0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BGT24AT2E6433XUMA1

BGT24AT2E6433XUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    VFQFN-32_5.5X4.5MM-EP

  • 描述:

    RF TRANSCEIVER MM-WAVE-MMICS

  • 数据手册
  • 价格&库存
BGT24AT2E6433XUMA1 数据手册
BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC Features • • • • • • • • • • • • • 24 GHz signal source with 2 transmitter outputs and 1 local oscillator output External / internal phase inversion and RF pulsing capability Programmable gain amplifiers (PGA) with 6 bit resolution Fully integrated low phase noise VCO Frequency divider with 23.5 MHz output On chip RF level and temperature sensors Muliplexed output of analog sensor signals Single ended RF terminals Single supply voltage: 3.3 V typ. Low power consumption: 775 mW typ. 200 GHz bipolar SiGe:C technology b7hf200 Fully ESD protected device VQFN-32-9 leadless plastic package including lead-tip-inspection (LTI) feature Description The BGT24AT2 is a low phase noise 24 GHz ISM band multifunction signal source, manufactured in a monolithic Silicon Germanium semiconductor process technology. It accommodates a 24 GHz fundamental voltage controlled oscillator and a frequency divider with a division ratio of 1024. The frequency divider output is differential. The three individual RF outputs generate a typical output power of +10 dBm, adjustable via SPI-programmable 6 bit DAC’s. Fast pulsing and phase inversion of the transmit signal is provided either using dedicated control inputs or the 64 bit SPI. Automatic configuration of the LO-output is possible using a dedicated logic. RF output level sensors as well as a temperature sensor are implemented for monitoring purposes. The analog sensor signals along with an additional optional analog input are multiplexed to one common output. The MMIC is manufactured in a 200 GHz, 0.18μm SiGe:C technology and is packaged in a 32 pin leadless RoHS compliant VQFN package with LTI feature. Product Validation Qualified for Automotive Applications. Product Validation according to AEC-Q100/101. Product Name Package Chip Marking BGT24AT2 VQFN32-9 T1824 BGT24AT2 Data Sheet www.infineon.com Please read the Important Notice and Warnings at the end of this document 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC ANA_IN AMUX Temp . Sensor PGA LO DAC 6bit Balun PGA TX2 LO_ON SPI 64bit Balun PH_TX2 TX2_ON TX2 PH_LO LO ANA_OUT Revision History DAC 6bit PH_TX1 TX1_ON DAC 6bit 0/180° 0/180° LO Logic SPI_DI SPI_CLK SPI_EN SPI_DO 0/180° BUF2 PGA TX1 Balun TX1 BUF1 f-Div VCC /1024 VTUNE_C VTUNE_F DIVX DIV DIV_DIS_OUT Figure 1 VCC_VCO DAC 6bit VEE VEE_VCO Block Diagram BGT24AT2.vsd BGT24AT2 Block Diagram Revision History Revision History: 2019-12-05, Revision 3.4 Previous Revision:2019-10-31, Revision 3.3 Page Subjects (major changes since last revision) 7 VCO frequency range extended typ. and max. value 11 Output match (S22) max. value added Data Sheet 2 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC Table of contents Table of contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 TX and LO PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output Level Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Sensor Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 4 Sensor Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 LO Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 6 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Data Sheet 3 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC List of tables List of tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Data Sheet Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Frequency Divider Truth Table8)9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 I/O internal circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 SPI Data Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Specification for SPI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Truth Table AMUX1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Truth Table LO Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC List of figures List of figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Data Sheet BGT24AT2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Block Diagram Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Timing Diagram of the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Package Outline (Top, Side and Bottom View) of VQFN32-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Marking Layout VQFN32-9 (example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Tape of VQFN32-9, Ø Reel: 330 mm, Pieces / Reel: 3000, Reels / Box: 1 . . . . . . . . . . . . . . . . . . . . . . . . 24 5 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 1 Electrical Characteristics 1 Electrical Characteristics 1.1 Absolute Maximum Ratings Table 1 Absolute Maximum Ratings TA = -40 °C to 125 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. Supply voltage VCC -0.3 – VCC +0.3 V ■ – Voltage applied to none-RF pins(1) VIO -0.3 – VCC +0.3 V ■ – DC voltage at RF pins VDCRF – – 0 V ■ MMIC provides short circuit to GND for TX1, TX2 and LO pins DC voltage at pins VTUNE_F, VTUNE_C VTUNE -0.3 – VCC +0.3 V ■ – DC voltage at pins DIV, DIVX VDIVIDER 2 – VCC +0.3 V ■ – Total power dissipation PDISS – – 1000 mW ■ – Junction temperature TJ -40 – 170 °C ■ – Ambient temperature range TA -40 – 125 °C ■ TA = temperature at package soldering point Storage temperature range TSTG -50 – 125 °C ■ – (1) For SPI_EN, SPI_DI, SPI_CLK the applied voltage may exceed given ratings als long as current into these pins is limited to ISPI = 1 mA Attention: Stresses exceeding the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Attention: Integrated protection functions are designed to prevent IC destruction under fault conditions as described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. Note: Data Sheet No permanent damage of the device is possible due to an undefined SPI state 6 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 1 Electrical Characteristics 1.2 ESD Integrity Table 2 ESD Integrity Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. ESD robustness HBM(1) VESD-HBM -1 – 1 kV ■ All pins ESD robustness, CDM(2) VESD-CDM -500 – 500 V ■ All pins -750 – 750 ■ Package corner pins (1) (2) According to ANSI/ESDA/JEDEC JS-001 (R = 1.5kOhm, C = 100pF) for Electrostatic Discharge Sensitivity Testing, Human Body Model (HBM)-Component Level According to JEDEC JESD22-C101 Field-Induced Charged Device Model (CDM), Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components Please note that this result is subject to: • lot variations within the manufacturing process as specified by Infineon • changes in the specific test setup Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. 1.3 Power Supply Table 3 Electrical Characteristics TA = -40 °C ... 125 °C, positive current flowing into pin (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. Supply voltage VCC 3.135 3.3 3.465 V – Supply current nominal operation mode ICC,ON – 235 280 mA nom. operation mode, SPI-state: 9F7F 2903 9F7C 10FF Hex Supply current standby mode ICC,STDBY – 65 85 mA all functional blocks disabled, SPI-state: 0000 0000 0000 0000 Hex Data Sheet 7 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 1 Electrical Characteristics 1.4 VCO Table 4 Electrical Characteristics VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, PGA output power = Pmax, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz including matching structure and a package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN359) Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. VCO frequency range fVCO 24.00 24.15 24.3 GHz –(1) (2) VCO tuning voltage for VCO frequency range VTUNE_F 0.1 – 0.9 V – Number of usable VCO coarse tune DAC states n 2 – – – VTUNE_F applied via series resistor ≥ 1 kΩ VCO phase noise @ 1 kHz PN,P 1kHz – -30 -18 dBc/Hz ■ – VCO phase noise @ 10 kHz PN,P 10kHz – -59 -50 dBc/Hz ■ – VCO phase noise @ 100 kHz PN,P 100kHz – -82 -76.4 dBc/Hz VCO phase noise @ 1 MHz PN,P 1MHz – -103 -97.4 dBc/Hz ■ – VCO phase noise @ 10 MHz PN,P 10MHz – -123 -117.4 dBc/Hz ■ – VCO amplitude noise @ 10 kHz PN,A 10kHz – – -125 dBc/Hz ■ measured at +4 dBm output power VCO amplitude noise @ 100 kHz PN,A 100kHz – – -135 dBc/Hz ■ measured at +4 dBm output power VCO amplitude noise @ 1 MHz PN,A 1MHz – -150 -145 dBc/Hz ■ measured at +4 dBm output power VTUNE_F input resistance RVTUNE_F 100 – – kΩ ■ nonlinear, see leakage current specification Leakage current at pin VTUNE_F IVTUNE_F -40 – – µA VTUNE_F input capacitance CVTUNE_F – – 10 pF ■ – VTUNE_C input resistance RVTUNE_C 1440 1800 2160 Ω ■ – VTUNE_C DAC current for PGA state 63 IVTUNE_C,DAC 1.2 – – mA ■ – -1 – +1 MHz ■ at all TX ports, 10 dB mismatch, all phases Static pulling fVCO change vs. Δfsp load – at min. tuning voltage Dynamic pulling phase and TX switch change Δfdp1 -1 – +1 MHz ■ at all TX ports, 10 dB mismatch, all phases Dynamic pulling TX1 to TX2 switch change Δfdp2 -1 – +1 MHz ■ at all TX ports, 10 dB mismatch, all phases VCO pushing Δf / ΔVCC -20 -60 – – +20 +60 MHz/V ■ VCC ≥ 3.2 V,TA ≥ -20 °C(3) Data Sheet 8 (3) 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 1 Electrical Characteristics Table 4 Electrical Characteristics (continued) VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, PGA output power = Pmax, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz including matching structure and a package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN359) Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. Spurious level harmonics aharm – – -32 dBc ■ at max. output power; H2 measured at SWM connector(3) Spurious level non harmonics anharm – – -48 dBm ■ – VCO tuning speed Δf/ΔVt 70 – – MHz/µs ■ – VCO tuning sensitivity Δf/ΔfTUNE_F – – 2800 2200 MHz/V ■ differential sensitivity lin. between f1 24.05 GHz and f2 = 24.14 GHz VCO frequency drift(4) fDRIFT – 10 – kHz ■ – (1) (2) (3) (4) Proper adjustment of VTUNE_C required to cover frequency band with specified VTUNE_F Montonic increasing frequency vs. VTUNE_F Within 50ms and under following conditions: • Ambient temperature - stable • Supply voltage - stable • RF ports at least 50 μs after ON/OFF or OFF/ON and phase transitions • Divider in ON/OFF at least 50 μs after OFF/ON transitions Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. 1.5 Frequency Divider The block diagram of the frequency divider is shown in Figure 2, a compatible truth table is given in Table 5 Data Sheet 9 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 1 Electrical Characteristics SEL_DIVBUF /16 EN_DIV DIV /256 Buffer DIVX MUX IN /16 /16 /4 /1024 DIV_DIS_OUT *) constant power dissipation in both states SEL_DIV DIS_DIVOUT *) BGT24AT2_Freq_Div_16_256_1024.vsd Figure 2 Block Diagram Frequency Divider Table 5 Frequency Divider Truth Table(1) (2) EN_DIV SEL_DIV SEL_DIVBUF DIS_DIVOUT MODE 1 X 1 X /16 1 1 0 0 /256 1 0 0 0 /1024 1 X 0 1 output disabled 0 X X X shutdown (1) (2) deviating states not allowed, undefined divider output modes /16 and /256 for information only! Table 6 Electrical Characteristics VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, VCO frequency = 24.0 to 24.3 GHz, divider division ratio = 1024, all voltages with respect to ground (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Max. Dividing factor DDIV – 256 1024 – – Divider output impedance ZOUT 240 300 360 Ω Output voltage VDIV,1024 900 1150 1400 mVpp Data Sheet 10 Test Note or Test Condition – ■ Into MMIC1(1) Into 300 Ω load(2) 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 1 Electrical Characteristics Table 6 Electrical Characteristics (continued) VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, VCO frequency = 24.0 to 24.3 GHz, divider division ratio = 1024, all voltages with respect to ground (unless otherwise specified). Parameter Symbol Values Min. Common mode output voltage Duty cycle (1) (2) Typ. Unit Test Note or Test Condition Max. Output enabled(2) VDIV,CM,EN 2.35 2.75 3.15 V VDIVX,CM,EN 2.35 2.75 3.15 Output enabled(2) VDIV,CM,DIS – VCC – Output enabled(2) VDIVX,CM,DIS 1.6 2.15 2.60 Output enabled(2) VDIV,CM,OFF – VCC – ■ Shutdown(2) VDIVX,CM,OFF – VCC – ■ Shutdown(2) DC – 0.5 – ■ – – Divider output stable for VSWR < 20:1 Measured using T-pad-attenuator on reference PCB as provided by Infineon (see Application Note AN359) Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. 1.6 TX and LO PGA Table 7 Electrical Characteristics VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C , PGA output power = Pmax, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz include matching structures and a package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358). Reference board losses and 2.92 mm connector loss deembedded to outer trafo edge (reference plane). Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. Output power PGAmin Pmin – – -26 dBm – Output power PGAmax Pmax 7 10 13 dBm – PGA coarse resolution interval RC – – 8 dB/bit ■ Pout ≥ -26 dBm PGA mid resolution interval RM – – 3 dB/bit Pout ≥ -13 dBm PGA fine resolution interval RF – – 0.6 dB/Bit Pout ≥ +1 dBm Output power variation in temp. range ΔPTXtemp -1.25 – 0.75 dB Data Sheet 11 ■ – 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 1 Electrical Characteristics Table 7 Electrical Characteristics (continued) VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C , PGA output power = Pmax, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.3 GHz include matching structures and a package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358). Reference board losses and 2.92 mm connector loss deembedded to outer trafo edge (reference plane). Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. ■ ■ ■ VCC = 3.3 V, TA = 25 °C(1) PGA state ≥ 47 PGA state ≥ 23 PGA state ≥ 0 Ω ■ Single ended – dB ■ Pout ≥ -1 dBm – – dB ■ Pout ≥ -1 dBm – – 2 ns ■ – εp 175 180 185 deg ■ – Phase shifter amplitude imbalance εA -0.5 0 0.5 dB Phase shifter switching time tPHASE – – 100 ns Output match S22 Output impedance – – – – – – -8 -5.5 0 ZTX – 50 – TX on/off isolation ITXon/off 30 – TX1/TX2 isolation ITX1/TX2 30 TX on/off switching time tON/OFF Phase shifter phase imbalance dB – ■ – Following parameter for pins: PH_TX1, PH_LO, PH_TX2, TX1_ON, LO_ON, TX2_ON High-level input voltage VI_high 2.0 – – V ■ – Low-level input voltage VI_low – – 0.8 V ■ – Input capacitance Cin – – 2 pF ■ – Pull Up resitor RPL 27.2 34 40.8 kΩ ■ TA = 25 °C Leakage current into pins ILeakage -100 – 75 µA (1) – SOLT calibration, reference plane at SWM connector Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. Data Sheet 12 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 1 Electrical Characteristics 1.7 Temperature Sensor Table 8 Electrical Characteristics VCC = 3.3 V, TA = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN359, all voltages with respect to ground (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition ■ Max. Temperature sensor operating range TTSENS -40 – 125 °C – Output voltage VTSENSE25 1.4 1.5 1.6 V Sensitivity STSENS 4.3 4.7 5.1 mV/K ■ – Setup time tTSENS – – 20 µs ■ CLoad ≤ 2.2 nF and RLoad ≥ 10 kΩ at ANA_OUT Power supply rejection ratio PSRR 16 24 – dB at TSi = 25 °C measured at TSi = 25°C and VCC,MIN/VCC,MAX Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. 1.8 Output Level Detector Table 9 Electrical Characteristics VCC = 3.3 V to 3.465 V, TA = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN359, all voltages with respect to ground (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. Output voltage VOUT 1.17 – 1.29 V ■ PGA state = 0, all channels RF off Detector TX1 and TX2 absolute error ETX1, TX2 -2 – +2 dB ■ at POUT > -1 dBm, calculation based on equation in App. Note AN359 Detector LO absolute error ELO -2 – +2 dB ■ at POUT > -1 dBm, calculation based on equation in App. Note AN359 Setup time tSENS – – 20 µs ■ CLOAD ≤ 2.2 nF and RLOAD ≥ 10 kΩ at ANA_OUT Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. Data Sheet 13 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 1 Electrical Characteristics 1.9 Sensor Multiplexer Table 10 Electrical Characteristics VCC = 3.135 V to 3.465 V, TA = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN359, all voltages with respect to ground (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Test Note or Test Condition Max. Input voltage range VIN 1 – 2 V ■ – Input current IIN – – 1 µA ■ – Output impedance ROUT – 20 40 Ω ■ – Offset voltage VOFFSET -10 – 10 mV ■ At 10kΩ load resistance Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. For more information on the sensor multiplexer refer to Chapter 4 and to application note AN359. Data Sheet 14 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 2 Pin Description 2 Pin Description Table 11 Pin Definition and Function Pin No. Name Function 1 PH_TX1 TX1 phase 2 TX1_ON TX1 enable 3 LO_ON LO enable 4 VEE Ground 5 LO LO RF output signal 6 VEE Ground 7 VEE Ground 8 PH_LO LO phase 9 TX2_ON TX2 enable 10 PH_TX2 TX2 phase 11 VEE Ground 12 TX2 TX2 RF output signal 13 VEE Ground 14 VCC Supply voltage 15 DIV_DIS_OUT Divider disable output 16 SPI_DO SPI data output 17 DIVX Divider output negative port 18 DIV Divider output positive port 19 ANA_IN Analog signal input 20 VCC_VCO Supply voltage VCO 21 VEE Ground 22 VTUNE_F VCO tuning voltage (fine) 23 VTUNE_C VCO tuning voltage (coarse) 24 VEE_VCO Ground VCO 25 VCC Supply voltage 26 SPI_EN SPI enable 27 SPI_CLK SPI clock 28 SPI_DI SPI data input 29 ANA_OUT Analog output signal 30 VEE Ground 31 TX1 TX1 RF output signal 32 VEE Ground Data Sheet 15 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 2 Pin Description Table 12 I/O internal circuits Pin No. Name 5, 12, 31 LO, TX2, TX1 I/O internal circuits LO, TX2, TX1 VEE 1, 2, 3, 8, 9, 10 PH_TX1, TX1_ON, LO_ON, PH_LO, TX2_ON, PH_TX2 PH_TX1, TX1_ON, LO_ON VCC 34kΩ 10kΩ PH_LO, TX2_ON, PH_TX2 28 SPI_DI VEE VCC 94kΩ SPI_DI 4kΩ VEE 26, 27 SPI_EN, SPI_CLK VCC SPI_EN, SPI_CLK 23,5kΩ 1kΩ VEE Data Sheet 16 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 2 Pin Description Table 12 I/O internal circuits (continued) Pin No. Name 29 ANA_OUT I/O internal circuits VCC 20Ω ANA_OUT VEE 15 DIV_DIS_OUT VCC DIV_DIS_OUT 100Ω 25kΩ VEE 16 SPI_DO VCC 80Ω SPI_DO 80Ω VEE 17, 18 DIVX, DIV VCC 300Ω DIV, DIVX VEE Data Sheet 17 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 2 Pin Description Table 12 I/O internal circuits (continued) Pin No. Name 19 ANA_IN I/O internal circuits VCC 800Ω ANA_IN VEE 22, 24 VTUNE_F,VEE_VCO VTUNE_F 50Ω 5pF VEE_VCO 23, 24 VTUNE_C, VEE_VCO VTUNE_C 50Ω 5pF 1,8kΩ VEE_VCO 4, 6, 7, 11, 13, 14, 20, 21, 24, VEE, VCC, VCC_VCO, 25, 30, 32 VEE_VCO, Data Sheet 18 VCC_VCO VCC VEE_VCO VEE 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 3 SPI 3 SPI Communication to the transceiver is done via a Serial-Peripheral-Interface (SPI). The 32 bit SPI has a hardwired Power-On reset, which sets the output bits to a defined state after turning on the supply voltage. Data transmission is started by a negative edge on SPI_EN. Data at SPI_DI is then read at the falling edge of SPI_CLK. The most significant bit (MSB) is read first. Table 13 SPI Data Bit Description Data Bit Name Description (Logic High) Power ON Reset State 0 (LSB) TX1_A5 MSB of TX1 PGA DAC output power control 0 1 TX1_A4 TX1 PGA DAC output power control 0 2 TX1_A3 TX1 PGA DAC output power control 0 3 TX1_A2 TX1 PGA DAC output power control 0 4 TX1_A1 TX1 PGA DAC output power control 0 5 TX1_A0 LSB of TX1 PGA DAC output power control 0 6 TX1_EN_DAC TX1 PGA DAC enable 0 7 LO_EN_DAC LO PGA DAC enable 0 8 n.c. 0 9 n.c. 0 10 n.c. 0 11 n.c. 0 12 EN_BUF1 13 n.c. 0 14 n.c. 0 15 n.c. 0 16 VCO_A5 MSB of coarse tune DAC 0 17 VCO_A4 VCO coarse tune DAC 0 18 VCO_A3 VCO coarse tune DAC 0 19 VCO_A2 VCO coarse tune DAC 0 20 VCO_A1 VCO coarse tune DAC 0 21 VCO_A0 LSB of VCO coarse tune DAC 0 22 EN_DAC_VCO VCO coarse tune DAC enable 0 23 PH1_SPI_ON Phase control TX1 via SPI 0 24 TX1_SEL1 TX1 control bit (“0”=via ext. pulse pin, “1”= 0 via SPI) 25 TX1_SPI_ON TX1 enable via SPI 0 26 LO_SPI_ON LO enable via SPI 0 27 AMUX2_SEL0 AMUX2 control bit 0 Data Sheet buffer amplifier BUF1 enable 19 0 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 3 SPI Table 13 SPI Data Bit Description (continued) Data Bit Name Description (Logic High) Power ON Reset State 28 AMUX2_SEL1 AMUX2 control bit 0 29 AMUX2_SEL2 AMUX2 control bit 0 30 LO_SEL1 LO logic control bit 0 31 EN_BUF2 Buffer amplifier BUF2 enable 0 32 EN_DIV Frequency divider enable 0 33 EN_VCO VCO enable 0 34 AMUX1_SEL0 AMUX1 control bit 0 35 AMUX1_SEL1 AMUX1 control bit 0 36 n.c. 37 PHLO_SPI_ON Phase control LO via SPI 0 38 PH2_SPI_ON Phase control TX2 via SPI 0 39 PH_SEL1 Phase control bit (“0”=via ext. pulse pin, “1”=via SPI) 0 40 TX2_SEL1 TX2 control bit (“0”=via ext. pulse pin, “1”=via SPI) 0 41 TX2_SPI_ON TX2 enable via SPI 0 42 AMUX3_SEL1 AMUX3 control bit 0 43 AMUX3_SEL0 AMUX3 control bit 0 44 n.c 45 LO_SEL0 46 n.c 0 47 n.c 0 48 TX2_A5 MSB of TX2 PGA DAC output power control 0 49 TX2_A4 TX2 PGA DAC output power control 0 50 TX2_A3 TX2 PGA DAC output power control 0 51 TX2_A2 TX2 PGA DAC output power control 0 52 TX2_A1 TX2 PGA DAC output power control 0 53 TX2_A0 LSB of TX2 PGA DAC output power control 0 54 TX2_EN_DAC TX2 PGA DAC enable 0 55 LO_A5 MSB of LO PGA DAC output power control 0 56 LO_A4 LO PGA DAC output power control 0 57 LO_A3 LO PGA DAC output power control 0 58 LO_A2 LO PGA DAC output power control 0 59 LO_A1 LO PGA DAC output power control 0 Data Sheet 0 0 LO control bit 20 0 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 3 SPI Table 13 SPI Data Bit Description (continued) Data Bit Name Description (Logic High) Power ON Reset State 60 LO_A0 LSB of LO PGA DAC output power control 0 61 SEL_DIVBUF Frequency divider control bit 0 62 SEL_DIV Frequency divider control bit 0 63 (MSB) DIS_DIVOUT Frequency divider output disable 0 Figure 3 Timing Diagram of the SPI Table 14 SPI Interface Parameter Symbol Values Min. Unit Typ. Max. SPI_CLK period tSPI 50 SPI_CLK low time tSCKL 0.45 tSPI 0.5 tSPI 0.55 tSPI ns ■ SPI_CLK high time tSCKH 0.45 tSPI 0.5 tSPI 0.55 tSPI ns ■ Chip select lead time tCS(lead) 20 – – ns ■ Time between falling edge of SPI_CLK and SPI_DO valid tSDOV – – 10 ns ■ Setup time of SPI_DI before falling edge of SPI_CLK tSDIS = tSI(su) 10 – – ns ■ Hold time of SPI_DI after falling edge of SPI_CLK tSI(h) 10 – – ns ■ Hold time of SPI_DO after rising edge of SPI_CLK tSDOH tSCKH 10ns – – ns ■ Hold time of SPI_EN after last falling edge of SPI_CLK tCS(lag) 30 – – ns ■ Data Sheet 21 – Test – ns 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 4 Sensor Multiplexer Table 14 SPI Interface (continued) Parameter Symbol Values Min. Typ. Unit Test Max. Delay between rising edge of SPI_EN and SPI_DO tristate (leakage current < 12μA) tSDOtri – – 100 ns ■ Delay between falling edge of SPI_EN and MSB at SPI_DO tristate valid tCSDV – – 125 ns ■ Minimum time between two SPI commands tmin2SPI 5 – – μs ■ Unit Test Table 15 Specification for SPI pins Parameter Symbol Values Min. Typ. Max. High-level input voltage VI_high 2.0 – – V ■ Low-level input voltage VI_low – – 0.8 V ■ Input voltage hysteresis Vhys 50 – – mV ■ Input current IIN -190 – 150 μA Input capacitance (EN, CLK, DI) CSIN – – 2 pF SPI_DO output high voltage (VCC=3.3V,ISDO =1mA) VO_high 2.4 – – V SPI_DO output low voltage (VCC=3.3V,ISDO =1mA) VO_low – – 0.8 V SPI_DO load capacitance CSL DO – – 30 pF ■ SPI_DO load resistance RSL DO 10 – – kΩ ■ Pull Up resistor (SPI_DI) TA = 25 °C RPL_SPI_DI 78 98 118 kΩ ■ Pull Up resistor (SPI_CLK, SPI_EN) TA = 25 °C RPL_SPI_CLK, RPL_SPI_EN 19.6 24.5 29.4 kΩ ■ Leakage current @ SPI_DO in high Z state (test voltage 2.4 V) IL DO – – 12 μA ■ Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. 4 Sensor Multiplexer Output signals of the temperature and output level sensors at TX1, TX2 and LO output are provided multiplexed at the output pin ANA_OUT using an analog multiplexer (AMUX) circuit. Data Sheet 22 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 5 LO Logic Additionally, a MMIC internal reference voltage (VBG1) can be read out and an analog input signal within 1 V and 2 V can be directed from ANA_IN to ANA_OUT. Tristate capability is implemented in order to combine several analog outputs in the application. In this case it has to be ensured that only one multiplexer output is activated at any time. For more information on the sensor multiplexer refer to application note AN359. Table 16 Truth Table AMUX(1) Output at ANA_OUT AMUX1_ SEL1 AMUX1_ SEL0 AMUX2_ SEL2 AMUX2_ SEL1 AMUX2_ SEL0 Tristate X X 0 0 0 ANA_IN X X 0 0 1 VTEMP X X 0 1 1 PSENSE_TX2 0 0 1 0 0 PSENSE_TX1 0 1 1 0 0 PSENSE_LO 1 X 1 0 0 VBG1 (Bandgap output voltage) X X 1 0 1 (1) deviating states not allowed, undefined AMUX output 5 LO Logic The BGT24AT2 accommodates a logic circuit which can be used to either activate the LO-output manually or automatically depending on the TX1/TX2 configuration. Three operation modes are selectable: 1. manual activation / deactivation of the LO output via external pulse pin LO_ON 2. manual activation / deactivation of the LO output via SPI bit LO_SPI_ON 3. automatic activation / deactivation depending on the TX1 / TX2 configuration. The configuration of the LO logic operation mode is shown in Table 17. Table 17 Truth Table LO Logic LO_SEL1 LO_SEL0 Function 0 0 LO activation via external pulse pin LO_ON 0 1 LO activation via SPI bit LO_SPI_ON 1 X Automatic LO activation via external pulse pins TX1_ON or TX2_ON Data Sheet 23 3.4 2019-12-05 BGT24AT2 Silicon Germanium 24 GHz Transmitter MMIC 6 Package Dimensions 6 Package Dimensions 0.9 MAX. (0.65) Index Marking C 27 32 11 1 10 0.1±0.05 (0.2) (3.9) 0.05 MAX. 4.4 1) Vertical burr 0.03 max. all sides Figure 4 0.55 ±0.07 26 (2.9) 0.5 5 x 0.5 = 2.5 32x 0.08 17 16 3.4 0.5 1) +0.03 SEATING PLANE B 4.3 5.3 9 x 0.5 = 4.5 0.1±0.03 A 4.5 ±0.1 5.5 ±0.1 Index Marking 0.25±0.05 32x 0.05 M A B C PG-VQFN-32-9, -15-PO V01 Package Outline (Top, Side and Bottom View) of VQFN32-9 BGT24AT2_VQFN32-9_ML.vsd Marking Layout VQFN32-9 (example) 0.3 8 5.9 Index Marking 4.9 12 Figure 5 1 1.3 PG-VQFN-32-9, -15-TP V01 Figure 6 Tape of VQFN32-9, Ø Reel: 330 mm, Pieces / Reel: 3000, Reels / Box: 1 Data Sheet 24 3.4 2019-12-05 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2019-12-05 Published by Infineon Technologies AG 81726 Munich, Germany © 2020 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IFX-uee1569827723653 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury
BGT24AT2E6433XUMA1 价格&库存

很抱歉,暂时无法提供与“BGT24AT2E6433XUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货