0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BGT24AR4E6433XUMA1

BGT24AR4E6433XUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    VFQFN-32_5.5X4.5MM-EP

  • 描述:

    RF TRANSCEIVER MM-WAVE-MMICS

  • 数据手册
  • 价格&库存
BGT24AR4E6433XUMA1 数据手册
BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC Features • • • • • • • • • • • • • • • Gilbert based quad homodyne 24 GHz downconverter with integrated IF filters and programmable gain base band amplifiers Single ended RF terminals Low single side band noise figure: NFssb = 10 dB typ. High downconverter P1dB input compression point: -6 dBm typ. Low LO input power required: -6 dBm On chip LO level and temperature sensors Muliplexed output of analog sensor signals Integrated saturation detectors for downconverters and IF amplifiers Disable mode for downconverter and base band amplifiers via SPI IF chain testability Single supply voltage: 3.3 V typ. Low power consumption: 610 mW typ. 200 GHz bipolar SiGe:C technology b7hf200 Fully ESD protected device VQFN-32-9 leadless plastic package including lead-tip-inspection (LTI) feature Description The BGT24AR4 is a Silicon Germanium MMIC, accommodating four separate homodyne receiver chains. Each receiver consists of a downconverter operating in the 24 GHz ISM band. LO buffer amplifiers are included to relax LO drive requirements. IF signal filtering and amplification is provided on chip. Saturation detectors for downconverter- and IF output signals as well as an IF chain test feature are integrated for monitoring purposes. A temperature- and LO power sensor signal is accessible through a multiplexed analog output. The following functionalities can be controlled via the 32 bit SPI bus: • • • Enabling of downconverter and base band amplifiers Selection of base band amplifiers’ gain Selection of the sensor signal being available through the analog output Product Validation Qualified for Automotive Applications. Product Validation according to AEC-Q100/101 Product Name Package Chip Marking BGT24AR4 VQFN32-9 T1825 BGT24AR4 Data Sheet www.infineon.com Please read the Important Notice and Warnings at the end of this document 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC Revision History Figure 1 BGT24AR4 Block Diagram Revision History Revision History: 2019-12-05, Revision 3.4 Previous Revision:2019-10-31, Revision 3.3 Page Subjects (major changes since last revision) 7 RF frequency range extended typ. and max. value 8 IF output impedance fixed min. value 10 LO frequency range extended typ. and max. value Data Sheet 2 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC Table of contents Table of contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 RX Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 LO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 IF Saturation Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Sensor Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4 Sensor Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Data Sheet 3 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC List of tables List of tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Data Sheet Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 I/O internal circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 SPI Data Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Specification for SPI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Truth Table AMUX1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Sensor Configuration2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC List of figures List of figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Data Sheet BGT24AR4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Timing Diagram of the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Package Outline (Top, Side and Bottom View) of VQFN32-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Marking Layout VQFN32-9 (example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Tape of VQFN32-9, Ø Reel: 330 mm, Pieces / Reel: 3000, Reels / Box: 1 . . . . . . . . . . . . . . . . . . . . . . . . 19 5 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 1 Electrical Characteristics 1 Electrical Characteristics 1.1 Absolute Maximum Ratings Table 1 Absolute Maximum Ratings TA = -40 °C to 125 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. Supply voltage VCC -0.3 – VCC +0.3 V ■ – DC voltage at RF pins VDCRF – – 0 V ■ MMIC provides short circuit to GND for LO_IN and RX1 to RX4 pins RF input power PRF – – 0 dBm ■ – LO input power PLO – – 12 dBm ■ – Voltage applied to none-RF pins(1) VIO -0.3 – VCC +0.3 V ■ – Total power dissipation PDISS – – 1200 mW ■ – Junction temperature TJ -40 – 170 °C ■ – Ambient temperature range TA -40 – 125 °C ■ TA = temperature at package soldering point Storage temperature range TSTG -50 – 125 °C ■ – (1) For SPI_EN, SPI_DI, SPI_CLK the applied voltage may exceed given ratings als long as current into these pins is limited to ISPI = 1 mA Attention: Stresses exceeding the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Attention: Integrated protection functions are designed to prevent IC destruction under fault conditions as described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. Note: Data Sheet No permanent damage of the device is possible due to an undefined SPI state 6 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 1 Electrical Characteristics 1.2 ESD Integrity Table 2 ESD Integrity Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. ESD robustness HBM(1) VESD-HBM -1 – 1 kV ■ All pins ESD robustness, CDM(2) VESD-CDM -500 – 500 V ■ All pins -750 – 750 ■ Package corner pins (1) (2) According to ANSI/ESDA/JEDEC JS-001 (R = 1.5kOhm, C = 100pF) for Electrostatic Discharge Sensitivity Testing, Human Body Model (HBM)-Component Level According to JEDEC JESD22-C101 Field-Induced Charged Device Model (CDM), Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. Please note that this result is subject to: • lot variations within the manufacturing process as specified by Infineon • changes in the specific test setup Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. 1.3 Power Supply Table 3 Electrical Characteristics TA = -40 °C ... 125 °C, positive current flowing into pin (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. Supply voltage VCC 3.135 3.3 3.465 V – Supply current ICC – 185 220 mA SPI state: 0025 CC25 Hex; no RF signal present Supply current standby mode ICCstandby – – 35 mA SPI state: 0000 CC00 Hex 1.4 RX Characteristics Table 4 Electrical Characteristics VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz including a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) Parameter RF frequency range Data Sheet Symbol fRF Values Min. Typ. 24.00 24.15 7 Unit Test Note or Test Condition GHz ■ Max. 24.3 – 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 1 Electrical Characteristics Table 4 Electrical Characteristics (continued) VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz including a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. RF input impedance ZRF – 50 – Ω ■ Single ended including off chip compensation Input return loss RF port RX1, RX4 RX2, RX3 RLRF 12 9 – – – – dB ■ VCC = 3.3 V, TA = 25 °C, PLO = 0 dBm RF/RF isolation (channel separation) IRF,RF 35 – – dB ■ not valid for RX1/ RX2 RFRX1/ RFRX2 isolation (channel separation) IRF_RX1,RF_RX2 32 – – dB ■ – LO/RF leakage LLO,RF – – -27 dBm ■ PLO = 0 dBm Mixer’s P1dB @ RF inputs P1dB IN -7 -6 – dBm ■ – RX channel gain: power gain voltage gain GP GV 39.2 47 42.2 50 48.2 56 dB At IF load 300 Ω differential RX channel gain variation ΔG -1 0 1 dB Channel to channel RX channel phase variation Δφ -3 0 3 deg Channel to channel RX channel noise figure NF – 10.0 14.1 dB At IF load 300 Ω differential RX channel output full scale VRX 1.2 – – VPP At IF load 300 Ω differential RX channel spurious free range at output full scale aRX 50 – – dBc – IF VGA gain adjustment range RVGA -18 – 0 dB With 6 dB gain steps IF high pass filter’s cut off frequency 525 600 675 kHz 3 dB definition – 2nd – – ■ – fcut off IF high pass filter’s lower slope order IF output impedance ZIF 250 300 350 Ω ■ – IF test signal frequency fIF 100 – 5000 kHz ■ – IF test signal level VIF 2 4 6 mVRMS ■ – IF test signal input impedance ZIF,test 500 1000 1400 Ω – Data Sheet 8 ■ 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 1 Electrical Characteristics Table 4 Electrical Characteristics (continued) VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz including a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. IF output common mode voltage VIF_CM 1.4 – 2.4 V At IF load 300 Ω differential, steady state IF test voltage conversion gain GIF_TEST 34 39 44 dB At f = 2 MHz, IF load 300 Ω differential, max. gain settings Step response VmaxIF_CM characteristics: Maximum overshoot voltage at single IF line in reference to GND – – VIF_CM +0.76 V ■ At IF load 300 Ω differential Step response VminIF_CM characteristics: Minimum overshoot voltage at single IF line in reference to GND VIF_CM -0.93 – – V ■ At IF load 300 Ω differential Step response characteristics: Maximum slew rate SR – – 106 V/µs ■ At IF load 300 Ω differential Step response TS characteristics: Settling time – – 5.5 µs ■ At VIF_CM = ± 10 mV, PRFmax = -20 dBm, IF load 300 Ω differential Standby to ON mode transition slew rate at single IF line in reference to GND SR_ON – – 55 V/µs ■ At IF load 300 Ω differential IF power supply ripple rejection PSRRIF 40 – – dB ■ fIF ≤ 5 MHz VCC = 3.3 V, TA = 25 °C Note: • • • Test signal can be switched off (via SPI) Test signal can be switched to one RX channel (via SPI) Test signal can be switched to all RX channels (via SPI) Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. Data Sheet 9 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 1 Electrical Characteristics 1.5 LO Characteristics Table 5 Electrical Characteristics VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C , all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz include a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. LO frequency range fLO 24.00 24.15 24.3 GHz ■ – LO input power PLO -6 – 3 dBm ■ – Input return loss LO port RLLO 8 – – dB ■ VCC = 3.3 V, TA = 25 °C PLO = 0 dBm LO input impedance ZLO – 50 – Ω ■ Single ended including off chip compensation Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. 1.6 IF Saturation Detector Table 6 Electrical Characteristics VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C , all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz include a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. Input RX (RF) activation power level of mixer output saturation flag PSAT P1dB IN P1dB IN P1dB IN dBm -8 -4 ■ – VGA output activation voltage level of VGA saturation flag VSAT – 1.3 1.55 VPP At IF load 300 Ω differential Low level output Sat-Flaglow – – 0.8 V – High level output Sat-Flaghigh 2.4 – – V – Load capacitance CLSat-Flag – – 30 pF ■ – Load resistance RLSat-Flag 10 – – kΩ ■ – IF saturation flag setup time T_setupSat- – – 22.5 ns ■ – T_holdSat-Flag – – 22.5 ns ■ – Flag IF saturation flag hold time Data Sheet 10 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 1 Electrical Characteristics Note: All saturation detection signals are logical OR combined to one discrete output signal. Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. 1.7 Sensor Multiplexer Table 7 Electrical Characteristics VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN358, all voltages with respect to ground (unless otherwise specified) Parameter Symbol Values Min. Output impedance ROUTmux – Typ. 20 Unit Test Note or Test Condition Ω ■ Max. 40 at pin ANA_OUT; multiplexer output activated Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. For more information on the sensor multiplexer refer to Chapter 4 and to application note AN358. 1.8 Temperature Sensor Table 8 Electrical Characteristics VCC = 3.3 V, TA = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN358, all voltages with respect to ground (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition ■ Max. Temperature sensor operating range(1) TTSENS -40 – 125 °C Output voltage VSENSE25 1.4 1.5 1.6 V Sensitivity(1) STSENS 4.3 4.7 5.1 mV/K ■ – Setup time(1) tTSENS – – 20 µs ■ CLoad ≤ 30 pF, RLoad ≥ 10kΩ Power supply rejection ratio PSRR 10 24 – dB ■ measured at TSi = 25°C and VCC,MIN/VCC,MAX (1) – at TSi = 25 °C Guaranteed by device design, not subject to production test Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. Data Sheet 11 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 2 Pin Description 2 Pin Description Table 9 Pin Definition and Function Pin No. Name Function 1 IF_TEST IF test signal 2 VCC Supply voltage 3 n.c connected to ground acc. to AN358 4 LO_IN LO input signal 5 n.c. connected to ground acc. to AN358 6 SPI_DO SPI data output 7 SPI_EN SPI enable 8 SPI_CLK SPI clock 9 SPI_DI SPI data input 10 ANA_OUT Analog output signal / saturation flag 11 VEE Ground 12 RX1 RF input receiver 1 13 n.c. connected to ground acc. to AN358 14 IF2X Complementary IF output receiver 2 15 IF2 IF output receiver 2 16 IF1X Complementary IF output receiver 1 17 IF1 IF output receiver 1 18 n.c. connected to ground acc. to AN358 19 RX2 RF input receiver 2 20 n.c. connected to ground acc. to AN358 21 VEE. Ground 22 IFX_TEST Complementary IF test signal 23 n.c. connected to ground acc. to AN358 24 RX3 RF input receiver 3 25 n.c. connected to ground acc. to AN358 26 IF4 IF output receiver 4 27 IF4X Complementary IF output receiver 4 28 IF3 IF output receiver 3 29 IF3X Complementary IF output receiver 3 30 n.c. connected to ground acc. to AN358 31 RX4 RF input receiver 4 32 VEE Ground Data Sheet 12 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 2 Pin Description Table 10 I/O internal circuits Pin No. Name 4, 12, 19, 24, 31 LO_IN, RX1, RX2, RX3, RX4 I/O internal circuits 14, 15, 16, 17, 26, 27, 28, 29 IF2X, IF2, IF1X, IF1, IF4, IF4X, IF3, IF3X 9 SPI_DI 7, 8 SPI_EN, SPI_CLK 10 ANA_OUT Data Sheet 13 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 2 Pin Description Table 10 I/O internal circuits (continued) Pin No. Name 1, 22 IF_TEST, IFX_TEST 6 SPI_DO 2 VCC Data Sheet I/O internal circuits 14 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 3 SPI 3 SPI Communication to the receiver is done via a Serial-Peripheral-Interface (SPI). The 32 bit SPI has a hardwired Power-On reset, which sets the output bits to a defined state after turning on the supply voltage. Data transmission is started by a negative edge on SPI_EN. Data at SPI_DI is then read at the falling edge of SPI_CLK. The most significant bit (MSB) is read first. Table 11 SPI Data Bit Description Data Bit Name Description (Logic High) Power ON Reset State 0 (LSB) EN_34 Enables mixer and base band amplifier output stage and supporting functions (for RX3 and RX4) Low 1 LG1_34 Activates 6dB gain stage of base band amplifier 1 (for RX3 and RX4 Low 2 HG1_34 Activates 12dB gain stage of base band amplifier 1 (for RX3 Low and RX4) 3 LG2_34 Activates 6dB gain stage of base band amplifier 2 (for RX3 and RX4) 4 MG2_34 Activates 12dB gain stage of base band amplifier 2 (for RX3 Low and RX4) 5 HG2_34 Activates 18dB gain stage of base band amplifier 2 (for RX3 Low and RX4) 6 IFTEST4 Activates test signal for IF channel 4 Low 7 IFTEST3 Activates test signal for IF channel 3 Low 8 IFTEST2 Activates test signal for IF channel 2 Low 9 IFTEST1 Activates test signal for IF channel 1 Low 10 PC1 Test bit High 11 PC2 Test bit High 12 EN_RF14 Test bit Low 13 EN_RF23 Test bit Low 14 DIS_DIV Test bit High 15 DIS_LO Test bit High 16 EN_12 Enables mixer and base band amplifier output stage and supporting functions (for RX1 and RX2 Low 17 LG1_12 Activates 6dB gain stage of base band amplifier 1 (for RX1 and RX2) Low 18 HG1_12 Activates 12dB gain stage of base band amplifier 1 (for RX1 Low and RX2) 19 LG2_12 Activates 6dB gain stage of base band amplifier 2 (for RX1 and RX2 20 MG2_12 Activates 12dB gain stage of base band amplifier 2 (for RX1 Low and RX2) Data Sheet 15 Low Low 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 3 SPI Table 11 SPI Data Bit Description (continued) Data Bit Name Description (Logic High) 21 HG2_12 Activates 18dB gain stage of base band amplifier 2 (for RX1 Low and RX2) 22 AMUX_SEL0 Sets analog multiplexer Low 23 AMUX_SEL1 Sets analog multiplexer Low 24 AMUX_SEL2 MSB to set analog multiplexer Low 25 SAT_FLAG_HIZ Sets sat flag output into high impedance state and enables Low multiplexer output to be active 26 DCO_3 Test bit Low 27 SENSOR_SEL0 Selects power sensor signal Low 28 SENSOR_SEL1 MSB to select power sensor signal Low 29 DCO_0 Test bit Low 30 DCO_1 Test bit Low 31 (MSB) DCO_2 Test bit Low Figure 2 Timing Diagram of the SPI Table 12 SPI Interface Parameter Power ON Reset State Symbol Values Min. Unit Typ. Max. SPI_CLK period tSPI 50 SPI_CLK low time tSCKL 0.45 tSPI 0.5 tSPI 0.55 tSPI ns ■ SPI_CLK high time tSCKH 0.45 tSPI 0.5 tSPI 0.55 tSPI ns ■ Chip select lead time tCS(lead) 20 – ■ Data Sheet 16 – Test – – ns ns 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 3 SPI Table 12 SPI Interface (continued) Parameter Symbol Values Min. Typ. Unit Test Max. Time between falling edge of SPI_CLK and SPI_DO valid tSDOV – – 10 ns ■ Setup time of SPI_DI before falling edge of SPI_CLK tSDIS = tSI(su) 10 – – ns ■ Hold time of SPI_DI after falling edge of SPI_CLK tSI(h) 10 – – ns ■ Hold time of SPI_DO after rising edge of SPI_CLK tSDOH tSCKH -10ns – – ns ■ Hold time of SPI_EN after last falling edge of SPI_CLK tCS(lag) 30 – – ns ■ Delay between rising edge of SPI_EN and SPI_DO tristate (leakage current < 12μA) tSDOtri – – 100 ns ■ Delay between falling edge of SPI_EN and MSB at SPI_DO tristate valid tCSDV – – 125 ns ■ Minimum time between two SPI commands tmin2SPI 5 – – μs ■ Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. Table 13 Specification for SPI pins Parameter Symbol Values Min. Typ. Unit Test Max. High level input voltage VI_high 2.0 – – V ■ Low level input voltage VI_low – – 0.8 V ■ Input voltage hysteresis Vhys 50 – – mV ■ Input current IIN -150 – 150 μA Input capacitance (EN, CLK, DI) CSIN – – 2 pF SPI_DO output high voltage (VCC=3.3V,ISDO =1mA) VO_high 2.4 – – V SPI_DO output low voltage (VCC=3.3V,ISDO =1mA) VO_low – – 0.8 V SPI_DO load capacitance CSL DO – – 30 pF ■ SPI_DO load resistance RSL DO 10 – – kΩ ■ Data Sheet 17 ■ 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 4 Sensor Multiplexer Table 13 Specification for SPI pins (continued) Parameter Symbol Values Min. Typ. Unit Test Max. Pull Up resistor (SPI_DI) TA = 25 °C RPL_SPI_DI 78 98 118 kΩ ■ Pull Up resistor (SPI_CLK, SPI_EN) TA = 25 °C RPL_SPI_CLK, RPL_SPI_EN 39 49 59 kΩ ■ Leakage current @ SPI_DO in high Z state (Testvoltage 2.4 V) IL DO – – 12 μA Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. 4 Sensor Multiplexer Output signals of the temperature and LO output level sensor are provided multiplexed at the output pin ANA_OUT using an analog multiplexer (AMUX) circuit. Additionally, a MMIC internal band gap reference voltage can be read out. For more information on the sensor multiplexer refer to application note AN358. Table 14 Truth Table AMUX(1) Output signal ANA_OUT AMUX1_SEL2 AMUX1_SEL1 AMUX1_SEL0 Temperature sensor output voltage 0 0 X Sensor Output (see Table 15) 0 1 0 Band gap voltage 1 0 0 (1) No valid output for deviating states Table 15 Sensor Configuration(1) Sensor Output Sensor_SEL1 Sensor_SEL0 LO Power sensor 0 0 (1) No valid output for deviating states Data Sheet 18 3.4 2019-12-05 BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC 5 Package Dimensions 5 Package Dimensions 0.9 MAX. (0.65) Index Marking C 27 32 11 1 10 0.1±0.05 (0.2) (3.9) 0.05 MAX. 4.4 1) Vertical burr 0.03 max. all sides Figure 3 0.55 ±0.07 26 (2.9) 0.5 5 x 0.5 = 2.5 32x 0.08 17 16 3.4 0.5 1) +0.03 SEATING PLANE B 4.3 5.3 9 x 0.5 = 4.5 0.1±0.03 A 4.5 ±0.1 5.5 ±0.1 Index Marking 0.25±0.05 32x 0.05 M A B C PG-VQFN-32-9, -15-PO V01 Package Outline (Top, Side and Bottom View) of VQFN32-9 BGT24AR4_VQFN32-9_ML.vsd Marking Layout VQFN32-9 (example) 0.3 8 5.9 Index Marking 4.9 12 Figure 4 1 1.3 PG-VQFN-32-9, -15-TP V01 Figure 5 Tape of VQFN32-9, Ø Reel: 330 mm, Pieces / Reel: 3000, Reels / Box: 1 Data Sheet 19 3.4 2019-12-05 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2019-12-05 Published by Infineon Technologies AG 81726 Munich, Germany © 2020 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IFX-ymq1569565474484 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury
BGT24AR4E6433XUMA1 价格&库存

很抱歉,暂时无法提供与“BGT24AR4E6433XUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货