BTF60702EKVXUMA1

BTF60702EKVXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOIC14_150MIL

  • 描述:

    ICSWTCHHISIDESMRT2CH14SOIC

  • 数据手册
  • 价格&库存
BTF60702EKVXUMA1 数据手册
PROFET™+ 24V BTF6070-2EKV Smart High-Side Power Switch Dual Channel 60 mΩ 1 Package PG-DSO-14-40 EP Marking BTF6070-2EKV Overview Application • Suitable for 24 V Trucks and Transportation Systems • Specially designed to drive Valve Applications • Can be used for PWM frequencies up to 1.5 kHz • Suitable for resistive, inductive and capacitive loads • Replaces electromechanical relays, fuses and discrete circuits VBAT Voltage Regulator OUT T1 VS GND Z CVS ROL VDD I/O RDEN DEN I/O RIN IN0 I/O RIN IN1 VS OUT0 RSENSE IS0 Valve RIS CSENSE RPD Micro controller A/D COUT OUT1 RPD A/D RSENSE IS1 COUT P10W GND GND RGND RIS CSENSE D Application example.emf Application Diagram with BTF6070-2EKV Data Sheet www.infineon.com Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Overview Basic Features • Dual channel device • Fast switching device • For 12 V and 24 V grounded loads • Very low stand-by current • 3.3 V and 5 V compatible logic inputs • Electrostatic discharge protection (ESD) • Optimized electromagnetic compatibility • Logic ground independent from load ground • Very low power DMOS leakage current in OFF state • Green product (RoHS compliant) • AEC qualified Description The BTF6070-2EKV is a 60 mΩ dual channel Smart High-Side Power Switch, embedded in a PG-DSO-14-40 EP, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive Valve Applications in the harsh automotive environment. For lighting applications the nominal bulb load of P10W+P5W 24 V or P10W 12 V is considered. Table 1 Product Summary Parameter Symbol Value Operating voltage range VS(OP) 5 V ... 36 V Maximum supply voltage VS(LD) 65 V Maximum ON state resistance at TJ = 150 °C per channel RDS(ON) 135 mΩ Nominal load current (one channel active) IL(NOM)1 3A Nominal load current (all channels active) IL(NOM)2 2.3 A Typical current sense ratio kILIS 1730 Minimum current limitation IL5(SC) 9A Maximum standby current with load at TJ = 25 °C IS(OFF) 500 nA Diagnostic Functions • Proportional load current sense for the 2 channels • Open load detection in ON and OFF • Short circuit to battery and ground indication • Overtemperature switch off detection • Stable diagnostic signal during short circuit • Enhanced kILIS dependency with temperature and load current Data Sheet 2 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Overview Protection Functions • Stable behavior during undervoltage • Reverse polarity protection with external components • Secure load turn-off during logic ground disconnection with external components • Overtemperature protection with latch • Overvoltage protection with external components • Enhanced short circuit operation Data Sheet 3 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 3.1 3.2 3.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 4.3.1 4.3.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.5 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 16 16 16 17 18 6 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 20 21 21 22 22 22 24 7 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.3.1 7.3.3.2 7.3.3.3 7.3.4 7.3.5 7.3.6 7.4 Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IS Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 26 26 27 28 29 29 29 30 30 31 31 32 8 Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Data Sheet 4 7 7 7 8 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV 8.1 8.2 8.3 8.4 Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Data Sheet 5 35 35 35 36 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Block Diagram 2 Block Diagram Chann el 0 VS voltage se nso r interna l power supply IN0 DEN over temperature driver logi c gate co ntr ol & charge pu mp ESD protection IS0 T clamp for indu ctive l oad over cu rrent switch limi t OUT 0 load curre nt sense a nd ope n lo ad detection forward vo ltag e d rop detection VS Chann el 1 T IN1 Control and protectio n circuit e quivalent to channe l 0 IS1 OUT 1 GND Figure 1 Data Sheet Block diagram DxS.emf Block Diagram for the BTF6070-2EKV 6 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Pin Configuration 3 Pin Configuration 3.1 Pin Assignment GND 1 14 OUT0 IN0 2 13 OUT0 DEN 3 12 OUT0 IS0 4 11 NC NC 5 10 OUT1 IN1 6 9 OUT1 IS1 7 8 OUT1 Pinout dual SO14.emf Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Table 2 Pin Definition and Functions Pin Symbol Function 1 GND GrouND; Ground connection 2 IN0 INput channel 0; Input signal for channel 0 activation 3 DEN Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device 4 IS0 Sense 0; Sense current of the channel 0 5, 11 NC Not Connected; No internal connection to the chip 6 IN1 INput channel 1; Input signal for channel 1 activation 7 IS1 Sense 1; Sense current of the channel 1 8, 9, 10 OUT1 OUTput 1; Protected high side power output channel 11) 12, 13, 14 OUT0 OUTput 0; Protected high side power output channel 01) Cooling Tab VS Voltage Supply; Battery voltage 1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow. Data Sheet 7 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Pin Configuration 3.3 Voltage and Current Definition Figure 3 shows all terms used in this data sheet, with associated convention for positive values. IS VS VDS0 VS IIN0 IN0 VIN0 IOUT0 OUT0 IIN1 IN1 VOUT0 VIN1 VDS1 IDEN DEN VDEN IIS0 OUT1 IS0 IOUT1 VIS0 IIS1 IS1 VIS1 GND VOUT1 IGND Voltage and current convention.emf Figure 3 Data Sheet Voltage and Current Definition 8 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 3 Absolute Maximum Ratings 1) TJ = -40°C to 150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Supply Voltages Supply voltage VS -0.3 - 48 V - P_4.1.1 Reverse polarity voltage -VS(REV) 0 - 28 V t < 2 min TA = 25 °C RL ≥ 25 Ω P_4.1.2 Supply voltage for short circuit protection VBAT(SC) 0 - 36 V RECU = 30 mΩ RSupply = 10 mΩ LSupply = 5 µH RCable= 7 mΩ/m LCable= 1 µH/m, l = 0 to 40 m See Chapter 6 and Figure 29 P_4.1.3 Supply voltage for Load dump protection VS(LD) - - 65 V 2) RI = 2 Ω RL = 25 Ω P_4.1.12 Permanent short circuit IN pin toggles nRSC1 - - 100 k cycles 3) VSupply = 28 V RECU = 20 mΩ RSupply = 10 mΩ LSupply= 5 µΗ RCable = 0 mΩ LCable = VOL(OFF)1) Z IIS(FAULT) Inverse current ~ VINV IIS(FAULT) ~ VS IIS = IL / kILIS Current limitation < VS IIS(FAULT) Short circuit to GND ~ GND IIS(FAULT) Overtemperature TJ(SW) event Z IIS(FAULT) Short circuit to VS VS Normal operation ON VS2) IIS < IL / kILIS Open Load ~ Inverse current ~ VINV IIS < IIS(OL)3) Underload ~ VS4) IIS(OL) < IIS < IL / kILIS Don’t care Z Don’t care 1) 2) 3) 4) Don’t care L IIS < IIS(OL) Stable with additional pull-up resistor. The output current has to be smaller than IL(OL). After maximum tINV. The output current has to be higher than IL(OL). 7.3 SENSE Signal in the Nominal Current Range Figure 21 and Figure 22 show the current sense as a function of the load current in the power DMOS. Usually a pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 Ω to limit the power losses in the sense circuitry. A typical value is 1.8 kΩ. The blue curve represents the ideal sense current, assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full temperature range at a defined current. Data Sheet 26 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Diagnostic Functions 4 3.5 3 I IS [mA] 2.5 2 1.5 1 0.5 0 min/max Sense Current typical Sense Current 0 1 2 3 I L [A] 4 5 6 BTF6070-2EKV Figure 21 Current Sense for Nominal Load 7.3.1 SENSE Signal Variation as a Function of Temperature and Load Current In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and temperature conditions, the BTF6070-2EKV allows limited derating of the kILIS value, at a given point (TJ = +25 °C). This derating is described by the parameter ΔkILIS. Figure 22 shows the behavior of the sense current, assuming one calibration point at nominal load at +25 °C. The blue line indicates the ideal kILIS ratio. The red lines indicate the derating on the parameter across temperature and voltage, assuming one calibration point at nominal temperature and nominal battery voltage. The black lines indicate the kILIS accuracy without calibration. Data Sheet 27 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Diagnostic Functions 3000 calibrated k min/max k typical k 2500 ILIS ILIS ILIS kILIS 2000 1500 1000 500 0 1 2 3 4 I [A] 5 6 BTF6070-2EKV L Figure 22 Improved Current Sense Accuracy with One Calibration Point 7.3.2 SENSE Signal Timing Figure 23 shows the timing during settling and disabling of the SENSE. VINx t ILx tON tOFF tON 90% of IL static t VDEN IISx tsIS(ON) t tsIS(LC) tsIS(OFF) tsIS(ON_DEN) 90% of IIS static t current sense settling disabling time.emf Figure 23 Data Sheet Current Sense Settling / Disabling Timing 28 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Diagnostic Functions 7.3.3 SENSE Signal in Open Load 7.3.3.1 Open Load in ON Diagnostic If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve shows the ideal current sense. IISx IIS(OL) Sense for OL.emf ILx IL(OL) Figure 24 Current Sense Ratio for Low Currents 7.3.3.2 Open Load in OFF Diagnostic For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc... in the application. To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched to the IIS(FAULT). An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be used as well for short circuit to battery detection, see Chapter 7.3.4. Data Sheet 29 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Diagnostic Functions Vbat SOL VS ROL IIS(FAULT) OL comp. OUT ISx ILOFF Ileakage GND Open Load in OFF.emf Figure 25 Open Load Detection in OFF Electrical Equivalent Circuit 7.3.3.3 Open Load Diagnostic Timing Rleakage VOL(OFF) RPD RIS ZGND Valve Figure 26 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open load in OFF diagnosis request, otherwise the diagnosis can be wrong. Load is present Open load VIN VOUT t VS-VOL(OFF) RDS(ON) x I L shutdown with load t IOUT IIS tsIS(FAULT_OL_ON_OFF) t tsIS(LC) Error Settling Disabling Time.emf Figure 26 Sense Signal in Open Load Timing 7.3.4 SENSE Signal with OUT in Short Circuit to VS t In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the normal operation will flow through the DMOS of the BTF6070-2EKV, which can be recognized at the current sense signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case, an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation. Data Sheet 30 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Diagnostic Functions Vbat VS IIS(FAULT) VBAT OL comp. ISx OUTx GND RIS VOL(OFF) Short circuit to VS.emf IS ZGND Valve RSC_VS Figure 27 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit 7.3.5 SENSE Signal in Case of Overload An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details. In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected. The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If the DEN pin is activated the SENSE follows the output stage. If no reset of the latch occurs, the device remains in the latching phase and IS(FAULT) at the IS pin, eventhough the DMOS is OFF. 7.3.6 SENSE Signal in Case of Inverse Current In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and indicate open load in ON state. The unaffected channels indicate normal behavior as long as the IINV current is not exceeding the maximum value specified in Chapter 5.4. Data Sheet 31 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Diagnostic Functions 7.4 Electrical Characteristics Diagnostic Functions Table 10 Electrical Characteristics: Diagnostics VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Load Condition Threshold for Diagnostic Open load detection threshold in OFF state VS - VOL(OFF) 4 - 6 V VIN = 0 V VDEN = 4.5 V See Figure 26 P_7.5.1 Open load detection threshold in ON state IL(OL) 5 - 35 mA VIN = VDEN = 4.5 V IIS(OL) = 10 µA See Figure 24 P_7.5.2 10 - 50 mA VIN = VDEN = 4.5 V IIS(OL) = 16 µA P_7.5.36 IS pin leakage current when IIS_(DIS) sense is disabled - 0.02 1 µA VIN = 4.5 V VDEN = 0 V IL = IL4 = 4 A P_7.5.4 Sense signal saturation voltage VS VIS(RANGE) 1.5 - 3.5 V VIN = 0 V VOUT = VS > 10 V VDEN = 4.5 V IIS = 6 mA P_7.5.6 Sense signal maximum current in fault condition IIS(FAULT) 6 12.5 30 mA VIS = VIN = 0 V VOUT = VS > 10 V VDEN = 4.5 V See Figure 20 P_7.5.7 65 70 75 V IIS = 5 mA See Figure 20 P_7.5.3 Open load detection IL2(OL) threshold in ON state (10mA) Sense Pin Sense pin maximum voltage VIS(AZ) Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition Current sense ratio IL0 = 50 mA kILIS0 -50% 1900 +50% Current sense ratio IL1 = 0.5 A kILIS1 -22% 1730 +22% Current sense ratio IL2 = 1 A kILIS2 -12% 1730 +12% P_7.5.10 Current sense ratio IL3 = 2 A kILIS3 -8% 1730 +8% P_7.5.11 Current sense ratio IL4 = 4 A kILIS4 -7% 1730 +7% P_7.5.12 Data Sheet 32 VIN = 4.5 V VDEN = 4.5 V See Figure 21 TJ = -40 °C; 150 °C P_7.5.8 P_7.5.9 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Diagnostic Functions Table 10 Electrical Characteristics: Diagnostics (cont’d) VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number kILIS derating with current and temperature ΔkILIS -5 0 +5 % 1) kILIS3 versus kILIS2 See Figure 22 P_7.5.17 kILIS derating with current and temperature (kILIS2 -kILIS1) ΔkILIS2 -8 0 +8 % 1) P_7.5.37 Current sense settling to tsIS(ON) 90% of IIS static after positive input slope on both INput and DEN - - 90 µs 2)3) VDEN = VIN = 0 to 4.5 V VS = 28 V RIS = 1.8 kΩ CSENSE < 100 pF RL = 25 Ω See Figure 23 P_7.5.18 Current sense settling time tsIS(ON_DEN) with load current stable and transition of the DEN - - 10 µs VIN = 4.5 V VDEN = 0 to 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF IL = IL3 = 2 A See Figure 23 P_7.5.19 Current sense settling time to IIS stable after positive input slope on current load - - 20 µs 1) VIN = 4.5 V P_7.5.20 VDEN = 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF IL = IL3 = 2 A to IL = IL4 = 4 A See Figure 23 Current sense settling time for open load detection in OFF state tsIS(FAULT_OL_ - - 90 µs VIN = 0 V VDEN = 0 to 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF VOUT = VS = 28 V P_7.5.22 Current sense settling time for open load detection in ON-OFF transition tsIS(FAULT_OL_ - 200 350 µs 1) P_7.5.23 kILIS2 versus kILIS1 Diagnostic Timing in Normal Condition tsIS(LC) Diagnostic Timing in Open Load Condition Data Sheet OFF) ON_OFF) 33 VIN = 4.5 to 0V VDEN = 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF VOUT = VS = 28 V See Figure 26 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Diagnostic Functions Table 10 Electrical Characteristics: Diagnostics (cont’d) VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number Diagnostic Timing in Overload Condition Current sense settling time for overload detection tsIS(FAULT) - - 90 µs 2)3) VIN =VDEN= 0 to 4.5 V VS =13.5 V RIS = 1.8 kΩ CSENSE< 100 pF VDS = 10 V See Figure 19 P_7.5.24 Current sense over current blanking time tsIS(OC_blank) - 350 - µs 1) VIN = VDEN = 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF VDS= 5 V to 0 V See Figure 19 P_7.5.32 Diagnostic disable time DEN transition to IIS < 50% IL / kILIS tsIS(OFF) - - 20 µs 1) P_7.5.25 VIN = 4.5 V VDEN = 4.5 V to 0 V RIS = 1.8 kΩ CSENSE < 100 pF IL = IL3 = 2 A See Figure 23 1) Not subject to production test, specified by design 2) Test at TJ = -40°C only 3) Production test for functionality within parameter limits Data Sheet 34 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Input Pins 8 Input Pins 8.1 Input Circuitry The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via an 10 kΩ input resistor. IN GND Figure 28 Input Pin Circuitry 8.2 DEN Pin Input cir cuitry.emf The DEN pin enable and disable the diagnostic functionality of the device. The pins have the same structure as the INput pins, please refer to Figure 28. 8.3 Input Pin Voltage The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a hysteresis is implemented. This ensures a certain immunity to noise. Data Sheet 35 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Input Pins 8.4 Electrical Characteristics Table 11 Electrical Characteristics: Input Pins VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter Symbol Values Unit Min. Typ. Max. Note or Test Condition Number INput Pins Characteristics Low level input voltage range VIN(L) -0.3 - 0.8 V P_8.4.1 High level input voltage range VIN(H) 2 - 6 V P_8.4.2 Input voltage hysteresis VIN(HYS) - 250 - mV 1) P_8.4.3 Low level input current IIN(L) 1 10 25 µA VIN = 0.8 V P_8.4.4 High level input current IIN(H) 2 10 25 µA VIN = 5.5 V P_8.4.5 Low level input voltage range VDEN(L) -0.3 - 0.8 V - P_8.4.6 High level input voltage range VDEN(H) 2 - 6 V - P_8.4.7 Input voltage hysteresis VDEN(HYS) - 250 - mV 1) P_8.4.8 Low level input current IDEN(L) 1 10 25 µA VDEN = 0.8 V P_8.4.9 High level input current IDEN(H) 2 10 25 µA VDEN = 5.5 V P_8.4.10 DEN Pin 1) Not subject to production test, specified by design Data Sheet 36 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Application Information 9 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. VBAT Voltage Regulator OUT T1 VS GND Z CVS ROL I/O VDD RDEN DEN VS OUT0 RIN IN0 I/O RIN IN1 Micro controller A/D RSENSE IS0 Valve RIS CSENSE COUT RPD I/O OUT1 RPD A/D RSENSE IS1 COUT P10W GND GND RGND RIS CSENSE D Application example.emf Figure 29 Application Diagram with BTF6070-2EKV Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Table 12 Bill of Material Reference Value Purpose RIN 10 kΩ Protection of the microcontroller during overvoltage, reverse polarity Guarantee BTF6070-2EKV channels OFF during loss of ground RDEN 10 kΩ Protection of the microcontroller during overvoltage, reverse polarity RPD 47 kΩ Polarization of the output for short circuit to VS detection Improve BTF6070-2EKV immunity to electomagnetic noise ROL 1.5 kΩ Ensures polarization of the BTF6070-2EKV output during open load in OFF diagnostic Data Sheet 37 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Application Information Table 12 Bill of Material (cont’d) Reference Value Purpose RIS 1.8 kΩ Sense resistor RSENSE 4.7 kΩ Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro controller specification. CSENSE 100 pF Sense signal filtering. COUT 10nF Protection of the device during ESD and BCI T1 Dual NPN/PNP Switch the battery voltage for open load in OFF diagnostic RGND 27 Ω Protection of the BTF6070-2EKV during overvoltage D BAS21 Protection of the BTF6070-2EKV during reverse polarity Z 58 V Zener diode Protection of the device during overvoltage CVS 100 nF 9.1 Further Application Information Filtering of voltage spikes at the battery line • Please contact us to get the pin FMEA • Existing App. Notes • For further information you may visit http://www.infineon.com/profet Data Sheet 38 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Package Outlines 10 Package Outlines 0.35 x 45° Gauge Plane 0.25 +0.06 0°...8° 0.19 0.08 C 0°...8° C Seating Coplanarity Plane 6 x 1.27 = 7.62 1.27 0.41±0.09 8° MAX. 8° MAX. 8° MAX. 0.1 C D 2x 12° MAX. 1.7 MAX. 0...0.1 Stand Off (1.47) 3.9 ±0.11) 0.64 ±0.25 6 ±0.2 D 0.2 C 14x 2) 0.2 M C A-B D 14x Bottom View 6.4 ±0.1 0.15 M A-B D C 14 8 1 8 7 7 14 1 2.65 ±0.1 A 0.15 M A-B D C B 0.1 C A-B 2x 8.65 ±0.1 Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion of 0.13 max. 3) JEDEC reference MS-012 variation BB Figure 30 PG-DSO-14-33, -40, -43, -47, -48-PO V05 PG-DSO-14-40 EP (Plastic Dual Small Outline Package) (RoHS-Compliant) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Data Sheet 39 Rev. 1.01 2016-08-09 PROFET™+ 24V BTF6070-2EKV Revision History 11 Revision History Page or Item Subjects (major changes since previous revision) Rev. 1.01, 2016-08-09 Whole document Editorial Changes Rev. 1.0, 2016-07-25 Whole document Data Sheet Creation of the Document 40 Rev. 1.01 2016-08-09 Please read the Important Notice and Warnings at the end of this document Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™. Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2016-08-09 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference BTF6070-2EKV IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. Legal Disclaimer for Short-Circuit Capability Infineon disclaims any warranties and liablilities, whether expressed or implied, for any short-circuit failures below the threshold limit. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
BTF60702EKVXUMA1 价格&库存

很抱歉,暂时无法提供与“BTF60702EKVXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货