PROFET™+ 12 V
BTS5200-1ENA
Smart High-Side Power Switch Single Channel, 200 mΩ
1
Package
PG-TDSO-8-31
Marking
5200-ENA
Overview
Application
•
Suitable for resistive, inductive and capacitive loads
•
Replaces electromechanical relays, fuses and discrete circuits
•
Most suitable for loads with high inrush current, such as lamps
VBAT
Voltage Regulator
OUT
T1
VS
GND
CVDD
Z
CVS
ROL
VS
VDD
GPIO
RDEN
DEN
Microcontroller
GPIO
RIN
D
OUT
OUT4
IN
RPD
ADC IN
COUT
Bulb
IS
RSENSE
GND
GND
CSENSE
RIS
RGND
Application Diagram with BTS5200-1ENA
Data Sheet
www.infineon.com
1
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Overview
Basic Features
•
Single channel device
•
Very low stand-by current
•
3.3 V and 5 V compatible logic inputs
•
Electrostatic discharge protection (ESD)
•
Optimized electromagnetic compatibility
•
Logic ground independent from load ground
•
Very low power DMOS leakage current in OFF state
•
Green product (RoHS compliant) and AEC qualified
Description
The BTS5200-1ENA is a 200 mΩ single channel Smart High-Side Power Switch, embedded in a PG-TDSO-8-31,
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is
specially designed to drive lamps up to 1x R10W 12V, as well as LEDs in the harsh automotive environment.
Table 1
Product Summary
Parameter
Symbol
Value
Operating voltage range
VS(OP)
5 V ... 28 V
Maximum supply voltage
VS(LD)
41 V
Maximum ON state resistance at TJ = 150°C
RDS(ON)
400 mΩ
Nominal load current
IL(NOM)
1.5 A
Typical current sense ratio
kILIS
300
Minimum current limitation
IL5(SC)
9A
Maximum standby current with load at TJ = 25°C
IS(OFF)
500 nA
Diagnostic Functions
•
Proportional load current sense
•
Open load detection in ON and OFF
•
Short circuit to battery and ground indication
•
Overtemperature switch off detection
•
Stable diagnostic signal during short circuit
•
Enhanced kILIS dependency with temperature and load current
Protection Functions
•
Stable behavior during undervoltage
•
Reverse polarity protection with external components
•
Secure load turn-off during logic ground disconnection with external components
•
Overtemperature protection with restart
•
Overvoltage protection with external components
•
Enhanced short circuit operation
Data Sheet
2
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Block Diagram
2
Block Diagram
VS
voltage sen sor
int ern al
power
supply
driver
logic
IN
DEN
IS
over
temper atu re
gat e cont rol
&
charge p ump
ESD
prot ec tion
Data Sheet
over cur rent
switch limit
load cu rrent sense and
open load detection
OUT
forwar d voltage drop detection
GND
Figure 1
T
clamp for
ind uctive load
Block diagram.emf
Block Diagram for the BTS5200-1ENA
3
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
GND
1
8
OUT
IN
2
7
OUT
DEN
3
6
OUT
IS
4
5
NC
Pinout Sing le.vsd
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Table 2
Pin Definitions and Functions
Pin
Symbol
Function
1
GND
GrouND; Ground connection
2
IN
INput channel; Input signal for channel activation
3
DEN
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device
4
IS
Sense; Sense current of the selected channel
5
NC
Not Connected; No internal connection to the chip
6, 7, 8
OUT
OUTput; Protected high side power output channel1)
Cooling Tab
VS
Voltage Supply; Battery voltage
1) All output pins must be connected together on the PCB. All pins of the output are internally connected together. PCB
traces have to be designed to withstand the maximum current which can flow.
Data Sheet
4
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Pin Configuration
3.3
Voltage and Current Definition
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.
IVS
VS
IIN
IN
VIN
IDEN
VS
VDS
DEN
VDEN
IIS
IS
VIS
IOUT
OUT
GND
VOUT
IGND
voltage and current convention single.vsd
Figure 3
Data Sheet
Voltage and Current Definition
5
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 3
Absolute Maximum Ratings1)
TJ = -40°C to 150°C; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
P_4.1.1
Supply Voltages
Supply voltage
VS
-0.3
–
28
V
–
Reverse polarity voltage
-VS(REV)
0
–
16
V
t < 2 min
P_4.1.2
TA = 25°C
RL ≥ 25 Ω
ZGND= Diode // 1 k Ω
Supply voltage for short
circuit protection
VBAT(SC)
0
–
24
V
P_4.1.3
RSupply = 10 mΩ
LSupply = 5 µH
RECU= 20 mΩ
RCable= 16 mΩ/m
LCable= 1 µH/m,
l = 0 or 5 m
See Chapter 6 and
Figure 28
Supply voltage for Load
dump protection
VS(LD)
–
–
41
V
2)
RI = 2 Ω
RL = 25 Ω
P_4.1.12
nRSC1
–
–
100
k cycles
3)
P_4.1.4
Voltage at INPUT pin
VIN
-0.3
–
–
6
7
V
–
t < 2 min
P_4.1.13
Current through INPUT pin
IIN
-2
–
2
mA
–
P_4.1.14
Voltage at DEN pin
VDEN
-0.3
–
–
6
7
V
–
t < 2 min
P_4.1.15
Current through DEN pin
IDEN
-2
–
2
mA
–
P_4.1.16
Voltage at IS pin
VIS
-0.3
–
VS
V
–
P_4.1.19
Current through IS pin
IIS
-25
–
50
mA
–
P_4.1.20
Load current
| IL |
–
–
IL5(SC)
A
–
P_4.1.21
Power dissipation (DC)
PTOT
–
–
1.8
W
TA = 85°C
TJ < 150°C
P_4.1.22
Short Circuit Capability
Permanent short circuit
IN pin toggles
tON = 300 ms
Input Pins
Sense Pin
Power Stage
Data Sheet
6
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
General Product Characteristics
Table 3
Absolute Maximum Ratings1)
TJ = -40°C to 150°C; (unless otherwise specified)
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
Maximum energy dissipation EAS
Single pulse
–
–
40
mJ
IL(0) = 1 A
TJ(0) = 150°C
VS = 13.5 V
P_4.1.23
Maximum Energy dissipation EAR
repetitive pulse
–
–
50
mJ
1Mio cycles
TA < 105°C
VS = 13.5 V
IL(0) = 350 mA
P_4.1.25
Voltage at power transistor
–
–
41
V
–
P_4.1.26
-20
-150
–
20
20
mA
–
t < 2 min
P_4.1.27
VDS
Currents
Current through ground pin I GND
Temperatures
Junction temperature
TJ
-40
–
150
°C
–
P_4.1.28
Storage temperature
TSTG
-55
–
150
°C
–
P_4.1.30
VESD
-2
–
2
kV
4)
HBM
P_4.1.31
HBM
P_4.1.32
ESD Susceptibility
ESD susceptibility (all pins)
ESD susceptibility OUT Pin
vs. GND and VS connected
VESD
-4
–
4
kV
4)
ESD susceptibility
VESD
-500
–
500
V
5)
CDM
P_4.1.33
ESD susceptibility pin
(corner pins)
VESD
-750
–
750
V
5)
CDM
P_4.1.34
1) Not subject to production test. Specified by design.
2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.
3) EOL tests according to AECQ100-012. Threshold limit for short circuit failures: 100 ppm. Please refer to the legal
disclaimer for short-circuit capability on the Back Cover of this document.
4) ESD susceptibility, Human Body Model “HBM”, according to AEC Q100-002.
5) ESD susceptibility, Charge Device Model “CDM”, according to AEC Q100-011.
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
7
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
General Product Characteristics
4.2
Functional Range
Table 4
Functional Range TJ = -40°C to 150°C; (unless otherwise specified)
Parameter
Nominal operating voltage
Symbol
VNOM
Values
Unit
Min.
Typ.
Max.
8
13.5
18
Note or
Test Condition
Number
V
–
P_4.2.1
2)
Extended operating voltage
VS(OP)
5
–
28
V
VIN = 4.5 V
RL = 25 Ω
VDS < 0.5 V
P_4.2.2
Minimum functional supply
voltage
VS(OP)_MIN
3.8
4.3
5
V
1)
VIN = 4.5 V
RL = 25 Ω
From IOUT = 0 A
to VDS < 0.5 V;
see Figure 15
P_4.2.3
Undervoltage shutdown
VS(UV)
3
3.5
4.1
V
1)
VIN = 4.5 V
P_4.2.4
VDEN = 0 V
RL = 25 Ω
From VDS < 1 V;
to IOUT = 0 A
See Chapter 9.1
and Figure 15
Undervoltage shutdown
hysteresis
VS(UV)_HYS
–
850
–
mV
2)
Operating current channel
active
IGND_1
–
6
9
mA
VIN = 5.5 V
P_4.2.5
VDEN = 5.5 V
Device in RDS(ON)
VS = 18 V
See Chapter 9.1
Standby current for whole
device with load
IS(OFF)
–
0.1
0.5
µA
1)
VS = 18 V
VOUT = 0 V
VIN floating
VDEN floating
TJ ≤ 85°C
P_4.2.7
Maximum standby current for
whole device with load
IS(OFF)_150
–
–
5
µA
VS = 18 V
VOUT = 0 V
VIN floating
VDEN floating
TJ = 150°C
P_4.2.10
Standby current for whole
device with load, diagnostic
active
IS(OFF_DEN)
–
0.6
–
mA
2)
P_4.2.8
–
VS = 18 V
VOUT = 0 V
VIN floating
VDEN = 5.5 V
P_4.2.13
1) Test at TJ = -40°C only
2) Not subject to production test. Specified by design.
Data Sheet
8
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
General Product Characteristics
Note:
Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics
table.
4.3
Thermal Resistance
Table 5
Thermal Resistance
Parameter
Symbol
Junction to Case
Values
RthJC
Junction to Ambient
All channels active
RthJA
Min.
Typ.
Max.
–
6
–
–
39
–
Unit
Note or
Test Condition
Number
K/W
1)
P_4.3.1
K/W
1)2)
P_4.3.2
1) Not subject to production test. Specified by design.
2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power
dissipation at TA=105°C. The product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner
copper layers (2 x 7 µm Cu, 2 x 35 µm Cu). Where applicable, a thermal via array under the exposed pad contacts the
first inner copper layer. Please refer to Figure 4.
4.3.1
PCB Set-Up
70µm
1.5mm
35µm
0.3mm
Figure 4
PCB 2s2p.vsd
2s2p PCB Cross Section
1
2
3
8
7
COOLING
TAB
VS
6
4
5
thermique So8.vsd
Figure 5
Data Sheet
PC Board Top and Bottom View for Thermal Simulation with 600 mm² Cooling Area
9
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
General Product Characteristics
4.3.2
Thermal Impedance
100
ZthJA (K/W)
TAMBIENT = 105°C
10
1
2s2p
1s0p - 600 mm²
1s0p - 300 mm²
1s0p - footprint
0,1
0,0001
Figure 6
0,001
0,01
0,1
1
10
Time (s)
100
1000
Typical Thermal Impedance. 2s2p PCB set-up according Figure 4
150
1s0p - Tambient = 105°C
130
RthJA (K/W)
110
90
70
50
30
0
Figure 7
Data Sheet
100
200
300
Cooling area (mm²)
400
500
600
Typical Thermal Impedance. 2s2p PCB set-up according Figure 4
10
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Power Stage
5
Power Stage
The power stage is built using an N-channel vertical power MOSFET (DMOS) with charge pump.
5.1
Output ON-state Resistance
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The
behavior in reverse polarity is described in Chapter 6.4.
400
320
350
300
280
260
RDS(ON) [mΩ ]
RDS(ON) [mΩ ]
300
250
240
220
200
200
180
160
150
140
100
-40
Figure 8
120
-20
0
20
40
60
80
100
Junction Temperature TJ [°C]
120
140
160
0
5
10
15
20
Supply Voltage VS [V]
25
30
35
Typical ON-state Resistance
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope,
which is optimized in terms of EMC emission.
5.2
Turn ON/OFF Characteristics with Resistive Load
Figure 9 shows the typical timing when switching a resistive load.
IN
VIN_H
VIN_L
t
VOUT
dV/dt ON
dV/dt
t ON
90% VS
tOFF_delay
70% VS
30% VS
10% VS
OFF
tON_delay
tOFF
t
Switching times.vsd
Figure 9
Data Sheet
Switching a Resistive Load Timing
11
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Power Stage
5.3
Inductive Load
5.3.1
Output Clamping
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,
because the inductance intends to continue driving the current. To prevent the destruction of the device by
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless,
the maximum allowed load inductance is limited.
VS
ZDS(AZ)
IN
VDS
LOGIC
IL
VBAT
GND
VIN
OUT
VOUT
L, RL
ZGND
Output_clamp.vsd
Figure 10
Output Clamp
IN
t
V OUT
VS
t
V S-VDS(AZ)
IL
t
Switching an inductance.vsd
Figure 11
Data Sheet
Switching an Inductive Load Timing
12
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Power Stage
5.3.2
Maximum Load Inductance
During demagnetization of inductive loads, energy has to be dissipated in the BTS5200-1ENA. This energy can
be calculated with following equation:
RL ⋅ IL ⎞
L V S – V DS ( AZ-)
E = V DS ( AZ ) ⋅ ------ ⋅ -----------------------------⋅ ln ⎛ 1 – ------------------------------ + IL
⎝
RL
RL
V S – V DS ( AZ )⎠
(5.1)
Following equation simplifies under the assumption of RL = 0 Ω.
VS
2
1
E = --- ⋅ L ⋅ I ⋅ ⎛⎝ 1 – ------------------------------⎞
2
V S – V DS ( AZ )⎠
(5.2)
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for
the maximum allowed energy dissipation as a function of the load current.
EAS [mJ]
100
10
1
0
0,5
1
1,5
2
2,5
3
IL [A]
Figure 12
Data Sheet
Maximum Energy Dissipation Single Pulse, TJ_START = 150°C; VS = 13.5 V
13
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Power Stage
5.4
Inverse Current Capability
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current
IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The
output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that
particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV
should not be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the
channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the
appearance of VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output
state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no
protection functions are available.
VBAT
VS
Gate
driver
Device
logic
INV
Comp.
IL(INV)
VINV
OUT
GND
ZGND
inverse current.vsd
Figure 13
Data Sheet
Inverse Current Circuitry
14
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Power Stage
5.5
Electrical Characteristics Power Stage
Table 6
Electrical Characteristics: Power Stage
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
ON-state resistance
RDS(ON)_150
300
360
400
mΩ
IL = IL4 = 1 A
VIN = 4.5 V
TJ = 150°C
See Figure 8
P_5.5.1
ON-state resistance
RDS(ON)_25
–
200
–
mΩ
1)
P_5.5.21
Nominal load current
IL(NOM)1
–
1.5
–
A
1)
Output voltage drop limitation VDS(NL)
at small load currents
–
10
22
mV
IL = IL0 = 25 mA
P_5.5.4
See Chapter 9.3
TJ = 25°C
TA= 85°C
TJ < 150°C
P_5.5.2
Drain to source clamping
voltage VDS(AZ) = [VS - VOUT]
VDS(AZ)
41
47
53
V
IDS = 20 mA
P_5.5.5
See Figure 11
See Chapter 9.1
Output leakage current
TJ ≤ 85°C
IL(OFF)
–
0.1
0.5
µA
2)
VIN floating
VOUT = 0 V
TJ ≤ 85°C
P_5.5.6
Output leakage current
TJ = 150°C
IL(OFF)_150
–
1
5
µA
VIN floating
VOUT = 0 V
TJ = 150°C
P_5.5.8
Inverse current capability
IL(INV)
–
1
–
A
1)
Vs< VOUTX
See Figure 13
P_5.5.9
Slew rate
30% to 70% VS
dV / dtON
0.20
0.47
1.0
V/µs
Slew rate
70% to 30% VS
-dV / dtOFF
0.20
0.47
1.0
V/µs
P_5.5.11
RL = 25 Ω
VS = 13.5 V
See Figure 9
P_5.5.12
See Chapter 9.1
Slew rate matching
dV/dtON - dV/dtOFF
ΔdV/ dt
-0.15
0
0.15
V/µs
P_5.5.13
Turn-ON time to VOUT = 90% VS
tON
20
70
120
µs
P_5.5.14
Turn-OFF time to VOUT = 10% VS tOFF
20
70
120
µs
P_5.5.15
Turn-ON / OFF matching
tOFF - tON
ΔtSW
-50
0
50
µs
P_5.5.16
Turn-ON time to VOUT = 10% VS
tON_delay
10
40
70
µs
P_5.5.17
Turn-OFF time to VOUT = 90% VS tOFF_delay
10
40
70
µs
P_5.5.18
Data Sheet
15
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Power Stage
Table 6
Electrical Characteristics: Power Stage (cont’d)
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
1)
Number
Switch ON energy
EON
–
70
–
µJ
RL = 25 Ω
P_5.5.19
VOUT = 90% VS
VS = 18 V
See Chapter 9.1
Switch OFF energy
EOFF
–
80
–
µJ
1)
RL = 25 Ω
P_5.5.20
VOUT = 10% VS
VS = 18 V
See Chapter 9.1
1) Not subject to production test, specified by design.
2) Test at TJ = -40°C only
Data Sheet
16
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Protection Functions
6
Protection Functions
The device provides integrated protection functions. These functions are designed to prevent the destruction
of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside”
normal operating range. Protection functions are designed for neither continuous nor repetitive operation.
6.1
Loss of Ground Protection
In case of loss of the module ground and the load remains connected to ground, the device protects itself by
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN
pins.
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the
BTS5200-1ENA to ensure switching OFF the channel.
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches
the situation.
ZGND is recommended to be a resistor in parallel to a diode .
VS
ZIS(AZ)
ZD(AZ)
IS
RSENSE
VBAT
ZDS(AZ)
DEN
RDEN
IN
RIN
IOUT(GND)
LOGIC
OUT
L, RL
ZDESD
GND
RIS
ZGND
Loss of ground protection single.vsd
Figure 14
Loss of Ground Protection with External Components
6.2
Undervoltage Protection
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold
ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as
the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the
switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in
the VNOM range. Figure 15 sketches the undervoltage mechanism.
Data Sheet
17
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Protection Functions
VOUT
undervoltage behavior
.vsd
VS(UV)
Figure 15
Undervoltage Behavior
6.3
Overvoltage Protection
VS
VS(OP)
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor.
Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than
VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a
result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and
DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the
device was ON, prior to overvoltage, the BTS5200-1ENA remains ON. In the case the BTS5200-1ENA was OFF,
prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC)
and below VDS(AZ), the output transistor is still operational and follows the input. If the channel is in the ON
state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage
range. This especially impacts the short circuit robustness, as well as the maximum energy EAS capability. ZGND
is recommended to be a resistor in parallel to a diode.
ISOV
ZIS(AZ)
VS
IN1
ZD(AZ)
IS
RSENSE
VBAT
ZDS(AZ)
DEN
RDEN
IN
RIN
LOGIC
IN0
OUT
ZDESD
GND
RIS
ZGND
L, RL
Overvoltage protection single.vsd
Figure 16
Data Sheet
Overvoltage Protection with External Components
18
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Protection Functions
6.4
Reverse Polarity Protection
In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. The current
in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the
logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor.
Figure 17 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the
device. Resistors RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection
stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended
value for RDEN = RIN = RSENSE = 4.7 kΩ. It is recommended to use a resistor in parallel to a diode in the ground
path.
During reverse polarity, no protection functions are available.
Microcontroller
protection diodes
ZIS(AZ)
VS
ZD(AZ)
IS
RSENSE
ZDS(AZ)
VDS(REV)
DEN
RDEN
LOGIC
IN
RIN
-VS(REV)
IN0
OUT
ZD ESD
GND
IS
RIS
RGND
D
RIS
L, RL
Reverse Po larity parallel.vsd
Figure 17
Reverse Polarity Protection with External Components
6.5
Overload Protection
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTS5200-1ENA
offers several protection mechanisms.
6.5.1
Current Limitation
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which
affects the current flowing in the DMOS.
6.5.2
Temperature Limitation in the Power DMOS
The channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch
OFF latches the output until the temperature has reached an acceptable value. Figure 18 gives a sketch of the
situation.
A retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch
is switched ON again, if the IN pin is still high (restart behavior).
Data Sheet
19
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Protection Functions
IN
t
IL
LOAD CURRENT LIMITATION PHASE
IL(x)SC
LOAD CURRENT BELOW
LIMITATION PHASE
IL(NOM)
t
TDMOS
ΔT J(SW)
TJ(SC)
ΔTJ(SW)
ΔTJ(SW)
TA
tsIS(FAULT)
t
ΔTSTEP
IIS
tsIS(OT_blank)
IIS(FAULT)
IL(NOM) / kILIS
0A
VDEN
t
tsIS(OFF )
0V
t
Hard start.vsd
Figure 18
Overload Protection
Note:
For better understanding, the time scale is not linear. The real timing of this drawing is application
dependant and cannot be described.
Data Sheet
20
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Protection Functions
6.6
Electrical Characteristics for the Protection Functions
Table 7
Electrical Characteristics: Protection
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
IOUT(GND)
–
0.1
–
mA
1)2)
VS = 28 V
See Figure 14
P_6.6.1
VDS(REV)
200
650
700
mV
3)
IL = - 1 A
See Figure 17
P_6.6.2
VS(AZ)
41
47
53
V
ISOV = 5 mA
See Figure 16
P_6.6.3
Load current limitation
IL5(SC)
9
11
14
A
4)
VDS = 5 V
See Figure 18 and
Chapter 9.3
P_6.6.4
Short circuit current during
over temperature toggling
IL(RMS)
-
2
-
A
2)
VIN =4.5V
RSHORT=100 mΩ
LSHORT= 5 µH
P_6.6.12
Dynamic temperature
increase while switching
ΔTJ(SW)
–
80
–
K
5)
See Figure 18
P_6.6.8
Thermal shutdown
temperature
TJ(SC)
150
1705)
2005)
°C
3)
See Figure 18
P_6.6.10
Thermal shutdown
hysteresis
ΔTJ(SC)
–
30
–
K
3) 5)
Loss of Ground
Output leakage current
while GND disconnected
Reverse Polarity
Drain source diode voltage
during reverse polarity
Overvoltage
Overvoltage protection
Overload Condition
1)
2)
3)
4)
5)
See Figure 18
P_6.6.11
All pins are disconnected except VS and OUT.
Not Subject to production test, specified by design
Test at TJ = +150°C only
Test at TJ = -40°C only
Functional test only
Data Sheet
21
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
7
Diagnostic Functions
For diagnosis purpose, the BTS5200-1ENA provides a combination of digital and analog signals at pin IS. These
signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case
DEN is activated, the sense current of the channel is enabled.
7.1
IS Pin
The BTS5200-1ENA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load
at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and
diagnostic mechanism is described on Figure 19. The accuracy of the sense current depends on temperature
and load current. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with
other devices if these devices are using another battery feed. The consequence is that the unsupplied device
would be fed via the IS pin of the supplied device.
VS
FAULT
IIS(FAULT)
IIS = IL / kILIS
ZIS(AZ)
1
1
IS
0
0
DEN
Sense schematic single.vsd
Figure 19
Data Sheet
Diagnostic Block Diagram
22
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
7.2
SENSE Signal in Different Operating Modes
Table 8 gives a quick reference for the state of the IS pin during device operation.
Table 8
Sense Signal, Function of Operation Mode
Operation Mode
Input level Channel X
DEN
Output Level Diagnostic Output
Normal operation
OFF
H
Z
Z
Short circuit to GND
~ GND
Z
Overtemperature
Z
Z
Short circuit to VS
VS
IIS(FAULT)
Open Load
< VOL(OFF)
> VOL(OFF)1)
Z
IIS(FAULT)
Inverse current
~ VINV
IIS(FAULT)
~ VS
IIS = IL/kILIS
Current limitation
< VS
IIS(FAULT)
Short circuit to GND
~ GND
IIS(FAULT)
Overtemperature TJ(SW)
event
Z
IIS(FAULT)
Short circuit to VS
VS
IIS< IL/ kILIS
Open Load
~ VS2)
IIS < IIS(OL)
Inverse current
~ VINV
IIS < IIS(OL)3)
Underload
~ VS4)
IIS (OL)< IIS < IL / kILIS
Don’t care
Z
Normal operation
Don’t care
1)
2)
3)
4)
ON
Don’t care
L
Stable with additional pull-up resistor.
The output current has to be smaller than IL(OL).
After maximum tINV.
The output current has to be higher than IL(OL).
Data Sheet
23
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
7.3
SENSE Signal in the Nominal Current Range
Figure 20 shows the current sense as a function of the load current in the power DMOS. Usually, a pull-down
resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 Ω to limit the power
losses in the sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal sense current,
assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full
temperature range at a defined current.
6
5
IIS [mA]
4
3
2
1
min/max Sense Current
typical Sense Current
0
0
Figure 20
Data Sheet
0.2
0.4
0.6
0.8
IL [A]
1
1.2
1.4
1.6
BTS5200-1EJA
Current Sense for Nominal Load
24
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
7.3.1
SENSE Signal Variation as a Function of Temperature and Load Current
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement,
a calibration on the application is possible. To avoid multiple calibration points at different load and
temperature conditions, the BTS5200-1ENA allows limited derating of the kILIS value, at a given point
(IL3; TJ = +25°C). This derating is described by the parameter ΔkILIS. Figure 21 shows the behavior of the sense
current, assuming one calibration point at nominal load at +25°C.
The blue line indicates the ideal kILIS ratio.
The red lines indicate the derating on the parameter across temperature and voltage, assuming one
calibration point at nominal temperature and nominal battery voltage.
The black lines indicate the kILIS accuracy without calibration.
500
calibrated k ILIS
min/max k ILIS
450
typical k ILIS
400
k ILIS
350
300
250
200
150
0
0.2
0.4
0.6
0.8
IL [A]
1
1.2
1.4
1.6
BTS5200-1EJA
Figure 21
Improved Current Sense Accuracy with One Calibration Point
7.3.2
SENSE Signal Timing
Figure 22 shows the timing during settling and disabling of the SENSE.
V IN
t
IL
tON
tOFF
tON
90% of
IL static
t
VDEN
IIS
tsIS(ON)
90% of
IIS static
t
tsIS(LC)
tsIS(OFF)
tsIS(ON_DEN)
t
current sense settling disabling time .vsd
Figure 22
Data Sheet
Current Sense Settling / Disabling Timing
25
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
7.3.3
SENSE Signal in Open Load
7.3.3.1
Open Load in ON Diagnostic
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the
power DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE
current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 23
shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve
shows the ideal current sense.
I IS
IIS(OL)
IL
IL(OL)
Sense for OL .vsd
Figure 23
Current Sense Ratio for Low Currents
7.3.3.2
Open Load in OFF Diagnostic
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to
be taken into account. Figure 24 gives a sketch of the situation. Ileakage defines the leakage current in the
complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion,
etc... in the application.
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized
by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is
switched to the IIS(FAULT).
An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can
be used as well for short circuit to battery detection, see Chapter 7.3.4.
Data Sheet
26
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
Vbat
SOL
VS
IIS(FAULT)
ROL
OL
comp.
OUT
IS
ILOFF
Ileakage
GND
ZGND
RIS
VOL(OFF)
RPD
Rleakage
Open Load in OFF.vsd
Figure 24
Open Load Detection in OFF Electrical Equivalent Circuit
7.3.3.3
Open Load Diagnostic Timing
Figure 25 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please
note that a delay tsIS(FAULT_OL_ON_OFF) has to be respected after the falling edge of the input, when applying an
open load in OFF diagnosis request, otherwise the diagnosis can be wrong.
Load is present
Open load
VIN
VOUT
t
VS-V OL(OFF)
RDS(ON) x IL
shutdown with load
t
IOUT
IIS
tsIS(FAULT_OL_ON_OFF)
t
tsIS(LC)
Error Settling Disabling Time.vsd
Figure 25
Sense Signal in Open Load Timing
7.3.4
SENSE Signal in Short Circuit to VS
t
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the
normal operation will flow through the DMOS of the BTS5200-1ENA, which can be recognized at the current
sense signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In
that case, an external resistor to ground RSC_VS is required. Figure 26 gives a sketch of the situation.
Data Sheet
27
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
Vbat
VS
IIS(FAULT)
VBAT
OL
comp.
IS
OUT
GND
RIS
ZGND
RSC_VS
VOL(OFF)
Short circuit to Vs.vsd
Figure 26
Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit
7.3.5
SENSE Signal in Case of Overload
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or
the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the
thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.
The device has a thermal restart behavior, such that when the overtemperature or the exceed dynamic
temperature condition has disappeared, the DMOS is reactivated if the IN is still at logic level one. If the DEN
pin is activated the SENSE is not toggling with the resstart mechanism and remains to IIS(FAULT).
7.3.6
SENSE Signal in Case of Inverse Current
In the case of inverse current, the sense signal will indicate open load in OFF state and indicate open load in
ON state.
Data Sheet
28
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
7.4
Electrical Characteristics Diagnostic Function
Table 9
Electrical Characteristics: Diagnostics
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
Load Condition Threshold for Diagnostic
Open load detection
threshold in OFF state
VS- VOL(OFF)
4
–
6
V
VIN = 0 V
VDEN = 4.5 V
See Figure 25
P_7.5.1
Open load detection
threshold in ON state
IL(OL)
5
–
15
mA
VIN = VDEN = 4.5 V
IIS(OL) = 33 μA
See Figure 23
See Chapter 9.4
P_7.5.2
–
0.02
1
µA
VIN = 4.5 V
VDEN = 0 V
IL = IL4 = 1 A
P_7.5.4
Sense Pin
IS pin leakage current when IIS_(DIS)
sense is disabled
Sense signal saturation
voltage
VS- VIS (RANGE) 1
–
3.5
V
2)
VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
IIS = 6 mA
See Chapter 9.4
P_7.5.6
Sense signal maximum
current in fault condition
IIS(FAULT)
6
15
35
mA
VIS = VIN = VDSEL = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
See Figure 19
See Chapter 9.4
P_7.5.7
41
47
53
V
IIS = 5 mA
See Figure 19
P_7.5.3
Sense pin maximum voltage VIS(AZ)
VS to IS
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition
Current sense ratio
IL0 = 10 mA
kILIS0
-50%
330
+50%
Current sense ratio
IL1 = 0.05 A
kILIS1
-40%
300
+40%
Current sense ratio
IL2 = 0.2 A
kILIS2
-15%
300
+15%
P_7.5.10
Current sense ratio
IL3 = 0.5 A
kILIS3
-11%
300
+11%
P_7.5.11
Current sense ratio
IL4 = 1 A
kILIS4
-9%
300
+9%
P_7.5.12
kILIS derating with current
and temperature
ΔkILIS
-5
0
+5
Data Sheet
29
VIN = 4.5 V
VDEN = 4.5 V
See Figure 20
TJ = -40°C; 150°C
%
2)
kILIS3 versus kILIS2
See Figure 21
P_7.5.8
P_7.5.9
P_7.5.17
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
Table 9
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
Current sense settling time tsIS(ON)
to kILIS function stable after
positive input slope on both
INput and DEN
–
–
150
µs
VDEN = VIN = 0 to 4.5 V P_7.5.18
VS = 13.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 0.5 A
See Figure 22
Current sense settling time tsIS(ON_DEN)
with load current stable and
transition of the DEN
–
–
10
µs
VIN = 4.5 V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 =0.5 A
See Figure 22
P_7.5.19
Current sense settling time
to IIS stable after positive
input slope on current load
–
–
15
µs
VIN = 4.5 V
VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL= IL2 = 0.2 A to
IL = IL3= 0.5 A
See Figure 22
P_7.5.20
–
50
µs
VIN = 0V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VOUT = VS = 13.5 V
See Figure 25
P_7.5.22
200
–
µs
2)
VIN= 4.5 to 0 V
VDEN =4.5 V
RIS = 1.2 kΩ
CSENSE< 100 pF
VOUT= VS = 13.5 V
P_7.5.23
–
150
µs
1)
Diagnostic Timing in Normal Condition
tsIS(LC)
2)
Diagnostic Timing in Open Load Condition
Current sense settling time
to IIS stable for open load
detection in OFF state
Current sense settling time
to IIS stable for open load
detection in ON-OFF
transition
tsIS(FAULT_OL_ –
OFF)
tsIS(FAULT_OL_ –
ON_OFF)
Diagnostic Timing in Overload Condition
Current sense settling time
to IIS stable for overload
detection
Data Sheet
tsIS(FAULT)
–
30
VIN = VDEN = 0 to 4.5 V P_7.5.24
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V
See Figure 18
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Diagnostic Functions
Table 9
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
Current sense over
temperature blanking time
tsIS(OT_blank)
–
350
–
µs
2)
VIN = VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V to 0 V
See Figure 18
P_7.5.32
Diagnostic disable time
DEN transition to
IIS < 50% IL /kILIS
tsIS(OFF)
–
–
20
µs
VIN = 4.5 V
VDEN = 4.5 V to 0 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 =0.5 A
See Figure 22
P_7.5.25
1) Test at TJ = -40°C only
2) Not subject to production test, specified by design
Data Sheet
31
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Input Pins
8
Input Pins
8.1
Input Circuitry
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to
voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin
is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state.
The input circuitry is compatible with PWM applications. Figure 27 shows the electrical equivalent input
circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not
module ground) via an 4.7 kΩ input resistor.
IN
GND
Figure 27
Input Pin Circuitry
8.2
DEN Pin
Input circuitry .vsd
The DEN pins enable and disable the diagnostic functionality of the device. This pin has the same structure as
the INput pin, please refer to Figure 27.
8.3
Input Pin Voltage
The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set
by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and
depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a
hysteresis is implemented. This ensures a certain immunity to noise.
Data Sheet
32
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Input Pins
8.4
Electrical Characteristics
Table 10
Electrical Characteristics: Input Pins
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
INput Pin Characteristics
Low level input voltage
range
VIN(L)
-0.3
–
0.8
V
See Chapter 9.5 P_8.4.1
High level input voltage
range
VIN(H)
2
–
6
V
See Chapter 9.5 P_8.4.2
Input voltage hysteresis
VIN(HYS)
–
250
–
mV
1)
Low level input current
IIN(L)
1
10
25
µA
VIN = 0.8 V
High level input current
IIN(H)
2
10
25
µA
VIN= 5.5 V
P_8.4.5
See Chapter 9.5
Low level input voltage
range
VDEN(L)
-0.3
–
0.8
V
–
P_8.4.6
High level input voltage
range
VDEN(H)
2
–
6
V
–
P_8.4.7
Input voltage hysteresis
VDEN(HYS)
–
250
–
mV
1)
P_8.4.8
Low level input current
IDEN(L)
1
10
25
µA
VDEN= 0.8 V
P_8.4.9
High level input current
IDEN(H)
2
10
25
µA
VDEN = 5.5 V
P_8.4.10
P_8.4.3
See Chapter 9.5
P_8.4.4
DEN Pin
1) Not subject to production test, specified by design
Data Sheet
33
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Characterization Results
9
Characterization Results
The characterization have been performed on 3 lots, with 3 devices each. Characterization have been
performed at 8 V, 13.5 V and 18 V over temperature range. When no dependency to voltage is seen, only one
curve (13.5 V) is sketched.
9.1
General Product Characteristics
P_4.2.4
6,00
6,00
5,50
5,50
5,00
5,00
4,50
4,50
[V]
[V]
P_4.2.3
4,00
4,00
3,50
3,50
3,00
3,00
2,50
2,50
2,00
2,00
-50
-25
0
25
50
75
100
125
-50
150
-25
0
25
Temperature [°C]
50
75
100
Minimum Functional Supply Voltage
VS(OP)_MIN = f(TJ)
Undervoltage Threshold VS(UV) = f(TJ)
P_4.2.5
P_4.2.7, P_4.2.10
3,00
1,20
2,50
1,00
2,00
0,80
[µA]
[mA]
125
150
125
150
Temperature [°C]
1,50
0,60
0,40
1,00
8V
0,50
0,20
13.5V
18V
0,00
0,00
-50
-25
0
25
50
75
100
125
150
-50
Current Consumption for Whole Device with Load
Channel Active IGND_1 = f(TJ;VS)
Data Sheet
-25
0
25
50
75
100
Temperature [°C]
Temperature [°C]
Standby Current for Whole Device with Load
IS(OFF)= f(TJ;VS)
34
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Characterization Results
9.2
Power Stage
P_5.5.4
P_5.5.5
18,00
50,00
16,00
49,00
48,00
14,00
47,00
12,00
[V]
[mV]
46,00
10,00
45,00
8,00
44,00
6,00
43,00
4,00
42,00
2,00
41,00
0,00
40,00
-50
-25
0
25
50
75
100
125
150
-50
-25
0
25
50
75
100
125
150
Temperature [°C]
Temperature [°C]
Output Voltage Drop Limitation at Low Load Drain to Source Clamp Voltage VDS(AZ) = f(TJ)
Current VDS(NL) = f(TJ)
P_5.5.12
1,00
1,00
0,90
0,90
0,80
0,80
0,70
0,70
0,60
0,60
[V\µs]
[V\µs]
P_5.5.11
0,50
0,40
0,50
0,40
0,30
0,30
8V
0,20
8V
0,20
13.5V
0,10
13.5V
0,10
18V
0,00
18V
0,00
-50
-25
0
25
50
75
100
125
150
-50
-25
0
25
50
75
100
125
150
Temperature [°C]
Temperature [°C]
Slew Rate at Turn ON
dV/dtON = f(TJ;VS), RL = 25 Ω
Slew Rate at Turn OFF
-dV/dtOFF = f(TJ;VS), RL = 25 Ω
P_5.5.14
P_5.5.15
80,00
70,00
70,00
60,00
60,00
50,00
50,00
[µs]
90,00
80,00
[µs]
90,00
40,00
40,00
30,00
30,00
20,00
20,00
8V
13.5V
10,00
8V
13.5V
10,00
18V
18V
0,00
0,00
-50
-25
0
25
50
75
100
125
150
-50
Temperature [°C]
Turn ON tON = f(TJ;VS), RL = 25 Ω
Data Sheet
-25
0
25
50
75
100
125
150
Temperature [°C]
Turn OFF tOFF = f(TJ;VS), RL = 25 Ω
35
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Characterization Results
P_5.5.20
100,00
100,00
90,00
90,00
80,00
80,00
70,00
70,00
60,00
60,00
[µJ]
[µJ]
P_5.5.19
50,00
40,00
50,00
40,00
30,00
8V
30,00
8V
13.5V
20,00
13.5V
20,00
18V
18V
10,00
10,00
0,00
0,00
-50
-25
0
25
50
75
100
125
150
-50
Temperature [°C]
0
25
50
75
100
125
150
Temperature [°C]
Switch ON Energy EON = f(TJ;VS), RL = 25 Ω
9.3
-25
Switch OFF Energy EOFF = f(TJ;VS), RL = 25 Ω
Protection Functions
P_6.6.4
16,00
14,00
12,00
[A]
10,00
8,00
6,00
4,00
2,00
0,00
-50
-25
0
25
50
75
100
125
150
Temperature [°C]
Overload Condition in the Low Voltage Area
IL5(SC) = f(TJ)
Data Sheet
36
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Characterization Results
9.4
Diagnostic Mechanism
P_7.5.2
14,00
1,60
1,40
12,00
1,20
10,00
1,00
[mA]
[µA]
8,00
0,80
6,00
0,60
4,00
0,40
8V
2,00
13.5V
0,20
18V
0,00
0,00
-50
-25
0
25
50
75
100
125
-50
150
-25
0
25
Temperature [°C]
50
75
100
125
Current Sense at no Load
IIS = f(TJ;VS), IL = 0 A
Open Load Detection ON State Threshold
IL(OL)= f(TJ)
P_7.5.3
P_7.5.7
50,00
30,00
49,00
28,00
48,00
26,00
47,00
24,00
46,00
22,00
[mA]
[V]
150
Temperature [°C]
45,00
20,00
44,00
18,00
43,00
16,00
42,00
14,00
41,00
12,00
40,00
10,00
-50
-25
0
25
50
75
100
125
150
-50
Temperature [°C]
Sense Signal Maximum Voltage
VIS(AZ) = f(TJ)
Data Sheet
-25
0
25
50
75
100
125
150
Temperature [°C]
Sense Signal Maximum Current in Fault Condition
IIS(FAULT)= f(TJ)
37
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Characterization Results
9.5
Input Pins
P_8.4.1
P_8.4.2
1,80
1,50
1,40
1,70
1,30
1,60
1,20
1,50
[V]
[V]
1,10
1,00
0,90
1,40
1,30
0,80
1,20
0,70
1,10
0,60
0,50
1,00
-50
-25
0
25
50
75
100
125
-50
150
-25
0
25
Temperature [°C]
50
75
100
125
150
75
100
125
150
Temperature [°C]
Input Voltage Threshold
VIN(L)= f(TJ;VS)
Input Voltage Threshold
VIN(H)= f(TJ;VS)
P_8.4.3
P_8.4.5
20,00
600,00
18,00
500,00
16,00
14,00
400,00
[µA]
[mV]
12,00
300,00
10,00
8,00
200,00
6,00
4,00
8V
100,00
13.5V
2,00
18V
0,00
0,00
-50
-25
0
25
50
75
100
125
150
-50
Input Voltage Hysteresis
VIN(HYS)= f(TJ;VS)
Data Sheet
-25
0
25
50
Temperature [°C]
Temperature [°C]
Input Current High Level
IIN(H)= f(TJ)
38
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Application Information
10
Application Information
Note:
The following information is given as a hint for the implementation of the device only and shall not
be regarded as a description or warranty of a certain functionality, condition or quality of the device.
VBAT
Voltage Regulator
OUT
T1
VS
GND
CVDD
Z
CVS
ROL
VS
VDD
GPIO
RDEN
DEN
Microcontroller
GPIO
RIN
D
OUT
OUT4
IN
COUT
RPD
ADC IN
Bulb
IS
RSENSE
GND
GND
CSENSE
RIS
RGND
Figure 28
Application Diagram with BTS5200-1ENA
Note:
This is a very simplified example of an application circuit. The function must be verified in the real
application.
Table 11
Bill of Material
Reference Value
Purpose
RIN
4.7 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
Guarantee BTS5200-1ENA channel is OFF during loss of ground
RDEN
4.7 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
RPD
47 kΩ
Polarization of the output for short circuit to VS detection
Improve BTS5200-1ENA immunity to electomagnetic noise
ROL
1.5 kΩ
Ensures polarization of the BTS5200-1ENA output during open load in OFF
diagnostic
Data Sheet
39
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Application Information
Table 11
Bill of Material (cont’d)
Reference Value
Purpose
RIS
1.2 kΩ
Sense resistor
RSENSE
4.7 kΩ
Overvoltage, reverse polarity, loss of ground. Value to be tuned with
microcontroller specification.
CSENSE
100 pF
Sense signal filtering.
COUT
10 nF
Protection of the device during ESD and BCI
RGND
1 kΩ
Protection of the BTS5200-1ENA during overvoltage
D
BAS21
Protection of the BTS5200-1ENA during reverse polarity
Z
36 V Zener diode Protection of the device during overvoltage
CVS
100 nF
Filtering of voltage spikes at the battery line
T1
BC 807
Switch the battery voltage for open load in OFF diagnostic
10.1
Further Application Information
•
Please contact us to get the pin FMEA
•
Existing App. Notes
•
For further information you may visit www.infineon.com/profet
Data Sheet
40
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Package Outlines
11
Package Outlines
Figure 29
PG-TDSO-8-31 (Plastic Dual Small Outline Package) (RoHS-Compliant)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
41
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Revision History
12
Revision History
Version
Date
Changes
1.0
2018-05-14
Creation of the document
Data Sheet
42
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3
3.1
3.2
3.3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
4.3.1
4.3.2
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
PCB Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
11
11
12
12
13
14
15
6
6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
17
17
18
19
19
19
19
21
7
7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.5
7.3.6
7.4
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
22
23
24
25
25
26
26
26
27
27
28
28
29
8
8.1
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Data Sheet
43
4
4
4
5
Rev. 1.0
2018-05-14
PROFET™+ 12 V
BTS5200-1ENA
8.2
8.3
8.4
DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9
9.1
9.2
9.3
9.4
9.5
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
34
34
35
36
37
38
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Data Sheet
44
Rev. 1.0
2018-05-14
Please read the Important Notice and Warnings at the end of this document
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-05-14
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
BTS5200-1ENA
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
Legal Disclaimer for Short-Circuit Capability
Infineon disclaims any warranties and liablilities,
whether expressed or implied, for any short-circuit
failures below the threshold limit.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.