0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CY8C4747LQS-S453

CY8C4747LQS-S453

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

  • 描述:

    INFINEON - CY8C4747LQS-S453 - ARM MCU, PSoC 4 Family PSoC 4700S Series Microcontrollers, ARM Cortex-...

  • 数据手册
  • 价格&库存
CY8C4747LQS-S453 数据手册
Automotive PSoC™ MCU A u tom ot i ve PSo C ™ 4 M CU : PSo C ™ 4 7 0 0 S Plus General description Automotive PSoC™ 4 MCU is a scalable and reconfigurable platform architecture for a family of programmable embedded system controllers with an Arm® Cortex®-M0+ CPU while being AEC-Q100 compliant. It combines programmable and reconfigurable analog and digital blocks with flexible automatic routing. The PSoC™ 4700S Plus product family, based on this platform, is the industry’s first microcontroller with inductive sensing and capacitive sensing technology in a single chip. The inductive sensing technology enables sensing of metal objects and industry's leading capacitive sensing (CAPSENSE™) technology enables sensing of non-metallic objects. Features • Automotive Electronics Council (AEC) AEC-Q100 qualified • 32-bit MCU subsystem - 48-MHz Arm® Cortex®-M0+ CPU - Up to 128 KB of flash with read accelerator - Up to 8 KB of SRAM - 8-channel DMA engine • Programmable analog - Two opamps with reconfigurable high-drive external and high-bandwidth internal drive and comparator modes and ADC input buffering capability. Opamps can operate in deep sleep low-power mode. - 12-bit 1-Msps SAR ADC with differential and single-ended modes, and channel sequencer with signal averaging - Single-slope 10-bit ADC function provided by a capacitance sensing block - Two current DACs (IDACs) for general-purpose or capacitive sensing applications on any pin - Two low-power comparators that operate in deep sleep low-power mode • Programmable digital - Programmable logic blocks allowing boolean operations to be performed on port inputs and outputs • Low-power 1.71 V to 5.5 V operation - Deep sleep mode with operational analog and 2.5 A digital system current • Inductive sensing - Infineon inductive sensing provides superior noise immunity - Can reliably detect metal deflection under 190 nm - Inductive sense software component automatically calibrates the solution to compensate for the manufacturing variations - Supports up to four sensors • Capacitive sensing - Infineon CAPSENSE™ sigma-delta (CSD) provides best-in-class signal-to-noise ratio (SNR) (> 5:1) and water tolerance - Infineon-supplied software component makes capacitive sensing design easy - Automatic hardware tuning (SmartSense) • LCD drive capability - LCD segment drive capability on GPIOs • Serial communication - Five independent run-time reconfigurable Serial Communication Blocks (SCBs) with re-configurable I2C, SPI, UART functionality, or LIN slave functionality • Timing and Pulse-Width Modulation - Eight 16-bit Timer/Counter/Pulse-Width Modulator (TCPWM) blocks Datasheet www.infineon.com Please read the Important Notice and Warnings at the end of this document page 1 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Features - Center-aligned, edge, and pseudo-random modes - Comparator-based triggering of kill signals for motor drive and other high-reliability digital logic applications - Quadrature decoder • Clock sources - 4 to 33 MHz External Crystal Oscillator (ECO) - PLL to generate 48-MHz frequency - 32-kHz Watch Crystal Oscillator (WCO) - ±2% Internal Main Oscillator (IMO) - 32-kHz Internal Low-Power Oscillator (ILO) • True random number generator (TRNG) - TRNG generates truly random number for secure key generation for cryptography applications • Temperature range - Grade-S: –40°C to +105°C • Up to 33 programmable GPIO pins - 40-pin QFN package - Any GPIO pin can be CAPSENSE™, analog, or digital - Drive modes, strengths, and slew rates are programmable • ModusToolbox™ software enables cross platform code development with a robust suite of tools and software libraries • Industry-standard tool compatibility - After schematic entry, development can be done with Arm®-based industry-standard development tools Datasheet 2 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus More information More information Infineon provides a wealth of data at www.infineon.com to help you to select the right PSoC™ MCU device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article How to design with PSoC™ 3, PSoC™ 4, and PSoC™ 5LP KBA86521. Following is an abbreviated list for PSoC™ 4 MCU: • Application notes: Infineon offers a large number of PSoC™ device application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC™ 4 MCU are: - AN79953: Getting started with PSoC™ 4 - AN86439: Using PSoC™ 4 GPIO pins - AN57821: Mixed signal circuit board layout - AN81623: Digital design best practices - AN73854: Introduction to bootloaders - AN89610: Arm® Cortex® code optimization - AN85951: PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide • Online: - In addition to print documentation, the PSoC™ forums connect you with fellow PSoC™ MCU users and experts in PSoC™ MCU from around the world, 24 hours a day, 7 days a week. Datasheet 3 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus ModusToolbox™ software ModusToolbox™ software ModusToolbox™ software is Infineon comprehensive collection of multi-platform tools and software libraries that enable an immersive development experience for creating converged MCU and wireless systems. It is: • Comprehensive - it has the resources you need • Flexible - you can use the resources in your own workflow • Atomic - you can get just the resources you want Infineon provides a large collection of code repositories on GitHub. This includes: • Board support packages (BSPs) aligned with Infineon kits • Low-level resources, including a hardware abstraction layer (HAL) and peripheral driver library (PDL) • Middleware enabling industry-leading features such as CAPSENE™, Bluetooth® Low Energy, and mesh networks • An extensive set of thoroughly tested code example applications Note: The HAL provides a high-level, simplified interface to configure and use the hardware blocks on Infineon MCUs. It is a generic interface that can be used across multiple product families. For example, it wraps the PSoC™ 4 MCU PDL with a simplified API, but the PDL exposes all low-level peripheral functionality. You can leverage the HAL's simpler and more generic interface for most of an application, even if one portion requires finer-grained control. ModusToolbox™ software is IDE-neutral and easily adaptable to your workflow and preferred development environment. It includes a project creator, peripheral and library configurators, a library manager, as well as the optional eclipse IDE for ModusToolbox™ software, as Figure 1 shows. Figure 1 Datasheet ModusToolbox™ software tools 4 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Table of contents Table of contents General description ...........................................................................................................................1 Features ...........................................................................................................................................1 More information ..............................................................................................................................3 ModusToolbox™ software...................................................................................................................4 Table of contents ...............................................................................................................................5 Block diagram...................................................................................................................................5 1 Functional description ....................................................................................................................6 2 Functional definition.......................................................................................................................7 2.1 CPU and memory subsystem .................................................................................................................................7 2.1.1 CPU .......................................................................................................................................................................7 2.1.2 Flash .....................................................................................................................................................................7 2.1.3 SRAM.....................................................................................................................................................................7 2.1.4 SROM ....................................................................................................................................................................7 2.2 System resources....................................................................................................................................................7 2.2.1 Power system .......................................................................................................................................................7 2.2.2 Clock system ........................................................................................................................................................8 2.2.3 IMO clock source ..................................................................................................................................................8 2.2.4 ILO clock source ...................................................................................................................................................8 2.2.5 WCO ......................................................................................................................................................................8 2.2.6 ECO .......................................................................................................................................................................8 2.2.7 WDT.......................................................................................................................................................................9 2.2.8 Reset .....................................................................................................................................................................9 2.3 Analog blocks ..........................................................................................................................................................9 2.3.1 12-bit SAR ADC .....................................................................................................................................................9 2.3.2 Two opamps (continuous-time block; CTB).....................................................................................................10 2.3.3 Low-power comparators (LPC) .........................................................................................................................10 2.3.4 Current DACs ......................................................................................................................................................10 2.3.5 Analog multiplexed buses .................................................................................................................................10 2.4 Programmable digital blocks ...............................................................................................................................10 2.4.1 Smart I/O block ..................................................................................................................................................10 2.5 Fixed function digital blocks ................................................................................................................................10 2.5.1 Timer/counter/PWM (TCPWM) block ................................................................................................................10 2.5.2 Serial Communication Block (SCB)...................................................................................................................11 2.6 GPIO.......................................................................................................................................................................11 2.7 Special function peripherals ................................................................................................................................12 2.7.1 Inductive sensing ...............................................................................................................................................12 2.7.2 CAPSENSE™ ........................................................................................................................................................16 2.7.3 LCD segment drive .............................................................................................................................................16 3 Pinouts ........................................................................................................................................17 3.1 Alternate pin functions .........................................................................................................................................19 4 Power ..........................................................................................................................................21 4.1 Mode 1: 1.8 V to 5.5 V external supply ..................................................................................................................21 4.2 Mode 2: 1.8 V ±5% external supply.......................................................................................................................21 5 Electrical specifications.................................................................................................................23 5.1 Absolute maximum ratings ..................................................................................................................................23 5.2 Device level specifications....................................................................................................................................24 5.2.1 GPIO....................................................................................................................................................................25 5.2.2 XRES....................................................................................................................................................................26 5.3 Analog peripherals................................................................................................................................................27 5.3.1 CTBm opamp .....................................................................................................................................................27 5.3.2 Comparator ........................................................................................................................................................31 Datasheet 5 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Table of contents 5.3.3 Temperature sensor ..........................................................................................................................................32 5.3.4 SAR ADC ..............................................................................................................................................................32 5.3.5 CSD and IDAC .....................................................................................................................................................34 5.3.6 10-bit CAPSENSE™ ADC......................................................................................................................................36 5.3.7 Inductive sensing ...............................................................................................................................................37 5.4 Digital peripherals.................................................................................................................................................37 5.4.1 Timer Counter Pulse-Width Modulator (TCPWM).............................................................................................37 5.4.2 I2C .......................................................................................................................................................................38 5.4.3 SPI.......................................................................................................................................................................38 5.4.4 UART ...................................................................................................................................................................39 5.4.5 LCD direct drive..................................................................................................................................................40 5.5 Memory..................................................................................................................................................................41 5.5.1 Flash ...................................................................................................................................................................41 5.6 System resources..................................................................................................................................................42 5.6.1 Power-on reset (POR) ........................................................................................................................................42 5.6.2 Brown-out detect (BOD) ....................................................................................................................................42 5.6.3 SWD interface.....................................................................................................................................................42 5.6.4 Internal Main Oscillator .....................................................................................................................................42 5.6.5 Internal Low-Speed Oscillator ..........................................................................................................................43 5.6.6 Watch Crystal Oscillator (WCO) .........................................................................................................................44 5.6.7 External clock.....................................................................................................................................................44 5.6.8 External Crystal Oscillator (ECO) and PLL ........................................................................................................44 5.6.9 System clock ......................................................................................................................................................45 5.6.10 Smart I/O ..........................................................................................................................................................45 6 Ordering information ....................................................................................................................46 7 Packaging ....................................................................................................................................48 7.1 Package diagram ..................................................................................................................................................49 8 Acronyms .....................................................................................................................................51 9 Document conventions..................................................................................................................55 9.1 Units of measure ...................................................................................................................................................55 Revision history ..............................................................................................................................56 Datasheet 6 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Block diagram Block diagram CPU Subsystem SWD/TC, MTB SPCIF Cortex M0+ 48 MHz FLASH 128 KB SRAM 8 KB ROM 8 KB DataWire/ DMA FAST MUL NVIC, IRQMUX, MPU Read Accelerator SRAM Controller ROM Controller Initiator/MMIO 32-bit System Resources Lite x1 SARMUX TRNG LCD SAR ADC (12-bit) WCO Programmable Analog 2x LP Comparator Test TestMode Entry Digital DFT Analog DFT Peripheral Interconnect (MMIO) PCLK 4x SCB-I2C/SPI/UART Reset Reset Control XRES Peripherals IOSS GPIO Clock Clock Control WDT ILO IMO System Interconnect (Single Layer AHB) ECO (w/PLL) Power Sleep Control WIC POR REF PWRSYS CAPSENSE™ (v2)/ Inductive sense AHB-Lite 8x TCPWM PSoC™ 4700S Plus CTBm 2x OpAmp High Speed I/O Matrix & Smart I/O Power Modes Active/Sleep DeepSleep Figure 2 Datasheet Up to 33x GPIOs I/O Subsystem Block diagram 7 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional description 1 Functional description PSoC™ 4700S Plus devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. The Arm® serial-wire debug (SWD) interface supports all programming and debug features of the device. Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug. The SWD interface is fully compatible with industry-standard third-party tools. PSoC™ 4700S Plus provides a level of security not possible with multi-chip application solutions or with microcontrollers. It has the following advantages: • Allows disabling of debug features • Robust flash protection • Allows customer-proprietary functionality to be implemented in on-chip programmable blocks The debug circuits are enabled by default and can be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Thus firmware control of debugging cannot be over-ridden without erasing the firmware thus providing security. Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC™ 4700S Plus, with device security enabled, may not be returned for failure analysis. This is a trade-off the PSoC™ 4700S Plus allows the customer to make. Datasheet 8 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2 Functional definition 2.1 CPU and memory subsystem 2.1.1 CPU The Cortex®-M0+ CPU in the PSoC™ 4700S Plus is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the thumb-2 instruction set. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a wakeup interrupt controller (WIC). The WIC can wake the processor from deep sleep mode, allowing power to be switched off to the main processor when the chip is in deep sleep mode. The CPU subsystem includes an 8-channel DMA engine and also includes a debug interface, the SWD interface, which is a 2-wire form of JTAG. The debug configuration used for PSoC™ 4700S Plus has four breakpoint (address) comparators and two watchpoint (data) comparators. 2.1.2 Flash The PSoC™ 4700S Plus device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver two wait-state (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. 2.1.3 SRAM 8 KB of SRAM are provided with zero wait-state access at 48 MHz. 2.1.4 SROM An 8-KB supervisory ROM that contains boot and configuration routines is provided. 2.2 System resources 2.2.1 Power system The power system is described in detail in the section Power. It provides assurance that voltage levels are as required for each respective mode and either delays mode entry (for example, on power-on reset (POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brownout detection). PSoC™ 4700S Plus operates with a single external supply over the range of either 1.8 V ±5% (externally regulated) or 1.8 V to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. PSoC™ 4700S Plus provides active, sleep, and deep sleep low-power modes. All subsystems are operational in active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes 35 µs. The opamps can remain operational in deep sleep mode. Datasheet 9 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2.2.2 Clock system The PSoC™ 4700S Plus clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions. The clock system for the PSoC™ 4700S Plus consists of the IMO, ILO, a 32-kHz watch crystal oscillator (WCO), MHz ECO and PLL, and provision for an external clock. The WCO block allows locking the IMO to the 32-kHz oscillator. External Clock Divide By 2,4,8 IMO PLL ECO IMO HLFK WDC 0 16-bits WDC 1 16-bits LFCLK ECO WDC 2 32-bits WDT Watchdog Counters (WDC) Watchdog Timer (WDT) Prescaler SYSCLK HFCLK Figure 3 Integer Dividers 12× 16-bits Fractional Dividers 5× 16.5-bit, 1× 24.5-bit PSoC™ 4700S Plus MCU clocking architecture The HFCLK signal can be divided down as shown to generate synchronous clocks for the analog and digital peripherals. There are 18 clock dividers for the PSoC™ 4700S Plus (six with fractional divide capability, twelve with integer divide only). The twelve 16-bit integer divide capability allows a lot of flexibility in generating fine-grained frequency. In addition, there are five 16-bit fractional dividers and one 24-bit fractional divider. 2.2.3 IMO clock source The IMO is the primary source of internal clocking in the PSoC™ 4700S Plus. It is trimmed during testing to achieve the specified accuracy.The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO tolerance with Infineon-provided calibration settings is ±2% over the entire voltage and temperature range. 2.2.4 ILO clock source The ILO is a very low power, nominally 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in deep sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Infineon provides a software component, which does the calibration. 2.2.5 WCO The PSoC™ 4700S Plus clock subsystem also implements a low-frequency (32-kHz watch crystal) oscillator that can be used for precision timing applications. 2.2.6 ECO The PSoC™ 4700S Plus also implements a 4 to 33 MHz crystal oscillator. Datasheet 10 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2.2.7 WDT A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during deep sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a reset cause register, which is firmware readable. 2.2.8 Reset PSoC™ 4700S Plus can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled. 2.3 Analog blocks 2.3.1 12-bit SAR ADC The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion. The sample-and-hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. It is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier. The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected channels autonomously (sequencer scan) with zero switching overhead (that is, aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software. The SAR is not available in deep sleep mode as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 V to 5.5 V. AHB System Bus and Programmable Logic Interconnect SAR Sequencer vminus vplus S A R MU X S A R MU X Port (Up to 16 inputs) Sequencing and Control Data and Status Flags POS SARADC NEG Reference Selection VDDA /2 VDDA External Reference and Bypass (optional) VREF Inputs from other Ports Figure 4 Datasheet SAR ADC 11 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2.3.2 Two opamps (continuous-time block; CTB) PSoC™ 4700S Plus has two opamps with comparator modes which allow most common analog functions to be performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers, and other functions can be realized, in some cases with external passives. saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the sample-and-hold circuit of the ADC without requiring external buffering. 2.3.3 Low-power comparators (LPC) PSoC™ 4700S Plus has a pair of low-power comparators, which can also operate in deep sleep modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event. The LPC outputs can be routed to pins. 2.3.4 Current DACs PSoC™ 4700S Plus has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable current ranges. 2.3.5 Analog multiplexed buses PSoC™ 4700S Plus has two concentric independent buses that go around the periphery of the chip. These buses (called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal resources (IDACs, comparator) to connect to any pin on the I/O ports. 2.4 Programmable digital blocks 2.4.1 Smart I/O block The smart I/O block is a fabric of switches and LUTs that allows boolean functions to be performed in signals being routed to the pins of a GPIO port. The smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs. 2.5 Fixed function digital blocks 2.5.1 Timer/counter/PWM (TCPWM) block The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention. Each block also incorporates a quadrature decoder. There are eight TCPWM blocks in PSoC™ 4700S Plus. Datasheet 12 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2.5.2 Serial Communication Block (SCB) PSoC™ 4700S Plus has five Serial Communication Blocks (SCBs), which can be programmed to have SPI, I2C, UART, or LIN slave functionality. I2C mode: The hardware I2C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 1 Mbps (fast mode plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that creates a mailbox address range in the memory of PSoC™ 4700S Plus and effectively reduces I2C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time. The I2C peripheral is compatible with the I2C standard-mode and fast-mode plus devices as defined in the NXP I2C-bus specification and user manual (UM10204). The I2C bus I/O is implemented with GPIO in open-drain modes. PSoC™ 4700S Plus is not completely compliant with the I2C spec in the following respect: • GPIO cells are not over-voltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I2C system. UART mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated. SPI mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO. LIN slave mode: The LIN slave mode uses the SCB hardware block and implements a full LIN slave interface. This LIN slave is compliant with LIN v1.3, v2.1/2.2, ISO 17987-6, and SAE J2602-2 specification standards. It is certified by C&S GmbH based on the standard protocol and data link layer conformance tests. LIN slave can be operated at baud rates of up to ~20 Kbps with a maximum of 40-meter cable length. 2.6 GPIO PSoC™ 4700S Plus has up to 33 GPIOs. The GPIO block implements the following: • Eight drive modes: - Analog input mode (input and output buffers disabled) - Input only - Weak pull-up with strong pull-down - Strong pull-up with weak pull-down - Open drain with strong pull-down - Open drain with strong pull-up - Strong pull-up with strong pull-down - Weak pull-up with weak pull-down • Input threshold select (CMOS or LVTTL). • Individual control of input and output buffer enabling/disabling in addition to the drive strength modes • Selectable slew rates for dV/dt related noise control to improve EMI The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disabled state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves. Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it. Datasheet 13 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2.7 Special function peripherals 2.7.1 Inductive sensing The inductive sensing block in the PSoC™ 4700S Plus device provides reliable contact-less metal-sensing for applications such as buttons (touch-over-metal), proximity detection and measurement, rotary and linear encoders, spring-based position detection, and other applications based on detecting position or distance of the metal object. 2.7.1.1 SNR vs target distance SNR - dec SNR for 1μm delta vs Target Distance 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 v2 16bit v2 15bit v2 14bit v2 12bit 5 10 15 20 25 30 Target Distance - % of Dout 35 40 45 50 This graph shows the signal-to-noise ratio versus metal target position. In this case, the signal corresponds to the raw counts delta provoked by a metal target displacement of 1µm. The y-axis of the graph is scalable for displacements different than 1µm. For example, to obtain the SNR for a 10-µm displacement, the corresponding y-axis SNR value must be multiplied by 10. 2.7.1.2 Distance delta (metal target displacement) when SNR = 5 Distance Delta - um Distance Delta vs Target Distance for SNR=5 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 Above Curve: SNR>5 v2 16bit v2 15bit v2 14bit v2 12bit 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Target Distance - % of Dout Each curve in this graph determines the metal target displacement needed to achieve a SNR value of 5. Therefore, above the curve, SNR > 5, and below the curve SNR < 5. For example, if we have a metal target positioned at a distance equivalent to 50% of the coil's diameter (Dout), we need a minimum target displacement of approximately 75µm @16 bits, 150µm @15 bits, and 300µm @14 bits to obtain an SNR 5. Datasheet 14 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2.7.1.3 Raw counts vs target distance Raw Counts vs Target Distance (Dout=20mm) 70000 60000 Raw Counts 50000 40000 v2 16bit v2 15bit 30000 v2 14bit v2 12bit 20000 10000 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Target Distance - % of Dout This graph plots the unfiltered converted data (raw counts) versus the metal target distance for different scan resolutions (bits). 2.7.1.4 Noiseless precision Noiseless Precision - um Distance Delta vs Target Distance for 1 Raw Count Delta (Noiseless Precision) 1200 1150 1100 1050 1000 950 900 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 v2 16bit v2 15bit v2 14bit v2 12bit 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Target Distance - % of Dout This graph shows the metal target displacement that can be detected in the absence of noise. In this ideal scenario, the plotted target displacement results in one raw count delta. Datasheet 15 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2.7.1.5 Sensitivity Sensitivity (RawC/um) vs Target Distance Sensitivity - counts/um 5 4 3 v2 16bit v2 15bit 2 v2 14bit 1 v2 12bit 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Target Distance - % of Dout This graph shows the sensitivity of the system in raw counts per µm versus the target distance. 2.7.1.6 Noise floor (%) Max Noise Floor (%) vs Scan Resolution 0.04 0.035 Noise Floor (%) 0.03 0.025 0.02 0.015 0.01 0.005 0 12 13 14 15 16 Scan Resolution - bits Noise floor is the ratio between the peak-to-peak raw counts noise and the averaged (or DC) raw counts (1000 samples) 2.7.1.7 Effective number of bits (ENOB) ENOB is the actual resolution of the system when intrinsic noise is considered. For example, a 16-bit scan has an ENOB = 15 bits, and therefore has the same resolution of a noiseless 15-bit scan. Resolution (% of Dout) 5 10 20 40 60 100 Datasheet Target distance (mm) 1 2 4 8 12 20 16 ENOB (bits) 12.997 12.858 12.786 12.738 12.525 11.057 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2.7.1.8 Scan time Scan Time vs Resolution for Fout MAX (12MHz) 3000 2800 2600 2400 Scan Time - us 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 10 11 12 13 14 15 16 Scan Resolution - bits The plot in this graph shows an example of Fmax = 12MHz; hence it shows the minimum scan time per sensor at different scan resolutions. 2.7.1.9 Detection range Detection Range (d/Dout for SNR=5) 1.5 Detection Range -d/Dout 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 12 13 14 Scan Resolution - bits 15 16 This graph shows the maximum distance until which a metal target can be detected with a SNR value of 5. When a metal target that was initially far away (i.e. > 2x Dout) is moved in closer, the raw counts begin to increase. The point at which these raw counts increase is 5 times the peak-to-peak noise (SNR = 5) and that marks the detection range. The measured peak-to-peak noise is the noise at the initial distance, d >2x Dout. Datasheet 17 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Functional definition 2.7.2 CAPSENSE™ CAPSENSE™ is supported in the PSoC™ 4700S Plus through a CAPSENSE™ sigma-delta (CSD) block that can be connected to any pins through an analog multiplex bus via analog switches. CAPSENSE™ function can thus be provided on any available pin or group of pins in a system under software control. A PSoC™ Creator IDE component is provided for the CAPSENSE™ block to make it easy for the user. Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented. The CAPSENSE™ block has two IDACs, which can be used for general purposes if CAPSENSE™ is not being used (both IDACs are available in that case) or if CAPSENSE™ is used without water tolerance (one IDAC is available). The CAPSENSE™ block also provides a 10-bit Slope ADC function which can be used in conjunction with the CAPSENSE™ function. The CAPSENSE™ block is an advanced, low-noise, programmable block with programmable voltage references and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It has a full-wave CSD mode that alternates sensing to VDDA and ground to null out power-supply related noise. 2.7.3 LCD segment drive PSoC™ 4700S Plus has an LCD controller, which can drive up to 4 commons and up to 50 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM. Digital correlation pertains to modulating the frequency and drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during deep sleep refreshing a small display buffer (4 bits; one 32-bit register per port). Datasheet 18 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Pinouts 3 Pinouts Table 1 Pin list for PSoC™ 4700S Plus for the 40-pin QFN package Datasheet Pin Name 22 P0.0 23 P0.1 24 P0.2 25 P0.3 26 P0.4 27 P0.5 28 P0.6 29 P0.7 30 XRES 31 VCCD 32 VSSD 33 VDD 34 VSSA 35 P1.0 36 P1.1 37 P1.2 38 P1.3 39 P1.4 40 P1.7/VREF 1 P2.3 2 P2.4 3 P2.5 4 P2.6 5 P2.7 6 P6.0 7 P6.1 8 P6.2 9 VSSD 10 P3.0 11 P3.1 12 P3.2 13 P3.3 14 P3.4 15 P3.5 16 P3.6 17 P3.7 18 P4.0 19 P4.1 19 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Pinouts Table 1 Pin list for PSoC™ 4700S Plus for the 40-pin QFN package (continued) Pin Name 20 P4.2 21 P4.3 Descriptions of the power pins are as follows: VDDD: Power supply for the digital section. VDDA: Power supply for the analog section. VSSD, VSSA: Ground pins for the digital and analog sections respectively. VCCD: Regulated digital supply (1.8 V ±5%) VDD: On some packages, VDDA and VDDD are shorted inside and brought out as a single power supply GPIOs: 33 Datasheet 20 002-34139 Rev. *B 2022-09-19 Each port pin has can be assigned to one of multiple functions; it can, for example, be an analog I/O, a digital peripheral function, an LCD pin, or a inductive sense pin. The pin assignments are shown in the following table. Table 2 Pin Name Pin assignments Analog Alternate function 1 Alternate function 2 Alternate function 3 Alternate Deep Sleep function 4 1 Deep Sleep 2 Deep Sleep 3 Deep Sleep 4 21 002-34139 Rev. *B 2022-09-19 22 P0.0 lpcomp.in_p[0] - tcpwm.tr_in pass.dsi_sar_ scb[2].uart_ lcd.com[0] [0] data_valid cts:0 lcd.seg[0] scb[2].i2c_ scb[0].spi_ scl:0 select1:0 23 P0.1 lpcomp.in_n[0] - tcpwm.tr_in pass.tr_sar_o scb[2].uart_ lcd.com[1] [1] ut rts:0 lcd.seg[1] scb[2].i2c_ scb[0].spi_ sda:0 select2:0 24 P0.2 lpcomp.in_p[1] - - pass.dsi_sar_ sample_done - lcd.com[2] lcd.seg[2] - scb[0].spi_ select3:0 25 P0.3 lpcomp.in_n[1] - - pass.dsi_sar_ data[2] - lcd.com[3]: 0 lcd.seg[3] - scb[2].spi_ select0:1 26 P0.4 wco.wco_in - scb[1].uart_ pass.dsi_sar_ scb[2].uart_ lcd.com[4] rx:0 data[0] rx:0 lcd.seg[4] scb[1].i2c_ scb[1].spi_ scl:0 mosi:1 27 P0.5 wco.wco_out - scb[1].uart_ pass.dsi_sar_ scb[2].uart_ lcd.com[5] tx:0 data[1] tx:0 lcd.seg[5] scb[1].i2c_ scb[1].spi_ sda:0 miso:1 28 P0.6 srss.adft_por_pad_hv exco.eco_in srss.ext_cl scb[1].uart_ k cts:0 - 29 P0.7 exco.eco_out tcpwm.line scb[1].uart_ [0]:3 rts:0 - - 35 P1.0 pass.ctb0_pads[0] tcpwm.line scb[0].uart_ [2]:1 rx:1 - 36 P1.1 pass.ctb0_pads[1] tcpwm.line scb[0].uart_ _compl[2]: tx:1 1 - 37 P1.2 pass.ctb0_pads[2] tcpwm.line scb[0].uart_ pass.dsi_sar_ tcpwm.tr_in lcd.com[10] lcd.seg[10] scb[2].i2c_ scb[0].spi_ pass.ctb0_oa0_out_10x [3]:1 cts:1 data[3]:0 [2] scl:2 clk:1 38 P1.3 pass.ctb0_pads[3] tcpwm.line scb[0].uart_ pass.dsi_sar_ tcpwm.tr_in lcd.com[11] lcd.seg[11] scb[2].i2c_ scb[0].spi_ pass.ctb0_oa1_out_10x _compl[3]: rts:1 data[4]:0 [3] sda:2 select0:1 1 39 P1.4 pass.ctb0_pads[4] tcpwm.line [6]:1 - - scb[2].uart_ lcd.com[6] tx:1 lcd.seg[6] - scb[1].spi_ clk:1 lcd.com[7] lcd.seg[7] - scb[1].spi_ select0:1 - lcd.com[8] lcd.seg[8] scb[0].i2c_ scb[0].spi_ scl:0 mosi:1 - lcd.com[9] lcd.seg[9] scb[0].i2c_ scb[0].spi_ sda:0 miso:1 - lcd.com[12] lcd.seg[12] scb[3].i2c_ scb[0].spi_ scl:0 select1:1 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Alternate pin functions Pinouts Datasheet 3.1 40 P1.7 Analog Alternate function 1 Alternate function 2 Alternate function 3 Alternate Deep Sleep function 4 1 pass.ctb0_pads[7] pass.sar_ext_vref0 pass.sar_ext_vref1 tcpwm.line _compl[7]: 1 - - pass.sarmux_pads[0] tcpwm.line [4]:0 csd.comp - tcpwm.tr_in lcd.com[16] lcd.seg[16] scb[1].i2c_ scb[1].spi_ [4] scl:1 mosi:2 pass.sarmux_pads[1] tcpwm.line _compl[4]: 0 - - tcpwm.tr_in lcd.com[17] lcd.seg[17] scb[1].i2c_ scb[1].spi_ [5] sda:1 miso:2 pass.sarmux_pads[2] tcpwm.line [5]:1 - - - lcd.com[18] lcd.seg[18] - scb[1].spi_ clk:2 - - - lcd.com[19] lcd.seg[19] - scb[1].spi_ select0:2 - Deep Sleep 2 lcd.com[15] lcd.seg[15] Deep Sleep 3 Deep Sleep 4 - scb[2].spi_ clk:1 22 002-34139 Rev. *B 2022-09-19 1 P2.3 pass.sarmux_pads[3] tcpwm.line _compl[5]: 1 2 P2.4 pass.sarmux_pads[4] tcpwm.line scb[3].uart_ [0]:1 rx:1 - - lcd.com[20] lcd.seg[20] - scb[1].spi_ select1:1 3 P2.5 pass.sarmux_pads[5] tcpwm.line scb[3].uart_ _compl[0]: tx:1 1 - - lcd.com[21] lcd.seg[21] - scb[1].spi_ select2:1 4 P2.6 pass.sarmux_pads[6] tcpwm.line scb[3].uart_ pass.dsi_sar_ [1]:1 cts:1 data[5]:0 - lcd.com[22] lcd.seg[22] - scb[1].spi_ select3:1 5 P2.7 pass.sarmux_pads[7] tcpwm.line scb[3].uart_ pass.dsi_sar_ _compl[1]: rts:1 data[6]:0 1 - lcd.com[23] lcd.seg[23] lpcomp.co scb[2].spi_ mp[0]:0 mosi:1 6 P6.0 - tcpwm.line scb[3].uart_ [4]:1 rx:0 - can.can_tx- lcd.com[48] lcd.seg[48] scb[3].i2c_ scb[3].spi_ _enb_n:0 scl:1 mosi:0 7 P6.1 - tcpwm.line scb[3].uart_ _compl[4]: tx:0 1 - can.can_rx: lcd.com[49] lcd.seg[49] scb[3].i2c_ scb[3].spi_ 0 sda:1 miso:0 8 P6.2 - tcpwm.line scb[3].uart_ [5]:0 cts:0 - can.can_tx: lcd.com[50] lcd.seg[50] 0 10 P3.0 - tcpwm.line scb[1].uart_ pass.dsi_sar_ [0]:0 rx:1 data[7]:0 - - scb[3].spi_ clk:0 lcd.com[24] lcd.seg[24] scb[1].i2c_ scb[1].spi_ scl:2 mosi:0 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Pin Name Pin assignments (continued) Pinouts Datasheet Table 2 Pin Name Analog Alternate function 1 Alternate function 2 Alternate function 3 Alternate Deep Sleep function 4 1 Deep Sleep 2 Deep Sleep 3 Deep Sleep 4 23 11 P3.1 - tcpwm.line scb[1].uart_ pass.dsi_sar_ _compl[0]: tx:1 data[8]:0 0 - lcd.com[25] lcd.seg[25] scb[1].i2c_ scb[1].spi_ sda:2 miso:0 12 P3.2 - tcpwm.line scb[1].uart_ [1]:0 cts:1 - - lcd.com[26] lcd.seg[26] cpuss.swd scb[1].spi_ _data clk:0 13 P3.3 - tcpwm.line scb[1].uart_ rts:1 _compl[1]: 0 - - lcd.com[27] lcd.seg[27] cpuss.swd scb[1].spi_ _clk select0:0 14 P3.4 - tcpwm.line [2]:0 - - 15 P3.5 - tcpwm.line _compl[2]: 0 - - - lcd.com[29] lcd.seg[29] 16 P3.6 - tcpwm.line [3]:0 - pass.dsi_ctb_cmp0 - lcd.com[30] lcd.seg[30] scb[4].spi_ scb[1].spi_ select3 select3:0 17 P3.7 - tcpwm.line _compl[3]: 0 - pass.dsi_ctb_cmp1 - lcd.com[31] lcd.seg[31] lpcomp.co scb[2].spi_ mp[1]:1 miso:1 18 P4.0 csd.vref_ext csd.vref_ext_hscomp - scb[0].uart_ pass.dsi_sar_ can.can_rx: lcd.com[32] lcd.seg[32] scb[0].i2c_ scb[0].spi_ rx:0 data[9]:0 1 scl:1 mosi:0 19 P4.1 csd.cshieldpads - scb[0].uart_ tx:0 20 P4.2 csd.cmodpads csd.cmodpadd - scb[0].uart_ pass.dsi_sar_ can.can_tx- lcd.com[34] lcd.seg[34] lpcomp.co scb[0].spi_ cts:0 data[10]:0 _enb_n:1 mp[0]:1 clk:0 21 P4.3 csd.csh_tankpads csd.csh_tankpadd - scb[0].uart_ pass.dsi_sar_ rts:0 data[11]:0 - - - tcpwm.line scb[3].uart_ _compl[0]: tx:2 2 tcpwm.tr_in lcd.com[28] lcd.seg[28] [6] - scb[1].spi_ select1:0 - scb[1].spi_ select2:0 can.can_tx: lcd.com[33] lcd.seg[33] scb[0].i2c_ scb[0].spi_ 1 sda:1 miso:0 - - lcd.com[35] lcd.seg[35] lpcomp.co scb[0].spi_ mp[1]:2 select0:0 - lcd.com[55] lcd.seg[55] scb[3].i2c_ scb[3].spi_ :0 sda:2 miso:1 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Pin assignments (continued) Pinouts Datasheet Table 2 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Power 4 Power The following power system diagram shows the set of power supply pins as implemented for the PSoC™ 4700S Plus. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the VDDA input. VDDA VDDD VDDA VSSA VDDD Analog Domain Digital Domain VSSD 1.8 Volt Regulator Figure 5 VCCD Power supply connections There are two distinct modes of operation. In mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In mode 2, the supply range is1.8 V ±5% (externally regulated; 1.71 to 1.89, internal regulator bypassed). 4.1 Mode 1: 1.8 V to 5.5 V external supply In this mode, PSoC™ 4700S Plus is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of PSoC™ 4700S Plus supplies the internal logic and its output is connected to the VCCD pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1 µF; X5R ceramic or better) and must not be connected to anything else. 4.2 Mode 2: 1.8 V ±5% external supply In this mode, PSoC™ 4700S Plus is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1-µF range, in parallel with a smaller capacitor (0.1 µF, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing. On some packages, VDDD and VDDA pins are shorted inside the package and brought out as a generic VDD pin. In that case, only 0.1-µF and 1-µF decoupling capacitors are required on the VDD pin. An example of a bypass scheme is shown in the following diagram. Datasheet 24 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Power Power supply bypass connections example 1.8 V to 5.5 V 1.8 V to 5.5 V VDDA VDDD 1 µF 0.1 µF 0.1 µF 0.1 µF VCCD PSoC™ 4700S Plus 0.1mF VSS Figure 6 Datasheet External supply range from 1.8 V to 5.5 V with internal regulator active 25 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5 Electrical specifications 5.1 Absolute maximum ratings Table 3 Absolute maximum ratings[1] Spec ID# Parameter Description Min Typ Max Unit Details/conditions SID1 VDDD_ABS Digital supply relative to VSS –0.5 – 6 SID2 VCCD_ABS Direct digital core voltage input relative to VSS –0.5 – 1.95 – SID3 VGPIO_ABS GPIO voltage –0.5 – VDD + 0.5 – SID4 IGPIO_ABS Maximum current per GPIO –25 – 25 SID5 IGPIO_injection GPIO injection current, Max for VIH > VDDD, and Min for VIL < VSS –0.5 – 0.5 BID44 ESD_HBM Electrostatic discharge human body model 2200 – – BID45 ESD_CDM Electrostatic discharge charged device model 500 – – BID46 LU Pin current for latch-up –140 – 140 V – mA – Current injected per pin V – – mA – Note 1. Usage above the absolute maximum conditions listed in Table 3 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150°C in compliance with JEDEC Standard JESD22-A103, high temperature storage life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification. Datasheet 26 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5.2 Device level specifications All specifications are valid for –40°C  TA  85°C for grade-A devices, –40 °C  TA  105°C for grade-S devices, and –40 °C  TA  125°C for grade-E devices. Specifications are valid for 1.71 V to 5.5 V, except where noted. Table 4 DC specifications Typical values measured at VDD = 3.3 V and 25°C. Spec ID# Parameter Description Min Typ Max Unit Details/conditions V Internally regulated supply SID53 VDD Power supply input voltage 1.8 – 5.5 SID255 VDD Power supply input voltage (VCCD = VDDD = VDDA) 1.71 – 1.89 SID54 VCCD Output voltage (for core logic) – 1.8 – SID55 CEFC External regulator voltage bypass – 0.1 – SID56 CEXC Power supply bypass capacitor – 1 – Internally unregulated supply – µF X5R ceramic or better X5R ceramic or better Active mode, VDD = 1.8 V to 5.5 V. Typical values measured at VDD = 3.3 V and 25°C. SID10 IDD5 Execute from flash; CPU at 6 MHz – 1.8 2.7 SID16 IDD8 Execute from flash; CPU at 24 MHz – 3.0 5 Max is at 125°C and 5.5 V SID19 IDD11 Execute from flash; CPU at 48 MHz – 5.4 7.6 Max is at 125°C and 5.5 V mA Max is at 125°C and 5.5 V Sleep mode, VDDD = 1.8 V to 5.5 V (Regulator on) SID22 IDD17 I2C wakeup WDT, and Comparators on – 1.1 2.2 SID25 IDD20 I2C wakeup, WDT, and Comparators on – 1.5 2.5 mA 6 MHZ. Max is at 125°C and 5.5 V 12 MHZ. Max is at 125°C and 5.5 V Sleep mode, VDDD = 1.71 V to 1.89 V (Regulator bypassed) SID28 IDD23 I2C wakeup, WDT, and Comparators on – 1.1 1.8 SID28A IDD23A I2C wakeup, WDT, and Comparators on – 1.5 2.1 – 2.5 40 – 2.5 350 – 2.5 40 – 2.5 350 mA 6 MHz. Max is at 125°C and 1.89 V. 12 MHz. Max is at 125°C and 1.89 V. Deep sleep mode, VDD = 1.8 V to 3.6 V (Regulator on) SID30 SID31 IDD25 I2C wakeup and WDT on IDD26 I C wakeup and WDT on 2 µA T = –40°C to 60°C Max is at 3.6 V and 125°C Deep sleep mode, VDD = 3.6 V to 5.5 V (Regulator on) SID33 SID34 IDD28 I2C wakeup and WDT on IDD29 I C wakeup and WDT on 2 µA T = –40 °C to 60 °C Max is at 5.5 V and 125°C Deep sleep mode, VDD = VCCD = 1.71 V to 1.89 V (Regulator bypassed) SID36 SID37 IDD31 I2C wakeup and WDT on IDD32 – 2.5 60 I C wakeup and WDT on – 2.5 400 Supply current while XRES asserted – 2 5 2 µA T = –40°C to 60°C Max is at 125°C and 1.89 V. XRES current SID307 Datasheet IDD_XR 27 mA – 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 5 AC specifications Spec ID# Parameter Description Min Typ Max DC – 48 SID48 FCPU CPU frequency SID49 TSLEEP Wakeup from sleep mode – 0 – SID50 TDEEPSLEEP Wakeup from deep sleep mode – 35 – 5.2.1 GPIO Table 6 GPIO DC specifications Spec ID# Parameter [2] Description Min Typ Max Input voltage high threshold 0.7 VDDD – – – – 0.3 VDDD Unit Details/conditions MHz 1.71 VDD 5.5 µs – – Unit Details/conditions SID57 VIH SID58 VIL Input voltage low threshold SID241 VIH[2] LVTTL input, VDDD < 2.7 V 0.7 VDDD – – – SID242 VIL LVTTL input, VDDD < 2.7 V – – 0.3 VDDD – LVTTL input, VDDD  2.7 V 2.0 – – – – [2] V CMOS Input CMOS Input SID243 VIH SID244 VIL LVTTL input, VDDD  2.7 V – – 0.8 SID59 VOH Output voltage high level VDDD – 0.6 – – IOH = 4 mA at 3 V VDDD SID60 VOH Output voltage high level VDDD – 0.5 – – IOH = 1 mA at 1.8 V VDDD SID61 VOL Output voltage low level – – 0.6 IOL = 4 mA at 1.8 V VDDD SID62 VOL Output voltage low level – – 0.6 IOL = 10 mA at 3 V VDDD SID62A VOL Output voltage low level – – 0.4 IOL = 3 mA at 3 V VDDD SID63 RPULLUP Pull-up resistor 3.5 5.6 8.5 kΩ – SID64 RPULLDOWN Pull-down resistor 3.5 5.6 8.5 – SID65 IIL Input leakage current (absolute value) – – 2 nA 25°C, VDDD = 3.0 V SID66 CIN Input capacitance – – 7 pF VHYSTTL Input hysteresis LVTTL 25 40 – mV VDDD  2.7 V VHYSCMOS Input hysteresis CMOS 0.05 × VDDD – – VDD < 4.5 V VHYSC- Input hysteresis CMOS 200 – – VDD > 4.5 V Current through protection diode to VDD/VSS – – 100 µA Maximum total source or sink chip current – – 200 mA – SID67[3] SID68[3] SID68A[3] SID69[3] – MOS5V5 IDIODE SID69A[3] ITOT_GPIO – Notes 2. VIH must not exceed VDDD + 0.2 V. 3. Guaranteed by characterization. Datasheet 28 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 7 GPIO AC specifications (Guaranteed by characterization) Spec ID# Parameter Description Min Typ Max Unit Details/conditions SID70 TRISEF Rise time in fast strong mode 2 – 12 SID71 TFALLF Fall time in fast strong mode 2 – 12 SID72 TRISES Rise time in slow strong mode 10 – 60 – 3.3 V VDDD, Cload = 25 pF SID73 TFALLS Fall time in slow strong mode 10 – 60 – 3.3 V VDDD, Cload = 25 pF SID74 FGPIOUT1 GPIO FOUT; 3.3 V  VDDD  5.5 V fast strong mode – – 33 SID75 FGPIOUT2 GPIO FOUT; 1.71 V VDDD 3.3 V fast strong mode – – 16.7 90/10%, 25 pF load, 60/40 duty cycle SID76 FGPIOUT3 GPIO FOUT; 3.3 V VDDD  5.5 V slow strong mode – – 7 90/10%, 25 pF load, 60/40 duty cycle SID245 FGPIOUT4 GPIO FOUT; 1.71 V VDDD 3.3 V slow strong mode. – – 3.5 90/10%, 25 pF load, 60/40 duty cycle SID246 FGPIOIN GPIO input operating frequency; 1.71 V VDDD 5.5 V – – 48 90/10% VIO Description Min Typ Max 5.2.2 XRES Table 8 XRES DC specifications Spec ID# Parameter ns 3.3 V VDDD, Cload = 25 pF 3.3 V VDDD, Cload = 25 pF MHz 90/10%, 25 pF load, 60/40 duty cycle Unit Details/conditions SID77 VIH Input voltage high threshold 0.7 × VDDD – – SID78 VIL Input voltage low threshold – – 0.3  VDDD SID79 RPULLUP Pull-up resistor – 60 – kΩ – SID80 CIN Input capacitance – – 7 pF SID81 VHYSXRES Input voltage hysteresis – 100 – mV Typical hysteresis is 200 mV for VDD > 4.5 V SID82 IDIODE Current through protection diode to VDD/VSS – – 100 [4] Datasheet 29 V CMOS Input – µA – 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 9 XRES AC specifications Spec ID# [4] SID83 [4] BID194 Parameter Description Min Typ Max Unit TRESETWIDTH Reset pulse width 1 – – µs TRESETWAKE – – 2.7 ms – Min Typ Max Unit Wake-up time from reset release 5.3 Analog peripherals 5.3.1 CTBm opamp Table 10 CTBm opamp specifications Spec ID# Parameter Description Details/conditions – Details/conditions IDD Opamp block current, External load SID269 IDD_HI power = hi – 1100 1850 µA – SID270 IDD_MED power = med – 550 950 – SID271 IDD_LOW power = lo – 150 350 – GBW Load = 20 pF, 0.1 mA VDDA = 2.7 V SID272 GBW_HI power = hi 6 – – MHz Input and output are 0.2 V to VDDA-0.2 V SID273 GBW_MED power = med 3 – – Input and output are 0.2 V to VDDA-0.2 V SID274 GBW_LO power = lo – 1 – Input and output are 0.2 V to VDDA-0.2 V IOUT_MAX VDDA = 2.7 V, 500 mV from rail SID275 IOUT_MAX_HI power = hi 10 – – mA Output is 0.5 V to VDDA -0.5 V SID276 IOUT_MAX_MID power = mid 10 – – Output is 0.5 V to VDDA -0.5 V SID277 IOUT_MAX_LO power = lo – 5 – Output is 0.5 V to VDDA -0.5 V IOUT VDDA = 1.71 V, 500 mV from rail SID278 IOUT_MAX_HI power = hi 4 – – mA Output is 0.5 V to VDDA -0.5 V SID279 IOUT_MAX_MID power = mid 4 – – Output is 0.5 V to VDDA-0.5 V SID280 IOUT_MAX_LO power = lo – 2 – Output is 0.5 V to VDDA-0.5 V IDD_Int Opamp block current Internal Load Note 4. Guaranteed by characterization. Datasheet 30 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 10 Spec ID# CTBm opamp specifications (continued) Parameter Description Min Typ Max Unit Details/conditions SID269_I IDD_HI_Int power = hi – 1500 1700 µA – SID270_I IDD_MED_Int power = med – 700 900 – SID271_I IDD_LOW_Int power = lo – – – – GBW VDDA = 2.7 V – – – – GBW_HI_Int power = hi 8 – – SID272_I MHz Output is 0.25 V to VDDA-0.25 V General opamp specs for both internal and external modes SID281 VIN Charge-pump on, VDDA = 2.7 V –0.05 – VDDA-0.2 SID282 VCM Charge-pump on, VDDA = 2.7 V –0.05 – VDDA-0.2 VOUT VDDA = 2.7 V SID283 VOUT_1 power = hi, Iload=10 mA 0.5 – VDDA -0.5 SID284 VOUT_2 power = hi, Iload=1 mA 0.2 – VDDA -0.2 – SID285 VOUT_3 power = med, Iload=1 mA 0.2 – VDDA -0.2 – SID286 VOUT_4 power = lo, Iload=0.1 mA 0.2 – VDDA -0.2 – SID288 VOS_TR Offset voltage, trimmed –1.0 0.5 SID288A VOS_TR Offset voltage, trimmed – 1.4 – Medium mode, input 0 V to VDDA-0.2 V SID288B VOS_TR Offset voltage, trimmed – 2 – Low mode, input 0 V to VDDA-0.2 V SID290 VOS_DR_TR Offset voltage drift, trimmed –10 3 10 µV/ High mode °C SID290A VOS_DR_TR Offset voltage drift, trimmed – 10 – SID290B VOS_DR_TR Offset voltage drift, trimmed – 10 – µV/ Medium mode °C Low mode Datasheet 31 1.0 V – – V – mV High mode, input 0 V to VDDA-0.2 V 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 10 Spec ID# SID291 CTBm opamp specifications (continued) Parameter CMRR Description DC Min Typ Max 70 80 – Unit Details/conditions dB Input is 0 V to VDDA-0.2 V, Output is 0.2 V to VDDA-0.2 V SID292 PSRR At 1 kHz, 10-mV ripple 70 85 – VDDD = 3.6 V, high-power mode, input is 0.2 V to VDDA-0.2 V Noise SID294 VN2 Input-referred, 1 kHz, power = Hi – 72 – SID295 VN3 Input-referred, 10 kHz, power = Hi – 28 – Input and output are at 0.2 V to VDDA-0.2 V SID296 VN4 Input-referred, 100 kHz, power = Hi – 15 – Input and output are at 0.2 V to VDDA-0.2 V SID297 CLOAD Stable up to max. load. Performance specs at 50 pF. – – 125 pF – SID298 SLEW_RATE Cload = 50 pF, Power = High, VDDA = 2.7 V 6 – – V/µs – SID299 T_OP_WAKE From disable to enable, no external RC dominating – – 25 µs SID299A OL_GAIN – 90 – dB ns Open Loop Gain nV/ 3 rtHz – COMP_MOD Comparator mode; 50 mV E drive, Trise=Tfall (approx.) SID300 TPD1 Response time; power = hi – 150 – SID301 TPD2 Response time; power = med – 500 – Input is 0.2 V to VDDA – 0.2 V SID302 TPD3 Response time; power = lo – 2500 – SID303 VHYST_OP Hysteresis – – SID304 WUP_CTB Wake-up time from Enabled to Usable – 10 – Input is 0.2 V to VDDA – 0.2 V mV – µs – Deep sleep mode Mode 2 is lowest current range. Mode 1 has higher GBW. Datasheet 32 25 Input is 0.2 V to VDDA – 0.2 V 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 10 Spec ID# CTBm opamp specifications (continued) Parameter Description Min Typ Max Unit Details/conditions SID_DS_1 IDD_HI_M1 Mode 1, high current – 1400 – µA 25°C SID_DS_2 IDD_MED_M1 Mode 1, medium current – 700 – 25°C SID_DS_3 IDD_LOW_M1 Mode 1, low current – 200 – 25°C SID_DS_4 IDD_HI_M2 Mode 2, high current – 120 – 25 °C SID_DS_5 IDD_MED_M2 Mode 2, medium current – 60 – 25°C SID_DS_6 IDD_LOW_M2 Mode 2, low current – 15 – 25°C SID_DS_7 GBW_HI_M1 Mode 1, high current – 4 – MHz 20-pF load, no DC load 0.2 V to VDDA – 0.2 V SID_DS_8 GBW_MED_M1 Mode 1, medium current – 2 – 20-pF load, no DC load 0.2 V to VDDA – 0.2 V SID_DS_9 GBW_LOW_M1 Mode 1, low current – 0.5 – 20-pF load, no DC load 0.2 V to VDDA – 0.2 V – 0.5 – 20-pF load, no DC load 0.2 V to VDDA – 0.2 V SID_DS_11 GBW_MED_M2 Mode 2, medium current – 0.2 – 20-pF load, no DC load 0.2 V to VDDA – 0.2 V SID_DS_12 GBW_Low_M2 Mode 2, low current – 0.1 – 20-pF load, no DC load 0.2 V to VDDA – 0.2 V SID_DS_13 VOS_HI_M1 Mode 1, high current – 5 – mV With trim 25 °C, 0.2 V to VDDA – 0.2 V SID_DS_14 VOS_MED_M1 Mode 1, medium current – 5 – With trim 25°C, 0.2 V to VDDA – 0.2 V SID_DS_15 VOS_LOW_M2 Mode 1, low current – 5 – With trim 25°C, 0.2 V to VDDA – 0.2 V SID_DS_16 VOS_HI_M2 Mode 2, high current – 5 – With trim 25°C, 0.2V to VDDA – 0.2 V SID_DS_17 VOS_MED_M2 Mode 2, medium current – 5 – With trim 25°C, 0.2 V to VDDA – 0.2 V SID_DS_18 VOS_LOW_M2 Mode 2, low current – 5 – With trim 25°C, 0.2 V to VDDA – 0.2 V SID_DS_10 GBW_HI_M2 Datasheet Mode 2, high current 33 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 10 Spec ID# CTBm opamp specifications (continued) Parameter Min Typ Max – 10 – mA Output is 0.5 V to VDDA – 0.5 V SID_DS_20 IOUT_MED_M1 Mode 1, medium current – 10 – Output is 0.5 V to VDDA – 0.5 V SID_DS_21 IOUT_LOW_M1 Mode 1, low current – 4 – SID_DS_19 IOUT_HI_M1 Description Mode 1, high current Unit Details/conditions SID_DS_22 IOUT_HI_M2 Mode 2, high current – 1 – Output is 0.5 V to VDDA – 0.5 V – SID_DS_23 IOU_MED_M2 Mode 2, medium current – 1 – – SID_DS_24 IOU_LOW_M2 Mode 2, low current – 0.5 – – Min Typ Max Unit 5.3.2 Comparator Table 11 Comparator DC specifications Spec ID# Parameter Description Details/conditions SID84 VOFFSET1 Input offset voltage, factory trim – – ±10 mV – SID85 VOFFSET2 Input offset voltage, custom trim – – ±4 – SID86 VHYST Hysteresis when enabled – 10 35 – SID87 VICM1 Input common mode voltage in normal mode 0 – VDDD-0. 1 SID247 VICM2 Input common mode voltage in low power mode 0 – VDDD SID247A VICM3 Input common mode voltage in ultra low power mode 0 – VDDD-1. 15 SID88 CMRR Common mode rejection ratio 50 – – SID88A CMRR Common mode rejection ratio 42 – – SID89 ICMP1 Block current, normal mode – – 400 SID248 ICMP2 Block current, low power mode – – 100 SID259 ICMP3 Block current in ultra low-power mode – – 6 SID90 ZCMP DC Input impedance of comparator 35 – – Datasheet 34 V Modes 1 and 2 – VDDD ≥ 2.2 V at –40°C dB VDDD ≥ 2.7 V VDDD ≤ 2.7 V µA – – VDDD ≥ 2.2 V at –40°C MΩ – 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 12 Spec ID# Comparator AC specifications Parameter Description Min Typ Max Unit ns SID91 TRESP1 Response time, normal mode, 50 mV overdrive – 38 110 SID258 TRESP2 Response time, low power mode, 50 mV overdrive – 70 200 SID92 TRESP3 Response time, ultra-low power mode, 200 mV overdrive – 2.3 15 Spec ID# Parameter Description SID93 TSENSACC Temperature sensor accuracy Min –5 Typ ±1 Max 5 SID93A –15 ±1 +15 °C Min Typ Max Unit 5.3.3 Temperature sensor Table 13 Temperature sensor specifications TSENSACC Temperature sensor accuracy 5.3.4 SAR ADC Table 14 SAR ADC specifications Spec ID# Parameter Description Details/conditions – – µs VDDD ≥ 2.2 V at –40°C Unit Details/conditions °C –40 to +85°C +85 to +150°C Details/conditions SAR ADC DC specifications SID94 A_RES Resolution – – 12 bits – SID95 A_CHNLS_S Number of channels - single ended – – 16 – SID96 A-CHNKS_D Number of channels differential – – 4 Diff inputs use neighboring I/O SID97 A-MONO Monotonicity – – – Yes SID98 A_GAINERR Gain error – – ±0.1 SID99 A_OFFSET Input offset voltage – – 2 mV Measured with 1 V reference SID100 A_ISAR Current consumption – – 1 mA – SID101 A_VINS Input voltage range - single ended VSS – VDDA V – SID102 A_VIND Input voltage range differential VSS – VDDA V – SID103 A_INRES Input resistance – – 2.2 KΩ – SID104 A_INCAP Input capacitance – – 10 pF – SID260 VREFSAR Trimmed internal reference to SAR 1.188 1.2 1.212 V – Datasheet 35 % With external reference 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 14 Spec ID# SAR ADC specifications (continued) Parameter Description Min Typ Max Unit Details/conditions SAR ADC AC specifications SID106 A_PSRR Power supply rejection ratio 70 – – dB – SID107 A_CMRR Common mode rejection ratio 66 – – dB Measured at 1 V SID108 A_SAMP Sample rate – – 1 SID109 A_SNR Signal-to-noise and distortion ratio (SINAD) 65 – – SID110 A_BW Input bandwidth without aliasing – – A_sam p/2 SID111 A_INL Integral non linearity. VDD = 1.71 to 5.5, 1 Msps –1.7 – 2 SID111A A_INL Integral non linearity. VDDD = 1.71 to 3.6, 1 Msps –1.5 – 1.7 LSB VREF = 1.71 to VDD SID111B A_INL Integral non linearity. VDD = 1.71 to 5.5, 500 ksps –1.5 – 1.7 LSB VREF = 1 to VDD SID112 A_DNL Differential non linearity. VDD = 1.71 to 5.5, 1 Msps –1 – 2.2 LSB VREF = 1 to VDD SID112A A_DNL Differential non linearity. VDD = 1.71 to 3.6, 1 Msps –1 – 2 SID112B A_DNL Differential non linearity. VDD = 1.71 to 5.5, 500 ksps –1 – 2.2 LSB VREF = 1 to VDD SID113 A_THD Total harmonic distortion – – –65 dB – – 100 SID261 Datasheet FSARINTREF SAR operating speed without external reference bypass 36 Msps – dB FIN = 10 kHz kHz – LSB VREF = 1 to VDD LSB VREF = 1.71 to VDD Fin = 10 kHz ksps 12-bit resolution 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5.3.5 CSD and IDAC Table 15 CSD and IDAC specifications Spec ID# Parameter Description Min Typ Max Unit Details/ conditions SYS.PER#3 VDD_RIPPLE Max allowed ripple on power supply, DC to 10 MHz – – ±50 mV VDD > 2 V (with ripple), 25°C TA, sensitivity = 0.1 pF SYS.PER#16 VDD_RIPPLE_1.8 Max allowed ripple on power supply, DC to 10 MHz – – ±25 mV VDD > 1.75 V (with ripple), 25°C TA, parasitic capacitance (CP) < 20 pF, sensitivity ≥ 0.4 pF – 4000 µA Maximum block current for both IDACs in dynamic (switching) mode including comparators, buffer, and reference generator SID.CSD.BLK ICSD Maximum block current – SID.CSD#15 Voltage reference for CSD and comparator 0.6 1.2 VDDA - 0.6 V VDDA - 0.06 or 4.4, whichever is lower SID.CSD#15A VREF_EXT External voltage reference for CSD and comparator 0.6 VDDA - 0.6 V VDDA - 0.06 or 4.4, whichever is lower SID.CSD#16 IDAC1IDD IDAC1 (7-bits) block current – – 1750 µA – SID.CSD#17 IDAC2IDD IDAC2 (7-bits) block current – – 1750 µA – SID308 VCSD Voltage range of operation 1.7 1 – 5.5 V 1.8 V ±5% or 1.8 V to 5.5 V SID308A VCOMPIDAC Voltage compliance range of 0.6 IDAC – VDDA –0.6 V VDDA - 0.06 or 4.4, whichever is lower SID309 IDAC1DNL DNL –1 – 1 LSB – SID310 IDAC1INL INL –2 – 2 LSB INL is ±5.5 LSB for VDDA < 2 V SID311 IDAC2DNL DNL –1 – 1 LSB – SID312 IDAC2INL INL –2 – 2 LSB INL is ±5.5 LSB for VDDA < 2 V SID313 SNR Ratio of counts of finger to noise. Guaranteed by characterization 5 – – Rati Capacitance range o of 5 to 35 pF, 0.1-pF sensitivity. All use cases. VDDA > 2 V. SID314 IDAC1CRT1 Output current of IDAC1 (7 bits) in low range 4.2 – 5.4 µA LSB = 37.5 nA typ SID314A IDAC1CRT2 Output current of IDAC1(7 bits) in medium range 34 – 41 µA LSB = 300 nA typ SID314B IDAC1CRT3 Output current of IDAC1(7 bits) in high range 275 – 330 µA LSB = 2.4 µA typ SID314C IDAC1CRT12 Output current of IDAC1 (7 bits) in low range, 2X mode 8 – 10.5 µA LSB = 75 nA typ SID314D IDAC1CRT22 Output current of IDAC1(7 bits) in medium range, 2X mode 69 – 82 Datasheet VREF 37 µA LSB = 600 nA typ. 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 15 Spec ID# CSD and IDAC specifications (continued) Parameter Description Min Typ Max Details/ conditions Unit SID314E IDAC1CRT32 Output current of IDAC1(7 540 bits) in high range, 2X mode – 660 µA LSB = 4.8 µA typ SID315 IDAC2CRT1 Output current of IDAC2 (7 bits) in low range 4.2 – 5.4 µA LSB = 37.5 nA typ SID315A IDAC2CRT2 Output current of IDAC2 (7 bits) in medium range 34 – 41 µA LSB = 300 nA typ SID315B IDAC2CRT3 Output current of IDAC2 (7 bits) in high range 275 – 330 µA LSB = 2.4 µA typ SID315C IDAC2CRT12 Output current of IDAC2 (7 bits) in low range, 2X mode 8 – 10.5 µA LSB = 75 nA typ SID315D IDAC2CRT22 Output current of IDAC2(7 bits) in medium range, 2X mode 69 – 82 µA LSB = 600 nA typ SID315E IDAC2CRT32 Output current of IDAC2(7 540 bits) in high range, 2X mode – 660 µA LSB = 4.8 µA typ SID315F IDAC3CRT13 Output current of IDAC in 8-bit mode in low range 8 – 10.5 µA LSB = 37.5 nA typ SID315G IDAC3CRT23 Output current of IDAC in 69 8-bit mode in medium range – 82 µA LSB = 300 nA typ SID315H IDAC3CRT33 Output current of IDAC in 8-bit mode in high range 540 – 660 µA LSB = 2.4 µA typ SID320 IDACOFFSET All zeroes input – – 1 SID321 IDACGAIN Full-scale error less offset – – ±10 SID322 IDACMISMATCH1 Mismatch between IDAC1 and IDAC2 in Low mode – – 9.2 LSB LSB = 37.5 nA typ SID322A IDACMISMATCH2 Mismatch between IDAC1 and IDAC2 in Medium mode – – 5.6 LSB LSB = 300 nA typ SID322B IDACMISMATCH3 Mismatch between IDAC1 and IDAC2 in High mode – – 6.8 LSB LSB = 2.4 µA typ SID323 IDACSET8 Settling time to 0.5 LSB for 8-bit IDAC – – 5 µs Full-scale transition. No external load SID324 IDACSET7 Settling time to 0.5 LSB for 7-bit IDAC – – 5 µs Full-scale transition. No external load SID325 CMOD External modulator capacitor. – 2.2 – nF 5-V rating, X7R or NP0 cap Datasheet 38 LSB Polarity set by Source or Sink. Offset is 2 LSBs for 37.5 nA/LSB mode % – 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5.3.6 10-bit CAPSENSE™ ADC Table 16 10-bit CAPSENSE™ ADC specifications Spec ID# Parameter Description SIDA94 A_RES Resolution Min – Typ – Max 10 Unit Details/conditions bits Auto-zeroing is required every millisecond SIDA95 A_CHNLS_S Number of channels - single ended – – 16 SIDA97 A-MONO – – – Yes – SIDA98 A_GAINERR Gain error – – ±3 % SIDA99 A_OFFSET Input offset voltage – – ±18 mV In VREF (2.4 V) mode with VDDA bypass capacitance of 10 µF SIDA101 A_VINS Input voltage range - single ended VSSA – VDDA SIDA103 A_INRES Input resistance – 2.2 – KΩ – SIDA104 A_INCAP Input capacitance – 20 – pF SIDA106 A_PSRR Power supply rejection ratio – 60 – dB In VREF (2.4 V) mode with VDDA bypass capacitance of 10 µF SIDA107 A_TACQ Sample acquisition time – 1 – µs – SIDA108 A_CONV8 Conversion time for 8-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz. – – 21.3 µs Does not include acquisition time. Equivalent to 44.8 ksps including acquisition time. SIDA108A A_CONV10 Conversion time for 10-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz. – – 85.3 µs Does not include acquisition time. Equivalent to 11.6 ksps including acquisition time. SIDA109 A_SND Signal-to-noise and Distortion ratio (SINAD) – 61 – SIDA110 A_BW Input bandwidth without aliasing – – 22.4 SIDA111 A_INL Integral Non Linearity. 1 ksps – – 2 SIDA112 A_DNL Differential Non Linearity. 1 ksps – – 1 Datasheet Monotonicity 39 Defined by AMUX Bus V In VREF (2.4 V) mode with VDDA bypass capacitance of 10 µF – – dB With 10-Hz input sine wave, external 2.4-V reference, VREF (2.4 V) mode KHz 8-bit resolution LSB VREF = 2.4 V or greater – 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5.3.7 Inductive sensing Table 17 Inductive sense specifications (Preliminary data; unless otherwise mentioned VDD > 2.7 V) Spec ID# Parameter Description Min Typ Max Unit – Details/conditions SID500 Nsense Number of sensors – – 4 SID501 Lsamp Sample rate – – 10 ksps – SID502 Lres Resolution – – 16 bits – SID503 Lfreq Sensor excitation frequency 1 – 12 MHz – SID505 Lval Inductance range 1 – 10000 µH – SID506 Lprox Proximity detection range – 0.75 × coil diameter – – – – 1.5 × coil diameter – – If ECO is used 500 – 10000  – SID507 Rp Tank impedance 5.4 Digital peripherals 5.4.1 Timer Counter Pulse-Width Modulator (TCPWM) Table 18 TCPWM specifications Spec ID SID.TCPWM.1 – Parameter Description ITCPWM1 Block current consumption at 3 MHz SID.TCPWM.2 ITCPWM2 Block current consumption at 12 MHz SID.TCPWM.2A ITCPWM3 Block current consumption at 48 MHz SID.TCPWM.3 TCPWMFREQ Operating frequency Min – Typ – Max 45 – – 155 All modes (TCPWM) – – 650 All modes (TCPWM) – – Fc SID.TCPWM.4 TPWMENEXT Input trigger pulse width 2/Fc – – MHz Fc max = CLK_SYS Maximum = 48 MHz ns For all trigger events[5] SID.TCPWM.5 TPWMEXT Output trigger pulse widths 2/Fc – – Minimum possible width of overflow, underflow, and CC (counter equals compare value) outputs SID.TCPWM.5A TCRES Resolution of counter 1/Fc – – Minimum time between successive counts SID.TCPWM.5B PWMRES PWM resolution 1/Fc – – Minimum pulse width of PWM Output SID.TCPWM.5C QRES Quadrature inputs resolution 1/Fc – – Minimum pulse width between Quadrature phase inputs Datasheet 40 Unit Details/conditions A All modes (TCPWM) 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5.4.2 I2C Table 19 Fixed I2C DC specifications[5] Spec ID# Parameter Description SID149 II2C1 Block current consumption at 100 kHz Min – Typ – Max 50 Unit Details/conditions – µA SID150 II2C2 Block current consumption at 400 kHz – – 135 – SID151 II2C3 Block current consumption at 1 Mbps – – 310 – SID152 II2C4 I2C enabled in deep sleep mode – 1 – – Min – Typ – Max 1 Unit Details/conditions Msps – Min – Typ – Max 360 Unit Details/Conditions µA – Table 20 Fixed I2C AC specifications[5] Spec ID# Parameter Description SID153 FI2C1 Bit rate 5.4.3 SPI Table 21 SPI DC specifications[5] Spec ID# Parameter Description SID163 ISPI1 Block current consumption at 1 Mbps SID164 ISPI2 Block current consumption at 4 Mbps – – 560 – SID165 ISPI3 Block current consumption at 8 Mbps – – 600 – Note 5. Guaranteed by characterization. Datasheet 41 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 22 SPI AC specifications[6] Spec ID# Parameter Description SID166 FSPI SPI Operating frequency (Master; 6X Oversampling) Min – Typ – Max 8 Unit Details/conditions MHz – Fixed SPI master mode AC specifications SID167 TDMO MOSI Valid after Sclock driving edge – – 15 ns – SID168 TDSI MISO Valid before Sclock capturing edge 20 – – Full clock, late MISO sampling SID169 THMO Previous MOSI data hold time 0 – – Referred to slave capturing edge Fixed SPI slave mode AC specifications SID170 TDMI MOSI valid before Sclock capturing edge 40 – – SID171 TDSO MISO valid after Sclock driving edge – – 42 + (3 × Tcpu) SID171A TDSO_EXT MISO valid after Sclock driving edge in Ext. Clk mode – – 48 – SID172 THSO Previous MISO data hold time 0 – – – SID172A TSSELSSCK SSEL Valid to first SCK valid edge – – 100 Min – Typ – Max 55 – – 312 Min – Typ – Max 1 5.4.4 UART Table 23 UART DC specifications[6] Spec ID# Parameter Description SID160 IUART1 Block current consumption at 100 Kbps SID161 Table 24 IUART2 Block current consumption at 1000 Kbps ns – TCPU = 1/FCPU ns – Unit Details/conditions µA – µA – UART AC specifications[6] Spec ID# Parameter Description SID162 FUART Bit rate Unit Details/conditions Mbps – Note 6. Guaranteed by characterization. Datasheet 42 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5.4.5 LCD direct drive Table 25 LCD direct drive DC specifications[7] Spec ID# Parameter Description SID154 ILCDLOW Operating current in low power mode SID155 CLCDCAP LCD capacitance per segment/common driver SID156 LCDOFFSET Long-term segment offset LCD system operating SID157 ILCDOP1 current Vbias = 5 V SID158 ILCDOP2 LCD system operating current Vbias = 3.3 V Table 26 Min – Typ 5 Max – – 500 5000 – – 20 2 – – – 2 – Min 10 Typ 50 Max 150 Unit Details/conditions µA 16  4 small segment disp. at 50 Hz pF – mV – mA 32  4 segments at 50 Hz 25 °C 32  4 segments at 50 Hz 25 °C LCD direct drive AC specifications[7] Spec ID# Parameter Description SID159 FLCD LCD frame rate Unit Details/conditions Hz – Note 7. Guaranteed by characterization. Datasheet 43 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5.5 Memory 5.5.1 Flash Table 27 Flash DC specifications Spec ID# Parameter SID173 VPE Table 28 Min 1.71 Typ – Max 5.5 Unit V Details/conditions – Min – Typ – Max 20 Unit ms Details/conditions Row (block) = 256 bytes Row erase time – – 16 – Row program time after erase – – 4 – Flash AC specifications Spec ID# Parameter SID174 TROWWRITE[9] SID175 Description Erase and program voltage TROWERASE[9] SID176 TROWPROGRAM SID178 TBULKERASE[9] [9] Description Row (block) write time (erase and program) Bulk erase time (64KB) – – 35 – TDEVPROG[9] Total device program time – – 7 Second – s FEND Flash endurance 100K – – Cycles – FRET Flash retention. TA  55°C, 100K P/E cycles 20 – – Years SID182A[8] FRET Flash retention. TA  85°C, 10K P/E cycles 10 – – – SID182B FRETQ Flash retention. TA  105°C, 10K P/E cycles with no more than 3 years at TA  85°C 10 – – Guaranteed by design SID256 TWS48 Number of Wait states at 48 MHz 2 – – CPU execution from Flash SID257 TWS24 Number of Wait states at 24 MHz 1 – – CPU execution from Flash SID180[8] SID181[8] SID182[8] – Notes 8. Guaranteed by characterization. 9. It can take as much as 20 milliseconds to write to flash. During this time the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated. Datasheet 44 002-34139 Rev. *B 2022-09-19 5.6.1 Power-on reset (POR) Table 29 Power-on reset (PRES) Spec ID# SID.CLK#6 Parameter SR_POWER Description Power supply slew rate Min 1[10] Typ – Max 67 SID185[11] VRISEIPOR Rising trip voltage 0.80 – 1.5 VFALLIPOR Falling trip voltage 0.70 – 1.4 Min 1.48 Typ – Max 1.62 1.11 – 1.5 SID186[11] 5.6.2 Brown-out detect (BOD) Table 30 Brown-out detect (BOD) for VCCD 45 Spec ID# SID190[11] Parameter VFALLPPOR Description BOD trip voltage in active and sleep modes SID192[11] VFALLDPSLP BOD trip voltage in Deep Sleep 5.6.3 SWD interface Table 31 SWD interface specifications Unit Details/conditions V/ms On power-up and power-down V – – Unit Details/conditions V – – 002-34139 Rev. *B 2022-09-19 Spec ID# SID213 Parameter F_SWDCLK1 Description 3.3 V  VDD  5.5 V Min – Typ – Max 14 SID214 F_SWDCLK2 1.71 V  VDD  3.3 V – – 7 SID215[11] T_SWDI_SETUP T = 1/f SWDCLK 0.25 × T – – SID216[11] T_SWDI_HOLD 0.25 × T – – – T_SWDO_VALID T = 1/f SWDCLK – – 0.5 × T – T_SWDO_HOLD T = 1/f SWDCLK 1 – – – SID217 [11] SID217A [11] T = 1/f SWDCLK Unit Details/conditions MHz SWDCLK ≤ 1/3 CPU clock frequency SWDCLK ≤ 1/3 CPU clock frequency ns – Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus System resources Electrical specifications Datasheet 5.6 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5.6.4 Internal Main Oscillator Table 32 IMO DC specifications (Guaranteed by design) Spec ID# SID218 SID219 Table 33 Parameter IIMO1 Description IMO operating current at 48 MHz Min – Typ – Max 250 IIMO2 IMO operating current at 24 MHz – – 180 – µA IMO AC specifications Spec ID# Parameter Description SID223 FIMOTOL1 Frequency variation at 24, 32, and 48 MHz (trimmed) SID223A FIMOTOL1A Frequency variation at 24, 32, and 48 MHz (trimmed) SID333 IMOWCO All IMO settings SID226 SID228 Unit Details/conditions µA – Min – Typ – Max ±2 – – ±2.5 % –40°C ≤ TA ≤ 125°C – – ±0.25 % – – – 145 7 – µs ps IMO variation in WCO-locked DPLL mode – – Min – Typ 0.3 Max 1.05 Unit Details/conditions µA – Min – Typ – Max 2 Unit Details/conditions ms – TSTARTIMO IMO startup time TJITRMSIMO2 RMS jitter at 24 MHz 5.6.5 Internal Low-Speed Oscillator Table 34 ILO DC specifications Unit Details/conditions % –40°C ≤ TA ≤ 105°C (Guaranteed by design) Spec ID# Parameter Description SID231 IILO1 ILO operating current Table 35 ILO AC Specifications Spec ID# Parameter Description [12] TSTARTILO1 ILO startup time SID234 SID236[12] TILODUTY ILO duty cycle 40 50 60 SID237 ILO frequency range 20 40 80 FILOTRIM1 % – kHz – Notes 10.If the minimum ramp rate cannot be met, XRES should be asserted during the voltage ramp (1.5 V > VDDD > 1.0 V for ramp-down or until the voltage is stable for ramp-up). Note that a glitch on the I2C bus could occur during the voltage ramp in this case. 11.Guaranteed by characterization. Notes 12.Guaranteed by characterization. Datasheet 46 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications 5.6.6 Watch Crystal Oscillator (WCO) Table 36 WCO specifications Spec ID# Parameter Description SID398 FWCO Crystal frequency Min – Typ 32.768 Max – Unit Details/conditions kHz – ppm With 20-ppm crystal SID399 FTOL Frequency tolerance – 50 250 SID400 ESR Equivalent series resistance – 50 – kΩ – SID401 PD Drive level – – 1 µW – SID402 TSTART Startup time – – 500 ms – SID403 CL Crystal load capacitance 6 – 12.5 pF – SID404 C0 Crystal shunt capacitance – 1.35 – pF – SID405 IWCO1 Operating current (high power mode) – – 8 µA Min 0 Typ – Max 48 45 – 55 5.6.7 External clock Table 37 External clock specifications Spec ID# Parameter Description [13] SID305 ExtClkFreq External clock input frequency [13] SID306 ExtClkDuty Duty cycle; measured at VDD/2 5.6.8 External Crystal Oscillator (ECO) and PLL Table 38 ECO specifications Spec ID# Min Typ Max % –40°C ≤ TA ≤ 85°C SID316[13] IECO1 External clock input frequency – – 1.5 SID317[13] FECO Crystal frequency range 4 – 33 MHz – Min Typ Max Spec ID# Description Unit Details/conditions MHz –40°C ≤ TA ≤ 85°C Unit Details/conditions mA – Table 39 Parameter – PLL specifications Parameter Description Unit Details/conditions µA – SID410 IDD_PLL_48 In = 3 MHz, Out = 48 MHz – 530 610 SID411 IDD_PLL_24 In = 3 MHz, Out = 24 MHz – 300 405 SID412 Fpllin PLL input frequency 1 – 48 SID413 Fpllint PLL intermediate frequency; prescaler out 1 – 3 MHz – MHz – SID414 Fpllvco VCO output frequency before post-divide 22.5 – 104 MHz – µA – Notes 13.Guaranteed by design. Datasheet 47 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Electrical specifications Table 39 Spec ID# PLL specifications (continued) Parameter Description Min Typ Max Unit Details/conditions – SID415 Divvco VCO Output post-divider range; PLL output frequency is Fpplvco/Divvco 1 – 8 SID416 Plllocktime Lock time at startup – – 250 µs – SID417 Jperiod_1 Period jitter for VCO ≥ 67 MHz – – 150 ps Guaranteed by design –40°C ≤ TA ≤ 85°C SID416A Jperiod_2 Period jitter for VCO ≤ 67 MHz – – 200 ps Guaranteed by design –40°C ≤ TA ≤ 85°C 5.6.9 System clock Table 40 Block specs Spec ID# Parameter Description [14] T System clock source SID262 CLKSWITCH switching time Min 3 Typ – 5.6.10 Smart I/O Table 41 Smart I/O pass-through time (delay in bypass mode) Spec ID# Parameter Description SID252 PRG_BYPASS Max delay added by smart I/O in bypass mode Min – Typ – Max 4 Max 1.6 Unit Details/conditions Periods – Unit ns Details/conditions – Notes 14.Guaranteed by design. Datasheet 48 002-34139 Rev. *B 2022-09-19 UDB 4700S Plus CY8C4746LQS-S263 48 64 8 - 4700S Plus CY8C4747LQS-S453 48 128 8 - Direct LCD drive LP Comparators TCPWM blocks SCB blocks WCO ECO Smart IOs CAN GPIO 40-QFN -40 to +85°C -40 to +105°C -40 to +125°C X X 1000 Ksps 2 8 4 X X 24 34 X X - X X X 1000 Ksps 2 8 4 X X 24 34 X X - Operating temperature Packages Features Table 42 lists the marketing part numbers (MPNs) for the PSoC™ 4700S Plus devices. Ordering information Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus 12-bit SAR ADC Inductive sense 2 CAPSENSE™ Op-amp (CTBm) Flash (KB) Max CPU speed (MHz) Table 42 MPN Ordering information Ordering information 49 SRAM (KB) PSoC™ family category Datasheet 6 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Ordering information The nomenclature used in the preceding table is based on the following part numbering convention: Field Description Values Meaning CY8C Infineon prefix 4 Architecture 4 PSoC™ 4 A Family 7 4700S family B CPU speed 2 24 MHz 4 48 MHz 4 16 KB 5 32 KB 6 64 KB 7 128 KB C Flash capacity DE Package code LQ QFN F Temperature range S Automotive (AEC-Q100: –40°C to +105°C) S Silicon family S PSoC™ 4 S-series M PSoC™ 4 M-series L PSoC™ 4 L-series 000-999 Code of feature set in the specific family XYZ Attributes code The following is an example of a part number: CY8C 4 A B C DE F S XYZ T T = Tape and reel Attributes code Silicon family Temperature range Package code Flash capacity CPU speed Family within architecture Architecture Infineon prefix Example 4: PSoC™ 4 1: 4700S Plus family 4: 48 MHz 6: 64 KB LQ: QFN S: Automotive Datasheet 50 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Packaging 7 Packaging The PSoC™ 4700S Plus will be offered in 40-QFN package. Table 43 provides the package dimensions and drawing numbers. Table 43 Package list Spec ID# Package BID27A 40-pin QFN Table 44 Table 45 Table 46 Datasheet Package dwg 6 × 6 × 0.6-mm height with 0.5-mm pitch with wettable flanks 002-25105 Package thermal characteristics Parameter Description Operating ambient TA temperature TJ Operating junction temperature TJA Package θJA TJC Description Package θJC Package – Conditions For S-grade devices Min –40 Typ 25 Max 105 Unit – For S-grade devices –40 – 115 40-pin QFN – – 25 – °C/Watt 40-pin QFN – – 3 – °C/Watt Solder reflow peak temperature Package Maximum peak temperature Maximum time at peak temperature All 260 °C 30 seconds Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-020 Package MSL All MSL 3 51 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Packaging 7.1 Package diagram 002-25105 *A Figure 7 40-pin QFN (6 × 6 × 0.6 mm (4.6 × 4.6 mm E-Pad (Sawn))) package outline Datasheet 52 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Acronyms 8 Acronyms Table 47 Acronyms used in this document Acronym Description abus analog local bus ADC analog-to-digital converter AG analog global AHB AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus ALU arithmetic logic unit AMUXBUS analog multiplexer bus API application programming interface APSR ® application program status register ARM advanced RISC machine, a CPU architecture ATM automatic thump mode BW bandwidth CAN Controller Area Network, a communications protocol CMRR common-mode rejection ratio CPU central processing unit CRC cyclic redundancy check, an error-checking protocol DAC digital-to-analog converter, see also IDAC, VDAC DFB digital filter block DIO digital input/output, GPIO with only digital capabilities, no analog. See GPIO. DMIPS Dhrystone million instructions per second DMA direct memory access, see also TD DNL differential nonlinearity, see also INL DNU do not use DR port write data registers DSI digital system interconnect DWT data watchpoint and trace ECC error correcting code ECO external crystal oscillator EEPROM electrically erasable programmable read-only memory EMI electromagnetic interference EMIF external memory interface EOC end of conversion EOF end of frame EPSR execution program status register ESD electrostatic discharge ETM embedded trace macrocell FIR finite impulse response, see also IIR FPB flash patch and breakpoint Datasheet 53 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Acronyms Table 47 Acronyms used in this document (continued) Acronym Description FS full-speed GPIO general-purpose input/output, applies to a PSoC™ pin HVI high-voltage interrupt, see also LVI, LVD IC integrated circuit IDAC current DAC, see also DAC, VDAC IDE integrated development environment I2C, or IIC Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board PGA programmable gain amplifier PHUB peripheral hub PHY physical layer PICU port interrupt control unit PLA programmable logic array Datasheet 54 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Acronyms Table 47 Acronyms used in this document (continued) Acronym Description PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC™ Programmable system-on-chip PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I2C serial clock SDA I2C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate SRAM static random access memory SRES software reset SWD serial wire debug, a test protocol SWV single-wire viewer TD transaction descriptor, see also DMA THD total harmonic distortion TIA transimpedance amplifier TRM technical reference manual TTL transistor-transistor logic TX transmit UART Universal Asynchronous Transmitter Receiver, a communications protocol UDB universal digital block Datasheet 55 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Acronyms Table 47 Acronyms used in this document (continued) Acronym Description USB Universal Serial Bus USBIO USB input/output, PSoC™ pins used to connect to a USB port VDAC voltage DAC, see also DAC, IDAC WDT watchdog timer WOL write once latch, see also NVL WRES watchdog timer reset XRES external reset I/O pin XTAL crystal Datasheet 56 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Document conventions 9 Document conventions 9.1 Units of measure Table 48 Units of measure Symbol Unit of measure °C degrees celsius dB decibel fF femto farad Hz hertz KB 1024 bytes kbps kilobits per second Khr kilohour kHz kilohertz k kilo ohm ksps kilosamples per second LSB least significant bit Mbps megabits per second MHz megahertz M mega-ohm Msps megasamples per second µA microampere µF microfarad µH microhenry µs microsecond µV microvolt µW microwatt mA milliampere ms millisecond mV millivolt nA nanoampere ns nanosecond nV nanovolt  ohm pF picofarad ppm parts per million ps picosecond s second sps samples per second sqrtHz square root of hertz V volt Datasheet 57 002-34139 Rev. *B 2022-09-19 Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus Revision history Revision histor y Document revision Date ** 2021-12-16 Initial release *A 2022-03-21 Updated SID502 parameter max value to 32 bits in Table 17 Added a note [10] in Table 29 Updated TJA and TJC typical values in Table 44 Changed the datasheet status from Target datasheet to Datasheet (Final). *B 2022-09-19 Updated number of SCBs to 4 in the Block diagram. Added graphs in Inductive sensing. Updated max value of SID502. Datasheet Description of changes 58 002-34139 Rev. *B 2022-09-19 Please read the Important Notice and Warnings at the end of this document Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2022-09-19 Published by Infineon Technologies AG 81726 Munich, Germany © 2022 Infineon Technologies AG. All Rights Reserved. Do you have a question about this document? Go to www.infineon.com/support Document reference 002-34139 Rev. *B IMPORTANT NOTICE The information given in this document shall in no For further information on the product, technology, event be regarded as a guarantee of conditions or delivery terms and conditions and prices please contact your nearest Infineon Technologies office characteristics (“Beschaffenheitsgarantie”). (www.infineon.com). With respect to any examples, hints or any typical values stated herein and/or any information WARNINGS regarding the application of the product, Infineon Due to technical requirements products may contain Technologies hereby disclaims any and all dangerous substances. For information on the types warranties and liabilities of any kind, including in question please contact your nearest Infineon without limitation warranties of non-infringement of Technologies office. intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
CY8C4747LQS-S453 价格&库存

很抱歉,暂时无法提供与“CY8C4747LQS-S453”相匹配的价格&库存,您可以联系我们找货

免费人工找货