0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTS70061EPZXUMA1

BTS70061EPZXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOIC14_150MIL_EP

  • 描述:

    PROFET PG-TSDSO-14

  • 数据手册
  • 价格&库存
BTS70061EPZXUMA1 数据手册
BTS7006-1EPZ PROFET™ +2 12V 1x 6.6 mΩ Smart High-Side Power Switch 1 Package PG-TSDSO-14 Marking 7006-1Z Overview Potential Applications • Suitable for driving 12.5 A resistive, inductive and capacitive loads • Replaces electromechanical relays, fuses and discrete circuits • Suitable for driving glow plug, heating loads, DC motor and for power distribution • Applications with extended or/and high temperature mission profiles • Under the hood applications requiring an extended junction temperature range, up to 175 °C • Suitable for powertrain systems such as transmission applications VBAT ZWIRE Optional Optional CVS Logic Supply CVSGND GPIO RDEN DEN PROFET™ +2 12V Microcontroller ADC OUT RADC RIS_PROT RPD RIN COUT0 ZWIRE CVS2 GPIO ROL GND VS IN VDD DZ2 T1 RGND IS DZ1 ZLOAD* CSENSE RSENSE VSS Logic GND Power GND Optional Chassis GND *See Chapter 1 „Potential Applications“ App_1CH_INTD IO_CVG.emf Figure 1 Data Sheet BTS7006-1EPZ Application Diagram. Further information in Chapter 10 www.infineon.com 1 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Overview Basic Features • High-Side Switch with Diagnosis and Embedded Protection • Part of PROFET™ +2 12V Family • ReverseON for low power dissipation in Reverse Polarity • Switch ON capability while Inverse Current condition (InverseON) • Green Product (RoHS compliant) Protection Features • Absolute and dynamic temperature limitation with controlled reactivation • Overcurrent protection (tripping) with Intelligent Latch • Undervoltage shutdown • Overvoltage protection with external components (as shown in Figure 37) Diagnostic Features • Proportional load current sense • Open Load in ON and OFF state • Short circuit to ground and battery Product Validation Qualified for automotive applications. Product validation according to AEC-Q100 Grade 0. Description The BTS7006-1EPZ is a Smart High-Side Power Switch, providing protection functions and diagnosis. Table 1 Product Summary Parameter Symbol Values Minimum Operating voltage VS(OP) 4.1 V Minimum Operating voltage (cranking) VS(UV) 3.1 V Maximum Operating voltage VS 28 V Minimum Overvoltage protection (TJ ≥ 25 °C) VDS(CLAMP)_25 35 V Maximum current in OFF mode (TJ ≤ 85 °C) IVS(OFF)_85 0.4 µA Maximum operative current IGND(ON_D) 3 mA Typical ON-state resistance (TJ = 25 °C) RDS(ON)_25 6.6 mΩ Maximum ON-state resistance (TJ = 150 °C) RDS(ON)_150 12 mΩ Maximum ON-state resistance (TJ = 175 °C) RDS(ON)_175 13.5 mΩ Nominal load current (TA = 85 °C) IL(NOM) 12.5 A Nominal load current (TA = 125 °C) IL(NOM)_125 8A Minimum overload detection current IL(OVL0)_-40 81 A Typical current sense ratio at IL = IL(NOM) kILIS 17700 Data Sheet 2 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Block Diagram and Terms 2 Block Diagram and Terms 2.1 Block Diagram VS Supply Voltage Monitoring Overvoltage Protection Internal Power Supply Channel Voltage Sensor Intelligent Restart Control IS Overtemperature SENSE Output Driver Logic IN DEN Gate Control + Chargepump Overvoltage Clamping T Overcurrent Protection ReverseON InverseON ESD Protection + Input Logic OUT Load Current Sense Output Voltage Limitation Internal Reverse Polarity Protection GND Circuitry GND Figure 2 Data Sheet Block_HE AT1ch.emf Block Diagram of BTS7006-1EPZ 3 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Block Diagram and Terms 2.2 Terms Figure 3 shows all terms used in this data sheet, with associated convention for positive values. IVS VSIS IIN VS VDS IN IDEN DEN VS OUT VIN VDEN IIS IS IL VOUT GND VIS IGND Terms_1CH.emf Figure 3 Data Sheet Voltage and Current Convention 4 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Pin Configuration 3 Pin Configuration 3.1 Pin Assignment GND IN DEN IS n.c. n.c. n.c. 1 14 2 13 3 12 VS 4 11 5 10 6 9 exposed pad (bottom) 7 8 OUT OUT OUT n.c. OUT OUT OUT PinOut_PROF ET1ch_PDH.emf Figure 4 Data Sheet Pin Configuration 5 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Pin Configuration 3.2 Pin Definitions and Functions Table 2 Pin Definition Pin Symbol Function EP VS (exposed pad) Supply Voltage Battery voltage 1 GND Ground Signal ground 2 IN Input Channel Digital signal to switch ON the channel (“high” active) If not used: connect to GND pin or to module ground with resistor RIN = 4.7 kΩ 3 DEN Diagnostic Enable Digital signal to enable device diagnosis (“high” active) and to clear the protection latch of channel If not used: connect to GND pin or to module ground with resistor RDEN = 4.7 kΩ 4 IS SENSE current output Analog/digital signal for diagnosis If not used: left open 5-7, 11 n.c. Not connected, internally not bonded 8-10, 1214 OUT Output Protected high-side power output channel1) 1) All output pins of the channel must be connected together on the PCB. All pins of the output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow. Data Sheet 6 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings - General Table 3 Absolute Maximum Ratings1) TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition Supply pins Power Supply Voltage VS -0.3 – 28 V – P_4.1.0.1 Load Dump Voltage VBAT(LD) – – 35 V suppressed Load Dump acc. to ISO16750-2 (2010). Ri = 2 Ω P_4.1.0.3 Supply Voltage for Short Circuit VBAT(SC) Protection 0 – 24 V Setup acc. to AEC-Q100-012 P_4.1.0.25 Reverse Polarity Voltage -VBAT(REV) – – 16 V t ≤ 2 min TA = +25 °C Setup as described in Chapter 10 P_4.1.0.5 Current through GND Pin IGND -50 – 50 mA RGND according P_4.1.0.9 to Chapter 10 Logic & control pins (Digital Input = DI) DI = IN, DEN Current through DI Pin IDI -1 – 2 mA 2) P_4.1.0.14 Current through DI Pin Reverse Battery Condition IDI(REV) -1 – 10 mA 2) P_4.1.0.36 Voltage at IS Pin VIS -1.5 – VS Current through IS Pin IIS -25 – IIS(SAT),M mA t ≤ 2 min IS pin V IIS = 10 μA P_4.1.0.16 – P_4.1.0.18 AX Temperatures Junction Temperature TJ -40 – 175 °C – P_4.1.0.19 Storage Temperature TSTG -55 – 175 °C – P_4.1.0.20 Data Sheet 7 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V General Product Characteristics Table 3 Absolute Maximum Ratings1) (continued) TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Number Test Condition Min. Typ. Max. -2 – 2 kV HBM3) P_4.1.0.21 ESD Susceptibility OUT vs GND VESD(HBM)_OU -4 and VS connected (HBM) T – 4 kV HBM3) P_4.1.0.22 ESD Susceptibility ESD Susceptibility all Pins (HBM) VESD(HBM) ESD Susceptibility all Pins (CDM) VESD(CDM) -500 – 500 V CDM4) P_4.1.0.23 ESD Susceptibility Corner Pins (CDM) (pins 1, 7, 8, 14) VESD(CDM)_CR -750 – 750 V CDM4) P_4.1.0.24 1) 2) 3) 4) N Not subject to production test - specified by design. Maximum VDI to be considered for Latch-Up tests: 5.5 V. ESD susceptibility, Human Body Model “HBM”, according to AEC Q100-002. ESD susceptibility, Charged Device Model “CDM”, according to AEC Q100-011. Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 8 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V General Product Characteristics 4.2 Absolute Maximum Ratings - Power Stages 4.2.1 Power Stage - 6 mΩ Table 4 Absolute Maximum Ratings1) TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition Maximum Energy Dissipation Single Pulse EAS – – 95 mJ IL = 2*IL(NOM) TJ(0) = 150 °C VS = 28 V P_4.2.12.1 Maximum Energy Dissipation Repetitive Pulse EAR – – 24 mJ IL = IL(NOM) TJ(0) = 85 °C VS = 13.5 V 1M cycles P_4.2.12.2 Maximum Energy Dissipation Repetitive Pulse EAR_125 – – 24 mJ IL = IL(NOM)_125 TJ(0) = 125 °C VS = 13.5 V 1M cycles P_4.2.12.4 Load Current |IL| – – IL(OVL0), A – P_4.2.12.3 MAX 1) Not subject to production test - specified by design. 4.3 Functional Range Table 5 Functional Range - Supply Voltage and Temperature1) Parameter Supply Voltage Range for Normal Operation Symbol VS(NOR) Lower Extended Supply VS(EXT,LOW) Voltage Range for Operation Data Sheet Values Unit Note or Test Condition Number Min. Typ. Max. 6 13.5 18 V – P_4.3.0.1 3.1 – 6 V 2)3) P_4.3.0.2 (parameter deviations possible) 9 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V General Product Characteristics Table 5 Functional Range - Supply Voltage and Temperature1) (continued) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. VS(EXT,CVG) Supply Voltage Range reached after Overload Protection activation leading to “Undervoltage on VS” condition – – 3.1 V CVSGND is required when the Overload Protection is triggered (see Chapter 8.2) and the observed number of retries is different from what specified in Chapter 8.3.1 P_4.3.0.7 Upper Extended Supply VS(EXT,UP) Voltage Range for Operation 18 – 28 V 3) P_4.3.0.3 Junction Temperature -40 (parameter deviations possible) TJ – 175 °C – P_4.3.0.5 1) Not subject to production test - specified by design. 2) In case of VS voltage decreasing: VS(EXT,LOW),MIN = 3.1 V. In case of VS voltage increasing: VS(EXT,LOW),MIN = 4.1 V. 3) Protection functions still operative. Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics tables. 4.4 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 6 Thermal Resistance1) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Thermal Characterization Parameter Junction-Top ΨJTOP – 3 5 K/W 2) P_4.4.0.1 Thermal Resistance Junction-to-Case RthJC – 2.1 3.5 K/W 2) P_4.4.0.2 Thermal Resistance Junction-to-Ambient RthJA – simulated at exposed pad 32.9 – K/W 2) P_4.4.0.3 1) Not subject to production test - specified by design. 2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Simulation done at TA = 105°C, PDISSIPATION = 1 W. Data Sheet 10 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V General Product Characteristics 4.4.1 PCB Setup 1,5 mm 70 µm modeled (traces, cooling area) 70 µm, 5% metalization* *: means percentual Cu metalization on each layer PCB_Zth_1s0p.emf Figure 5 1s0p PCB Cross Section 70 µm modeled (traces) 1,5 mm 35 µm, 90% metalization* 35 µm, 90% metalization* 70 µm, 5% metalization* *: means percentual Cu metalization on each layer PCB_Zth_2s2p.emf Figure 6 2s2p PCB Cross Section PCB 1s0p + 600 mm2 cooling PCB 2s2p / 1s0p footprint PCB_sim _setup_TSDSO14.emf Figure 7 PCB setup for thermal simulations PCB_2s2p_vias_TSDSO14.emf Figure 8 Data Sheet Thermal vias on PCB for 2s2p PCB setup 11 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V General Product Characteristics 4.4.2 Thermal Impedance BTS7006-1EPx 100 ZthJA (K/W) TA = 105°C 10 1 2s2p 1s0p - 600 mm² 1s0p - 300 mm² 1s0p - footprint 0,1 0,0001 Figure 9 0,001 0,01 0,1 1 Time (s) 10 100 1000 Typical Thermal Impedance. PCB setup according Chapter 4.4.1 BTS7006-1EPx 120 1s0p - Ta = 105°C 110 100 RthJA (K/W) 90 80 70 60 50 40 30 0 Figure 10 Data Sheet 100 200 300 Cooling area (mm²) 400 500 600 Thermal Resistance on 1s0p PCB with various cooling surfaces 12 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Logic Pins 5 Logic Pins The device has 2 digital pins. 5.1 Input Pin (IN) The input pin IN activates the output channel. The input circuitry is compatible with 3.3V and 5V microcontroller (see Chapter 10 for the complete application setup overview). The electrical equivalent of the input circuitry is shown in Figure 11. In case the pin is not used, it should be pulled to module GND or device GND pin via RIN = 4.7 kΩ. VS IN VS(CLAMP) IDI ESD IDI VDI(CLAMP) VDI GND RGND IGND Input_IN_INTDIO.emf Figure 11 Input circuitry The logic thresholds for “low” and “high” states are defined by parameters VDI(TH) and VDI(HYS). The relationship between these two values is shown in Figure 12. The voltage VIN needed to ensure a “high” state is always higher than the voltage needed to ensure a “low” state. V DI V DI(TH ),M AX V DI(TH) V DI(HYS) V DI(TH ),M IN t Internal channel activation signal 0 x 1 x 0 t Input_VDITH_2.emf Figure 12 Data Sheet Input Threshold voltages and hysteresis 13 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Logic Pins 5.2 Diagnosis Pin The Diagnosis Enable (DEN) pin controls the diagnosis circuitry and can be used to reset the latched protection (Protection circuitry not disabled by DEN). When DEN pin is set to “high”, the diagnosis is enabled (see Chapter 9.2 for more details). When it is set to “low”, the diagnosis is disabled (IS pin is set to high impedance). The transition from “high” to “low” of DEN pin clears the protection latch of the channel depending on the logic state of IN pin and DEN pulse length (see Chapter 8.3 for more details). The internal structure of diagnosis pins is the same as the one of input pins. See Figure 11 for more details. 5.3 Electrical Characteristics Logic Pins VS = 6 V to 18 V, TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design Typical values: VS = 13.5 V, TJ = 25 °C Digital Input (DI) pins = IN, DEN Table 7 Electrical Characteristics: Logic Pins - General Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Digital Input Voltage Threshold VDI(TH) 0.8 1.3 2 V See Figure 11 and P_5.4.0.1 Figure 12 Digital Input Clamping Voltage VDI(CLAMP1) – 7 – V 1) Digital Input Clamping Voltage VDI(CLAMP2) 6.5 7.5 8.5 V IDI = 2 mA P_5.4.0.3 See Figure 11 and Figure 12 Digital Input Hysteresis VDI(HYS) – 0.25 – V 1) IDI(H) 2 10 25 µA VDI = 2 V P_5.4.0.5 See Figure 11 and Figure 12 Digital Input Current (“low”) IDI(L) 2 10 25 µA VDI = 0.8 V P_5.4.0.6 See Figure 11 and Figure 12 Digital Input Current (“high”) P_5.4.0.2 IDI = 1 mA See Figure 11 and Figure 12 P_5.4.0.4 See Figure 11 and Figure 12 1) Not subject to production test - specified by design. Data Sheet 14 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Supply 6 Power Supply The BTS7006-1EPZ is supplied by VS, which is used for the internal logic as well as supply for the power output stage. VS has an undervoltage detection circuit, which prevents the activation of the power output stage and diagnosis in case the applied voltage is below the undervoltage threshold (VS < VS(OP)). During power up, the internal power on signal is set when supply voltage (VS) exceeds the minimum operating voltage (VS > VS(OP)). 6.1 Operation Modes BTS7006-1EPZ has the following operation modes in case of VS > VS(OP): • OFF mode • ON mode • Diagnosis in ON mode • Diagnosis in OFF mode • Fault The transition between operation modes is determined according to these variables: • Logic level at IN pin • Logic level at DEN pin • Internal latch The truth table in case of VS > VS(OP) is shown in Table 8. The behavior of BTS7006-1EPZ as well as some parameters may change in dependence on the operation mode of the device. There are three parameters describing each operation mode of BTS7006-1EPZ: • Status of the output channel • Status of the diagnosis • Current consumption at VS pin (measured by IVS in OFF mode, IGND in all other operative modes) Table 8 Operation Mode truth table IN DEN Internal IIS latch Operative Mode Comment L L L leakage OFF DMOS channel is OFF L L H leakage OFF DMOS channel is OFF L H L leakage OFF_DIAG Diagnostic in OFF-mode open load Diagnostic in OFF-mode Diagnostic in OFF-mode L H H fault H L L leakage ON DMOS channel is ON, no diagnostic H L H leakage fault DMOS channel is switched OFF due to failure H H L IIS ON_DIAG DMOS channel is ON and diagnostic H H H fault fault DMOS channel is switched OFF due to failure Data Sheet 15 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Supply 6.1.1 OFF mode When BTS7006-1EPZ is in OFF mode, the output channel is OFF. The current consumption is minimum (see parameter IVS(OFF)). No Overtemperature, Overload protection mechanism and no diagnosis function is active when the device is in OFF mode. 6.1.2 ON mode ON (IN = High; DEN = Low) mode is the normal operation mode of BTS7006-1EPZ. Device current consumption is specified with IGND(ON_D) + IIS(OFF) (measured at GND pin because the current at VS pin includes the load current). Overcurrent and Overtemperature protections are active. No diagnosis function is active. 6.1.3 OFF_Diag mode The device is in OFF_Diag mode as long as DEN pin is set to “high” and IN pin is set to “low”. The output channel is OFF. Depending on the load condition, either a fault current IIS(FAULT) or an Open Load in OFF current (IIS(OLOFF)) may be present at IS pin. In such situation, the current consumption of the device is increased. 6.1.4 ON_Diag mode The device is in ON_Diag mode with current sense function enabled. IIS is present at IS pin. Device current consumption is specified with IGND(ON_D). Depending on the load condition, either a fault current IIS(FAULT) or IIS current may be present at IS pin. 6.1.5 Fault mode The device is in Fault mode as soon as a protection event happens which affects that the device switches off due to its protection function. In Fault mode, a IIS(FAULT) signal is presenting at IS pin during the DEN signal is "high". Data Sheet 16 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Supply 6.2 Undervoltage on VS Between VS(OP) and VS(UV) the undervoltage mechanism is triggered. If the device is operative (in ON mode) and the supply voltage drops below the undervoltage threshold VS(UV), the internal logic switches OFF the output channel. As soon as the supply voltage VS is above the operative threshold VS(OP), the channel is switched ON again. The restart is delayed with a time tDELAY(UV) which protects the device in case the undervoltage condition is caused by a short circuit event (according to AEC-Q100-012), as shown in Figure 13. If the device is in OFF mode and the input is set to “high”, the channel will be switched ON if VS > VS(OP) without waiting for tDELAY(UV). VS VS(OP) VS(UV) VS(HYS) t Channel activat ion signal t VOUT tDELA Y(UV) t PowerSupply_UVRVS.emf Figure 13 Data Sheet VS undervoltage behavior 17 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Supply 6.3 Electrical Characteristics Power Supply VS = 6 V to 18 V, TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive load connected to the output for testing (unless otherwise specified): RL = 2.1 Ω Table 9 Electrical Characteristics: Power Supply - General Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Power Supply Undervoltage VS(UV) Shutdown 1.8 2.3 3.1 V VS decreasing IN = “high” From VDS ≤ 0.5 V to VDS = VS See Figure 13 P_6.4.0.1 Power Supply Minimum Operating Voltage 2.0 3.0 4.1 V VS increasing IN = “high” From VDS = VS to VDS ≤ 0.5 V See Figure 13 P_6.4.0.3 Power Supply Undervoltage VS(HYS) Shutdown Hysteresis – 0.7 – V 1) P_6.4.0.6 Power Supply Undervoltage tDELAY(UV) Recovery Time 2.5 5 7.5 ms dVS/dt ≤ 0.5 V/µs VS ≥ -1 V See Figure 13 P_6.4.0.7 Breakdown Voltage -VS(REV) between GND and VS Pins in Reverse Battery 16 – 30 V 1) P_6.4.0.9 VS pin VS(OP) VS(OP) - VS(UV) See Figure 13 IGND(REV) = 7 mA TJ = 150 °C 1) Not subject to production test - specified by design. Data Sheet 18 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Supply 6.4 Electrical Characteristics Power Supply - Product Specific VS = 6 V to 18 V, TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive load connected to the output for testing (unless otherwise specified): RL = 2.1 Ω 6.4.1 BTS7006-1EPZ Table 10 Electrical Characteristics: Power Supply BTS7006-1EPZ Parameter Symbol Values Min. Typ. Max. 0.01 0.4 Unit Note or Test Condition Number µA 1) P_6.5.22.1 Supply Current Consumption in OFF Mode with Loads IVS(OFF)_85 – Supply Current Consumption in OFF Mode with Loads IVS(OFF)_150 – 1 10 µA VS = 18 V VOUT = 0 V IN = DEN = “low” TJ = 150 °C P_6.5.22.2 Operating Current in ON_Diag Mode (Channel ON) IGND(ON_D) – 2 3 mA VS = 18 V IN = DEN = “high” P_6.5.22.3 Operating Current in OFF_Diag Mode IGND(OFF_D) – 1.2 1.8 mA VS = 18 V IN = “low”; DEN = “high” P_6.5.22.5 VS = 18 V VOUT = 0 V IN = DEN = “low” TJ ≤ 85 °C 1) Not subject to production test - specified by design. Data Sheet 19 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages 7 Power Stages The high-side power stage is built using a N-channel vertical Power MOSFET with charge pump. 7.1 Output ON-State Resistance The ON-state resistance RDS(ON) depends mainly on junction temperature TJ. Figure 14 shows the variation of RDS(ON) across the whole TJ range. The value “2” on the y-axis corresponds to the maximum RDS(ON) measured at TJ = 150 °C. RDS(ON) variation over TJ 2,20 Reference value: "2" = RDS(ON),MAX @ 150 2,00 1,80 RDS(ON) variation factor 1,60 1,40 1,20 1,00 0,80 0,60 0,40 Typical 0,20 0,00 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 Junction Temperature (°C) Figure 14 RDS(ON) variation factor The behavior in Reverse Polarity is described in Chapter 8.4.1. Data Sheet 20 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages 7.2 Switching loads 7.2.1 Switching Resistive Loads When switching resistive loads, the switching times and slew rates shown in Figure 15 can be considered. The switch energy values EON and EOFF are proportional to load resistance and times tON and tOFF. IN VIN(TH) VIN(HYS) t VOUT tON 90% of VS tOFF(DELAY) 70% of VS 70% of VS -(dV/dt)OFF (dV/dt)ON 30% of VS tON(DELAY) 10% of VS 30% of VS tOFF t PDMOS EON EOFF t PowerStage_SwitchRes.emf Figure 15 Data Sheet Switching a Resistive Load 21 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages 7.2.2 Switching Inductive Loads When switching OFF inductive loads with high-side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device due to overvoltage, a voltage clamp mechanism is implemented. The clamping structure limits the negative output voltage so that VDS = VDS(CLAMP). Figure 16 shows a concept drawing of the implementation. The clamping structure is available in all operation modes listed in Chapter 6.1. VS High-side Channel VS VSIS(CLAMP) VDS VDS(CLAMP) IS IL RSEN SE VS(CLAMP) OUT VOUT GND L, RL RGND IL PowerStage_Clamp_INTDIO_1CH.emf Figure 16 Output Clamp concept During demagnetization of inductive loads, energy has to be dissipated in BTS7006-1EPZ. The energy can be calculated with Equation (7.1): RL ⋅ IL V S – V DS ( CLAMP ) L ö + I ⋅ -----E = V DS ( CLAMP ) ⋅ -------------------------------------------- ⋅ ln æ 1 – ------------------------------------------L è RL RL V S – V DS ( CLAMP )ø (7.1) The maximum energy, therefore the maximum inductance for a given current, is limited by the thermal design of the component. Please refer to Chapter 4.2 for the maximum allowed values of EAS (single pulse energy) and EAR (repetitive energy). Data Sheet 22 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages 7.2.3 Output Voltage Limitation To increase the current sense accuracy, VDS voltage is monitored. When the output current IL decreases while the channel is diagnosed (DEN pin set to “high” - see Figure 17) bringing VDS equal or lower than VDS(SLC), the output DMOS gate is partially discharged. This increases the output resistance so that VDS = VDS(SLC) even for very small output currents. The VDS increase allows the current sensing circuitry to work more efficiently, providing better kILIS accuracy for output current in the low range. IN t DEN IL t VDS t VDS(SLC) t Figure 17 Output Voltage Limitation activation during diagnosis 7.3 Advanced Switching Characteristics 7.3.1 Inverse Current behavior When VOUT > VS, a current IINV flows into the power output transistor (see Figure 18). This condition is known as “Inverse Current”. If the channel is in OFF state, the current flows through the intrinsic body diode generating high power losses therefore an increase of overall device temperature. If the channel is in ON state, RDS(INV) can be expected and power dissipation in the output stage is comparable to normal operation in RDS(ON). During Inverse Current condition, the channel remains in ON or OFF state as long as |-IL| < |-IL(INV)|. With InverseON, it is possible to switch ON the channel during Inverse Current condition as long as |-IL| < |-IL(INV)| (see Figure 19). Data Sheet 23 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages VBAT VS Gate Driver Device Logic -IL INV Comp. VOUT > VS OUT RGND GND PowerStage_Inverse_HEAT.emf Figure 18 Inverse Current Circuitry IN IN CASE 1 : Switch is ON CASE 2 : Switch is OFF OFF ON t IL NORMAL t IL NORMAL NORMAL t INVERSE NORMAL t INVERSE DMOS state DMOS state OFF ON t t CASE 3 : Switch ON into Inverse Current CASE 4 : Switch OFF into Inverse Current IN IN OFF ON IL t IL NORMAL NORMAL NORMAL t INVERSE OFF ON t NORMAL t INVERSE DMOS state DMOS state OFF ON ON OFF t t PowerStage_InvCurr_INVON.emf Figure 19 InverseON - Channel behavior in case of applied Inverse Current Note: No protection mechanism like Overtemperature or Overload protection is active during applied Inverse Currents. Data Sheet 24 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages 7.3.2 Cross Current robustness with H-Bridge configuration When BTS7006-1EPZ is used as high-side switch e.g. in a bridge configuration (therefore paired with a low-side switch as shown in Figure 20), the maximum slew rate applied to the output by the low-side switch must be lower than | dVOUT / dt |. Otherwise the output stage may turn ON in linear mode (not in RDS(ON)) while the lowside switch is commutating. This creates an unprotected overheating for the DMOS due to the crossconduction current. VBAT R/L cable HSS 1 VS HSS 2 VS T T ON (DC) IN IN OUT OFF OUT Current through Motor | dVOUT / dt | Cross Current M ON ( PWM) OFF PowerStage _ PassiveSlew _ PROFET1Ch.emf Figure 20 Data Sheet High-Side switch used in Bridge configuration 25 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages 7.4 Electrical Characteristics Power Stages VS = 6 V to 18 V, TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive load connected to the output for testing (unless otherwise specified): RL = 2.1 Ω Table 11 Electrical Characteristics: Power Stages - General Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Voltages Drain to Source Clamping Voltage at TJ = -40 °C VDS(CLAMP)_-40 33 36.5 42 V IL = 5 mA TJ = -40°C See Figure 16 P_7.4.0.1 Drain to Source Clamping Voltage at TJ ≥ 25 °C VDS(CLAMP)_25 35 38 44 V 1) P_7.4.0.2 IL = 5 mA TJ ≥ 25°C See Figure 16 1) Tested at TJ = 150°C. 7.4.1 Electrical Characteristics Power Stages Table 12 Electrical Characteristics: Power Stages Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Timings Switch-ON Delay tON(DELAY) 10 70 130 μs VS = 13.5 V VOUT = 10% VS See Figure 15 P_7.4.5.1 Switch-OFF Delay tOFF(DELAY) 10 50 160 μs VS = 13.5 V VOUT = 90% VS See Figure 15 P_7.4.5.2 Switch-ON Time tON 50 130 210 μs VS = 13.5 V VOUT = 90% VS See Figure 15 P_7.4.5.3 Switch-OFF Time tOFF 30 100 220 μs VS = 13.5 V VOUT = 10% VS See Figure 15 P_7.4.5.4 Switch-ON/OFF Matching tON - tOFF ΔtSW -60 25 90 μs VS = 13.5 V P_7.4.5.5 Data Sheet 26 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages Table 12 Electrical Characteristics: Power Stages (continued) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Voltage Slope Switch-ON Slew Rate (dV/dt)ON 0.16 0.27 0.39 V/μs VS = 13.5 V P_7.4.5.6 VOUT = 30% to 70% of VS See Figure 15 Switch-OFF Slew Rate -(dV/dt)OFF 0.16 0.27 0.39 V/μs VS = 13.5 V P_7.4.5.7 VOUT = 70% to 30% of VS See Figure 15 Slew Rate Matching (dV/dt)ON - (dV/dt)OFF Δ(dV/dt)SW -0.15 0 +0.15 V/μs VS = 13.5 V P_7.4.5.8 VDS(SLC) 2 10 20 mV 1) P_7.4.5.9 Voltages Output Voltage Drop Limitation at Small Load Currents IOUT = IOUT(OL) = 20 mA 1) Not subject to production test - specified by design 7.5 Electrical Characteristics - Power Output Stages VS = 6 V to 18 V, TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive load connected to the output for testing (unless otherwise specified): RL = 2.1 Ω 7.5.1 Power Output Stage - 6 mΩ Table 13 Electrical Characteristics: Power Stages - 6 mΩ Parameter Symbol Values Min. Typ. Max. 6.6 – Unit Note or Test Condition Number mΩ 1) P_7.5.12.1 Output characteristics ON-State Resistance at TJ = 25 °C RDS(ON)_25 – ON-State Resistance at TJ = 150 °C RDS(ON)_150 – – 12 mΩ TJ = 150 °C P_7.5.12.2 ON-State Resistance at TJ = 175 °C RDS(ON)_175 – – 13.5 mΩ 1) P_7.5.12.17 ON-State Resistance in Cranking RDS(ON)_CRAN – Data Sheet TJ = 25 °C TJ = 175 °C – 15 K 27 mΩ TJ = 150 °C VS = 3.1 V P_7.5.12.3 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages Table 13 Electrical Characteristics: Power Stages - 6 mΩ (continued) Parameter Symbol Values Unit Note or Test Condition Number mΩ 1) P_7.5.12.4 Min. Typ. Max. ON-State Resistance in RDS(INV)_25 Inverse Current at TJ = 25 °C – 6.7 – RDS(INV)_150 ON-State Resistance in Inverse Current at TJ = 150 °C – – 15 mΩ TJ = 150 °C VS = 13.5 V IL = -4 A DEN = “low” see Figure 18 P_7.5.12.5 RDS(INV)_175 ON-State Resistance in Inverse Current at TJ = 175 °C – – 15 mΩ 1) P_7.5.12.19 RDS(REV)_25 ON-State Resistance in Reverse Polarity at TJ = 25 °C – ON-State Resistance in Reverse Polarity at TJ = 150 °C RDS(REV)_150 – – 24 mΩ TJ = 150 °C VS = -13.5 V IL = -4 A P_7.5.12.7 Nominal Load Current IL(NOM) – 12.5 – A 1) P_7.5.12.8 IL(NOM)_125 – Output Leakage Current at TJ ≤ 85 °C IL(OFF)_85 – Output Leakage Current at TJ = 150 °C IL(OFF)_150 – – 10 μA VOUT = 0 V VIN = “low” TA = 150 °C P_7.5.12.10 Output Leakage Current at TJ = 175 °C IL(OFF)_175 – 17 60 μA 1) P_7.5.12.21 Nominal Load Current Data Sheet TJ = 25 °C VS = 13.5 V IL = -4 A DEN = “low” see Figure 18 TJ = 175 °C VS = 13.5 V IL = -4 A DEN = “low” see Figure 18 14.3 – mΩ 1) P_7.5.12.6 TJ = 25 °C VS = -13.5 V IL = -4 A see Figure 29 TA = 85 °C TJ ≤ 150 °C 8 – A 1) P_7.5.12.22 TA = 125 °C 150 °C < TJ ≤ 175 °C 0.01 0.4 μA 1) P_7.5.12.9 VOUT = 0 V VIN = “low” TA ≤ 85 °C VOUT = 0 V VIN = “low” TA = 175 °C 28 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Power Stages Table 13 Electrical Characteristics: Power Stages - 6 mΩ (continued) Parameter Inverse Current Capability Symbol IL(INV) Values Min. Typ. Max. – -12.5 – Unit Note or Test Condition Number A 1) P_7.5.12.11 VS < VOUT IN = “high” -40 °C < TJ ≤ 150 °C see Figure 18 Voltage Slope Passive Slew Rate (e.g. for Half Bridge Configuration) 1) |dVOUT / dt| – – |VDS(DIODE)| – 550 700 mV IL = -190 mA TJ = 150 °C P_7.5.12.13 EON – 1.5 – mJ 1) P_7.5.12.14 EOFF – 10 V/μs P_7.5.12.12 VS = 13.5 V see Figure 20 Voltages Drain Source Diode Voltage Switching Energy Switch-ON Energy Switch-OFF Energy VS = 18 V see Figure 15 1.65 – mJ 1) P_7.5.12.15 VS = 18 V see Figure 15 1) Not subject to production test - specified by design. Data Sheet 29 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection 8 Protection The BTS7006-1EPZ is protected against Overtemperature, Overload, Reverse Battery (with ReverseON) and Overvoltage. Overtemperature and Overload protections are working when the device is in ON or ON_Diag mode but not during InverseON and ReverseON function. Overvoltage protection works in all operation modes. Reverse Battery protection works when the GND and VS pins are reverse supplied. 8.1 Overtemperature Protection The device incorporates both an absolute (TJ(ABS)) and a dynamic (TJ(DYN)) temperature protection circuitry for the channel. An increase of junction temperature TJ above either one of the two thresholds (TJ(ABS) or TJ(DYN)) switches OFF the overheated channel to prevent destruction. The channel remains switched OFF until junction temperature has reached the “Reactivation” condition described in Table 14. The behavior is shown in Figure 21 (absolute Overtemperature Protection) and Figure 22 (dynamic Overtemperature Protection). TJ(REF) is the reference temperature used for dynamic temperature protection. IN t DEN t IL IL(OVL0 ) IL(NOM) t TJ TJ( ABS) t IIS IIS( FAULT) IIS = IL kILIS t Internal latch 1 0 t Over_Temperature_Behavior.emf Figure 21 Data Sheet Overtemperature Protection (Absolute) 29 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection IN t DEN t IL IL( OVL) t TJ(DYN) TJ TJ( ABS) TJ(REF) IIS t IL / k ILIS IIS( FAULT) t Internal Latch 0 1 t Figure 22 Overtemperature Protection (Dynamic) When the Overtemperature protection circuitry allows the channel to be switched ON again, the Intelligent Latch strategy described in Chapter 8.3 is followed. Data Sheet 30 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection 8.2 Overload Protection The BTS7006-1EPZ is protected in case of Overload or short circuit to ground. Two Overload thresholds are defined (see Figure 23) and selected automatically depending on the voltage VDS across the power DMOS: • IL(OVL0) when VDS < 13 V • IL(OVL1) when VDS > 22 V Figure 23 Overload Current Thresholds In order to allow a higher load inrush at low ambient temperature, Overload threshold is maximum at low temperature and decreases when TJ increases (see Figure 24). IL(OVL0) typical value remains approximately constant up to a junction temperature of +75 °C. Data Sheet 31 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection IL(OVL0) variation over TJ 1,3 1,2 1,1 IL(OVL0) variation factor 1,0 0,9 0,8 0,7 reference value "1" = IL(OVL0) typ @ -40 °C 0,6 0,5 0,4 0,3 0,2 0,1 Typ 0,0 -40 -20 0 20 40 60 80 100 120 140 160 180 Junction Temperature (°C) Figure 24 Overload Current Thresholds variation with TJ Power supply voltage VS can increase above 18 V for short time, for instance in Load Dump or in Jump Start condition. Whenever VS ≥ VS(JS), the overload detection current is set to IL(OVL_JS) as shown in Figure 25. IL(OVL) IL(OVL0) IL(OVL_JS) VS(JS),min VS(JS),max VS Protection_JS.emf Figure 25 Overload Detection Current variation with VS voltage When IL ≥ IL(OVL) (either IL(OVL0), IL(OVL1) or IL(OVL_JS)) the channel is switched OFF. The channel is allowed to be reactivated according to the intelligent latch strategy described in Chapter 8.3. Data Sheet 32 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection 8.3 Protection and Diagnosis in case of Fault Any event that triggers a protection mechanism (either Overtemperature or Overload) has 2 consequences: • The channel switches OFF and the internal latch is set to “1” • If the diagnosis is active for the channel, a current IIS(FAULT) is provided by IS pin (see Chapter 9.2.2 for further details) The channel can be switched ON again if all the protection mechanisms fulfill the ”reactivation” conditions described in Table 14. Furthermore, the device has the intelligent latch to protect itself against unwanted repetitive reactivation in fault condition. Table 14 Protection “Reactivation” Condition Fault condition Switch OFF event “Reactivation” condition Overtemperature TJ ≥ TJ(ABS) or (TJ - TJ(REF)) ≥ TJ(DYN) TJ < TJ(ABS) and (TJ - TJ(REF)) < TJ(DYN) (including hysteresis) Overload IL ≥ IL(OVL) Device is OFF 8.3.1 Intelligent Latch Strategy At normal condition, when IN is set to “high”, the channel is switched ON. In case of fault condition the output stage latches OFF. There are two ways to de-latch the switch. With IN pin: It is necessary to set the input pin to “low” for a time longer than tDELAY(LR) (“latch reset delay” time) to de-latch the channel. The channel can be allowed to restart only if the “latch” conditions for the protection mechanisms are fulfilled (see Table 14 ). During the “latch reset delay” time, if the input is set to “high” the channel remains switched OFF and the timer tDELAY(LR) is reset. The timer tDELAY(LR) restarts as soon as the input pin is set to “low” again. The intelligent latch strategy is shown in Figure 28 (flowchart) and Figure 26 (timing diagram). With DEN pin: It is possible to “force” a reset of the internal latch without waiting for tDELAY(LR) by applying a pulse (rising edge followed by a falling edge) to the DEN pin while IN pin is “low”. The pulse applied to DEN pin must have a duration longer than tDEN(LR) to ensure a reset of the internal latch. The timing is shown in Figure 27. Data Sheet 33 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection tDELAY (LR) IN t Short circuit to ground t IL t Internal latch 0 1 0 1 t DEN t ts IS(DIAG ) tON IIS (FAULT) IIS (FAULT) IIS t Protection_Latch_Timing.emf Figure 26 Intelligent Latch Timing Diagram IN t Short circuit to ground t IL t Internal latch 0 1 0 1 t t > tDEN(LR) t < t DEN(LR) DEN tsIS (DIAG) IIS (FAULT) ts IS(DIAG ) IIS (FAULT ) t s IS(DIAG) IIS (FAULT) t IIS t Protection_Latch_DENforce.emf Figure 27 Data Sheet Intelligent Latch Timing Diagram with Forced Reset 34 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection START no IN is "high" yes yes Latch = 1 no Reactivation condition fulfilled (TJ and / or ΔT / and / or Overload) no yes Latch = 0 Switch channel ON Yes no Fault (Overtemperature or Overload) DEN pulse > tDEN(LR) no yes Switch channel OFF Wait until DEN pulse > tDEN(LR) Latch = 1 Set DEN to „high“ Wait until IN is "low" then start counting for tDELAY(LR) no IN is "low" yes yes De-latching with DEN no Continue latching for tDELAY(LR) tDELAY(LR) elapsed no yes Latch = 0 Protection_PROFET_Flow_PDH.emf Figure 28 Data Sheet Intelligent Latch Flowchart 35 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection 8.4 Additional protections 8.4.1 Reverse Polarity Protection In Reverse Polarity condition (also known as Reverse Battery), the output stage is switched ON (see parameter RDS(REV)) because of ReverseON feature which limits the power dissipation in the output stage. Each ESD diode of the logic contributes to total power dissipation. The reverse current through the output stage must be limited by the connected load. The current through Digital Input pins has to be limited as well by an external resistor (please refer to the Absolute Maximum Ratings listed in Chapter 4.1 and to Application Information in Chapter 10). Figure 29 shows a typical application including a device with ReverseON. A current flowing into GND pin (-IGND) during Reverse Polarity condition is necessary to activate ReverseON, therefore a resistive path between module ground and device GND pin must be present. -VBA T(REV) High-side Channel Microcontroller VS IDI DO RDI DI ReverseON OUT -IL IS GND RGND -IIS RSEN SE GND L, C, R -IGND Protection_RevBatt_HEAT.emf Figure 29 Reverse Battery Protection (application example) 8.4.2 Overvoltage Protection In the case of supply voltages between VS(EXT,UP) and VBAT(LD), the output transistor is still operational and follows the input pin. In addition to the output clamp for inductive loads as described in Chapter 7.2.2, there is a clamp mechanism available for Overvoltage protection for the logic circuit and the output channel, monitoring the voltage between VS and GND pins (VS(CLAMP)). Data Sheet 36 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection 8.5 Protection against loss of connection 8.5.1 Loss of Battery and Loss of Load The loss of connection to battery or to the load has no influence on device robustness when load and wire harness are purely resistive. In case of driving an inductive load, the energy stored in the inductance must be handled. PROFET™ +2 12V devices can handle the inductivity of the wire harness up to 10 µH with IL(NOM). In case of applications where currents and/or the aforementioned inductivity are exceeded, an external suppressor diode (like diode DZ2 shown in Chapter 10) is recommended to handle the energy and to provide a well-defined path to the load current. 8.5.2 Loss of Ground In case of loss of device ground, it is recommended to have a resistor connected between any Digital Input pin and the microcontroller to ensure a channel switch OFF (as described in Chapter 10). Note: Data Sheet In case any Digital Input pin is pulled to ground (either by a resistor or active) a parasitic ground path is available, which could keep the device operational during loss of device ground. 37 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection 8.6 Electrical Characteristics Protection VS = 6 V to 18 V, TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive load connected to the output for testing (unless otherwise specified): RL = 2.1 Ω Table 15 Electrical Characteristics: Protection - General Parameter Symbol Values Min. Typ. Max. 190 205 Thermal Shutdown Temperature (Absolute) TJ(ABS) 175 Thermal Shutdown Hysteresis (Absolute) THYS(ABS) – Thermal Shutdown Temperature (Dynamic) TJ(DYN) – Power Supply Clamping Voltage at TJ = -40 °C VS(CLAMP)_-40 33 Power Supply Clamping Voltage at TJ ≥ 25 °C VS(CLAMP)_25 Power Supply Voltage VS(JS) Threshold for Overcurrent Threshold Reduction in case of Short Circuit Unit Note or Test Condition Number °C 1)2) P_8.6.0.10 See Figure 21 30 – K 3) P_8.6.0.2 See Figure 21 80 – K 3) P_8.6.0.3 See Figure 22 35 36.5 42 V IVS = 5 mA TJ = -40 °C See Figure 16 P_8.6.0.6 38 44 V 2) P_8.6.0.7 IVS = 5 mA TJ ≥ 25 °C See Figure 16 20.5 22.5 24.5 V 3) P_8.6.0.8 Setup acc. to AECQ100-012 1) Functional test only. 2) Tested at TJ = 150°C only. 3) Not subject to production test - specified by design. 8.6.1 Electrical Characteristics Protection Table 16 Electrical Characteristics: Protection Parameter Symbol Values Min. Typ. Max. Latch Reset Delay Time after tDELAY(LR) Fault Condition 40 70 100 Minimum DEN Pulse Duration for Latch Reset 50 tDEN(LR) Unit Note or Test Condition Number ms 1) P_8.6.4.1 See Figure 26 100 150 µs 2) P_8.6.4.2 See Figure 27 1) Functional test only. 2) Not subject to production test - specified by design. Data Sheet 38 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Protection 8.7 Electrical Characteristics Protection - Power Output Stages VS = 6 V to 18 V, TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive load connected to the output for testing (unless otherwise specified): RL = 2.1 Ω 8.7.1 Protection Power Output Stage - 6 mΩ Table 17 Electrical Characteristics: Protection - 6 mΩ Parameter Symbol Values Min. Typ. Max. Overload Detection Current IL(OVL0)_-40 at TJ = -40 °C 81 91 110 Overload Detection Current IL(OVL0)_25 at TJ = 25 °C 78 Overload Detection Current IL(OVL0)_150 at TJ = 150 °C 66 Overload Detection Current IL(OVL0)_175 at TJ = 175 °C 64 Overload Detection Current IL(OVL1) at High VDS – Overload Detection Current IL(OVL_JS) Jump Start Condition – Unit Note or Test Condition Number A 1) P_8.7.12.1 TJ = -40 °C dI/dt = 0.4 A/µs see Figure 23 and Figure 24 89.5 110 A 2) P_8.7.12.7 TJ = 25 °C dI/dt = 0.4 A/µs see Figure 23 and Figure 24 77 95 A 2) P_8.7.12.8 TJ = 150 °C dI/dt = 0.4 A/µs see Figure 23 and Figure 24 72 82 A 2) P_8.7.12.9 TJ = 175 °C dI/dt = 0.4 A/µs see Figure 23 and Figure 24 57 – A 2) P_8.7.12.5 dI/dt = 0.4 A/µs see Figure 23 57 – A 2) P_8.7.12.6 VS > VS(JS) dI/dt = 0.4 A/µs see Figure 25 1) Functional test only. 2) Not subject to production test - specified by design. Data Sheet 39 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis 9 Diagnosis For diagnosis purpose, the BTS7006-1EPZ provides a sense current signal (IIS) at pin IS. In case of disabled diagnostic (DEN pin set to “low”), IS pin becomes high impedance. A sense resistor RSENSE must be connected between IS pin and module ground if the current sense diagnosis is used. RSENSE value has to be higher than 820 Ω (or 400 Ω when a central Reverse Battery protection is present on the battery feed) to limit the power losses in the sense circuitry. A typical value is RSENSE = 1.2 kΩ. Due to the internal connection between IS pin and VS supply voltage, it is not recommended to connect the IS pin to the sense current output of other devices, if they are supplied by a different battery feed. See Figure 30 for details as an overview. VS Output Channel T Overtemperature Latch IS Pin Control Logic OUT IN IL / kILIS DEN IIS(FAULT) + VDS(OLOFF) IIS(OLOFF) MUX RSEN SE IS Diagnosis_HEAT_1CH.emf Figure 30 Data Sheet Diagnosis Block Diagram 40 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis 9.1 Overview Table 18 gives a quick reference to the state of the IS pin during BTS7006-1EPZ operation. Table 18 SENSE Signal, Function of Application Condition Application Condition Input level DEN level VOUT Diagnostic Output Normal operation “low” ~ GND Z IIS(FAULT) if latch ≠ 0 Short circuit to GND ~ GND Z IIS(FAULT) if latch ≠ 0 Overtemperature Z IIS(FAULT) Short circuit to VS VS IIS(OLOFF) (IIS(FAULT) if latch ≠ 0) Open Load < VS - VDS(OLOFF) > VS - VDS(OLOFF)1) Z IIS(OLOFF) (in both cases IIS(FAULT) if latch ≠ 0) Inverse current VOUT > VS IIS(OLOFF) (IIS(FAULT) if latch ≠ 0) ~ VS IIS = IL / kILIS Overload < VS IIS(FAULT) Short circuit to GND ~ GND IIS(FAULT) Overtemperature Z IIS(FAULT) Short circuit to VS VS Normal operation “high” “high” IIS < IL / kILIS ~ VS 2) IIS = IIS(EN) Under load (e.g. Output Voltage Limitation condition) ~ VS 3) IIS(EN) < IIS < IL(NOM) / kILIS Inverse current VOUT > VS IIS = IIS(EN) n.a. Z Open Load All conditions n.a. “low” 1) With additional pull-up resistor. 2) The output current has to be smaller than IL(OL). 3) The output current has to be higher than IL(OL). 9.2 Diagnosis in ON state A current proportional to the load current (ratio kILIS = IL / IIS) is provided at pin IS when the following conditions are fulfilled: • The power output stage is switched ON with VDS < VDS(OLOFF) • The diagnosis is enabled • No fault (as described in Chapter 8.3) is present or was present and not cleared yet (see Chapter 9.2.2 for further details) If a “hard” failure mode is present or was present and not cleared yet a current IIS(FAULT) is provided at IS pin. Data Sheet 41 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis 9.2.1 Current Sense (kILIS) The accuracy of the sense current depends on temperature and load current. IIS increases linearly with IL output current until it reaches the saturation current IIS(SAT). In case of Open Load at the output stage (IL close to 0 A), the maximum sense current IIS(EN) (no load, diagnosis enabled) is specified. This condition is shown in Figure 32. The blue line represents the ideal kILIS line, while the red lines show the behavior of a typical product. An external RC filter between IS pin and microcontroller ADC input pin is recommended to reduce signal ripple and oscillations (a minimum time constant of 1 µs for the RC filter is recommended). The kILIS factor is specified with limits that take into account effects due to temperature, supply voltage and manufacturing process. Tighter limits are possible (within a defined current window) with calibration: • A well-defined and precise current (IL(CAL)) is applied at the output during End of Line test at customer side • The corresponding current at IS pin is measured and the kILIS is calculated (kILIS @ IL(CAL)) • Within the current range going from IL(CAL)_L to IL(CAL)_H the kILIS is equal to kILIS @ IL(CAL) with limits defined by ΔkILIS The derating of kILIS after calibration is calculated using the formulas in Figure 31 and it is specified by ΔkILIS Diagnosis_dKILIS.emf Figure 31 ΔkILIS calculation formulas The calibration is intended to be performed at TA(CAL) = 25°C. The parameter ΔkILIS includes the drift overtemperature as well as the drift over the current range from IL(CAL)_L to IL(CAL)_H. IIS I IS(OL) IIS(EN) I L(OL) IL Diagnosis_OLON_adv .emf Figure 32 Data Sheet Current Sense Ratio in Open Load at ON condition 42 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis 9.2.2 Fault Current (IIS(FAULT)) As soon as a protection event occurs, the value of the internal latch (see Chapter 8.3 for more details) is changed from 0 to 1, a current IIS(FAULT) is provided by pin IS when DEN is set to “high”. If internal latch is 1, and it is not reset, the current IIS(FAULT) is provided each time the device diagnosis is activated by DEN=High. Figure 33 shows the relation between IIS = IL / kILIS, IIS(SAT) and IIS(FAULT). IIS IIS (SA T).max IIS (SA T) IIS (FA ULT).max IIS (FA ULT) IIS (SA T).min IIS (FA ULT).min IL / kILI S IL(OV L).min IL(OV L).max IL Diagnosis_HEAT_IISFAULT_IISSAT.emf Figure 33 SENSE behavior - overview 9.3 Diagnosis in OFF state When a power output stage is in OFF state, the BTS7006-1EPZ can measure the drain-source voltage and compare it with a threshold voltage. In this way, using some additional external components (a pull-down resistor and a switchable pull-up current source), it is possible to detect if the load is missing or if there is a short circuit to battery. If a Fault condition was detected by the device (if internal latch is 1, fault current is provided by IS pin independent of drain-source or output voltage, as long as DEN=High) a current IIS(FAULT) is provided by IS pin each time the channel diagnosis is checked also in OFF state. See Chapter 9.2.2 for further details. Data Sheet 43 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis 9.3.1 Open Load current (IIS(OLOFF)) In OFF state, when DEN pin is set to “high”, the VDS voltage is compared with a threshold voltage VDS(OLOFF). If the load is properly connected and there is no short circuit to battery, VDS ~ VS therefore VDS > VDS(OLOFF). When the diagnosis is active and VDS ≤ VDS(OLOFF), a current IIS(OLOFF) is provided by IS pin. Figure 34 shows the relationship between IIS(OLOFF) and IIS(FAULT) as functions of VDS. The two currents do not overlap making it always possible to differentiate between Open Load in OFF and Fault condition. IIS IIS(FAULT) IIS(OLOFF) VDS(OLOFF) Figure 34 VDS IIS in OFF State It is necessary to wait a time tIS(OLOFF)_D between the falling edge of the input pin and the sensing at pin IS for Open Load in OFF diagnosis to allow the internal comparator to settle. In Figure 35 the timings for an Open Load detection are shown - the load is always disconnected. IN t DEN VOUT tIS(OLOFF)_D t ~ VS VDS(OLOFF) Load conn ect ed t IIS IIS(OLOFF) IIS(OL) t Diagnosis_PROFET_OLOFF_time.emf Figure 35 Data Sheet Open Load in OFF Timings - load disconnected 44 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis 9.4 SENSE Timings Figure 36 shows the timing during settling tsIS(ON) and disabling tsIS(OFF) of the SENSE (including the case of load change). As a proper signal cannot be established before the load current is stable (therefore before tON), tsIS(DIAG) ≤ 3 × ( tON_max + tsIS(ON)_max ). IN OFF OFF ON t DEN t IL tsIS (L C) IIS tsIS (O FF) tsIS (ON) tsIS (O FF) Diagnose_PROFET_SENSE_timings_Heat.emf Figure 36 Data Sheet t tsIS (DI AG) t SENSE Settling / Disabling Timing 45 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis 9.5 Electrical Characteristics Diagnosis VS = 6 V to 18 V, TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive load connected to the output for testing (unless otherwise specified): RL = 2.1 Ω Table 19 Electrical Characteristics: Diagnosis - General Parameter Symbol Values Unit Note or Test Condition Number mA 1) P_9.6.0.1 Min. Typ. Max. IIS(SAT) 4.4 – 15 SENSE Leakage Current when Disabled IIS(OFF) – 0.01 0.5 µA DEN = “low” P_9.6.0.2 VIS = 0 V -40 °C < TJ ≤ 150 °C SENSE Leakage Current when Disabled IIS(OFF)_175 – 0.08 3 µA 1) SENSE Leakage Current when Enabled at TJ ≤ 85 °C IIS(EN)_85 – SENSE Saturation Current VSIS = VS - VIS ≥ 2 V See Figure 33 P_9.6.0.18 DEN = “low” IL ≥ IL(NOM) VIS = 0 V 150 °C < TJ ≤ 175 °C 0.2 1 µA 1) P_9.6.0.3 TJ ≤ 85 °C DEN = “high” IL = 0 A See Figure 32 IIS(EN)_150 SENSE Leakage Current when Enabled at TJ = 150 °C – 0.2 1 µA TJ = 150 °C DEN = “high” IL = 0 A See Figure 32 P_9.6.0.4 IIS(EN)_175 SENSE Leakage Current when Enabled at TJ = 175 °C – 0.2 1 µA 1) P_9.6.0.19 TJ = 175 °C DEN = “high” IL = 0 A See Figure 32 Saturation Voltage in kILIS Operation (VS - VIS) VSIS_k – Saturation Voltage in Open Load at OFF Diagnosis (VS - VIS) VSIS_OL – Data Sheet 0.5 1 V 1) P_9.6.0.6 VS = 6 V IN = DEN = “high” IL ≤ 2 * IL(NOM) 0.5 1 V 1) P_9.6.0.7 VS = 6 V IN = “low” DEN = “high” 46 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis Table 19 Electrical Characteristics: Diagnosis - General (continued) Parameter Symbol Values Min. Typ. Max. 0.5 1 Saturation Voltage in Fault Diagnosis (VS - VIS) VSIS_F – Saturation Voltage in Fault Diagnosis (VS - VIS) VSIS_F_175 – Power Supply to IS Pin Clamping Voltage at TJ = -40 °C VSIS(CLAMP)_- 33 Power Supply to IS Pin Clamping Voltage at TJ ≥ 25 °C VSIS(CLAMP)_25 35 Unit Note or Test Condition Number V 1) P_9.6.0.8 VS = 6 V IN = “low” DEN = “high” latch ≠ 0 -40 °C < TJ ≤ 150 °C 0.6 1.2 V 1) P_9.6.0.20 VS = 6 V IN = “low” DEN = “high” counter > 0 150 °C < TJ ≤ 175 °C 36.5 42 V IIS = 1 mA TJ = -40 °C See Figure 16 P_9.6.0.9 38 44 V 2) P_9.6.0.10 40 IIS = 1 mA TJ ≥ 25 °C See Figure 16 1) Not subject to production test - specified by design. 2) Tested at TJ = 150°C. 9.5.1 Electrical Characteristics Diagnosis Table 20 Electrical Characteristics: Diagnosis Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number SENSE Fault Current IIS(FAULT) 4.4 5.5 10 mA – P_9.6.4.1 SENSE Open Load in OFF Current IIS(OLOFF) 1.8 2.5 3.5 mA – P_9.6.4.2 SENSE Open Load in OFF Delay Time tIS(OLOFF)_D 70 185 300 µs P_9.6.4.4 VDS < VOL(OFF) from IN falling edge to VIS = RSENSE * 0.9 * IIS(OLOFF),MIN DEN = “high” Open Load VDS Detection Threshold in OFF State VDS(OLOFF) 1.3 1.8 2.3 V – SENSE Settling Time with Nominal Load Current Stable tsIS(ON) – 5 40 µs IL = IL(NOM) P_9.6.4.6 DEN from “low” to “high” Data Sheet 47 P_9.6.4.5 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis Table 20 Electrical Characteristics: Diagnosis (continued) Parameter Symbol SENSE Disable Time SENSE Settling Time after Load Change Values Min. Typ. Max. tsIS(OFF) – 5 20 tsIS(LC) – Unit Note or Test Condition Number µs 1) P_9.6.4.8 From DEN falling edge to IIS = IIS(OFF) See Figure 36 5 20 µs 1) P_9.6.4.13 from IL = IL17 to IL = IL18 See Figure 36 1) Not subject to production test - specified by design. 9.6 Electrical Characteristics Diagnosis - Power Output Stages VS = 6 V to 18 V, TJ = -40 °C to +150 °C; TJ = +150 °C to +175 °C not subject to production test - specified by design Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive load connected to the output for testing (unless otherwise specified): RL = 2.1 Ω 9.6.1 Diagnosis Power Output Stage - 6 mΩ Table 21 Electrical Characteristics: Diagnosis - 6 mΩ Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number mA IIS = IIS(OL) = 4 µA see Figure 32 P_9.7.12.1 Open Load Output Current at IIS = 4 µA IL(OL)_4u 25 71 117 Current Sense Ratio at IL = IL04 kILIS04 -65% 17700 +65% IL04 = 50 mA P_9.7.12.8 Current Sense Ratio at IL = IL06 kILIS06 -65% 17700 +65% IL06 = 150 mA P_9.7.12.10 Current Sense Ratio at IL = IL09 kILIS09 -55% 17700 +55% IL09 = 450 mA P_9.7.12.13 Current Sense Ratio at IL = IL12 kILIS12 -40% 17700 +40% IL12 = 1.5 A P_9.7.12.16 Current Sense Ratio at IL = IL15 kILIS15 -24% 17700 +24% IL15 = 4 A P_9.7.12.19 Current Sense Ratio at IL = IL17 kILIS17 -8% 17700 +8% IL17 = 7 A P_9.7.12.21 Current Sense Ratio at IL = IL18 kILIS18 -8% 17700 +8% IL18 = 10 A P_9.7.12.22 Data Sheet 48 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Diagnosis Table 21 Electrical Characteristics: Diagnosis - 6 mΩ (continued) Parameter Symbol Values Min. Typ. Max. 0 +30 SENSE Current Derating with Low Current Calibration ΔkILIS(OL) -30 SENSE Current Derating with Nominal Current Calibration ΔkILIS(NOM) -4 Unit Note or Test Condition Number % 1) P_9.7.12.27 IL(CAL) = IL06 IL(CAL)_H = IL09 IL(CAL)_L = IL04 TA(CAL) = 25 °C 0 +4 % 1) P_9.7.12.29 IL(CAL) = IL17 IL(CAL)_H = IL18 IL(CAL)_L = IL15 TA(CAL) = 25 °C 1) Not subject to production test - specified by design. Data Sheet 49 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Application Information 10 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. 10.1 Application setup VBAT ZWIRE Optional Optional CVS Logic Supply CVSGND GND VS IN GPIO RDEN DEN CVS2 PROFET™ +2 12V Microcontroller ADC OUT RADC RIS_PROT COUT0 ZWIRE RIN RPD GPIO ROL RGND VDD DZ2 T1 IS DZ1 Logic GND Power GND ZLOAD* CSENSE RSENSE VSS Optional Chassis GND *See Chapter 1 „Potential Applications“ App_1CH_INTDIO_CVG.emf Figure 37 BTS7006-1EPZ Application Diagram Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Data Sheet 50 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Application Information 10.2 External Components Table 22 Suggested Component values Reference Value Purpose RIN 4.7 kΩ Protection of the microcontroller during Overvoltage and Reverse Polarity Necessary to switch OFF BTS7006-1EPZ output during Loss of Ground RDEN 4.7 kΩ Protection of the microcontroller during Overvoltage and Reverse Polarity Necessary to switch OFF BTS7006-1EPZ output during Loss of Ground RPD 47 kΩ Output polarization (pull-down) Ensures polarization of BTS7006-1EPZ outputs to distinguish between Open Load and Short to VS in OFF Diagnosis ROL 1.5 kΩ Output polarization (pull-up) Ensures polarization of BTS7006-1EPZ output during Open Load in OFF diagnosis COUT 10 nF Protection of BTS7006-1EPZ output during ESD events and BCI T1 BC 807 Switch the battery voltage for Open Load in OFF diagnosis CVS 100 nF Filtering of voltage spikes on the battery line CVSGND 47 nF Buffer capacitor for fast transient See Table 5 (P_4.3.0.7) for the boundary conditions A placeholder on PCB layout is recommended DZ2 33 V TVS Diode Transient Voltage Suppressor diode Protection during Overvoltage and in case of Loss of Battery while driving an inductive load CVS2 – Filtering / buffer capacitor located at VBAT connector RSENSE 1.2 kΩ SENSE resistor RIS_PROT 4.7 kΩ Protection during Overvoltage, Reverse Polarity, Loss of Ground Value to be tuned according to microcontroller specifications DZ1 7 V Z-Diode Protection of microcontroller during Overvoltage RADC 4.7 kΩ Protection of microcontroller ADC input during Overvoltage, Reverse Polarity, Loss of Ground Value to be tuned according to microcontroller specifications CSENSE 220 pF Sense signal filtering A time constant (RADC + RIS_PROT) * CSENSE longer than 1 µs is recommended RGND 47 Ω Protection in case of Overvoltage and Loss of Battery while driving inductive loads 10.3 Further Application Information • Please contact us for information regarding the Pin FMEA • For further information you may contact http://www.infineon.com/ Data Sheet 51 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Package Outlines &  & [ 6($7,1* &23/$1$5,7< 3/$1( s s  ' [   $% & [ %27720 9,(: $ ,1'(; 0$5.,1*         %  s s   [ *$8*( 3/$1(  [  s ' rr  0$;  s  s 67$1'2)) Package Outlines  11  s  ' $%  '2(6 127 ,1&/8'( 3/$67,& 25 0(7$/ 3527586,21 2)  0$; 3(5 6,'(  '$0%$5 352786,21 6+$// %( 0$;,080 00 727$/ ,1 (;&(66 2) /($' :,'7+ $// ',0(16,216 $5( ,1 81,76 00 7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62  352-(&7,21 0(7+2'  > @ Figure 38 PG-TSDSO-14 (Thin (Slim) Dual Small Outline 14 pins) Package Outline               FRSSHU  VROGHU PDVN VWHQFLO DSHUWXUHV $// ',0(16,216 $5( ,1 81,76 00 Figure 39 Data Sheet PG-TSDSO-14 (Thin (Slim) Dual Small Outline 14 pins) Package pads and stencil 52 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Package Outlines Green product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Further information on packages https://www.infineon.com/packages Data Sheet 53 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Revision History 12 Revision History Table 23 BTS7006-1EPZ - List of changes Revision Changes 1.10, 2020-12-14 Typo fixed (PROFET™+2 → PROFET™ +2) Figure 1, Figure 16, Figure 17, Figure 18, Figure 20, Figure 21, Figure 22, Figure 25, Figure 29, Figure 30, Figure 34, Figure 37 updated Chapter 1, Chapter 6.1, Chapter 6.1.3, Chapter 6.1.4, Chapter 8.2, Chapter 9.2.2 updated Chapter 8.4.1 updated (typo fixed) P_7.4.5.1, P_7.4.5.2, P_7.4.5.3, P_7.4.5.4, P_7.4.5.6, P_7.4.5.7 updated (added in Note or Test Condition: See Figure 15) P_8.6.4.1 updated (added in Note or Test Condition: See Figure 26) P_8.6.4.2 updated (added in Note or Test Condition: See Figure 27) P_9.6.0.6 updated (Parameter: SENSE Operative Range for kILIS Operation (VS - VIS) → Saturation Voltage in kILIS Operation (VS - VIS)) P_9.6.0.7 updated (Parameter: SENSE Operative Range for Open Load at OFF Diagnosis (VS - VIS) → Saturation Voltage in Open Load at OFF Diagnosis (VS - VIS)) P_9.6.0.8 updated (Parameter: SENSE Operative Range for Fault Diagnosis (VS - VIS) → Saturation Voltage in Fault Diagnosis (VS - VIS) P_9.6.0.20 updated (Parameter: SENSE Operative Range for Fault Diagnosis (VS - VIS) → Saturation Voltage in Fault Diagnosis (VS - VIS)) 1.00, 2019-10-15 Data Sheet available Data Sheet 54 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2.1 2.2 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 4.1 4.2 4.2.1 4.3 4.4 4.4.1 4.4.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings - Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power Stage - 6 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PCB Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 5.1 5.2 5.3 Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pin (IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 14 14 6 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.2 6.3 6.4 6.4.1 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OFF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ON mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OFF_Diag mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ON_Diag mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage on VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Supply - Product Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BTS7006-1EPZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 16 16 16 16 16 17 18 19 19 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.4 7.4.1 7.5 7.5.1 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Voltage Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Advanced Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cross Current robustness with H-Bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Output Stage - 6 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 21 21 22 23 23 23 25 26 26 27 27 Data Sheet 56 Rev. 1.10 2020-12-14 BTS7006-1EPZ PROFET™ +2 12V Table of Contents 8 8.1 8.2 8.3 8.3.1 8.4 8.4.1 8.4.2 8.5 8.5.1 8.5.2 8.6 8.6.1 8.7 8.7.1 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection and Diagnosis in case of Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intelligent Latch Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Additional protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection against loss of connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Battery and Loss of Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection Power Output Stage - 6 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 30 32 34 34 37 37 37 38 38 38 39 39 40 40 9 9.1 9.2 9.2.1 9.2.2 9.3 9.3.1 9.4 9.5 9.5.1 9.6 9.6.1 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis in ON state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Sense (kILIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault Current (IIS(FAULT)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis in OFF state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load current (IIS(OLOFF)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnosis - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Power Output Stage - 6 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 42 42 43 44 44 45 46 47 48 49 49 10 10.1 10.2 10.3 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 51 52 52 11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 12 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Data Sheet 57 Rev. 1.10 2020-12-14 Please read the Important Notice and Warnings at the end of this document Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2020-12-14 Published by Infineon Technologies AG 81726 Munich, Germany © 2021 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference Z8F65709404 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
BTS70061EPZXUMA1 价格&库存

很抱歉,暂时无法提供与“BTS70061EPZXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货