
300 Ω differential
Step response
TS
characteristics: Settling time
–
–
5.5
µs
■
At VIF_CM = ± 10 mV,
PRFmax = -20 dBm, IF load
300 Ω differential
Standby to ON mode
transition slew rate at single
IF line in reference to GND
SR_ON
–
–
55
V/µs
■
At IF load
300 Ω differential
IF power supply ripple
rejection
PSRRIF
40
–
–
dB
■
fIF ≤ 5 MHz
VCC = 3.3 V,
TA = 25 °C
Note:
•
•
•
Test signal can be switched off (via SPI)
Test signal can be switched to one RX channel (via SPI)
Test signal can be switched to all RX channels (via SPI)
Attention: Test ■ means that the parameter is not subject to production test. It was verified by design /
characterization.
Data Sheet
9
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
1 Electrical Characteristics
1.5
LO Characteristics
Table 5
Electrical Characteristics
VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C , all voltages with respect to ground, positive current flowing into
pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz include a
matching structure and package footprint provided by Infineon using the high frequency laminate Rogers
4350B (see AN358)
Parameter
Symbol
Values
Min.
Typ.
Unit
Test Note or Test Condition
Max.
LO frequency range
fLO
24.00
24.15
24.3
GHz
■
–
LO input power
PLO
-6
–
3
dBm
■
–
Input return loss LO port
RLLO
8
–
–
dB
■
VCC = 3.3 V,
TA = 25 °C
PLO = 0 dBm
LO input impedance
ZLO
–
50
–
Ω
■
Single ended including
off chip compensation
Attention: Test ■ means that the parameter is not subject to production test. It was verified by design /
characterization.
1.6
IF Saturation Detector
Table 6
Electrical Characteristics
VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C , all voltages with respect to ground, positive current flowing into
pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz include a
matching structure and package footprint provided by Infineon using the high frequency laminate Rogers
4350B (see AN358)
Parameter
Symbol
Values
Min.
Typ.
Unit
Test Note or Test Condition
Max.
Input RX (RF) activation
power level of mixer output
saturation flag
PSAT
P1dB IN P1dB IN P1dB IN dBm
-8
-4
■
–
VGA output activation
voltage level of VGA
saturation flag
VSAT
–
1.3
1.55
VPP
At IF load
300 Ω differential
Low level output
Sat-Flaglow
–
–
0.8
V
–
High level output
Sat-Flaghigh
2.4
–
–
V
–
Load capacitance
CLSat-Flag
–
–
30
pF
■
–
Load resistance
RLSat-Flag
10
–
–
kΩ
■
–
IF saturation flag setup time
T_setupSat-
–
–
22.5
ns
■
–
T_holdSat-Flag –
–
22.5
ns
■
–
Flag
IF saturation flag hold time
Data Sheet
10
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
1 Electrical Characteristics
Note:
All saturation detection signals are logical OR combined to one discrete output signal.
Attention: Test ■ means that the parameter is not subject to production test. It was verified by design /
characterization.
1.7
Sensor Multiplexer
Table 7
Electrical Characteristics
VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note
AN358, all voltages with respect to ground (unless otherwise specified)
Parameter
Symbol
Values
Min.
Output impedance
ROUTmux
–
Typ.
20
Unit
Test Note or Test Condition
Ω
■
Max.
40
at pin ANA_OUT;
multiplexer output
activated
Attention: Test ■ means that the parameter is not subject to production test. It was verified by design /
characterization.
For more information on the sensor multiplexer refer to Chapter 4 and to application note AN358.
1.8
Temperature Sensor
Table 8
Electrical Characteristics
VCC = 3.3 V, TA = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN358, all
voltages with respect to ground (unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Unit
Test Note or Test Condition
■
Max.
Temperature sensor
operating range(1)
TTSENS
-40
–
125
°C
Output voltage
VSENSE25
1.4
1.5
1.6
V
Sensitivity(1)
STSENS
4.3
4.7
5.1
mV/K
■
–
Setup time(1)
tTSENS
–
–
20
µs
■
CLoad ≤ 30 pF, RLoad ≥
10kΩ
Power supply rejection ratio
PSRR
10
24
–
dB
■
measured at TSi = 25°C
and VCC,MIN/VCC,MAX
(1)
–
at TSi = 25 °C
Guaranteed by device design, not subject to production test
Attention: Test ■ means that the parameter is not subject to production test. It was verified by design /
characterization.
Data Sheet
11
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
2 Pin Description
2
Pin Description
Table 9
Pin Definition and Function
Pin No.
Name
Function
1
IF_TEST
IF test signal
2
VCC
Supply voltage
3
n.c
connected to ground acc. to AN358
4
LO_IN
LO input signal
5
n.c.
connected to ground acc. to AN358
6
SPI_DO
SPI data output
7
SPI_EN
SPI enable
8
SPI_CLK
SPI clock
9
SPI_DI
SPI data input
10
ANA_OUT
Analog output signal / saturation flag
11
VEE
Ground
12
RX1
RF input receiver 1
13
n.c.
connected to ground acc. to AN358
14
IF2X
Complementary IF output receiver 2
15
IF2
IF output receiver 2
16
IF1X
Complementary IF output receiver 1
17
IF1
IF output receiver 1
18
n.c.
connected to ground acc. to AN358
19
RX2
RF input receiver 2
20
n.c.
connected to ground acc. to AN358
21
VEE.
Ground
22
IFX_TEST
Complementary IF test signal
23
n.c.
connected to ground acc. to AN358
24
RX3
RF input receiver 3
25
n.c.
connected to ground acc. to AN358
26
IF4
IF output receiver 4
27
IF4X
Complementary IF output receiver 4
28
IF3
IF output receiver 3
29
IF3X
Complementary IF output receiver 3
30
n.c.
connected to ground acc. to AN358
31
RX4
RF input receiver 4
32
VEE
Ground
Data Sheet
12
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
2 Pin Description
Table 10
I/O internal circuits
Pin No.
Name
4, 12, 19, 24, 31
LO_IN, RX1, RX2, RX3, RX4
I/O internal circuits
14, 15, 16, 17, 26, 27, 28, 29 IF2X, IF2, IF1X, IF1, IF4,
IF4X, IF3, IF3X
9
SPI_DI
7, 8
SPI_EN, SPI_CLK
10
ANA_OUT
Data Sheet
13
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
2 Pin Description
Table 10
I/O internal circuits (continued)
Pin No.
Name
1, 22
IF_TEST, IFX_TEST
6
SPI_DO
2
VCC
Data Sheet
I/O internal circuits
14
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
3 SPI
3
SPI
Communication to the receiver is done via a Serial-Peripheral-Interface (SPI). The 32 bit SPI has a hardwired
Power-On reset, which sets the output bits to a defined state after turning on the supply voltage. Data
transmission is started by a negative edge on SPI_EN. Data at SPI_DI is then read at the falling edge of SPI_CLK.
The most significant bit (MSB) is read first.
Table 11
SPI Data Bit Description
Data Bit
Name
Description (Logic High)
Power ON
Reset State
0 (LSB)
EN_34
Enables mixer and base band amplifier output stage and
supporting functions (for RX3 and RX4)
Low
1
LG1_34
Activates 6dB gain stage of base band amplifier 1 (for RX3
and RX4
Low
2
HG1_34
Activates 12dB gain stage of base band amplifier 1 (for RX3 Low
and RX4)
3
LG2_34
Activates 6dB gain stage of base band amplifier 2 (for RX3
and RX4)
4
MG2_34
Activates 12dB gain stage of base band amplifier 2 (for RX3 Low
and RX4)
5
HG2_34
Activates 18dB gain stage of base band amplifier 2 (for RX3 Low
and RX4)
6
IFTEST4
Activates test signal for IF channel 4
Low
7
IFTEST3
Activates test signal for IF channel 3
Low
8
IFTEST2
Activates test signal for IF channel 2
Low
9
IFTEST1
Activates test signal for IF channel 1
Low
10
PC1
Test bit
High
11
PC2
Test bit
High
12
EN_RF14
Test bit
Low
13
EN_RF23
Test bit
Low
14
DIS_DIV
Test bit
High
15
DIS_LO
Test bit
High
16
EN_12
Enables mixer and base band amplifier output stage and
supporting functions (for RX1 and RX2
Low
17
LG1_12
Activates 6dB gain stage of base band amplifier 1 (for RX1
and RX2)
Low
18
HG1_12
Activates 12dB gain stage of base band amplifier 1 (for RX1 Low
and RX2)
19
LG2_12
Activates 6dB gain stage of base band amplifier 2 (for RX1
and RX2
20
MG2_12
Activates 12dB gain stage of base band amplifier 2 (for RX1 Low
and RX2)
Data Sheet
15
Low
Low
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
3 SPI
Table 11
SPI Data Bit Description (continued)
Data Bit
Name
Description (Logic High)
21
HG2_12
Activates 18dB gain stage of base band amplifier 2 (for RX1 Low
and RX2)
22
AMUX_SEL0
Sets analog multiplexer
Low
23
AMUX_SEL1
Sets analog multiplexer
Low
24
AMUX_SEL2
MSB to set analog multiplexer
Low
25
SAT_FLAG_HIZ
Sets sat flag output into high impedance state and enables Low
multiplexer output to be active
26
DCO_3
Test bit
Low
27
SENSOR_SEL0
Selects power sensor signal
Low
28
SENSOR_SEL1
MSB to select power sensor signal
Low
29
DCO_0
Test bit
Low
30
DCO_1
Test bit
Low
31 (MSB)
DCO_2
Test bit
Low
Figure 2
Timing Diagram of the SPI
Table 12
SPI Interface
Parameter
Power ON
Reset State
Symbol
Values
Min.
Unit
Typ.
Max.
SPI_CLK period
tSPI
50
SPI_CLK low time
tSCKL
0.45 tSPI 0.5 tSPI
0.55 tSPI ns
■
SPI_CLK high time
tSCKH
0.45 tSPI 0.5 tSPI
0.55 tSPI ns
■
Chip select lead time
tCS(lead)
20
–
■
Data Sheet
16
–
Test
–
–
ns
ns
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
3 SPI
Table 12
SPI Interface (continued)
Parameter
Symbol
Values
Min.
Typ.
Unit
Test
Max.
Time between falling edge of
SPI_CLK and SPI_DO valid
tSDOV
–
–
10
ns
■
Setup time of SPI_DI before
falling edge of SPI_CLK
tSDIS = tSI(su)
10
–
–
ns
■
Hold time of SPI_DI after falling
edge of SPI_CLK
tSI(h)
10
–
–
ns
■
Hold time of SPI_DO after rising
edge of SPI_CLK
tSDOH
tSCKH
-10ns
–
–
ns
■
Hold time of SPI_EN after last
falling edge of SPI_CLK
tCS(lag)
30
–
–
ns
■
Delay between rising edge of
SPI_EN and SPI_DO tristate
(leakage current < 12μA)
tSDOtri
–
–
100
ns
■
Delay between falling edge of
SPI_EN and MSB at SPI_DO
tristate valid
tCSDV
–
–
125
ns
■
Minimum time between two SPI
commands
tmin2SPI
5
–
–
μs
■
Attention: Test ■ means that the parameter is not subject to production test. It was verified by design /
characterization.
Table 13
Specification for SPI pins
Parameter
Symbol
Values
Min.
Typ.
Unit
Test
Max.
High level input voltage
VI_high
2.0
–
–
V
■
Low level input voltage
VI_low
–
–
0.8
V
■
Input voltage hysteresis
Vhys
50
–
–
mV
■
Input current
IIN
-150
–
150
μA
Input capacitance (EN, CLK, DI)
CSIN
–
–
2
pF
SPI_DO output high voltage
(VCC=3.3V,ISDO =1mA)
VO_high
2.4
–
–
V
SPI_DO output low voltage
(VCC=3.3V,ISDO =1mA)
VO_low
–
–
0.8
V
SPI_DO load capacitance
CSL DO
–
–
30
pF
■
SPI_DO load resistance
RSL DO
10
–
–
kΩ
■
Data Sheet
17
■
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
4 Sensor Multiplexer
Table 13
Specification for SPI pins (continued)
Parameter
Symbol
Values
Min.
Typ.
Unit
Test
Max.
Pull Up resistor (SPI_DI)
TA = 25 °C
RPL_SPI_DI
78
98
118
kΩ
■
Pull Up resistor (SPI_CLK,
SPI_EN)
TA = 25 °C
RPL_SPI_CLK, RPL_SPI_EN
39
49
59
kΩ
■
Leakage current @ SPI_DO in
high Z state (Testvoltage 2.4 V)
IL DO
–
–
12
μA
Attention: Test ■ means that the parameter is not subject to production test. It was verified by design /
characterization.
4
Sensor Multiplexer
Output signals of the temperature and LO output level sensor are provided multiplexed at the output pin
ANA_OUT using an analog multiplexer (AMUX) circuit.
Additionally, a MMIC internal band gap reference voltage can be read out.
For more information on the sensor multiplexer refer to application note AN358.
Table 14
Truth Table AMUX(1)
Output signal ANA_OUT
AMUX1_SEL2
AMUX1_SEL1
AMUX1_SEL0
Temperature sensor output voltage
0
0
X
Sensor Output (see Table 15)
0
1
0
Band gap voltage
1
0
0
(1)
No valid output for deviating states
Table 15
Sensor Configuration(1)
Sensor Output
Sensor_SEL1
Sensor_SEL0
LO Power sensor
0
0
(1)
No valid output for deviating states
Data Sheet
18
3.4
2019-12-05
BGT24AR4
Silicon Germanium 24 GHz Quad Receiver MMIC
5 Package Dimensions
5
Package Dimensions
0.9 MAX.
(0.65)
Index Marking
C
27
32
11
1
10
0.1±0.05
(0.2)
(3.9)
0.05 MAX.
4.4
1) Vertical burr 0.03 max. all sides
Figure 3
0.55 ±0.07
26
(2.9)
0.5
5 x 0.5 = 2.5
32x
0.08
17
16
3.4
0.5
1)
+0.03
SEATING PLANE
B
4.3
5.3
9 x 0.5 = 4.5
0.1±0.03
A
4.5 ±0.1
5.5 ±0.1
Index Marking
0.25±0.05
32x
0.05 M A B C
PG-VQFN-32-9, -15-PO V01
Package Outline (Top, Side and Bottom View) of VQFN32-9
BGT24AR4_VQFN32-9_ML.vsd
Marking Layout VQFN32-9 (example)
0.3
8
5.9
Index Marking
4.9
12
Figure 4
1
1.3
PG-VQFN-32-9, -15-TP V01
Figure 5
Tape of VQFN32-9, Ø Reel: 330 mm, Pieces / Reel: 3000, Reels / Box: 1
Data Sheet
19
3.4
2019-12-05
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2019-12-05
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2020 Infineon Technologies AG
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IFX-ymq1569565474484
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .
With respect to any examples, hints or any typical values
stated herein and/or any information regarding the
application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities of
any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer’s products and any use of the product of
Infineon Technologies in customer’s applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury