0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTF60702ERVXUMA1

BTF60702ERVXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOIC14

  • 描述:

    IC SWTCH HISIDE SMRT

  • 数据手册
  • 价格&库存
BTF60702ERVXUMA1 数据手册
PROFET™+ 24V BTF6070-2ERV Smart Hig h-Side Power Switc h Dual Channel, 60 m Ω 1 Package PG-TDSO-14 Marking 6070-2ERV Overview Application • Suitable for 12 V and 24 V Trucks and Transportation Systems • Specially designed to drive Valve Applications • Can be used for PWM frequencies up to 1.5 kHz • Suitable for resistive, inductive and capacitive loads • Replaces electromechanical relays, fuses and discrete circuits VBAT Voltage Regulator OUT T1 VS GND CVDD DZ CVS ROL VS VDD GPIO RDEN DEN GPIO RIN IN0 GPIO RIN IN1 RSENSE IS0 OUT0 RPD ADC IN CSENSE Valve RIS Microcontroller COUT OUT1 CSENSE GND COUT Bulb RIS GND IS1 RSENSE RPD ADC IN RGND D Page-1.emf Application Diagram with BTF6070-2ERV Datasheet www.infineon.com 1 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Overview Basic Features • Dual channel device • Fast switching device • For 12 V and 24 V grounded loads • Very low stand-by current • 3.3 V and 5 V compatible logic inputs • Electrostatic discharge protection (ESD) • Optimized electromagnetic compatibility • Logic ground independent from load ground • Very low power DMOS leakage current in OFF state • Green product (RoHS compliant) • AEC qualified Description The BTF6070-2ERV is a 60 mΩ dual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by a N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive Valve Applications in the harsh automotive environment. For lighting applications the nominal bulb load of P10W+P5W 24 V or P10W 12 V is considered. Table 1 Product Summary Parameter Symbol Value Operating voltage range VS(OP) 5 V ... 36 V Maximum supply voltage VS(LD) 65 V Maximum ON state resistance at TJ = 150°C per channel RDS(ON) 135 mΩ Nominal load current (one channel active) IL(NOM)1 3A Nominal load current (all channels active) IL(NOM)2 2.3 A Typical current sense ratio kILIS 1730 Minimum current limitation IL5(SC) 9A Maximum standby current with load at TJ = 25°C IS(OFF) 500 nA Diagnostic Functions • Proportional load current sense for the 2 channels • Open load detection in ON and OFF • Short circuit to battery and ground indication • Overtemperature switch off detection • Stable diagnostic signal during short circuit • Enhanced kILIS dependency with temperature and load current Protection Functions • Stable behavior during undervoltage • Reverse polarity protection with external components • Secure load turn-off during logic ground disconnection with external components Datasheet 2 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Overview • Overtemperature protection with latch • Overvoltage protection with external components • Enhanced short circuit operation Datasheet 3 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Block Diagram 2 Block Diagram Channel 0 VS voltage sen sor int ern al power supply IN0 DEN over temperatu re driver logic gat e cont rol & charge p ump ESD prot ec tion T clamp for ind uctive load over current switch limit OUT 0 load cu rrent sense and open load detection IS0 forward voltage drop detection VS Channel 1 T IN1 Cont rol and pro tec tion circuit equivalent to channel 0 IS1 OUT 1 GND Figure 1 Datasheet Block diagramD xS.emf Block Diagram for the BTF6070-2ERV 4 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Pin Configuration 3 Pin Configuration 3.1 Pin Assignment GND 1 14 OUT0 IN0 2 13 OUT0 DEN 3 12 OUT0 IS0 4 11 NC NC 5 10 OUT1 IN1 6 9 OUT1 IS1 7 8 OUT1 Pinout dual SO14.vsd Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Table 2 Pin Definition and Functions Pin Symbol Function 1 GND GrouND; Ground connection 2 IN0 INput channel 0; Input signal for channel 0 activation 3 DEN Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device 4 IS0 Sense 0; Sense current of the channel 0 5, 11 NC Not Connected; No internal connection to the chip 6 IN1 INput channel 1; Input signal for channel 1 activation 7 IS1 Sense 1; Sense current of the channel 1 8, 9, 10 OUT1 OUTput 1; Protected high side power output channel 11) 12, 13, 14 OUT0 OUTput 0; Protected high side power output channel 01) Cooling Tab VS Voltage Supply; Battery voltage 1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow. Datasheet 5 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Pin Configuration 3.3 Voltage and Current Definition Figure 3 shows all terms used in this data sheet, with associated convention for positive values. IVS VS VDS0 VS IIN0 IN0 VIN0 OUT0 IN1 VIN1 IDEN VOUT0 VDS1 DEN VDEN OUT1 IS0 VIS0 IIS1 IS1 VIS1 IOUT0 GND IOUT1 VOUT1 IGND voltage and current convention.vsd Figure 3 Datasheet Voltage and Current Definition 6 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 3 Absolute Maximum Ratings 1) TJ = -40°C to 150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Supply Voltages Supply voltage VS -0.3 - 48 V - P_4.1.1 Reverse polarity voltage -VS(REV) 0 - 28 V t < 2 min TA = 25°C RL ≥ 25 Ω P_4.1.2 Supply voltage for short circuit protection VBAT(SC) 0 - 36 V RECU = 30 mΩ RSupply = 10 mΩ LSupply = 5 µH RCable= 7 mΩ/m LCable= 1 µH/m, l = 0 to 40 m See Chapter 6 and Figure 29 P_4.1.3 Supply voltage for Load dump protection VS(LD) - - 65 V 2) P_4.1.12 Permanent short circuit IN pin toggles nRSC1 - - 100 k cycles 3) P_4.1.4 VSupply = 28 V RECU = 20 mΩ RSupply = 10 mΩ LSupply= 5 µΗ RCable = 0 mΩ LCable = < 1 µΗ Permanent short circuit IN pin toggles nRSC_highL - - 100 k cycles 3) VSupply = 28 V RECU = 30 mΩ RSupply = 10 mΩ LSupply = 5 µΗ RCable = 280 mΩ LCable = 40 µΗ P_4.1.5 Voltage at INPUT pins VIN -0.3 - 6 V - P_4.1.13 Voltage at INPUT pins VIN - - 7 V t < 2 min P_4.1.6 Current through INPUT pins IIN -2 - 2 mA - P_4.1.14 Voltage at DEN pin VDEN -0.3 - 6 V - P_4.1.15 Voltage at DEN pin VDEN - 7 V t < 2 min P_4.1.50 Current through DEN pin IDEN -2 2 mA - P_4.1.16 RI = 2 Ω RL = 25 Ω Short Circuit Capability Input Pins Datasheet 7 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV General Product Characteristics Table 3 Absolute Maximum Ratings 1) TJ = -40°C to 150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Sense Pin Voltage at IS pin VIS -0.3 - VS V - P_4.1.19 Current through IS pin IIS -25 - 50 mA - P_4.1.20 Load current | IL | - - IL(LIM) A - P_4.1.21 Power dissipation (DC) PTOT - - 1.8 W TA = 85°C TJ < 150°C P_4.1.22 Maximum energy dissipation repetitive pulse (one channel) EAR_2A - - 40 mJ 20 Mio. cycles IL(0) = 2 A TJ(0) = 105°C P_4.1.24 Negative voltage slope at output -dVOUT/dt (inductive clamping) - -20 V/µs 1) VOUT = 28 V P_4.1.35 to 28 V - VDS(AZ) VIN =0V Positive voltage slope at output dVOUT/dt - - 20 V/µs 1) Voltage at power transistor VDS - - 65 V - P_4.1.26 Current through ground pin I GND -20 - 20 mA - P_4.1.27 Current through ground pin I GND -150 - 20 mA t < 2 min P_4.1.7 Junction temperature TJ -40 - 150 °C - P_4.1.28 Storage temperature TSTG -55 - 150 °C - P_4.1.30 VESD -2 - 2 kV 4) HBM P_4.1.31 HBM P_4.1.32 Power Stage VOUT = 0 V to 28 V P_4.1.36 VIN = 0 V Currents Temperatures ESD Susceptibility ESD susceptibility (all pins) ESD susceptibility OUT Pin vs. GND and VS connected VESD -5 - 5 kV 4) ESD susceptibility VESD -500 - 500 V 5) CDM P_4.1.33 ESD susceptibility pin (corner pins) VESD -750 - 750 V 5) CDM P_4.1.34 1) Not subject to production test. Specified by design 2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1 3) Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer for short-circuit capability on the Back Cover of this document 4) ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002 5) ESD susceptibility, Charged Device Model “CDM” according to AEC Q100-011 Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Datasheet 8 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV General Product Characteristics 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Functional Range Table 4 Functional Range TJ = -40°C to 150°C; (unless otherwise specified) Parameter Nominal operating voltage Symbol VNOM Values Min. Typ. Max. 8 28 36 Unit Note or Test Condition Number V - P_4.2.1 1)3) Extended operating voltage VS(OP) 5 - 48 V VIN = 4.5 V RL = 25 Ω VDS < 0.5 V P_4.2.2 Minimum functional supply voltage VS(OP)_MIN 3.8 4.3 5 V 2) VIN = 4.5 V RL = 25 Ω From IOUT = 0 A to VDS < 0.5 V; see Figure 16 P_4.2.3 Undervoltage shutdown VS(UV) 3 3.5 4.1 V 2) VIN = 4.5 V VDEN = 0 V RL = 25 Ω From VDS < 1 V to IOUT = 0 A See Figure 16 P_4.2.4 Undervoltage shutdown hysteresis VS(UV)_HYS - 850 - mV 3) P_4.2.13 Operating current One channel active IGND_1 - 5 7 mA VIN = 5.5 V P_4.2.5 VDEN = 5.5 V Device in RDS(ON) VS = 36 V Operating current All channels active IGND_2 - 8.3 12 mA VIN = 5.5 V P_4.2.6 VDEN = 5.5 V Device in RDS(ON) VS = 36 V Standby current for whole device with load (ambient) IS(OFF) - 0.1 0.5 µA 2) Datasheet 9 - VS = 36 V VOUT = 0 V VIN floating VDEN floating TJ ≤ 85°C P_4.2.7 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV General Product Characteristics Table 4 Functional Range TJ = -40°C to 150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Maximum standby current for whole device with load IS(OFF)_150 - - 10 µA VS = 36 V VOUT = 0 V VIN floating VDEN floating TJ = 150°C P_4.2.10 Standby current for whole device with load, diagnostic active IS(OFF_DEN) - 1.15 - mA 3) P_4.2.8 VS = 36 V VOUT = 0 V VIN floating VDEN = 5.5 V 1) Parameter deviation possible: RDSON, IIS(FAULT) & timing parameters. Protection functions are working. 2) Test at TJ = -40°C only 3) Not subject to production test. Specified by design. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Table 5 Thermal Resistance Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Junction to case RthJC - 2 - K/W 1) P_4.3.1 Junction to ambient All channels active RthJA - 27 - K/W 1)2) P_4.3.2 1) Not subject to production test. Specified by design. 2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power dissipation equally dissipated for both channels at TA=105°C ; The product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4. Datasheet 10 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV General Product Characteristics 4.3.1 PCB Set-up 70µm 1.5mm 35µm PCB 2s2p.emf 0.3mm Figure 4 2s2p PCB Cross Section Figure 5 1s0p PCB Cross Section PCB bottom view PCB top view 1 14 2 13 12 4 COOLIN G TAB 5 VS 10 3 11 6 9 7 8 PCBcooling.emf Figure 6 Datasheet PC Board Top and Bottom View for Thermal Simulation with 600 mm2 Cooling Area 11 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV General Product Characteristics 4.3.2 Thermal Impedance BTF6070-2ERV 100 ZthJA (K/W) TAMBIENT = 105°C 10 1 2s2p 1s0p - 600 mm² 1s0p - 300 mm² 1s0p - footprint 0,1 0,0001 Figure 7 0,001 0,01 0,1 1 Time (s) 10 100 1000 Typical Thermal Impedance. Both channels active. TA= 85°C. PCB set-up according Figure 4 / Figure 5 BTT6070-2ERV 100 1s0p - Tambient = 105°C 90 RthJA (K/W) 80 70 60 50 40 30 0 Figure 8 Datasheet 100 200 300 Cooling area (mm²) 400 500 600 Typical Thermal Resistance. Both channels active. TA=85°C. PCB set-up 1s0p 12 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Power Stage 5 Power Stage The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump. 5.1 Output ON-State Resistance The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 9 shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 6.4. 240 120 TJ = 150°C 220 110 TJ = 25°C TJ = -40°C 200 100 180 90 RDS(ON) [mΩ ] RDS(ON) [mΩ ] 160 80 70 140 120 100 60 80 50 60 40 40 30 -40 Figure 9 -20 0 20 40 60 80 100 Junction Temperature TJ [°C] 120 140 160 0 5 10 15 20 Supply Voltage VS [V] 25 30 35 Typical ON-State Resistance A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope, which is optimized in terms of EMC emission. 5.2 Turn ON/OFF Characteristics with Resistive Load Figure 10 shows the typical timing when switching a resistive load. IN VIN_H VIN_L t VOUT dV/dt ON tOFF_delay 70% VS 30% VS 10% VS dV/dt OFF tON 90% VS tON_delay tOFF t Switching times.emf Figure 10 Datasheet Switching a Resistive Load Timing 13 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Power Stage 5.3 Inductive Load 5.3.1 Output Clamping When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device by avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 11 and Figure 12 for details. Nevertheless, the maximum allowed load inductance is limited. VS ZDS(AZ) INx VDS LOGIC IL VBAT GND VINx OUTx VOUT L, RL ZGND Output_clamp.vsd Figure 11 Output Clamp IN t VOUT VS VDS(AZ) t VS-VDS(AZ) IL t Switching an inductance.emf Figure 12 Datasheet Switching an Inductive Load Timing 14 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Power Stage 5.3.2 Maximum Load Inductance During demagnetization of inductive loads, energy has to be dissipated in the BTF6070-2ERV. This energy can be calculated with following equation: RL ⋅ IL L V S – V DS ( AZ-) E = V DS ( AZ ) ⋅ ------ ⋅ -----------------------------⋅ ln ⎛ 1 – -------------------------------⎞ + I L ⎝ V S – V DS ( AZ )⎠ RL RL (5.1) Following equation simplifies under the assumption of RL = 0 Ω. VS 2 1 -⎞ E = --- ⋅ L ⋅ I ⋅ ⎛⎝ 1 – -----------------------------2 V S – V DS ( AZ )⎠ (5.2) The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 13 for the maximum allowed energy dissipation as a function of the load current. 1000 EAS (mJ) 100 10 1 0 1 2 3 4 5 6 7 IL(A) Figure 13 Datasheet Maximum Energy Dissipation Single Pulse, TJ_START = 150°C 15 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Power Stage 5.4 Inverse Current Capability In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 14). The output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse.In that particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not be higher than IL(INV). IL(INV) can be considered as 3 A. If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions are available. VBAT VS Gate driver Device logic INV Comp. IL(INV) VINV OUT GND ZGND inverse current.vsd Figure 14 Datasheet Inverse Current Circuitry 16 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Power Stage 5.5 Electrical Characteristics Power Stage Table 6 Electrical Characteristics: Power Stage VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number ON-state resistance per channel RDS(ON)_150 90 120 135 mΩ IL = IL4 = 4 A VIN = 4.5 V TJ = 150°C See Figure 9 P_5.5.1 ON-state resistance per channel RDS(ON)_25 - 60 - mΩ 1) P_5.5.21 Nominal load current One channel active IL(NOM)1 - 3 - A 1) Nominal load current All channels active IL(NOM)2 - 2.3 - A Output voltage drop limitation VDS(NL) at small load currents - 10 22 mV IL = IL0 = 50 mA P_5.5.4 TJ = 25°C TA = 85°C TJ < 150°C P_5.5.2 P_5.5.3 Drain to source clamping voltage VDS(AZ) = (VS - VOUT) VDS(AZ) 65 70 75 V IDS = 20 mA See Figure 12 P_5.5.5 Output leakage current per channel TJ ≤ 85°C IL(OFF) - 0.1 0.5 µA 2) VIN floating VOUT = 0 V TJ ≤ 85°C P_5.5.6 Output leakage current per channel TJ = 150°C IL(OFF)_150 - 1 8 µA VIN floating VOUT = 0 V TJ = 150°C P_5.5.8 Slew rate 30% to 70% VS dV/dtON 1 2.4 4.5 V/µs P_5.5.11 Slew rate 70% to 30% VS -dV/dtOFF 1 2.4 4.5 V/µs RL = 25 Ω VS = 28 V See Figure 10 Slew rate matching dV/dtON - dV/dtOFF ΔdV/dt -0.5 0 0.5 V/µs P_5.5.13 Turn-ON time to VOUT = 90% VS tON 5 28 70 µs P_5.5.14 Turn-OFF time to VOUT = 10% VS tOFF 5 28 70 µs P_5.5.15 -20 5 20 µs P_5.5.16 Turn-ON time to VOUT = 10% VS tON_delay - 17 40 µs P_5.5.17 Turn-OFF time to VOUT = 90% VS tOFF_delay - 17 40 µs P_5.5.18 Turn-ON / OFF matching tOFF - tON Datasheet ΔtSW 17 P_5.5.12 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Power Stage Table 6 Electrical Characteristics: Power Stage (cont’d) VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Switch ON energy EON - 115 - µJ 1) RL = 25 Ω VOUT = 90% VS VS = 36 V P_5.5.19 Switch OFF energy EOFF - 173 - µJ 1) P_5.5.20 RL = 25 Ω VOUT = 10% VS VS = 36 V 1) Not subject to production test, specified by design. 2) Test at TJ = -40°C only Datasheet 18 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Protection Functions 6 Protection Functions The device provides integrated protection functions. These functions are designed to prevent the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are designed for neither continuous nor repetitive operation. 6.1 Loss of Ground Protection In case of loss of the module ground and the load remains connected to ground, the device protects itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN pins. In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the BTF6070-2ERV to ensure switching OFF of channels. In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 15 sketches the situation. ZGND is recommended to be a resistor in series to a diode. VS ZIS(AZ) ZD(AZ) ISx RSENSE DEN RDEN INx RIN VBAT ZDS(AZ) LOGIC IOUT(GND) OUTx ZD ESD GND Loss of ground protection.emf Valve RIS ZGND Figure 15 Loss of Ground Protection with External Components 6.2 Undervoltage Protection Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM range. Figure 16 sketches the undervoltage mechanism. Datasheet 19 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Protection Functions VOUT VS(UV) VS(OP) VS Undervoltage behavior.emf Figure 16 Undervoltage Behavior 6.3 Overvoltage Protection There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 17 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx and DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to overvoltage, the BTF6070-2ERV remains ON. In the case the BTF6070-2ERV was OFF, prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output transistor is still operational and follows the input. If at least one channel is in the ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the short circuit robustness, as well as the maximum energy EAS capability. The values for ZIS(A), ZD(AZ) and ZDS(AZ) are included in the parameter P_6.6.3. ZGND is recommended to be a resistor in series to a diode. ISOV ZIS(AZ) VS ZD(AZ) ISx RSENSE DEN RDEN VBAT ZDS(AZ) LOGIC INx RIN OUTx ZDESD GND Overvoltage protection.emf Valve RIS ZGND Figure 17 Datasheet Overvoltage Protection with External Components 20 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Protection Functions 6.4 Reverse Polarity Protection In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 18 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RIN = 10 kΩ. ZGND is recommended to be a resistor in series to a diode. During reverse polarity, no protection functions are available. Microcontroller protection diodes ZIS(AZ) VS ZD(AZ) ISx RSENSE ZDS(AZ) VDS(REV) DEN RDEN LOGIC INx RIN -VS(REV) IN0 OUTx ZDESD GND IS Reverse polarity.emf Valve ZGND RIS Figure 18 Reverse Polarity Protection with External Components 6.5 Overload Protection In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTF6070-2ERV offers several protection mechanisms. 6.5.1 Current Limitation At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects the current flowing in the DMOS. 6.5.2 Temperature Limitation in the Power DMOS Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF latches the output until the temperature has reached an acceptable value. Figure 19 gives a sketch of the situation. No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior). Datasheet 21 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Protection Functions INx t ILx LOAD CURRENT LIMITATION PHASE IL(x)SC LOAD CURRENT BELOW LIMITATION PHASE IL(NOM) t TDMOSx TJ(SC) Cool Down Phase ΔTJ(SW) TA t tsIS(FAULT) tsIS(OC_blank) IISx IIS(FAULT) IL(NOM) / kILIS 0A VDEN t tsIS(OFF) 0V t Hard start.emf Figure 19 Overload Protection Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. Datasheet 22 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Protection Functions 6.6 Electrical Characteristics for the Protection Functions Table 7 Electrical Characteristics: Protection VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. IOUT(GND) - 0.1 - µA 1)2) VS = 45 V See Figure 15 P_6.6.1 VDS(REV) 400 650 700 mV IL = - 2 A TJ = 150°C See Figure 18 P_6.6.2 VS(AZ) 65 70 75 V ISOV = 5 mA See Figure 17 P_6.6.3 Load current limitation IL5(SC) 9 11 14 A 3) VDS = 10 V See Figure 19 P_6.6.4 Dynamic temperature increase while switching ∆TJ(SW) - 80 - K 4) 3) P_6.6.8 Thermal shutdown temperature TJ(SC) 150 170 4) 200 4) °C 5) See Figure 19 P_6.6.10 Thermal shutdown hysteresis ∆TJ(SC) - 30 - K 2) See Figure 19 P_6.6.11 Loss of Ground Output leakage current while GND disconnected Reverse Polarity Drain source diode voltage during reverse polarity Overvoltage Overvoltage protection Overload Condition 1) 2) 3) 4) 5) See Figure 19 All pins are disconnected except VS and OUT. Not Subject to production test, specified by design Test at TJ = -40°C only Functional test only Test at TJ = +150°C only Datasheet 23 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions 7 Diagnostic Functions For diagnosis purpose, the BTF6070-2ERV provides a combination of digital and analog signals at the IS Pins (IS0 and IS1). These signals are called SENSE. In case the diagnostic is disabled via DEN, pins IS become high impedance. In case DEN is activated, the sense current of both channels is enabled. Table 8 gives the truth table. Table 8 Diagnostic Truth Table DEN IS0 IS1 0 Z Z 1 Sense output 0 IIS(0) Sense output 1 IIS(1) 7.1 IS Pins The BTF6070-2ERV provides a sense signal called IIS at pins ISx. As long as no “hard” failure mode occurs (short circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pins and diagnostic mechanism is described on Figure 20. The accuracy of the sense current depends on temperature and load current. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pins with other devices if these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the IS pin of the supplied device. VS IIS0 = IL0 / kILIS ZIS(AZ) IS0 1 IIS1 = IL1 / kILIS 0 0 FA ULT Channel 0 ZIS(AZ) IIS(FAULT) IIS(FAULT) 1 DEN 1 Figure 20 Datasheet FA ULT Channel 1 IS1 0 0 1 Sense schematics.emf Diagnostic Block Diagram 24 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions 7.2 SENSE Signal in Different Operating Modes Table 9 gives a quick reference for the state of the IS pins during device operation. Table 9 Sense Signal, Function of Operation Mode Operation Mode Input level Channel X DEN Output Level Diagnostic Output at ISx Normal operation OFF H Z Z Short circuit to GND ~ GND Z Overtemperature Z Z Short circuit to VS VS IIS(FAULT) Open Load < VOL(OFF) > VOL(OFF)1) Z IIS(FAULT) Inverse current ~ VINV IIS(FAULT) ~ VS IIS = IL / kILIS Current limitation < VS IIS(FAULT) Short circuit to GND ~ GND IIS(FAULT) Overtemperature TJ(SW) event Z IIS(FAULT) Short circuit to VS VS IIS < IL / kILIS Open Load ~ VS2) IIS < IIS(OL) Inverse current ~ VINV IIS < IIS(OL)3) Underload ~ VS4) IIS(OL) < IIS < IL / kILIS Don’t care Z Normal operation Don’t care 1) 2) 3) 4) ON Don’t care L Stable with additional pull-up resistor. The output current has to be smaller than IL(OL). After maximum tINV. The output current has to be higher than IL(OL). Datasheet 25 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions 7.3 SENSE Signal in the Nominal Current Range Figure 21 and Figure 22 show the current sense as a function of the load current in the power DMOS. Usually a pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 Ω to limit the power losses in the sense circuitry. A typical value is 1.8 kΩ. The blue curve represents the ideal sense current, assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full temperature range at a defined current. 4 3.5 3 I IS [mA] 2.5 2 1.5 1 0.5 0 min/max Sense Current typical Sense Current 0 1 2 3 I [A] L 4 5 6 BTF6070-2EKV BTF6070-2ERV Figure 21 Current Sense for Nominal Load 7.3.1 SENSE Signal Variation as a Function of Temperature and Load Current In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and temperature conditions, the BTF6070-2ERV allows limited derating of the kILIS value, at a given point (TJ= +25°C). This derating is described by the parameter ΔkILIS. Figure 22 shows the behavior of the sense current, assuming one calibration point at nominal load at +25°C. The blue line indicates the ideal kILIS ratio. The red lines indicate the derating on the parameter across temperature and voltage, assuming one calibration point at nominal temperature and nominal battery voltage. The black lines indicate the kILIS accuracy without calibration. Datasheet 26 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions 3000 calibrated k min/max k typical k 2500 ILIS ILIS ILIS kILIS 2000 1500 1000 500 0 1 2 3 4 I [A] L Figure 22 Improved Current Sense Accuracy with One Calibration Point 7.3.2 SENSE Signal Timing 5 6 BTF6070-2EKV BTF6070-2ERV Figure 23 shows the timing during settling and disabling of the SENSE. VINx t ILx tON tOFF tON 90% of IL static t VDEN IISx 90% of IIS static tsIS(ON) t tsIS(LC) tsIS(OFF) tsIS(ON_DEN) t current sense settling disabling time.emf Figure 23 Datasheet Current Sense Settling / Disabling Timing 27 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions 7.3.3 SENSE Signal in Open Load 7.3.3.1 Open Load in ON Diagnostic If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve shows the ideal current sense. IISx IIS(OL) Sense for OL.emf ILx IL(OL) Figure 24 Current Sense Ratio for Low Currents 7.3.3.2 Open Load in OFF Diagnostic For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc... in the application. To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched to the IIS(FAULT). An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can be used as well for short circuit to battery detection, see Chapter 7.3.4. Datasheet 28 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions Vbat SOL VS ROL IIS(FAULT) OL comp. OUTx ISx ILOFF Ileakage GND Rleakage RPD RIS VOL(OFF) ZGND Valve Open Load in OFF.emf Figure 25 Open Load Detection in OFF Electrical Equivalent Circuit 7.3.3.3 Open Load Diagnostic Timing Figure 26 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open load in OFF diagnosis request, otherwise the diagnosis can be wrong. Load is present Open load VIN VOUT t VS-VOL(OFF) RDS(ON) x I L shutdown with load t IOUT IIS tsIS(FAULT_OL_ON_OFF) t tsIS(LC) Error Settling Disabling Time.emf Figure 26 Sense Signal in Open Load Timing 7.3.4 SENSE Signal with OUT in Short Circuit to VS t In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the normal operation will flow through the DMOS of the BTF6070-2ERV, which can be recognized at the current sense signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case, an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation. Datasheet 29 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions Vbat VS IIS(FAULT) VBAT OL comp. ISx OUTx VOL(OFF) GND RIS Valve IS ZGND RSC_VS Short circuit to VS.emf Figure 27 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit 7.3.5 SENSE Signal in Case of Overload An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details. In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected. The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If the DEN pin is activated the SENSE follows the output stage. If no reset of the latch occurs, the device remains in the latching phase and IS(FAULT) at the IS pin, even though the DMOS is OFF. 7.3.6 SENSE Signal in Case of Inverse Current In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and indicate open load in ON state. The unaffected channels indicate normal behavior as long as the IINV current is not exceeding the maximum value specified in Chapter 5.4. Datasheet 30 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions 7.4 Electrical Characteristics Diagnostic Functions Table 10 Electrical Characteristics: Diagnostics VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Unit Note or Test Condition Number Typ. Max. Load Condition Threshold for Diagnostic Open load detection threshold in OFF state VS - VOL(OFF) 4 - 6 V VIN = 0 V VDEN = 4.5 V See Figure 26 P_7.5.1 Open load detection threshold in ON state IL(OL) 5 - 35 mA VIN = VDEN = 4.5 V IIS(OL) = 10 µA See Figure 24 P_7.5.2 Open load detection threshold in ON state (10 mA) IL2(OL) 10 - 50 mA VIN = VDEN = 4.5 V IIS(OL) = 16 µA P_7.5.36 IS pin leakage current when sense is disabled IIS_(DIS) - 0.02 1 µA VIN = 4.5 V VDEN = 0 V IL = IL4 = 4 A P_7.5.4 Sense signal saturation voltage VS - VIS(RANGE) 1.5 - 3.5 V VIN = 0 V VOUT = VS > 10 V VDEN = 4.5 V IIS = 6 mA P_7.5.6 Sense signal maximum current in fault condition IIS(FAULT) 6 12.5 30 mA VIS = VIN = 0 V VOUT = VS > 10 V VDEN = 4.5 V See Figure 20 P_7.5.7 Sense pin maximum voltage VIS(AZ) 65 70 75 V IIS = 5 mA See Figure 20 P_7.5.3 Sense Pin Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition Current sense ratio IL0 = 50 mA kILIS0 -50% 1900 +50% Current sense ratio IL1 = 0.5 A kILIS1 -22% 1730 +22% Current sense ratio IL2 = 1 A kILIS2 -12% 1730 +12% P_7.5.10 Current sense ratio IL3 = 2 A kILIS3 -8% 1730 +8% P_7.5.11 Current sense ratio IL4 = 4 A kILIS4 -7% 1730 +7% P_7.5.12 Datasheet 31 VIN = 4.5 V VDEN = 4.5 V See Figure 21 TJ = -40°C; 150°C P_7.5.8 P_7.5.9 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions Table 10 Electrical Characteristics: Diagnostics (cont’d) VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. 1) kILIS derating with current and temperature ΔkILIS -5 0 +5 % kILIS3 versus kILIS2 See Figure 22 P_7.5.17 kILIS derating with current and temperature (kILIS2 -kILIS1) ΔkILIS -8 0 +8 % 1) P_7.5.37 - - 90 µs 2)3) VDEN = VIN = 0 to 4.5 V P_7.5.18 VS = 28 V RIS = 1.8 kΩ CSENSE < 100 pF RL = 25 Ω See Figure 23 Current sense settling time tsIS(ON_DEN) with load current stable and transition of the DEN - - 10 µs VIN = 4.5 V VDEN = 0 to 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF IL = IL3 = 2 A See Figure 23 Current sense settling time tsIS(LC) to IIS stable after positive input slope on current load - - 20 µs 1) VIN = 4.5 V P_7.5.20 VDEN = 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF IL = IL3 = 2 A to IL = IL4 = 4 A See Figure 23 Current sense settling time tsIS(FAULT_OL_ for open load detection in OFF) OFF state - 90 µs VIN = 0 V VDEN = 0 to 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF VOUT = VS = 28 V P_7.5.22 Current sense settling time tsIS(FAULT_OL_ for open load detection in ON_OFF) ON-OFF transition 200 350 µs 1) P_7.5.23 kILIS2 versus kILIS1 Diagnostic Timing in Normal Condition Current sense settling to 90% of IIS static after positive input slope on both INput and DEN tsIS(ON) P_7.5.19 Diagnostic Timing in Open Load Condition Datasheet 32 VIN = 4.5 to 0V VDEN = 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF VOUT = VS = 28 V See Figure 26 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Diagnostic Functions Table 10 Electrical Characteristics: Diagnostics (cont’d) VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Unit Note or Test Condition Number Typ. Max. Diagnostic Timing in Overload Condition Current sense settling time tsIS(FAULT) for overload detection - - 90 µs 2)3) VIN =VDEN= 0 to 4.5 V VS =13.5 V RIS = 1.8 kΩ CSENSE< 100 pF VDS = 10 V See Figure 19 P_7.5.24 Current sense over current tsIS(OC_blank) blanking time - 350 - µs 1) VIN = VDEN = 4.5 V RIS = 1.8 kΩ CSENSE < 100 pF VDS= 5 V to 0 V See Figure 19 P_7.5.32 Diagnostic disable time DEN transition to IIS < 50% IL / kILIS - - 20 µs 1) P_7.5.25 tsIS(OFF) VIN = 4.5 V VDEN = 4.5 V to 0 V RIS = 1.8 kΩ CSENSE < 100 pF IL = IL3 = 2 A See Figure 23 1) Not subject to production test, specified by design 2) Test at TJ = -40°C only 3) Production test for functionality within parameter limits Datasheet 33 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Input Pins 8 Input Pins 8.1 Input Circuitry The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via an 10 kΩ input resistor. IN GND Figure 28 Input Pin Circuitry 8.2 DEN Pin Input cir cuitry.emf The DEN pin enable and disable the diagnostic functionality of the device. The pins have the same structure as the INput pins, please refer to Figure 28. 8.3 Input Pin Voltage The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a hysteresis is implemented. This ensures a certain immunity to noise. Datasheet 34 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Input Pins 8.4 Electrical Characteristics Table 11 Electrical Characteristics: Input Pins VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Unit Min. Typ. Max. Note or Test Condition Number INput Pins Characteristics Low level input voltage range VIN(L) -0.3 - 0.8 V P_8.4.1 High level input voltage range VIN(H) 2 - 6 V P_8.4.2 Input voltage hysteresis VIN(HYS) - 250 - mV 1) P_8.4.3 Low level input current IIN(L) 1 10 25 µA VIN = 0.8 V P_8.4.4 High level input current IIN(H) 2 10 25 µA VIN = 5.5 V P_8.4.5 Low level input voltage range VDEN(L) -0.3 - 0.8 V - P_8.4.6 High level input voltage range VDEN(H) 2 - 6 V - P_8.4.7 Input voltage hysteresis VDEN(HYS) - 250 - mV 1) P_8.4.8 Low level input current IDEN(L) 1 10 25 µA VDEN = 0.8 V P_8.4.9 High level input current IDEN(H) 2 10 25 µA VDEN = 5.5 V P_8.4.10 DEN Pin 1) Not subject to production test, specified by design Datasheet 35 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Application Information 9 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. VBAT Voltage Regulator OUT T1 VS GND CVDD DZ CVS ROL VS VDD GPIO RDEN DEN GPIO RIN IN0 OUT0 GPIO IN1 RSENSE IS0 RPD RIN ADC IN CSENSE Valve RIS Microcontroller COUT OUT1 CSENSE GND COUT Bulb RIS GND IS1 RSENSE RPD ADC IN RGND D Page-1.emf Figure 29 Application Diagram with BTF6070-2ERV Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Table 12 Bill of Material Reference Value Purpose RIN 10 kΩ Protection of the microcontroller during overvoltage, reverse polarity Guarantee BTF6070-2ERV channels OFF during loss of ground RDEN 10 kΩ Protection of the microcontroller during overvoltage, reverse polarity RPD 47 kΩ Polarization of the output for short circuit to VS detection Improve BTF6070-2ERV immunity to electromagnetic noise ROL 1.5 kΩ Ensures polarization of the BTF6070-2ERV output during open load in OFF diagnostic Datasheet 36 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Application Information Table 12 Bill of Material (cont’d) Reference Value Purpose RIS 1.8 kΩ Sense resistor RSENSE 4.7 kΩ Overvoltage, reverse polarity, loss of ground. Value to be tuned with microcontroller specification. CSENSE 100 pF Sense signal filtering. COUT 10 nF Protection of the device during ESD and BCI T1 Dual NPN/PNP Switch the battery voltage for open load in OFF diagnostic RGND 27 Ω Protection of the BTF6070-2ERV during overvoltage D BAS21 Protection of the BTF6070-2ERV during reverse polarity Z 58 V Zener diode Protection of the device during overvoltage CVS 100 nF Filtering of voltage spikes at the battery line 9.1 Further Application Information • Please contact us to get the pin FMEA • Existing App. Notes • For further information you may visit www.infineon.com Datasheet 37 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Package Outlines Package Outlines 0.25 GAUGE PLANE 1.15 MAX. 1) 8.65±0.1 ... 8 ° 0.05±0.05 STANDOFF 1) 3.9±0.1 (0.2) (0.95) 14x COPLANARITY SEATING PLANE 0° 10 0.67±0.25 6±0.2 2) 14x 14 INDEX MARKING 1 BOTTOM VIEW 8 7 8 14 7 1 2.65±0.1 0.4±0.05 6.4±0.1 1.27 All dimensions are in units mm The drawing is in compliance with ISO 128-30, Projection Method 1[ ] 1) Does not Include plastic or metal protrusion of 0.15 max. per side 2) Dambar protrusion shall be maximum 0.1mm total in excess of width lead width Figure 30 PG-TDSO-141) (Plastic Dual Small Outline Package) (RoHS-Compliant) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Legal Disclaimer for Short-Circuit Capability Infineon disclaims any warranties and liablilities, whether expressed or implied, for any short-circuit failures below the threshold limit. Further information on packages https://www.infineon.com/packages 1) Dimensions in mm Datasheet 38 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Revision History 11 Revision History Version Date Changes Rev. 1.00 2019-04-25 Creation of the document Datasheet 39 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 3.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 4.3.1 4.3.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PCB Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.5 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 13 14 14 15 16 17 6 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 19 20 21 21 21 21 23 7 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.3.1 7.3.3.2 7.3.3.3 7.3.4 7.3.5 7.3.6 7.4 Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IS Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . . SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24 25 26 26 27 28 28 28 29 29 30 30 31 8 Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Datasheet 40 5 5 5 6 Rev. 1.00 2019-04-25 PROFET™+ 24V BTF6070-2ERV 8.1 8.2 8.3 8.4 Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 34 34 35 9 9.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Datasheet 41 Rev. 1.00 2019-04-25 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2019-04-25 Published by Infineon Technologies AG 81726 Munich, Germany © 2019 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference BTF6070-2ERV IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
BTF60702ERVXUMA1 价格&库存

很抱歉,暂时无法提供与“BTF60702ERVXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货