PROFET™+ 24V
BTF6070-2EKV
Smart High-Side Power Switch Dual Channel 60 mΩ
1
Package
PG-DSO-14-40 EP
Marking
BTF6070-2EKV
Overview
Application
•
Suitable for 24 V Trucks and Transportation Systems
•
Specially designed to drive Valve Applications
•
Can be used for PWM frequencies up to 1.5 kHz
•
Suitable for resistive, inductive and capacitive loads
•
Replaces electromechanical relays, fuses and discrete circuits
VBAT
Voltage Regulator
OUT
T1
VS
GND
Z
CVS
ROL
VDD
I/O
RDEN
DEN
I/O
RIN
IN0
I/O
RIN
IN1
VS
OUT0
RSENSE
IS0
Valve
RIS
CSENSE
RPD
Micro
controller A/D
COUT
OUT1
RPD
A/D
RSENSE
IS1
COUT
P10W
GND
GND
RGND
RIS
CSENSE
D
Application example.emf
Application Diagram with BTF6070-2EKV
Data Sheet
www.infineon.com
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Overview
Basic Features
•
Dual channel device
•
Fast switching device
•
For 12 V and 24 V grounded loads
•
Very low stand-by current
•
3.3 V and 5 V compatible logic inputs
•
Electrostatic discharge protection (ESD)
•
Optimized electromagnetic compatibility
•
Logic ground independent from load ground
•
Very low power DMOS leakage current in OFF state
•
Green product (RoHS compliant)
•
AEC qualified
Description
The BTF6070-2EKV is a 60 mΩ dual channel Smart High-Side Power Switch, embedded in a PG-DSO-14-40 EP,
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is
specially designed to drive Valve Applications in the harsh automotive environment. For lighting applications the
nominal bulb load of P10W+P5W 24 V or P10W 12 V is considered.
Table 1
Product Summary
Parameter
Symbol
Value
Operating voltage range
VS(OP)
5 V ... 36 V
Maximum supply voltage
VS(LD)
65 V
Maximum ON state resistance at TJ = 150 °C per channel
RDS(ON)
135 mΩ
Nominal load current (one channel active)
IL(NOM)1
3A
Nominal load current (all channels active)
IL(NOM)2
2.3 A
Typical current sense ratio
kILIS
1730
Minimum current limitation
IL5(SC)
9A
Maximum standby current with load at TJ = 25 °C
IS(OFF)
500 nA
Diagnostic Functions
•
Proportional load current sense for the 2 channels
•
Open load detection in ON and OFF
•
Short circuit to battery and ground indication
•
Overtemperature switch off detection
•
Stable diagnostic signal during short circuit
•
Enhanced kILIS dependency with temperature and load current
Data Sheet
2
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Overview
Protection Functions
•
Stable behavior during undervoltage
•
Reverse polarity protection with external components
•
Secure load turn-off during logic ground disconnection with external components
•
Overtemperature protection with latch
•
Overvoltage protection with external components
•
Enhanced short circuit operation
Data Sheet
3
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
3.1
3.2
3.3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
4.3.1
4.3.2
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
15
15
16
16
16
17
18
6
6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
20
20
21
21
22
22
22
24
7
7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.5
7.3.6
7.4
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IS Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
25
26
26
27
28
29
29
29
30
30
31
31
32
8
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Data Sheet
4
7
7
7
8
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
8.1
8.2
8.3
8.4
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
9.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
11
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Data Sheet
5
35
35
35
36
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Block Diagram
2
Block Diagram
Chann el 0
VS
voltage se nso r
interna l
power
supply
IN0
DEN
over
temperature
driver
logi c
gate co ntr ol
&
charge pu mp
ESD
protection
IS0
T
clamp for
indu ctive l oad
over cu rrent
switch limi t
OUT 0
load curre nt sense a nd
ope n lo ad detection
forward vo ltag e d rop detection
VS
Chann el 1
T
IN1
Control and protectio n circuit e quivalent to channe l 0
IS1
OUT 1
GND
Figure 1
Data Sheet
Block diagram DxS.emf
Block Diagram for the BTF6070-2EKV
6
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
GND
1
14
OUT0
IN0
2
13
OUT0
DEN
3
12
OUT0
IS0
4
11
NC
NC
5
10
OUT1
IN1
6
9
OUT1
IS1
7
8
OUT1
Pinout dual SO14.emf
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Table 2
Pin Definition and Functions
Pin
Symbol
Function
1
GND
GrouND; Ground connection
2
IN0
INput channel 0; Input signal for channel 0 activation
3
DEN
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device
4
IS0
Sense 0; Sense current of the channel 0
5, 11
NC
Not Connected; No internal connection to the chip
6
IN1
INput channel 1; Input signal for channel 1 activation
7
IS1
Sense 1; Sense current of the channel 1
8, 9, 10
OUT1
OUTput 1; Protected high side power output channel 11)
12, 13, 14
OUT0
OUTput 0; Protected high side power output channel 01)
Cooling Tab
VS
Voltage Supply; Battery voltage
1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally connected
together. PCB traces have to be designed to withstand the maximum current which can flow.
Data Sheet
7
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Pin Configuration
3.3
Voltage and Current Definition
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.
IS
VS
VDS0
VS
IIN0
IN0
VIN0
IOUT0
OUT0
IIN1
IN1
VOUT0
VIN1
VDS1
IDEN
DEN
VDEN
IIS0
OUT1
IS0
IOUT1
VIS0
IIS1
IS1
VIS1
GND
VOUT1
IGND
Voltage and current convention.emf
Figure 3
Data Sheet
Voltage and Current Definition
8
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 3
Absolute Maximum Ratings 1)
TJ = -40°C to 150°C; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or Test Condition Number
Supply Voltages
Supply voltage
VS
-0.3
-
48
V
-
P_4.1.1
Reverse polarity voltage
-VS(REV)
0
-
28
V
t < 2 min
TA = 25 °C
RL ≥ 25 Ω
P_4.1.2
Supply voltage for short
circuit protection
VBAT(SC)
0
-
36
V
RECU = 30 mΩ
RSupply = 10 mΩ
LSupply = 5 µH
RCable= 7 mΩ/m
LCable= 1 µH/m,
l = 0 to 40 m
See Chapter 6 and
Figure 29
P_4.1.3
Supply voltage for Load
dump protection
VS(LD)
-
-
65
V
2)
RI = 2 Ω
RL = 25 Ω
P_4.1.12
Permanent short circuit
IN pin toggles
nRSC1
-
-
100
k cycles
3)
VSupply = 28 V
RECU = 20 mΩ
RSupply = 10 mΩ
LSupply= 5 µΗ
RCable = 0 mΩ
LCable = VOL(OFF)1)
Z
IIS(FAULT)
Inverse current
~ VINV
IIS(FAULT)
~ VS
IIS = IL / kILIS
Current limitation
< VS
IIS(FAULT)
Short circuit to GND
~ GND
IIS(FAULT)
Overtemperature TJ(SW)
event
Z
IIS(FAULT)
Short circuit to VS
VS
Normal operation
ON
VS2)
IIS < IL / kILIS
Open Load
~
Inverse current
~ VINV
IIS < IIS(OL)3)
Underload
~ VS4)
IIS(OL) < IIS < IL / kILIS
Don’t care
Z
Don’t care
1)
2)
3)
4)
Don’t care
L
IIS < IIS(OL)
Stable with additional pull-up resistor.
The output current has to be smaller than IL(OL).
After maximum tINV.
The output current has to be higher than IL(OL).
7.3
SENSE Signal in the Nominal Current Range
Figure 21 and Figure 22 show the current sense as a function of the load current in the power DMOS. Usually a
pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 Ω to limit
the power losses in the sense circuitry. A typical value is 1.8 kΩ. The blue curve represents the ideal sense current,
assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full
temperature range at a defined current.
Data Sheet
26
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Diagnostic Functions
4
3.5
3
I IS [mA]
2.5
2
1.5
1
0.5
0
min/max Sense Current
typical Sense Current
0
1
2
3
I L [A]
4
5
6
BTF6070-2EKV
Figure 21
Current Sense for Nominal Load
7.3.1
SENSE Signal Variation as a Function of Temperature and Load Current
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement, a
calibration on the application is possible. To avoid multiple calibration points at different load and temperature
conditions, the BTF6070-2EKV allows limited derating of the kILIS value, at a given point (TJ = +25 °C). This derating
is described by the parameter ΔkILIS. Figure 22 shows the behavior of the sense current, assuming one calibration
point at nominal load at +25 °C.
The blue line indicates the ideal kILIS ratio.
The red lines indicate the derating on the parameter across temperature and voltage, assuming one calibration
point at nominal temperature and nominal battery voltage.
The black lines indicate the kILIS accuracy without calibration.
Data Sheet
27
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Diagnostic Functions
3000
calibrated k
min/max k
typical k
2500
ILIS
ILIS
ILIS
kILIS
2000
1500
1000
500
0
1
2
3
4
I [A]
5
6
BTF6070-2EKV
L
Figure 22
Improved Current Sense Accuracy with One Calibration Point
7.3.2
SENSE Signal Timing
Figure 23 shows the timing during settling and disabling of the SENSE.
VINx
t
ILx
tON
tOFF
tON
90% of
IL static
t
VDEN
IISx
tsIS(ON)
t
tsIS(LC)
tsIS(OFF)
tsIS(ON_DEN)
90% of
IIS static
t
current sense settling disabling time.emf
Figure 23
Data Sheet
Current Sense Settling / Disabling Timing
28
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Diagnostic Functions
7.3.3
SENSE Signal in Open Load
7.3.3.1
Open Load in ON Diagnostic
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power
DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE current is
below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 24 shows the SENSE
current behavior in this area. The red curve shows a typical product curve. The blue curve shows the ideal current
sense.
IISx
IIS(OL)
Sense for OL.emf
ILx
IL(OL)
Figure 24
Current Sense Ratio for Low Currents
7.3.3.2
Open Load in OFF Diagnostic
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be
taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the complete
system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc... in the
application.
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by
the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched to
the IIS(FAULT).
An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be
used as well for short circuit to battery detection, see Chapter 7.3.4.
Data Sheet
29
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Diagnostic Functions
Vbat
SOL
VS
ROL
IIS(FAULT)
OL
comp.
OUT
ISx
ILOFF
Ileakage
GND
Open Load in OFF.emf
Figure 25
Open Load Detection in OFF Electrical Equivalent Circuit
7.3.3.3
Open Load Diagnostic Timing
Rleakage
VOL(OFF)
RPD
RIS
ZGND
Valve
Figure 26 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please note
that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open load in
OFF diagnosis request, otherwise the diagnosis can be wrong.
Load is present
Open load
VIN
VOUT
t
VS-VOL(OFF)
RDS(ON) x I L
shutdown with load
t
IOUT
IIS
tsIS(FAULT_OL_ON_OFF)
t
tsIS(LC)
Error Settling Disabling Time.emf
Figure 26
Sense Signal in Open Load Timing
7.3.4
SENSE Signal with OUT in Short Circuit to VS
t
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the
normal operation will flow through the DMOS of the BTF6070-2EKV, which can be recognized at the current sense
signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case,
an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation.
Data Sheet
30
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Diagnostic Functions
Vbat
VS
IIS(FAULT)
VBAT
OL
comp.
ISx
OUTx
GND
RIS
VOL(OFF)
Short circuit to VS.emf
IS
ZGND
Valve
RSC_VS
Figure 27
Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit
7.3.5
SENSE Signal in Case of Overload
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the
absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal
shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic
temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If the
DEN pin is activated the SENSE follows the output stage. If no reset of the latch occurs, the device remains in the
latching phase and IS(FAULT) at the IS pin, eventhough the DMOS is OFF.
7.3.6
SENSE Signal in Case of Inverse Current
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and
indicate open load in ON state. The unaffected channels indicate normal behavior as long as the IINV current is not
exceeding the maximum value specified in Chapter 5.4.
Data Sheet
31
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Diagnostic Functions
7.4
Electrical Characteristics Diagnostic Functions
Table 10
Electrical Characteristics: Diagnostics
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or Test Condition
Number
Load Condition Threshold for Diagnostic
Open load detection
threshold in OFF state
VS - VOL(OFF)
4
-
6
V
VIN = 0 V
VDEN = 4.5 V
See Figure 26
P_7.5.1
Open load detection
threshold in ON state
IL(OL)
5
-
35
mA
VIN = VDEN = 4.5 V
IIS(OL) = 10 µA
See Figure 24
P_7.5.2
10
-
50
mA
VIN = VDEN = 4.5 V
IIS(OL) = 16 µA
P_7.5.36
IS pin leakage current when IIS_(DIS)
sense is disabled
-
0.02
1
µA
VIN = 4.5 V
VDEN = 0 V
IL = IL4 = 4 A
P_7.5.4
Sense signal saturation
voltage
VS VIS(RANGE)
1.5
-
3.5
V
VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
IIS = 6 mA
P_7.5.6
Sense signal maximum
current in fault condition
IIS(FAULT)
6
12.5
30
mA
VIS = VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
See Figure 20
P_7.5.7
65
70
75
V
IIS = 5 mA
See Figure 20
P_7.5.3
Open load detection
IL2(OL)
threshold in ON state (10mA)
Sense Pin
Sense pin maximum voltage VIS(AZ)
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition
Current sense ratio
IL0 = 50 mA
kILIS0
-50%
1900
+50%
Current sense ratio
IL1 = 0.5 A
kILIS1
-22%
1730
+22%
Current sense ratio
IL2 = 1 A
kILIS2
-12%
1730
+12%
P_7.5.10
Current sense ratio
IL3 = 2 A
kILIS3
-8%
1730
+8%
P_7.5.11
Current sense ratio
IL4 = 4 A
kILIS4
-7%
1730
+7%
P_7.5.12
Data Sheet
32
VIN = 4.5 V
VDEN = 4.5 V
See Figure 21
TJ = -40 °C; 150 °C
P_7.5.8
P_7.5.9
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Diagnostic Functions
Table 10
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
Symbol
Values
Unit Note or Test Condition
Min.
Typ.
Max.
Number
kILIS derating with current
and temperature
ΔkILIS
-5
0
+5
%
1)
kILIS3 versus kILIS2
See Figure 22
P_7.5.17
kILIS derating with current
and temperature
(kILIS2 -kILIS1)
ΔkILIS2
-8
0
+8
%
1)
P_7.5.37
Current sense settling to
tsIS(ON)
90% of IIS static after positive
input slope on both INput
and DEN
-
-
90
µs
2)3)
VDEN = VIN = 0 to 4.5 V
VS = 28 V
RIS = 1.8 kΩ
CSENSE < 100 pF
RL = 25 Ω
See Figure 23
P_7.5.18
Current sense settling time tsIS(ON_DEN)
with load current stable and
transition of the DEN
-
-
10
µs
VIN = 4.5 V
VDEN = 0 to 4.5 V
RIS = 1.8 kΩ
CSENSE < 100 pF
IL = IL3 = 2 A
See Figure 23
P_7.5.19
Current sense settling time
to IIS stable after positive
input slope on current load
-
-
20
µs
1)
VIN = 4.5 V
P_7.5.20
VDEN = 4.5 V
RIS = 1.8 kΩ
CSENSE < 100 pF
IL = IL3 = 2 A to IL = IL4 = 4 A
See Figure 23
Current sense settling time
for open load detection in
OFF state
tsIS(FAULT_OL_ -
-
90
µs
VIN = 0 V
VDEN = 0 to 4.5 V
RIS = 1.8 kΩ
CSENSE < 100 pF
VOUT = VS = 28 V
P_7.5.22
Current sense settling time
for open load detection in
ON-OFF transition
tsIS(FAULT_OL_ -
200
350
µs
1)
P_7.5.23
kILIS2 versus kILIS1
Diagnostic Timing in Normal Condition
tsIS(LC)
Diagnostic Timing in Open Load Condition
Data Sheet
OFF)
ON_OFF)
33
VIN = 4.5 to 0V
VDEN = 4.5 V
RIS = 1.8 kΩ
CSENSE < 100 pF
VOUT = VS = 28 V
See Figure 26
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Diagnostic Functions
Table 10
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
Symbol
Values
Unit Note or Test Condition
Min.
Typ.
Max.
Number
Diagnostic Timing in Overload Condition
Current sense settling time
for overload detection
tsIS(FAULT)
-
-
90
µs
2)3)
VIN =VDEN= 0 to 4.5 V
VS =13.5 V
RIS = 1.8 kΩ
CSENSE< 100 pF
VDS = 10 V
See Figure 19
P_7.5.24
Current sense over current
blanking time
tsIS(OC_blank)
-
350
-
µs
1)
VIN = VDEN = 4.5 V
RIS = 1.8 kΩ
CSENSE < 100 pF
VDS= 5 V to 0 V
See Figure 19
P_7.5.32
Diagnostic disable time
DEN transition to
IIS < 50% IL / kILIS
tsIS(OFF)
-
-
20
µs
1)
P_7.5.25
VIN = 4.5 V
VDEN = 4.5 V to 0 V
RIS = 1.8 kΩ
CSENSE < 100 pF
IL = IL3 = 2 A
See Figure 23
1) Not subject to production test, specified by design
2) Test at TJ = -40°C only
3) Production test for functionality within parameter limits
Data Sheet
34
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Input Pins
8
Input Pins
8.1
Input Circuitry
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to
voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is
slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The
input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In
case the pin is not needed, it must be left opened, or must be connected to device ground (and not module
ground) via an 10 kΩ input resistor.
IN
GND
Figure 28
Input Pin Circuitry
8.2
DEN Pin
Input cir cuitry.emf
The DEN pin enable and disable the diagnostic functionality of the device. The pins have the same structure as
the INput pins, please refer to Figure 28.
8.3
Input Pin Voltage
The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by
the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and
depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a
hysteresis is implemented. This ensures a certain immunity to noise.
Data Sheet
35
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Input Pins
8.4
Electrical Characteristics
Table 11
Electrical Characteristics: Input Pins
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note or
Test Condition
Number
INput Pins Characteristics
Low level input voltage
range
VIN(L)
-0.3
-
0.8
V
P_8.4.1
High level input voltage
range
VIN(H)
2
-
6
V
P_8.4.2
Input voltage hysteresis
VIN(HYS)
-
250
-
mV
1)
P_8.4.3
Low level input current
IIN(L)
1
10
25
µA
VIN = 0.8 V
P_8.4.4
High level input current
IIN(H)
2
10
25
µA
VIN = 5.5 V
P_8.4.5
Low level input voltage
range
VDEN(L)
-0.3
-
0.8
V
-
P_8.4.6
High level input voltage
range
VDEN(H)
2
-
6
V
-
P_8.4.7
Input voltage hysteresis
VDEN(HYS)
-
250
-
mV
1)
P_8.4.8
Low level input current
IDEN(L)
1
10
25
µA
VDEN = 0.8 V
P_8.4.9
High level input current
IDEN(H)
2
10
25
µA
VDEN = 5.5 V
P_8.4.10
DEN Pin
1) Not subject to production test, specified by design
Data Sheet
36
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Application Information
9
Application Information
Note:
The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
VBAT
Voltage Regulator
OUT
T1
VS
GND
Z
CVS
ROL
I/O
VDD
RDEN
DEN
VS
OUT0
RIN
IN0
I/O
RIN
IN1
Micro
controller A/D
RSENSE
IS0
Valve
RIS
CSENSE
COUT
RPD
I/O
OUT1
RPD
A/D
RSENSE
IS1
COUT
P10W
GND
GND
RGND
RIS
CSENSE
D
Application example.emf
Figure 29
Application Diagram with BTF6070-2EKV
Note:
This is a very simplified example of an application circuit. The function must be verified in the real
application.
Table 12
Bill of Material
Reference
Value
Purpose
RIN
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
Guarantee BTF6070-2EKV channels OFF during loss of ground
RDEN
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
RPD
47 kΩ
Polarization of the output for short circuit to VS detection
Improve BTF6070-2EKV immunity to electomagnetic noise
ROL
1.5 kΩ
Ensures polarization of the BTF6070-2EKV output during open load in OFF
diagnostic
Data Sheet
37
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Application Information
Table 12
Bill of Material (cont’d)
Reference
Value
Purpose
RIS
1.8 kΩ
Sense resistor
RSENSE
4.7 kΩ
Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro
controller specification.
CSENSE
100 pF
Sense signal filtering.
COUT
10nF
Protection of the device during ESD and BCI
T1
Dual NPN/PNP
Switch the battery voltage for open load in OFF diagnostic
RGND
27 Ω
Protection of the BTF6070-2EKV during overvoltage
D
BAS21
Protection of the BTF6070-2EKV during reverse polarity
Z
58 V Zener diode Protection of the device during overvoltage
CVS
100 nF
9.1
Further Application Information
Filtering of voltage spikes at the battery line
•
Please contact us to get the pin FMEA
•
Existing App. Notes
•
For further information you may visit http://www.infineon.com/profet
Data Sheet
38
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Package Outlines
10
Package Outlines
0.35 x 45°
Gauge
Plane
0.25
+0.06
0°...8°
0.19
0.08 C
0°...8° C
Seating
Coplanarity
Plane
6 x 1.27 = 7.62
1.27
0.41±0.09
8° MAX.
8° MAX.
8° MAX.
0.1 C D 2x
12° MAX.
1.7 MAX.
0...0.1
Stand Off
(1.47)
3.9 ±0.11)
0.64 ±0.25
6 ±0.2
D
0.2 C 14x
2)
0.2
M
C A-B D 14x
Bottom View
6.4 ±0.1
0.15 M A-B D C
14
8
1
8
7
7
14
1
2.65 ±0.1
A
0.15 M A-B D C
B
0.1 C A-B 2x
8.65 ±0.1
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion of 0.13 max.
3) JEDEC reference MS-012 variation BB
Figure 30
PG-DSO-14-33, -40, -43, -47, -48-PO V05
PG-DSO-14-40 EP (Plastic Dual Small Outline Package) (RoHS-Compliant)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
39
Rev. 1.01
2016-08-09
PROFET™+ 24V
BTF6070-2EKV
Revision History
11
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev. 1.01, 2016-08-09
Whole document
Editorial Changes
Rev. 1.0, 2016-07-25
Whole document
Data Sheet
Creation of the Document
40
Rev. 1.01
2016-08-09
Please read the Important Notice and Warnings at the end of this document
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2016-08-09
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
BTF6070-2EKV
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
Legal Disclaimer for Short-Circuit Capability
Infineon disclaims any warranties and liablilities,
whether expressed or implied, for any short-circuit
failures below the threshold limit.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.