Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.
Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.
Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.
www.infineon.com
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
PSoC 62 MCU
General Description
PSoC® 6 MCU is a high-performance, ultra-low-power and secured MCU platform, purpose-built for IoT applications. The CY8C62x8/A
product line, based on the PSoC 6 MCU platform, is a combination of a dual CPU microcontroller with low-power flash technology,
digital programmable logic, high-performance analog-to-digital conversion and standard communication and timing peripherals.
Features
32-bit Dual CPU Subsystem
■
Segment LCD Drive
150-MHz Arm® Cortex®-M4F (CM4) CPU with single-cycle
multiply, floating point, and memory protection unit (MPU)
■
100-MHz Cortex-M0+ (CM0+) CPU with single-cycle multiply
and MPU
■
User-selectable core logic operation at either 1.1 V or 0.9 V
Active CPU current slope with 1.1-V core operation
❐ Cortex-M4: 40 µA/MHz
❐ Cortex-M0+: 28 µA/MHz
■ Active CPU current slope with 0.9-V core operation
❐ Cortex-M4: 27 µA/MHz
❐ Cortex-M0+: 20 µA/MHz
■ Three DMA controllers
■
Serial Communication
■
13 run-time configurable serial communication blocks (SCBs)
2
❐ Eight SCBs: configurable as SPI, I C, or UART
2
❐ Four SCBs: configurable as I C or UART
2
❐ One Deep Sleep SCB: configurable as SPI or I C
USB Full-Speed device interface
■
Two independent SD Host Controller/eMMC/SD controllers
■
■
Memory Subsystem
2048-KB application flash, 32-KB auxiliary flash (AUXflash),
and 32-KB supervisory flash (Sflash); read-while-write (RWW)
support. Two 8-KB flash caches, one for each CPU.
■ 1024-KB SRAM with three independent blocks for power and
data retention control
■ One-time-programmable (OTP) 1-Kb eFuse array
■
Low-Power 1.7-V to 3.6-V Operation
Supports up to 101 segments and up to 8 commons
Audio Subsystem
■
Two pulse density modulation (PDM) channels and two I2S
channels with time division multiplexed (TDM) mode
Timing and Pulse-Width Modulation
■
Thirty-two timer/counter/pulse-width modulators (TCPWMs)
■
Center-aligned, edge, and pseudo-random modes
■
Comparator-based triggering of kill signals
Programmable Analog
■
12-bit 2-Msps SAR ADC with differential and single-ended
modes and 16-channel sequencer with result averaging
■
Two low-power comparators available in system Deep Sleep
and Hibernate modes
Built-in temperature sensor connected to ADC
■
Six power modes for fine-grained power management
■
Deep Sleep mode current of 7 µA with 64-KB SRAM retention
■
On-chip DC-DC buck converter, 2.7 V
Ports 0, 1
8 MHz
DRIVE_SEL 2
DRIVE_SEL 3
Port 2
50 MHz
DRIVE_SEL 1
DRIVE_SEL 2
Ports 3 to 10
16 MHz; 25 MHz for SPI
DRIVE_SEL 2
DRIVE_SEL 3
Ports 11 to 13
80 MHz for SMIF (QSPI).
DRIVE_SEL 1
DRIVE_SEL 2
Ports 9 and 10
Slow slew rate setting for TQFP
Packages for ADC performance
No restrictions
No restrictions
Special-Function Peripherals
Audio Subsystem
This subsystem consists of the following hardware blocks:
■
Two Inter-IC Sound (I2S) interfaces
■
Two PDM to PCM decoder channels
Each of the I2S interfaces implements two independent
hardware FIFO buffers – Tx and Rx, which can operate in master
or slave mode. The following features are supported:
■
Multiple data formats – I2S, left-justified, Time Division Multiplexed (TDM) mode A, and TDM mode B
■
Programmable channel/word lengths – 8/16/18/20/24/32 bits
■
Internal/external clock operation up to 192 ksps
■
Interrupt mask events – trigger, not empty, full, overflow,
underflow, watchdog
■
Configurable FIFO trigger level with DMA support
The PDM-to-PCM decoder implements a single hardware Rx
FIFO that decodes a stereo or mono 1-bit PDM input stream to
PCM data output. The following features are supported:
■
Programmable data output word length – 16/18/20/24 bits
■
Programmable gain amplifier (PGA) for volume control – from
–12 dB to +10.5 dB in 1.5 dB steps
■
Configurable PDM clock generation. Range from 384 kHz to
3.072 MHz
■
Droop correction and configurable decimation rate for
sampling; up to 48 ksps
■
Programmable high-pass filter gain
■
Interrupt mask events – not empty, overflow, trigger, underflow
■
Configurable FIFO trigger level with DMA support
The PDM-to-PCM decoder is commonly used to connect to
digital PDM microphones. Up to two microphones can be
connected to the same PDM Data line.
The I2S interface is commonly used to connect with audio
codecs, simple DACs, and digital microphones.
Document Number: 002-23185 Rev. *Q
Page 18 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
CapSense Subsystem
IDAC
CapSense is supported in PSoC 6 MCU through a CapSense
sigma-delta (CSD) hardware block. It is designed for
high-sensitivity self-capacitance and mutual-capacitance
measurements, and is specifically built for user interface
solutions.
The CSD block has two programmable current sources, which
offer the following features:
In addition to CapSense, the CSD hardware block supports three
general-purpose functions. These are available when CapSense
is not being used. Alternatively, two or more functions can be
time-multiplexed in an application under firmware control. The
four functions supported by the CSD hardware block are:
■
CapSense
■
10-bit ADC
■
Programmable current sources (IDAC)
■
Comparator
CapSense
Capacitive touch sensors are designed for user interfaces that
rely on human body capacitance to detect the presence of a
finger on or near a sensor. Cypress CapSense solutions bring
elegant, reliable, and simple capacitive touch sensing functions
to applications including IoT, industrial, automotive, and home
appliances.
The Cypress-proprietary CapSense technology offers the
following features:
■
Best-in-class signal-to-noise ratio (SNR) and robust sensing
under harsh and noisy conditions
■
Self-capacitance (CSD) and mutual-capacitance (CSX)
sensing methods
■
Support for various widgets, including buttons, matrix buttons,
sliders, touchpads, and proximity sensors
■
High-performance sensing across a variety of materials
■
Best-in-class liquid tolerance
■
SmartSense™ auto-tuning technology that helps avoid
complex manual tuning processes
■
Superior immunity against external noise
■
Spread-spectrum clocks for low radiated emissions
■
Gesture and built-in self-test libraries
■
Ultra-low power consumption
■
An integrated graphical CapSense tuner for real-time tuning,
testing, and debugging
ADC
The CapSense subsystem slope ADC offers the following
features:
■
Selectable 8- or 10-bit resolution
■
Selectable input range: GND to VREF and GND to VDDA on any
GPIO input
■
Measurement of VDDA against an internal reference without the
use of GPIO or external components
Document Number: 002-23185 Rev. *Q
■
7-bit resolution
■
Sink and source current modes
■
A current source programmable from 37.5 nA to 609 A
■
Two IDACs that can be used in parallel to form one 8-bit IDAC
Comparator
The CapSense subsystem comparator operates in the system
Low Power and Ultra-Low Power modes. The inverting input is
connected to an internal programmable reference voltage and
the non-inverting input can be connected to any GPIO via the
AMUXBUS.
CapSense Hardware Subsystem
Figure 7 shows the high-level hardware overview of the
CapSense subsystem, which includes a delta sigma converter,
internal clock dividers, a shield driver, and two programmable
current sources.
The inputs are managed through analog multiplexed buses
(AMUXBUS A/B). The input and output of all functions offered by
the CSD block can be provided on any GPIO or on a group of
GPIOs under software control, with the exception of the
comparator output and external capacitors that use dedicated
GPIOs.
Self-capacitance is supported by the CSD block using
AMUXBUS A, an external modulator capacitor, and a GPIO for
each sensor. There is a shield electrode (optional) for
self-capacitance sensing. This is supported using AMUXBUS B
and an optional external shield tank capacitor (to increase the
drive capability of the shield driver) should this be required.
Mutual-capacitance is supported by the CSD block using
AMUXBUS A, two external integrated capacitors, and a GPIO for
transmit and receive electrodes.
The ADC does not require an external component. Any GPIO
that can be connected to AMUXBUS A can be an input to the
ADC under software control. The ADC can accept VDDA as an
input without needing GPIOs (for applications such as battery
voltage measurement).
The two programmable current sources (IDACs) in
general-purpose mode can be connected to AMUXBUS A or B.
They can therefore connect to any GPIO pin. The comparator
resides in the delta-sigma converter. The comparator inverting
input can be connected to the reference. Both comparator inputs
can be connected to any GPIO using AMUXBUS B; see
Figure 7. The reference has a direct connection to a dedicated
GPIO; see Table 9.
The CSD block can operate in active and sleep CPU power
modes, and seamlessly transition between system LP and ULP
modes. It can be powered down in system Deep Sleep and
Hibernate modes. Upon wakeup from Hibernate mode, the CSD
block requires re-initialization. However, operation can be
resumed without re-initialization upon exit from Deep Sleep
mode, under firmware control.
Page 19 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 7. CapSense Hardware Subsystem
AMUXBUS
A
GPIO Pin
B
GPIO
Cell
CSD Sensor1
Clock Input
CS1
GPIO Pin
GPIO
Cell
I / O Configur ed f or CSD M ode
CSD Sensor 2
CS2
CSD Hardware Block
C MOD Pin
CMOD
Sense clock
Clock
Generator
CSH_TANK
( optional )
GPIO Pin
Modulator
Shield Drive
Clock
Circuit
GPIO Pin
GPIO
Cell
Compensation
IDAC
C
SHIELD
Shield Electrode
Modulator
IDAC
GPIO Pin
Tx
IDAC control
GPIO
Cell
CSX Sensor 3
I / O Configured for CSX M ode
C S3
Raw
Rx
GPIO Pin
GPIO
Cell
CINTA Pin
C INTA
C INTB
Sigma Delta
Converter
Count
VREF
GPIO
Cell
C INTB Pin
GPIO
ADC Input
Mode
I / O for General Purpose
Cell
IDAC Outputs
Comp Input
Document Number: 002-23185 Rev. *Q
Page 20 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 8 shows the high-level software overview. Cypress
provides middleware libraries for CapSense, ADC, and IDAC on
GitHub to enable quick integration. The Board Support Package
for any kit with CapSense capabilities automatically includes the
CapSense library in any application that uses the BSP.
User applications interact only with middleware to implement
functions of the CSD block. The middleware interacts with
underlying drivers to access hardware as necessary. The CSD
driver facilitates time-multiplexing of the CSD hardware if more
than one piece of CSD-related middleware is present in a project.
It prevents access conflicts in this case.
ModusToolbox Software provides a CapSense configurator to
enable fast library configuration. It also provides a tuner for
performance evaluation and real-time tuning of the system. The
tuner requires an EZI2C communication interface in the
application to enable real-time tuning capability. The tuner can
update configuration parameters directly in the device as well as
in the configurator.
CapSense and ADC middleware use the CSD interrupt to
implement non-blocking sensing and A-to-D conversion.
Therefore, interrupt service routines are a defined part of the
middleware, which must be initialized by the application.
Middleware and drivers can operate on either CPU. Cypress
recommends using the middleware only in one CPU. If both
CPUs must access the CSD driver, memory access should be
managed in the application.
Refer to AN85951: PSoC 4 and PSoC 6 MCU CapSense Design
Guide for more details on CSX sensing, CSD sensing, shield
electrode usage and its benefits, and capacitive system design
guidelines.
Refer to the API reference guides for CapSense, ADC, and IDAC
available on GitHub.
Figure 8. CapSense Software/Firmware Subsystem
Application Program
Software
Middleware
Co m p
IDAC
ADC
CapSense
Configurator
Tuner
SCB Driver (EZI 2C)
SCB
CSD Driver
GPIO / Clock Drivers
CSD Block
GPIOs / Clock
Hardware and Drivers
Document Number: 002-23185 Rev. *Q
Page 21 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Pinouts
Note: The CY8C62x8/CY8C62xA datasheet web page contains a spreadsheet with the consolidated list of pinouts and pin alternate
functions with HSIOM mapping.
GPIO ports are powered by VDDx pins as follows:
■
P0: VBACKUP
■
P1: VDDD. Port 1 pins are overvoltage tolerant (OVT).
■
P2, P3, P4: VDDIO2
■
P5, P6, P7, P8: VDDIO1
■
P9, P10: VDDIOA, VDDA (VDDIOA, when present, and VDDA must be connected together on the PCB)
■
P11, P12, P13: VDDIO0
■
P14: VDDUSB
Table 7. Packages and Pin Information
Pin
Packages
128-TQFP
124-BGA
100-WLCSP
68-QFN
VDDD
6
A1
D14
68
VCCD
4, 5
A2
C15
67
VDDA
96
A12
J1
48
VDDIOA
69
A13
-
36
VDDIO0
114
C4
A11
64
VDDIO1
68
K12
K2
35
VDDIO2
39
L4
M10
22
VBACKUP
9
D1
C17
1
VDDUSB
27
M1
J17
11
VSS
7, 8, 25, 26, 36, 40, 67,
70, 95, 115
B12, C3, D4,
D10, K4, K10
D2, E13, J13, L1
GND PAD
VDD_NS
23
J1
J15
9
VIND1
24
J2
H16
10
XRES
16
F1
E17
8
VREF
97
B13
C3
49
P0.0
10
E3
F14
2
P0.1
11
E2
G13
3
P0.2
12
E1
D16
4
P0.3
13
F3
E15
5
P0.4
14
F2
G11
6
P0.5
15
G3
F16
7
P1.0
17
G2
H12
-
P1.1
18
G1
G15
-
P1.2
19
H3
-
-
Document Number: 002-23185 Rev. *Q
Page 22 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 7. Packages and Pin Information (continued)
Pin
Packages
128-TQFP
124-BGA
100-WLCSP
68-QFN
P1.3
20
H2
-
-
P1.4
21
H1
H14
-
P1.5
22
J3
G17
-
P2.0
30
M2
L17
14
P2.1
31
N2
K12
15
P2.2
32
L3
L15
16
P2.3
33
M3
L13
17
P2.4
34
N3
L11
18
P2.5
35
N1
M16
19
P2.6
37
M4
M14
20
P2.7
38
N4
M12
21
P3.0
41
L5
-
23
P3.1
42
M5
-
24
P3.2
43
N5
-
-
P3.3
44
L6
-
-
P3.4
45
M6
-
-
P3.5
46
N6
-
-
P4.0
47
L7
-
-
P4.1
48
M7
-
-
P4.2
49
-
-
-
P4.3
50
-
-
-
P5.0
51
N7
M8
25
P5.1
52
L8
K10
26
P5.2
53
M8
J11
-
P5.3
54
N8
H10
-
P5.4
55
L9
L9
-
P5.5
56
M9
M6
-
P5.6
57
N9
G9
27
P5.7
58
N10
G7
28
P6.0
59
M10
M4
-
P6.1
60
L10
L7
-
P6.2
61
L11
L5
29
P6.3
62
M11
K8
30
P6.4
63
N11
J9
31
Document Number: 002-23185 Rev. *Q
Page 23 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 7. Packages and Pin Information (continued)
Pin
Packages
128-TQFP
124-BGA
100-WLCSP
68-QFN
P6.5
64
M12
L3
32
P6.6
65
N12
M2
33
P6.7
66
M13
K4
34
P7.0
71
L13
K6
37
P7.1
72
L12
J7
38
P7.2
73
K13
J3
39
P7.3
74
N13
H8
40
P7.4
75
K11
-
-
P7.5
76
J13
-
-
P7.6
77
J12
-
-
P7.7
78
J11
G1
41
P8.0
79
H13
H2
42
P8.1
80
H12
J5
43
P8.2
81
H11
H6
-
P8.3
82
G13
H4
-
P8.4
83
G12
F2
-
P8.5
84
G11
-
-
P8.6
85
F13
-
-
P8.7
86
F12
-
-
P9.0
87
E11
E1
44
P9.1
88
E12
G3
45
P9.2
89
E13
G5
46
P9.3
90
F11
F4
47
P9.4
91
D13
E3
-
P9.5
92
D12
-
-
P9.6
93
D11
-
-
P9.7
94
C13
C1
-
P10.0
98
C12
F6
50
P10.1
99
A11
E5
51
P10.2
100
B11
B2
52
P10.3
101
C11
D4
53
P10.4
102
A10
C5
54
P10.5
103
B10
B4
55
P10.6
104
C10
A3
-
Document Number: 002-23185 Rev. *Q
Page 24 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 7. Packages and Pin Information (continued)
Pin
Packages
128-TQFP
124-BGA
100-WLCSP
68-QFN
P10.7
105
A9
F8
-
P11.0
106
B9
E9
P11.1
107
C9
D6
57
P11.2
108
A8
E7
58
P11.3
109
B8
A7
59
P11.4
110
C8
B6
60
P11.5
111
A7
A5
61
P11.6
112
B7
C7
62
P11.7
113
C7
B8
63
P12.0
116
A6
A9
-
P12.1
117
B6
D8
-
P12.2
118
C6
A13
-
P12.3
119
A5
B10
-
P12.4
120
B5
C9
-
P12.5
121
C5
B12
-
P12.6
122
A4
C11
65
P12.7
123
B4
D10
66
P13.0
124
B1
B14
-
P13.1
125
A3
A15
-
P13.2
126
B3
C13
-
P13.3
127
B2
D12
-
P13.4
128
C2
E11
-
P13.5
1
C1
F10
-
P13.6
2
D3
F12
-
P13.7
3
D2
B16
-
P14.0 / USBDP
29
L2
K14
13
P14.1 / USBDM
28
L1
K16
12
56
Note: Balls K2 and K3 are connected together internally in the 124-BGA package.
Note: If the USB pins are not used, connect VDDUSB to ground and leave the P14.0/USBDP and P14.1/USBDM pins unconnected.
Note
1. DNC means Do Not Connect. Do Not Connect anything to these pins.
Document Number: 002-23185 Rev. *Q
Page 25 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
TQFP
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
P10.4
P10.3
P10.2
P10.1
P10.0
VREF
VDDA
VSS
P9.7
P9.6
P9.5
P9.4
P9.3
P9.2
P9.1
P9.0
P8.7
P8.6
P8.5
P8.4
P8.3
P8.2
P8.1
P8.0
P7.7
P7.6
P7.5
P7.4
P7.3
P7.2
P7.1
P7.0
VSS
VDDIOA
VDDIO1
VSS
P6.7
P6.6
VDDIO2
VSS
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P4.0
P4.1
P4.2
P4.3
P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.6
P5.7
P6.0
P6.1
P6.2
P6.3
P6.4
P6.5
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
P13.5
P13.6
P13.7
VCCD
VCCD
VDDD
VSS
VSS
VBACKUP
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
XRES
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
VDD_NS
VIND1
VSS
VSS
VDDUSB
P14.1 / USBDM
P14.0 / USBDP
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
VSS
P2.6
P2.7
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
P13.4
P13.3
P13.2
P13.1
P13.0
P12.7
P12.6
P12.5
P12.4
P12.3
P12.2
P12.1
P12.0
VSS
VDDIO0
P11.7
P11.6
P11.5
P11.4
P11.3
P11.2
P11.1
P11.0
P10.7
P10.6
P10.5
Figure 9. Device Pinout for 128-TQFP Package
Document Number: 002-23185 Rev. *Q
Page 26 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
55
54
53
52
P11.5
P11.4
P11.3
P11.2
P11.1
P11.0
P10.5
P10.4
P10.3
P10.2
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
QFN
28
29
30
31
32
33
34
P5.7
P6.2
P6.3
P6.4
P6.5
P6.6
P10.1
P10.0
VREF
VDDA
P9.3
P9.2
P9.1
P9.0
P8.1
P8.0
P7.7
P7.3
P7.2
P7.1
P7.0
VDDIOA
VDDIO1
P6.7
18
19
20
21
22
23
24
25
26
27
(TOP VIEW)
P2.5
P2.6
P2.7
VDDIO2
P3.0
P3.1
P5.0
P5.1
P5.6
P0.2
P0.3
P0.4
P0.5
XRES
VDD_NS
VIND1
VDDUSB
P14.1 / USBDM
P14.0 / USBDP
P2.0
P2.1
P2.2
P2.3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
P2.4
VBACKUP
P0.0
P0.1
66
65
64
63
62
61
60
59
58
57
56
68
67
VDDD
VCCD
P12.7
P12.6
VDDIO0
P11.7
P11.6
Figure 10. Device Pinout for 68-QFN Package[2]
Note
2. The center pad on the QFN package should be connected to PCB ground relative to device VDDx for best mechanical, thermal, and electrical performance. For more
information, see AN72845, Design Guidelines for QFN Devices.
Document Number: 002-23185 Rev. *Q
Page 27 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Each port pin has multiple alternate functions. These are defined in Table 8. The columns ACT #x and DS #y denote active (System LP/ULP) and Deep Sleep mode signals
respectively.
The notation for a signal is of the form IPName[x].signal_name[u]:y.
IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there is more than one signal for
a particular signal name, y = Designates copies of the signal name.
For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the
fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize use of on-chip resources.
For ease of use, the CY8C62x8 and CY8C62xA datasheet web page contains a spreadsheet with the consolidated list of pin functions.
Table 8. Multiple Alternate Functions
Port/
Pin
ACT
#4
ACT
#5
ACT
#6
ACT
#7
ACT
#8
ACT
#9
ACT
#10
ACT
#12
ACT #0
ACT #1 ACT #2 ACT #3 DS #2 DS #3
P0.0
tcpwm[0].
line[0]:0
tcpwm[1]
.line[0]:0
csd.csd
_tx:0
csd.csd
_tx_n:0
P0.1
tcpwm[0].
line_com
pl[0]:0
tcpwm[1]
.line_co
mpl[0]:0
csd.csd
_tx:1
csd.csd
_tx_n:1
P0.2
tcpwm[0].
line[1]:0
tcpwm[1]
.line[1]:0
csd.csd
_tx:2
csd.csd
_tx_n:2
scb[0]
.uart_
rx:0
scb[0].
i2c_scl
:0
scb[0].
spi_m
osi:0
P0.3
tcpwm[0].
line_com
pl[1]:0
tcpwm[1]
.line_co
mpl[1]:0
csd.csd
_tx:3
csd.csd
_tx_n:3
scb[0]
.uart_
tx:0
scb[0].
i2c_sd
a:0
scb[0].
spi_mi
so:0
P0.4
tcpwm[0].
line[2]:0
tcpwm[1]
.line[2]:0
csd.csd
_tx:4
csd.csd
_tx_n:4
scb[0]
.uart_
rts:0
scb[0].
spi_cl
k:0
peri.tr_io_
output[0]:2
P0.5
tcpwm[0].
line_com
pl[2]:0
tcpwm[1]
.line_co
mpl[2]:0
csd.csd
_tx:5
csd.csd
_tx_n:5
scb[0]
.uart_
cts:0
scb[0].
spi_se
lect0:0
peri.tr_io_
output[1]:2
P1.0
tcpwm[0].
line[3]:0
tcpwm[1]
.line[3]:0
csd.csd
_tx:6
csd.csd
_tx_n:6
scb[7]
.uart_
rx:0
scb[7].
i2c_scl
:0
scb[7].
spi_m
osi:0
peri.tr
_io_in
put[2]:
0
P1.1
tcpwm[0].
line_com
pl[3]:0
tcpwm[1]
.line_co
mpl[3]:0
csd.csd
_tx:7
csd.csd
_tx_n:7
scb[7]
.uart_
tx:0
scb[7].
i2c_sd
a:0
scb[7].
spi_mi
so:0
peri.tr
_io_in
put[3]:
0
P1.2
tcpwm[0].
line[4]:4
tcpwm[1]
.line[12]:
1
csd.csd
_tx:8
csd.csd
_tx_n:8
scb[7]
.uart_
rts:0
Document Number: 002-23185 Rev. *Q
srss.e
xt_clk:
0
srss.e
xt_clk:
1
scb[0].
spi_se
lect1:0
peri.tr
_io_in
put[0]:
0
scb[0].
spi_se
lect2:0
peri.tr
_io_in
put[1]:
0
ACT #13
ACT
#14
ACT
#15
DS #5 DS #6
scb[7].
spi_cl
k:0
Page 28 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 8. Multiple Alternate Functions (continued)
Port/
Pin
ACT
#4
ACT
#5
ACT
#6
ACT
#7
ACT
#8
ACT
#9
ACT
#10
ACT
#12
ACT #1 ACT #2 ACT #3 DS #2 DS #3
P1.3
tcpwm[0].
line_com
pl[4]:4
tcpwm[1]
.line_co
mpl[12]:1
csd.csd
_tx:9
csd.csd
_tx_n:9
P1.4
tcpwm[0].
line[5]:4
tcpwm[1]
.line[13]:
1
csd.csd
_tx:10
csd.csd
_tx_n:1
0
scb[7].
spi_se
lect1:0
P1.5
tcpwm[0].
line_com
pl[5]:4
tcpwm[1]
.line_co
mpl[14]:1
csd.csd
_tx:11
csd.csd
_tx_n:1
1
scb[7].
spi_se
lect2:0
P2.0
tcpwm[0].
line[6]:4
tcpwm[1]
.line[15]:
1
csd.csd
_tx:12
csd.csd
_tx_n:1
2
scb[1]
.uart_
rx:0
scb[1].
i2c_scl
:0
scb[1].
spi_m
osi:0
peri.tr
_io_in
put[4]:
0
sdhc[0].
card_da
t_3to0[0
]
P2.1
tcpwm[0].
line_com
pl[6]:4
tcpwm[1]
.line_co
mpl[15]:1
csd.csd
_tx:13
csd.csd
_tx_n:1
3
scb[1]
.uart_
tx:0
scb[1].
i2c_sd
a:0
scb[1].
spi_mi
so:0
peri.tr
_io_in
put[5]:
0
sdhc[0].
card_da
t_3to0[1
]
P2.2
tcpwm[0].
line[7]:4
tcpwm[1]
.line[16]:
1
csd.csd
_tx:14
csd.csd
_tx_n:1
4
scb[1]
.uart_
rts:0
scb[1].
spi_cl
k:0
sdhc[0].
card_da
t_3to0[2
]
P2.3
tcpwm[0].
line_com
pl[7]:4
tcpwm[1]
.line_co
mpl[16]:1
csd.csd
_tx:15
csd.csd
_tx_n:1
5
scb[1]
.uart_
cts:0
scb[1].
spi_se
lect0:0
sdhc[0].
card_da
t_3to0[3
]
P2.4
tcpwm[0].
line[0]:5
tcpwm[1]
.line[17]:
1
csd.csd
_tx:16
csd.csd
_tx_n:1
6
scb[9]
.uart_
rx:0
scb[9].
i2c_scl
:0
scb[1].
spi_se
lect1:0
sdhc[0].
card_c
md
P2.5
tcpwm[0].
line_com
pl[0]:5
tcpwm[1]
.line_co
mpl[17]:1
csd.csd
_tx:17
csd.csd
_tx_n:1
7
scb[9]
.uart_
tx:0
scb[9].
i2c_sd
a:0
scb[1].
spi_se
lect2:0
sdhc[0].
clk_card
P2.6
tcpwm[0].
line[1]:5
tcpwm[1]
.line[18]:
1
csd.csd
_tx:18
csd.csd
_tx_n:1
8
scb[9]
.uart_
rts:0
scb[1].
spi_se
lect3:0
sdhc[0].
card_de
tect_n
P2.7
tcpwm[0].
line_com
pl[1]:5
tcpwm[1]
.line_co
mpl[18]:1
csd.csd
_tx:19
csd.csd
_tx_n:1
9
scb[9]
.uart_
cts:0
P3.0
tcpwm[0].
line[2]:5
tcpwm[1]
.line[19]:
1
csd.csd
_tx:20
csd.csd
_tx_n:2
0
scb[2]
.uart_
rx:1
Document Number: 002-23185 Rev. *Q
scb[7]
.uart_
cts:0
ACT #13
ACT
#14
ACT #0
ACT
#15
DS #5 DS #6
scb[7].
spi_se
lect0:0
sdhc[0].
card_m
ech_writ
e_prot
scb[2].
i2c_scl
:1
scb[2].
spi_m
osi:1
peri.tr
_io_in
put[6]:
0
sdhc[0].i
o_volt_s
el
Page 29 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 8. Multiple Alternate Functions (continued)
Port/
Pin
ACT
#6
ACT
#7
ACT
#8
csd.csd
_tx_n:2
1
scb[2]
.uart_
tx:1
scb[2].
i2c_sd
a:1
scb[2].
spi_mi
so:1
csd.csd
_tx:22
csd.csd
_tx_n:2
2
scb[2]
.uart_
rts:1
scb[2].
spi_cl
k:1
tcpwm[1]
.line_co
mpl[20]:1
csd.csd
_tx:23
csd.csd
_tx_n:2
3
scb[2]
.uart_
cts:1
scb[2].
spi_se
lect0:1
tcpwm[0].
line[4]:5
tcpwm[1]
.line[21]:
1
csd.csd
_tx:24
csd.csd
_tx_n:2
4
scb[2].
spi_se
lect1:1
P3.5
tcpwm[0].
line_com
pl[4]:5
tcpwm[1]
.line_co
mpl[21]:1
csd.csd
_tx:25
csd.csd
_tx_n:2
5
scb[2].
spi_se
lect2:1
P4.0
tcpwm[0].
line[5]:5
tcpwm[1]
.line[22]:
1
csd.csd
_tx:26
csd.csd
_tx_n:2
6
scb[7]
.uart_
rx:1
scb[7].
i2c_scl
:1
scb[7].
spi_m
osi:1
peri.tr
_io_in
put[8]:
0
P4.1
tcpwm[0].
line_com
pl[5]:5
tcpwm[1]
.line_co
mpl[22]:1
csd.csd
_tx:27
csd.csd
_tx_n:2
7
scb[7]
.uart_
tx:1
scb[7].
i2c_sd
a:1
scb[7].
spi_mi
so:1
peri.tr
_io_in
put[9]:
0
P4.2
tcpwm[0].
line[6]:5
tcpwm[1]
.line[23]:
1
csd.csd
_tx:28
csd.csd
_tx_n:2
8
scb[7]
.uart_
rts:1
scb[7].
spi_cl
k:1
P4.3
tcpwm[0].
line_com
pl[6]:5
tcpwm[1]
.line_co
mpl[23]:1
csd.csd
_tx:29
csd.csd
_tx_n:2
9
scb[7]
.uart_
cts:1
scb[7].
spi_se
lect0:1
P5.0
tcpwm[0].
line[4]:0
tcpwm[1]
.line[4]:0
csd.csd
_tx:30
csd.csd
_tx_n:3
0
scb[5]
.uart_
rx:0
scb[5].
i2c_scl
:0
scb[5].
spi_m
osi:0
tcpwm[0].
line_com
pl[4]:0
tcpwm[1]
.line_co
mpl[4]:0
csd.csd
_tx:31
csd.csd
_tx_n:3
1
scb[5]
.uart_
tx:0
scb[5].
i2c_sd
a:0
scb[5].
spi_mi
so:0
P5.2
tcpwm[0].
line[5]:0
tcpwm[1]
.line[5]:0
csd.csd
_tx:32
csd.csd
_tx_n:3
2
scb[5]
.uart_
rts:0
scb[5].
spi_cl
k:0
audioss
[0].tx_w
s:0
P5.3
tcpwm[0].
line_com
pl[5]:0
tcpwm[1]
.line_co
mpl[5]:0
csd.csd
_tx:33
csd.csd
_tx_n:3
3
scb[5]
.uart_
cts:0
scb[5].
spi_se
lect0:0
audioss
[0].tx_s
do:0
ACT #0
ACT #1 ACT #2 ACT #3 DS #2 DS #3
P3.1
tcpwm[0].
line_com
pl[2]:5
tcpwm[1]
.line_co
mpl[19]:1
csd.csd
_tx:21
P3.2
tcpwm[0].
line[3]:5
tcpwm[1]
.line[20]:
1
P3.3
tcpwm[0].
line_com
pl[3]:5
P3.4
P5.1
Document Number: 002-23185 Rev. *Q
ACT
#4
ACT
#5
ACT
#9
ACT
#10
ACT
#12
peri.tr
_io_in
put[7]:
0
audioss
[0].clk_i
2s_if:0
peri.tr
_io_in
put[10
]:0
audioss
[0].tx_s
ck:0
peri.tr
_io_in
put[11
]:0
ACT #13
ACT
#14
ACT
#15
DS #5 DS #6
sdhc[0].
card_if_
pwr_en
Page 30 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 8. Multiple Alternate Functions (continued)
Port/
Pin
ACT
#6
ACT
#7
ACT
#8
csd.csd
_tx_n:3
4
scb[1
0].uar
t_rx:0
scb[10
].i2c_s
cl:0
scb[5].
spi_se
lect1:0
audioss
[0].rx_s
ck:0
csd.csd
_tx:35
csd.csd
_tx_n:3
5
scb[1
0].uar
t_tx:0
scb[10
].i2c_s
da:0
scb[5].
spi_se
lect2:0
audioss
[0].rx_w
s:0
tcpwm[1]
.line[7]:0
csd.csd
_tx:36
csd.csd
_tx_n:3
6
scb[1
0].uar
t_rts:
0
scb[5].
spi_se
lect3:0
tcpwm[0].
line_com
pl[7]:0
tcpwm[1]
.line_co
mpl[7]:0
csd.csd
_tx:37
csd.csd
_tx_n:3
7
scb[1
0].uar
t_cts:
0
scb[3].
spi_se
lect3:0
P6.0
tcpwm[0].
line[0]:1
tcpwm[1]
.line[8]:0
csd.csd
_tx:38
csd.csd
_tx_n:3
8
scb[8].
i2c_scl
:0
scb[3]
.uart_
rx:0
scb[3].
i2c_scl
:0
scb[3].
spi_m
osi:0
cpuss.faul
t_out[0]
scb[8]
.spi_
mosi:
0
P6.1
tcpwm[0].
line_com
pl[0]:1
tcpwm[1]
.line_co
mpl[8]:0
csd.csd
_tx:39
csd.csd
_tx_n:3
9
scb[8].
i2c_sd
a:0
scb[3]
.uart_
tx:0
scb[3].
i2c_sd
a:0
scb[3].
spi_mi
so:0
cpuss.faul
t_out[1]
scb[8]
.spi_
miso:
0
P6.2
tcpwm[0].
line[1]:1
tcpwm[1]
.line[9]:0
csd.csd
_tx:40
csd.csd
_tx_n:4
0
scb[3]
.uart_
rts:0
scb[3].
spi_cl
k:0
scb[8]
.spi_c
lk:0
P6.3
tcpwm[0].
line_com
pl[1]:1
tcpwm[1]
.line_co
mpl[9]:0
csd.csd
_tx:41
csd.csd
_tx_n:4
1
scb[3]
.uart_
cts:0
scb[3].
spi_se
lect0:0
scb[8]
.spi_s
elect0
:0
P6.4
tcpwm[0].
line[2]:1
tcpwm[1]
.line[10]:
0
csd.csd
_tx:42
csd.csd
_tx_n:4
2
scb[8].
i2c_scl
:1
scb[6]
.uart_
rx:2
scb[6].
i2c_scl
:2
scb[6].
spi_m
osi:2
peri.tr
_io_in
put[12
]:0
peri.tr_io_
output[0]:1
cpuss.
swj_s
wo_td
o
scb[8]
.spi_
mosi:
1
P6.5
tcpwm[0].
line_com
pl[2]:1
tcpwm[1]
.line_co
mpl[10]:0
csd.csd
_tx:43
csd.csd
_tx_n:4
3
scb[8].
i2c_sd
a:1
scb[6]
.uart_
tx:2
scb[6].
i2c_sd
a:2
scb[6].
spi_mi
so:2
peri.tr
_io_in
put[13
]:0
peri.tr_io_
output[1]:1
cpuss.
swj_s
wdoe_
tdi
scb[8]
.spi_
miso:
1
P6.6
tcpwm[0].
line[3]:1
tcpwm[1]
.line[11]:
0
csd.csd
_tx:44
csd.csd
_tx_n:4
4
scb[6]
.uart_
rts:2
scb[6].
spi_cl
k:2
cpuss.
swj_s
wdio_t
ms
scb[8]
.spi_c
lk:1
P6.7
tcpwm[0].
line_com
pl[3]:1
tcpwm[1]
.line_co
mpl[11]:0
csd.csd
_tx:45
csd.csd
_tx_n:4
5
scb[6]
.uart_
cts:2
scb[6].
spi_se
lect0:2
cpuss.
swj_s
wclk_t
clk
scb[8]
.spi_s
elect0
:1
ACT #0
ACT #1 ACT #2 ACT #3 DS #2 DS #3
P5.4
tcpwm[0].
line[6]:0
tcpwm[1]
.line[6]:0
csd.csd
_tx:34
P5.5
tcpwm[0].
line_com
pl[6]:0
tcpwm[1]
.line_co
mpl[6]:0
P5.6
tcpwm[0].
line[7]:0
P5.7
Document Number: 002-23185 Rev. *Q
ACT
#4
ACT
#5
ACT
#9
ACT
#10
ACT
#12
ACT #13
ACT
#14
ACT
#15
DS #5 DS #6
audioss
[0].rx_s
di:0
Page 31 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 8. Multiple Alternate Functions (continued)
Port/
Pin
ACT
#6
ACT
#7
ACT
#8
csd.csd
_tx_n:4
6
scb[4]
.uart_
rx:1
scb[4].
i2c_scl
:1
scb[4].
spi_m
osi:1
peri.tr
_io_in
put[14
]:0
csd.csd
_tx:47
csd.csd
_tx_n:4
7
scb[4]
.uart_
tx:1
scb[4].
i2c_sd
a:1
scb[4].
spi_mi
so:1
peri.tr
_io_in
put[15
]:0
tcpwm[1]
.line[13]:
0
csd.csd
_tx:48
csd.csd
_tx_n:4
8
scb[4]
.uart_
rts:1
scb[4].
spi_cl
k:1
tcpwm[0].
line_com
pl[5]:1
tcpwm[1]
.line_co
mpl[13]:0
csd.csd
_tx:49
csd.csd
_tx_n:4
9
scb[4]
.uart_
cts:1
scb[4].
spi_se
lect0:1
P7.4
tcpwm[0].
line[6]:1
tcpwm[1]
.line[14]:
0
csd.csd
_tx:50
csd.csd
_tx_n:5
0
scb[4].
spi_se
lect1:1
cpuss.tr
ace_da
ta[3]:2
P7.5
tcpwm[0].
line_com
pl[6]:1
tcpwm[1]
.line_co
mpl[14]:0
csd.csd
_tx:51
csd.csd
_tx_n:5
1
scb[4].
spi_se
lect2:1
cpuss.tr
ace_da
ta[2]:2
P7.6
tcpwm[0].
line[7]:1
tcpwm[1]
.line[15]:
0
csd.csd
_tx:52
csd.csd
_tx_n:5
2
scb[4].
spi_se
lect3:1
cpuss.tr
ace_da
ta[1]:2
P7.7
tcpwm[0].
line_com
pl[7]:1
tcpwm[1]
.line_co
mpl[15]:0
csd.csd
_tx:53
csd.csd
_tx_n:5
3
scb[3].
spi_se
lect1:0
P8.0
tcpwm[0].
line[0]:2
tcpwm[1]
.line[16]:
0
csd.csd
_tx:54
csd.csd
_tx_n:5
4
scb[4]
.uart_
rx:0
scb[4].
i2c_scl
:0
scb[4].
spi_m
osi:0
peri.tr
_io_in
put[16
]:0
P8.1
tcpwm[0].
line_com
pl[0]:2
tcpwm[1]
.line_co
mpl[16]:0
csd.csd
_tx:55
csd.csd
_tx_n:5
5
scb[4]
.uart_
tx:0
scb[4].
i2c_sd
a:0
scb[4].
spi_mi
so:0
peri.tr
_io_in
put[17
]:0
P8.2
tcpwm[0].
line[1]:2
tcpwm[1]
.line[17]:
0
csd.csd
_tx:56
csd.csd
_tx_n:5
6
lpcom
p.dsi_
comp
0:0
scb[4]
.uart_
rts:0
scb[4].
spi_cl
k:0
P8.3
tcpwm[0].
line_com
pl[1]:2
tcpwm[1]
.line_co
mpl[17]:0
csd.csd
_tx:57
csd.csd
_tx_n:5
7
lpcom
p.dsi_
comp
1:0
scb[4]
.uart_
cts:0
scb[4].
spi_se
lect0:0
ACT #0
ACT #1 ACT #2 ACT #3 DS #2 DS #3
P7.0
tcpwm[0].
line[4]:1
tcpwm[1]
.line[12]:
0
csd.csd
_tx:46
P7.1
tcpwm[0].
line_com
pl[4]:1
tcpwm[1]
.line_co
mpl[12]:0
P7.2
tcpwm[0].
line[5]:1
P7.3
Document Number: 002-23185 Rev. *Q
ACT
#4
ACT
#5
ACT
#9
ACT
#10
ACT
#12
cpuss.
clk_fm
_pum
p
ACT #13
ACT
#14
ACT
#15
DS #5 DS #6
cpuss.tr
ace_clo
ck
cpuss.tr
ace_da
ta[0]:2
Page 32 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 8. Multiple Alternate Functions (continued)
Port/
Pin
ACT
#6
ACT
#7
ACT
#8
csd.csd
_tx_n:5
8
scb[1
1].uar
t_rx:0
scb[11
].i2c_s
cl:0
scb[4].
spi_se
lect1:0
csd.csd
_tx:59
csd.csd
_tx_n:5
9
scb[1
1].uar
t_tx:0
scb[11
].i2c_s
da:0
scb[4].
spi_se
lect2:0
tcpwm[1]
.line[19]:
0
csd.csd
_tx:60
csd.csd
_tx_n:6
0
scb[1
1].uar
t_rts:
0
scb[4].
spi_se
lect3:0
tcpwm[0].
line_com
pl[3]:2
tcpwm[1]
.line_co
mpl[19]:0
csd.csd
_tx:61
csd.csd
_tx_n:6
1
scb[1
1].uar
t_cts:
0
scb[3].
spi_se
lect2:0
tcpwm[0].
line[4]:2
tcpwm[1]
.line[20]:
0
csd.csd
_tx:62
csd.csd
_tx_n:6
2
scb[2]
.uart_
rx:0
scb[2].
i2c_scl
:0
scb[2].
spi_m
osi:0
tcpwm[0].
line_com
pl[4]:2
tcpwm[1]
.line_co
mpl[20]:0
csd.csd
_tx:63
csd.csd
_tx_n:6
3
scb[2]
.uart_
tx:0
scb[2].
i2c_sd
a:0
scb[2].
spi_mi
so:0
P9.2
tcpwm[0].
line[5]:2
tcpwm[1]
.line[21]:
0
csd.csd
_tx:64
csd.csd
_tx_n:6
4
scb[2]
.uart_
rts:0
scb[2].
spi_cl
k:0
audioss
[0].tx_w
s:1
cpuss.tr
ace_da
ta[1]:0
P9.3
tcpwm[0].
line_com
pl[5]:2
tcpwm[1]
.line_co
mpl[21]:0
csd.csd
_tx:65
csd.csd
_tx_n:6
5
scb[2]
.uart_
cts:0
scb[2].
spi_se
lect0:0
audioss
[0].tx_s
do:1
cpuss.tr
ace_da
ta[0]:0
P9.4
tcpwm[0].
line[7]:5
tcpwm[1]
.line[0]:2
csd.csd
_tx:66
csd.csd
_tx_n:6
6
scb[2].
spi_se
lect1:0
audioss
[0].rx_s
ck:1
P9.5
tcpwm[0].
line_com
pl[7]:5
tcpwm[1]
.line_co
mpl[0]:2
csd.csd
_tx:67
csd.csd
_tx_n:6
7
scb[2].
spi_se
lect2:0
audioss
[0].rx_w
s:1
P9.6
tcpwm[0].
line[0]:6
tcpwm[1]
.line[1]:2
csd.csd
_tx:68
csd.csd
_tx_n:6
8
scb[2].
spi_se
lect3:0
audioss
[0].rx_s
di:1
P9.7
tcpwm[0].
line_com
pl[0]:6
tcpwm[1]
.line_co
mpl[1]:2
csd.csd
_tx:69
csd.csd
_tx_n:6
9
P10.0
tcpwm[0].
line[6]:2
tcpwm[1]
.line[22]:
0
csd.csd
_tx:70
csd.csd
_tx_n:7
0
ACT #0
ACT #1 ACT #2 ACT #3 DS #2 DS #3
P8.4
tcpwm[0].
line[2]:2
tcpwm[1]
.line[18]:
0
csd.csd
_tx:58
P8.5
tcpwm[0].
line_com
pl[2]:2
tcpwm[1]
.line_co
mpl[18]:0
P8.6
tcpwm[0].
line[3]:2
P8.7
P9.0
P9.1
Document Number: 002-23185 Rev. *Q
ACT
#4
ACT
#5
scb[1]
.uart_
rx:1
scb[1].
i2c_scl
:1
scb[1].
spi_m
osi:1
ACT
#9
ACT
#10
ACT
#12
audioss
[0].clk_i
2s_if:1
peri.tr
_io_in
put[18
]:0
cpuss.tr
ace_da
ta[3]:0
audioss
[0].tx_s
ck:1
peri.tr
_io_in
put[19
]:0
cpuss.tr
ace_da
ta[2]:0
peri.tr
_io_in
put[20
]:0
ACT #13
ACT
#14
ACT
#15
DS #5 DS #6
cpuss.tr
ace_da
ta[3]:1
Page 33 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 8. Multiple Alternate Functions (continued)
Port/
Pin
ACT
#6
ACT
#7
ACT
#8
csd.csd
_tx_n:7
1
scb[1]
.uart_
tx:1
scb[1].
i2c_sd
a:1
scb[1].
spi_mi
so:1
csd.csd
_tx:72
csd.csd
_tx_n:7
2
scb[1]
.uart_
rts:1
scb[1].
spi_cl
k:1
cpuss.tr
ace_da
ta[1]:1
tcpwm[1]
.line_co
mpl[23]:0
csd.csd
_tx:73
csd.csd
_tx_n:7
3
scb[1]
.uart_
cts:1
scb[1].
spi_se
lect0:1
cpuss.tr
ace_da
ta[0]:1
tcpwm[0].
line[0]:3
tcpwm[1]
.line[0]:1
csd.csd
_tx:74
csd.csd
_tx_n:7
4
scb[1].
spi_se
lect1:1
audios
s[0].p
dm_cl
k:0
P10.5
tcpwm[0].
line_com
pl[0]:3
tcpwm[1]
.line_co
mpl[0]:1
csd.csd
_tx:75
csd.csd
_tx_n:7
5
scb[1].
spi_se
lect2:1
audios
s[0].p
dm_d
ata:0
P10.6
tcpwm[0].
line[1]:6
tcpwm[1]
.line[2]:2
csd.csd
_tx:76
csd.csd
_tx_n:7
6
scb[1].
spi_se
lect3:1
P10.7
tcpwm[0].
line_com
pl[1]:6
tcpwm[1]
.line_co
mpl[2]:2
csd.csd
_tx:77
csd.csd
_tx_n:7
7
P11.0
tcpwm[0].
line[1]:3
tcpwm[1]
.line[1]:1
csd.csd
_tx:78
csd.csd
_tx_n:7
8
smif.
spi_s
elect
2
scb[5]
.uart_
rx:1
scb[5].
i2c_scl
:1
scb[5].
spi_m
osi:1
audioss
[1].clk_i
2s_if:1
peri.tr
_io_in
put[22
]:0
P11.1
tcpwm[0].
line_com
pl[1]:3
tcpwm[1]
.line_co
mpl[1]:1
csd.csd
_tx:79
csd.csd
_tx_n:7
9
smif.
spi_s
elect
1
scb[5]
.uart_
tx:1
scb[5].
i2c_sd
a:1
scb[5].
spi_mi
so:1
audioss
[1].tx_s
ck:1
peri.tr
_io_in
put[23
]:0
P11.2
tcpwm[0].
line[2]:3
tcpwm[1]
.line[2]:1
csd.csd
_tx:80
csd.csd
_tx_n:8
0
smif.
spi_s
elect
0
scb[5]
.uart_
rts:1
scb[5].
spi_cl
k:1
audioss
[1].tx_w
s:1
P11.3
tcpwm[0].
line_com
pl[2]:3
tcpwm[1]
.line_co
mpl[2]:1
csd.csd
_tx:81
csd.csd
_tx_n:8
1
smif.
spi_
data
3
scb[5]
.uart_
cts:1
scb[5].
spi_se
lect0:1
audioss
[1].tx_s
do:1
peri.tr_io_
output[0]:0
P11.4
tcpwm[0].
line[3]:3
tcpwm[1]
.line[3]:1
csd.csd
_tx:82
csd.csd
_tx_n:8
2
smif.
spi_
data
2
scb[5].
spi_se
lect1:1
audioss
[1].rx_s
ck:1
peri.tr_io_
output[1]:0
ACT #0
ACT #1 ACT #2 ACT #3 DS #2 DS #3
P10.1
tcpwm[0].
line_com
pl[6]:2
tcpwm[1]
.line_co
mpl[22]:0
csd.csd
_tx:71
P10.2
tcpwm[0].
line[7]:2
tcpwm[1]
.line[23]:
0
P10.3
tcpwm[0].
line_com
pl[7]:2
P10.4
Document Number: 002-23185 Rev. *Q
ACT
#4
ACT
#5
ACT
#9
ACT
#10
ACT
#12
ACT #13
peri.tr
_io_in
put[21
]:0
ACT
#14
ACT
#15
DS #5 DS #6
cpuss.tr
ace_da
ta[2]:1
Page 34 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 8. Multiple Alternate Functions (continued)
Port/
Pin
P11.5
ACT #0
ACT #1 ACT #2 ACT #3 DS #2 DS #3
tcpwm[0].
line_com
pl[3]:3
tcpwm[1]
.line_co
mpl[3]:1
P11.6
ACT
#4
ACT
#5
ACT
#6
ACT
#7
ACT
#8
ACT
#9
ACT
#10
csd.csd
_tx:83
csd.csd
_tx_n:8
3
smif.
spi_
data
1
scb[5].
spi_se
lect2:1
audioss
[1].rx_w
s:1
csd.csd
_tx:84
csd.csd
_tx_n:8
4
smif.
spi_
data
0
scb[5].
spi_se
lect3:1
audioss
[1].rx_s
di:1
P11.7
ACT
#12
ACT #13
ACT
#14
ACT
#15
DS #5 DS #6
smif.
spi_c
lk
P12.0
tcpwm[0].
line[4]:3
tcpwm[1]
.line[4]:1
csd.csd
_tx:85
csd.csd
_tx_n:8
5
smif.
spi_
data
4
scb[6]
.uart_
rx:0
scb[6].
i2c_scl
:0
scb[6].
spi_m
osi:0
peri.tr
_io_in
put[24
]:0
sdhc[1].
card_e
mmc_re
set_n
P12.1
tcpwm[0].
line_com
pl[4]:3
tcpwm[1]
.line_co
mpl[4]:1
csd.csd
_tx:86
csd.csd
_tx_n:8
6
smif.
spi_
data
5
scb[6]
.uart_
tx:0
scb[6].
i2c_sd
a:0
scb[6].
spi_mi
so:0
peri.tr
_io_in
put[25
]:0
sdhc[1].
card_de
tect_n
P12.2
tcpwm[0].
line[5]:3
tcpwm[1]
.line[5]:1
csd.csd
_tx:87
csd.csd
_tx_n:8
7
smif.
spi_
data
6
scb[6]
.uart_
rts:0
scb[6].
spi_cl
k:0
sdhc[1].
card_m
ech_writ
e_prot
P12.3
tcpwm[0].
line_com
pl[5]:3
tcpwm[1]
.line_co
mpl[5]:1
csd.csd
_tx:88
csd.csd
_tx_n:8
8
smif.
spi_
data
7
scb[6]
.uart_
cts:0
scb[6].
spi_se
lect0:0
sdhc[1].l
ed_ctrl
P12.4
tcpwm[0].
line[6]:3
tcpwm[1]
.line[6]:1
csd.csd
_tx:89
csd.csd
_tx_n:8
9
smif.
spi_s
elect
3
P12.5
tcpwm[0].
line_com
pl[6]:3
tcpwm[1]
.line_co
mpl[6]:1
csd.csd
_tx:90
P12.6
tcpwm[0].
line[7]:3
tcpwm[1]
.line[7]:1
P12.7
tcpwm[0].
line_com
pl[7]:3
P13.0
tcpwm[0].
line[0]:4
scb[6].
spi_se
lect1:0
audios
s[0].p
dm_cl
k:1
sdhc[1].
card_c
md
csd.csd
_tx_n:9
0
scb[6].
spi_se
lect2:0
audios
s[0].p
dm_d
ata:1
sdhc[1].
clk_card
csd.csd
_tx:91
csd.csd
_tx_n:9
1
scb[6].
spi_se
lect3:0
tcpwm[1]
.line_co
mpl[7]:1
csd.csd
_tx:92
csd.csd
_tx_n:9
2
tcpwm[1]
.line[8]:1
csd.csd
_tx:93
csd.csd
_tx_n:9
3
Document Number: 002-23185 Rev. *Q
sdhc[1].
card_if_
pwr_en
sdhc[1].i
o_volt_s
el
scb[6]
.uart_
rx:1
scb[6].
i2c_scl
:1
scb[6].
spi_m
osi:1
audioss
[1].clk_i
2s_if:0
peri.tr
_io_in
put[26
]:0
sdhc[1].
card_da
t_3to0[0
]
Page 35 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 8. Multiple Alternate Functions (continued)
Port/
Pin
P13.1
P13.2
P13.3
P13.4
P13.5
P13.6
P13.7
ACT
#6
ACT
#7
ACT
#8
csd.csd
_tx_n:9
4
scb[6]
.uart_
tx:1
scb[6].
i2c_sd
a:1
scb[6].
spi_mi
so:1
csd.csd
_tx:95
csd.csd
_tx_n:9
5
scb[6]
.uart_
rts:1
scb[6].
spi_cl
k:1
tcpwm[1]
.line_co
mpl[9]:1
csd.csd
_tx:96
csd.csd
_tx_n:9
6
scb[6]
.uart_
cts:1
scb[6].
spi_se
lect0:1
tcpwm[0].
line[2]:4
tcpwm[1]
.line[10]:
1
csd.csd
_tx:97
csd.csd
_tx_n:9
7
scb[1
2].uar
t_rx:0
scb[12
].i2c_s
cl:0
scb[6].
spi_se
lect1:1
tcpwm[0].
line_com
pl[2]:4
tcpwm[1]
.line_co
mpl[10]:1
csd.csd
_tx:98
csd.csd
_tx_n:9
8
scb[1
2].uar
t_tx:0
scb[12
].i2c_s
da:0
scb[6].
spi_se
lect2:1
tcpwm[0].
line[3]:4
tcpwm[1]
.line[11]:
1
csd.csd
_tx:99
csd.csd
_tx_n:9
9
scb[1
2].uar
t_rts:
0
tcpwm[0].
line_com
pl[3]:4
tcpwm[1]
.line_co
mpl[11]:1
csd.csd
_tx:100
csd.csd
_tx_n:1
00
scb[1
2].uar
t_cts:
0
ACT #0
ACT #1 ACT #2 ACT #3 DS #2 DS #3
tcpwm[0].
line_com
pl[0]:4
tcpwm[1]
.line_co
mpl[8]:1
csd.csd
_tx:94
tcpwm[0].
line[1]:4
tcpwm[1]
.line[9]:1
tcpwm[0].
line_com
pl[1]:4
Document Number: 002-23185 Rev. *Q
ACT
#4
ACT
#5
scb[6].
spi_se
lect3:1
ACT
#9
ACT
#10
ACT
#12
audioss
[1].tx_s
ck:0
peri.tr
_io_in
put[27
]:0
ACT #13
ACT
#14
ACT
#15
DS #5 DS #6
sdhc[1].
card_da
t_3to0[1
]
audioss
[1].tx_w
s:0
sdhc[1].
card_da
t_3to0[2
]
audioss
[1].tx_s
do:0
sdhc[1].
card_da
t_3to0[3
]
audioss
[1].rx_s
ck:0
sdhc[1].
card_da
t_7to4[0
]
audioss
[1].rx_w
s:0
sdhc[1].
card_da
t_7to4[1
]
audioss
[1].rx_s
di:0
sdhc[1].
card_da
t_7to4[2
]
sdhc[1].
card_da
t_7to4[3
]
Page 36 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Analog and Smart I/O alternate port pin functionality is provided in Table 9.
Table 9. Port Pin Analog, Digital, and Smart I/O Functions
Port/Pin
Analog
P0.0
wco_in
P0.1
P5.6
P5.7
P6.2
P6.3
P6.6
P6.7
P7.2
P7.3
P7.7
P9.7
P10.0
P10.1
P10.2
P10.3
P10.4
P10.5
P10.6
P10.7
P12.6
P12.7
wco_out
lpcomp.inp_comp0
lpcomp.inn_comp0
lpcomp.inp_comp1
lpcomp.inn_comp1
swd_data
swd_clk
csd.csh_tank
csd.vref_ext
csd.shield
aref_ext_vref
sarmux_pads[0]
sarmux_pads[1]
sarmux_pads[2]
sarmux_pads[3]
sarmux_pads[4]
sarmux_pads[5]
sarmux_pads[6]
sarmux_pads[7]
eco_in
eco_out
Document Number: 002-23185 Rev. *Q
Table 9. Port Pin Analog, Digital, and Smart I/O Functions
Port/Pin
Digital
P0.4
P1.4
P0.5
Port/Pin
pmic_wakeup_in
hibernate_wakeup[1]
hibernate_wakeup[0]
pmic_wakeup_out
SMARTIO
P8.0
P8.1
P8.2
P8.3
P8.4
P8.5
P8.6
P8.7
P9.0
P9.1
P9.2
P9.3
P9.4
P9.5
P9.6
P9.7
smartio[8].io[0]
smartio[8].io[1]
smartio[8].io[2]
smartio[8].io[3]
smartio[8].io[4]
smartio[8].io[5]
smartio[8].io[6]
smartio[8].io[7]
smartio[9].io[0]
smartio[9].io[1]
smartio[9].io[2]
smartio[9].io[3]
smartio[9].io[4]
smartio[9].io[5]
smartio[9].io[6]
smartio[9].io[7]
Page 37 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Power Supply Considerations
The following power system diagrams show typical connections for power pins for all supported packages and with and without usage
of the buck regulator.
In these diagrams, the package pin is shown with the pin name, for example "VDDA, A12". For VDDx pins, the I/O port that is powered
by that pin is also shown, for example "VDDD, A1; I/O port P1".
Figure 11. 128-TQFP Power Connection Diagram
1.7 to 3.6 V
CY8C62x8/A, 128-TQFP package
1 KΩ at
100 MHz
1 KΩ at
100 MHz
1 KΩ at
100 MHz
10 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
10 µF
0.1 µF
VDDD , 6; I/O port P1
VDD_NS, 23
VBACKUP, 9; I/O port P0
0.1 µF
10 µF
V IND1, 24
2.2 µH
VDDIO0, 114; I/O ports P11, P12, P13
V CCD, 4, 5
VDDIO1, 68; I/O ports P5, P6, P7, P8
4.7 µF
VDDIO2, 39; I/O ports P2, P3, P4
VDDUSB , 27; I/O port P14
VDDA, 96
VDDIOA, 69; I/O ports P9, P10
7, 8, 25, 26, 36, 40, 67, 70, 95, 115
V SS
Document Number: 002-23185 Rev. *Q
Page 38 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 12. 128-TQFP (No Buck) Power Connection Diagram
1.7 to 3.6 V
CY8C62x8/A, 128-TQFP package
1 KΩ at
100 MHz
1 KΩ at
100 MHz
10 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
10 µF
0.1 µF
VDDD , 6; I/O port P1
VDD_NS, 23
VBACKUP, 9; I/O port P0
VIND1, 24
VDDIO0, 114; I/O ports P11, P12, P13
VCCD, 4, 5
VDDIO1, 68; I/O ports P5, P6, P7, P8
4.7 µF
VDDIO2, 39; I/O ports P2, P3, P4
VDDUSB , 27; I/O port P14
VDDA , 96
VDDIOA, 69; I/O ports P9, P10
7, 8, 25, 26, 36, 40, 67, 70, 95, 115
VSS
Document Number: 002-23185 Rev. *Q
Page 39 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 13. 124-BGA Power Connection Diagram
1.7 to 3.6 V
CY8C62x8/A, 124-BGA package
1 KΩ at
100 MHz
10 µF
0.1 µF
1 µF
0.1 µF
1 µF
1 KΩ at
100 MHz
1 KΩ at
100 MHz
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
10 µF
0.1 µF
VDDD , A1; I/O port P1
VDD_NS, J1
VBACKUP, D1; I/O port P0
0.1 µF
10 µF
V IND1, J2
2.2 µH
VDDIO0, C4; I/O ports P11, P12, P13
V CCD, A2
VDDIO1, K12; I/O ports P5, P6, P7, P8
4.7 µF
VDDIO2, L4; I/O ports P2, P3, P4
VDDUSB , M1; I/O port P14
VDDA, A12
VDDIOA, A13; I/O ports P9, P10
B12, C3, D4, D10, K4, K10
VSS
Document Number: 002-23185 Rev. *Q
Page 40 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 14. 124-BGA (No Buck) Power Connection Diagram
1.7 to 3.6 V
CY8C62x8/A, 124-BGA package
1 KΩ at
100 MHz
1 KΩ at
100 MHz
10 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
10 µF
0.1 µF
VDDD , A1; I/O port P1
VDD_NS , J1
VBACKUP, D1; I/O port P0
VIND1 , J2
VDDIO0, C4; I/O ports P11, P12, P13
VCCD , A2
VDDIO1, K12; I/O ports P5, P6, P7, P8
4.7 µF
VDDIO2, L4; I/O ports P2, P3, P4
VDDUSB , M1; I/O port P14
VDDA , A12
VDDIOA, A13; I/O ports P9, P10
B12, C3, D4, D10, K4, K10
VSS
Document Number: 002-23185 Rev. *Q
Page 41 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 15. 100-WLCSP Power Connection Diagram
1.7 to 3.6 V
CY8C62x8/A, 100-WLCSP package
1 KΩ at
100 MHz
10 µF
0.1 µF
1 µF
0.1 µF
1 µF
1 KΩ at
100 MHz
1 KΩ at
100 MHz
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
10 µF
0.1 µF
VDDD , D14; I/O port P1
VDD_NS, J15
VBACKUP, C17; I/O port P0
0.1 µF
10 µF
VIND1, H16
2.2 µH
VDDIO0, A11; I/O ports P11, P12, P13
VCCD , C15
VDDIO1, K2; I/O ports P5, P6, P7, P8
4.7 µF
VDDIO2, M10; I/O port P2
VDDUSB , J17; I/O port P14
VDDA, J1; I/O ports P9, P10
D2, E13, J13, L1
VSS
Document Number: 002-23185 Rev. *Q
Page 42 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 16. 100-WLCSP (No Buck) Power Connection Diagram
1.7 to 3.6 V
CY8C62x8/A, 100-WLCSP package
1 KΩ at
100 MHz
1 KΩ at
100 MHz
10 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
10 µF
0.1 µF
VDDD, D14; I/O port P1
VDD_NS, J15
VBACKUP, C17; I/O port P0
VIND1 , H16
VDDIO0, A11; I/O ports P11, P12, P13
VCCD, C15
VDDIO1, K2; I/O ports P5, P6, P7, P8
4.7 µF
VDDIO2 , M10; I/O port P2
VDDUSB , J17; I/O port P14
V DDA, J1; I/O ports P9, P10
D2, E13, J13, L1
V SS
In the QFN package, all internal grounds are routed to the metal pad (epad) in the package. This pad must be grounded on the PCB.
Document Number: 002-23185 Rev. *Q
Page 43 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 17. 68-QFN Power Connection Diagram
1.7 to 3.6 V
CY8C62x8/A, 68-QFN package
1 KΩ at
100 MHz
1 KΩ at
100 MHz
10 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
10 µF
0.1 µF
1 KΩ at
100 MHz
VDDD, 68
VDD_NS, 9
VBACKUP, 1; I/O port P0
0.1 µF
10 µF
VIND1, 10
2.2 µH
VDDIO0, 64; I/O ports P11, P12
VCCD, 67
4.7 µF
VDDIO1, 35; I/O ports P5, P6, P7, P8
VDDIO2, 22; I/O ports P2, P3
VDDUSB, 11; I/O port P14
VDDA, 36
VDDIOA, 48; I/O ports P9, P10
GND PAD
Figure 18. 68-QFN (No Buck) Power Connection Diagram
1.7 to 3.6 V
CY8C62x8/A, 68-QFN package
1 KΩ at
100 MHz
1 KΩ at
100 MHz
10 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
1 µF
0.1 µF
10 µF
0.1 µF
VDDD, 68
VDD_NS, 9
VBACKUP, 1; I/O port P0
VIND1, 10
VDDIO0, 64; I/O ports P11, P12
VCCD, 67
VDDIO1, 35; I/O ports P5, P6, P7, P8
4.7 µF
VDDIO2, 22; I/O ports P2, P3
VDDUSB, 11; I/O port P14
VDDA, 36
VDDIOA, 48; I/O ports P9, P10
GND PAD
Document Number: 002-23185 Rev. *Q
Page 44 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
There are as many as eight VDDx supply pins, depending on the
package, and multiple VSS ground pins. The power pins are:
5, 6, 7, 8
VDDIO1
-
VDDD: the main digital supply. It powers the low dropout (LDO)
regulators and I/O port 1
9, 10
■
VDDIOA
VDDA
11, 12, 13
VDDIO0
-
■
VCCD: the main LDO output. It requires a 4.7-µF capacitor for
regulation. The LDO can be turned off when VCCD is driven
from the switching regulator (see below). For more information,
see the power system block diagram in the device technical
reference manual (TRM).
14
VDDUSB
-
■
VDDA: the supply for the analog peripherals. Voltage must be
applied to this pin for correct device initialization and boot up.
■
VDDIOA: the supply for I/O ports 9 and 10. If it is present in the
device package, it must be connected to VDDA.
■
VDDIO0: the supply for I/O ports 11, 12, and 13.
■
VDDIO1: the supply for I/O ports 5, 6, 7, and 8.
■
VDDIO2: the supply for I/O ports 2, 3, and 4. Some of the ports
are not available depending on package.
■
VBACKUP: the supply for the backup domain, which includes the
32-kHz WCO and the RTC. It can be a separate supply as low
as 1.4 V, for battery or supercapacitor backup, as Figure 19
shows, otherwise it is connected to VDDD. It powers I/O port 0.
Figure 19. Separate Battery Connection to VBACKUP
1.7 to 3.6 V
1.4 to 3.6 V
■
Note: If the USB pins are not used, connect VDDUSB to ground
and leave the P14.0/USBDP and P14.1/USBDM pins unconnected.
Voltage must be applied to the VDDD pin, and the VDDA pin as
noted above, for correct device initialization and operation. If an
I/O port is not being used, applying voltage to the corresponding
VDDx pin is optional.
■
VSS: ground pins for the above supplies. All ground pins should
be connected together to a common ground.
In addition to the LDO regulator, a switching regulator is
included. The regulator pins are:
■
VDD_NS: the regulator supply.
■
VIND1: the regulator output. It is typically used to drive VCCD
through an inductor.
The VDD power pins are not connected on chip. They can be
connected off chip, in one or more separate nets. If separate
power nets are used, they can be isolated from noise from the
other nets using optional ferrite beads, as indicated in the
diagrams.
No external load should be placed on VCCD, or VIND1, whether
or not these pins are used.
10 µF
0.1 µF
1 µF
0.1 µF
VDDD
There are no power pin sequencing requirements; power
supplies may be brought up in any order. The power
management system holds the device in reset until all power pins
are at the voltage levels required for proper operation.
VBACKUP
Note: If a battery is installed on the PCB first, VDDD must be
cycled for at least 50 µs. This prevents premature drain of the
battery during product manufacture and storage.
VDDUSB: the supply for the USB peripheral and the USBDP and
USBDM pins. It must be 2.85 V to 3.6 V for USB operation. If
USB is not used, it can be 1.7 V to 3.6 V, and the USB pins can
be used as limited-capability GPIOs on I/O port 14.
Bypass capacitors must be connected to a common ground from
the VDDx and other pins, as indicated in the diagrams. Typical
practice for systems in this frequency range is to use a 10-µF or
1-µF capacitor in parallel with a smaller capacitor (0.1 µF, for
example). Note that these are simply rules of thumb and that, for
critical applications, the PCB layout, lead inductance, and
bypass capacitor parasitic should be simulated for optimal
bypassing.
All capacitors and inductors should be ±20% or better. The
recommended inductor value is 2.2 µH ±20% (for example, TDK
MLP2012H2R2MT0S1).
Table 10 shows a summary of the I/O port supplies:
Table 10. I/O Port Supplies
Port
Supply
Alternate Supply
0
VBACKUP
VDDD
1
VDDD
-
2, 3, 4
VDDIO2
-
Document Number: 002-23185 Rev. *Q
It is good practice to check the datasheets for your bypass
capacitors, specifically the working voltage and the DC bias
specifications. With some capacitors, the actual capacitance can
decrease considerably when the applied voltage is a significant
percentage of the rated working voltage.
For more information on pad layout, refer to PSoC 6 CAD
libraries.
Page 45 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Electrical Specifications
All specifications are valid for –40 °C ≤ TA ≤ 85 °C and for 1.71 V to 3.6 V except where noted.
Absolute Maximum Ratings
Table 11. Absolute Maximum Ratings[3]
Spec ID#
Parameter
Description
Min
Typ
Max
Units
SID1
VDD_ABS
Analog or digital supply relative to VSS
(VSSD = VSSA)
–0.5
–
4
V
SID2
VCCD_ABS
Direct digital core voltage input relative to
VSSD
–0.5
–
1.2
V
SID3
VGPIO_ABS
GPIO voltage; VDDD or VDDA
–0.5
–
VDD +
0.5
V
SID4
IGPIO_ABS
Current per GPIO
–25
–
25
mA
SID5
IGPIO_injection GPIO injection current per pin
–0.5
–
0.5
mA
SID3A
ESD_HBM
Electrostatic discharge Human Body
Model
2200
–
–
V
SID4A
ESD_CDM
Electrostatic discharge Charged Device
Model
500
–
–
V
SID5A
LU
Pin current for latchup-free operation
–100
–
100
mA
Details / Conditions
Device-Level Specifications
Table 14 provides detailed specifications of CPU current. Table 12 summarizes these specifications, for rapid review of CPU currents
under common conditions. Note that the max frequency for CM4 is 150 MHz, and for CM0+ is 100 MHz. IMO and FLL are used to
generate the CPU clocks; FLL is not used when the CPU clock frequency is 8 MHz.
Table 12. CPU Current Specifications Summary
Condition
Range
Typ Range
Max Range
LP Mode, VDDD = 3.3 V, VCCD = 1.1 V, with buck regulator
CM4 active, CM0+ sleep
CM0+ active, CM4 sleep
CM4 sleep, CM0+ sleep
Across CPUs clock ranges: 8 – 150/100 MHz;
Dhrystone with flash cache enabled
CM0+ sleep, CM4 off
Minimum regulator current mode
Across CM4/CM0+ CPU active/sleep modes
0.9–7.35 mA
2–9.5 mA
0.8–4.4 mA
2–5.8 mA
0.7–1.55 mA
1.3–2.2 mA
0.7–1.3 mA
1.3–2 mA
0.64–0.85 mA
1.2–1.5 mA
0.65–1.85 mA
1.2–2.5 mA
ULP Mode, VDDD = 3.3 V, VCCD = 0.9 V, with buck regulator
CM4 active, CM0+ sleep
CM0+ active, CM4 sleep
CM4 sleep, CM0+ sleep
Across CPUs clock ranges: 8–50/25 MHz; Dhrystone
with flash cache enabled
CM0+ sleep, CM4 off
Minimum regulator current mode
Across CM4/CM0+ CPU active/sleep modes
Deep Sleep
Across SRAM retention
Hibernate
Across VDDD
0.55–1 mA
0.95–1.5 mA
0.45–0.85 mA
0.9–1.2 mA
0.41–0.62 mA
0.72–1.2 mA
0.4–0.55 mA
1–1 mA
7–9 µA
-
300–2100 nA
-
Note
3. Usage above the absolute maximum conditions listed in Table 11 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended
periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.
Document Number: 002-23185 Rev. *Q
Page 46 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 20. Typical Device Currents vs. CPU Frequency; System Low Power (LP) Mode
8
CM4 Active, CM0+ Sleep 1/2 CM4
CM4 Active, CM0+ Sleep same as CM4
CM0+ Active, CM4 Sleep
7
IDDD, mA
6
5
4
3
2
1
0
0
25
50
75
CPU Clock, MHz
100
125
150
Power Supplies
Table 13. Power Supply DC Specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
SID6
VDDD
Internal regulator and Port 1 GPIO supply
1.7
–
3.6
V
–
SID7
VDDA
Analog power supply voltage. Shorted to
VDDIOA on PCB.
1.7
–
3.6
V
Internally unregulated
supply
SID7A
VDDIO1
GPIO supply for ports 5 to 8 when present
1.7
–
3.6
V
Must be ≥ VDDA if the
CapSense (CSD) block is
used in the application
SID7B
VDDIO0
GPIO supply for ports 11 to 13 when
present
1.7
–
3.6
V
–
SID7E
VDDIO0
Supply for eFuse Programming
2.38
2.5
2.62
V
–
SID7C
VDDIO2
GPIO supply for ports 2 to 4 when present
1.7
–
3.6
V
–
SID7D
VDDIOA
GPIO supply for ports 9 and 10 when
present. Must be connected to VDDA on
PCB.
1.7
–
3.6
V
–
SID7F
VDDUSB
Supply for port 14 (USB or GPIO) when
present
1.7
–
3.6
V
Min supply is 2.85 V for
USB
SID6B
VBACKUP
Backup power and GPIO Port 0 supply
when present
1.7
–
3.6
V
Min is 1.4 V when VDDD is
removed
SID8
VCCD1
Output voltage (for core logic bypass)
–
1.1
–
V
System LP mode
SID9
VCCD2
Output voltage (for core logic bypass)
–
0.9
–
SID10
CEFC
External regulator voltage (VCCD) bypass
3.8
4.7
5.6
µF
X5R ceramic or better.
Value for 0.8 to 1.2 V.
SID11
CEXC
Power supply decoupling capacitor
–
10
–
µF
X5R ceramic or better
Document Number: 002-23185 Rev. *Q
ULP mode. Valid for –20 to
85 °C.
Page 47 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
CPU Current and Transition Times
Table 14. CPU Current and Transition Times
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
LP RANGE POWER SPECIFICATIONS (for VCCD = 1.1 V with Buck and LDO)
Cortex-M4. Active Mode
Execute with Cache Disabled (Flash)
SIDF1
SIDF2
IDD1
IDD2
Execute from Flash; CM4 Active 50 MHz,
CM0+ Sleep 25 MHz. With IMO & FLL.
While(1).
Execute from Flash; CM4 Active 8 MHz,
CM0+ Sleep 8 MHz.With IMO. While(1).
–
–
VDDD = 3.3 V, Buck ON, Max
at 60 °C
2.85
4.5
4.1
5.1
6.8
10
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.9
2.1
VDDD = 3.3 V, Buck ON, Max
at 60 °C
1.2
2.2
2.4
5.5
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
7.35
9.5
VDDD = 3.3 V, Buck ON, Max
at 60 °C
12
14.5
18
21
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
5.4
6.8
VDDD = 3.3 V, Buck ON, Max
at 60 °C
8.95
10
13.8
17
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
2.65
3.8
VDDD = 3.3 V, Buck ON, Max
at 60 °C
4.25
5.3
6.8
10
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.9
2
VDDD = 3.3 V, Buck ON, Max
at 60 °C
1.27
2.1
2.3
5.5
mA
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
Execute with Cache Enabled
SIDC1
SIDC2
SIDC3
SIDC4
IDD3
IDD4
IDD5
IDD6
Execute from Cache;CM4 Active150 MHz,
CM0+ Sleep 75 MHz. IMO & PLL.
Dhrystone.
Execute from Cache;CM4 Active100 MHz,
CM0+ Sleep 100 MHz. IMO & FLL.
Dhrystone.
Execute from Cache;CM4 Active 50 MHz,
CM0+ Sleep 25 MHz. IMO & FLL.
Dhrystone.
Execute from Cache;CM4 Active 8 MHz,
CM0+ Sleep 8 MHz. IMO. Dhrystone.
Document Number: 002-23185 Rev. *Q
–
–
–
–
mA
mA
mA
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
Page 48 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 14. CPU Current and Transition Times (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
2.6
4
3.9
5
6.5
10
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.8
1.5
VDDD = 3.3 V, Buck ON, Max
at 60 °C
1.1
2
2.2
5.5
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
4.40
5.8
VDDD = 3.3 V, Buck ON, Max
at 60 °C
7.35
8.5
11.5
14.5
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.8
2
VDDD = 3.3 V, Buck ON, Max
at 60 °C
1.2
2
2.2
5.5
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
1.55
2.2
VDDD = 3.3 V, Buck ON, Max
at 60 °C
2.4
3.5
4.2
7.2
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
1.2
2
VDDD = 3.3 V, Buck ON, Max
at 60 °C
1.75
2.7
3.2
6.3
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.7
1.3
VDDD = 3.3 V, Buck ON, Max
at 60 °C
0.96
1.8
1.7
5
Cortex M0+. Active Mode
Execute with Cache Disabled (Flash)
SIDF3
SIDF4
IDD7
IDD8
Execute from Flash;CM4 Off, CM0+ Active
50 MHz. With IMO & FLL. While (1).
Execute from Flash;CM4 Off, CM0+ Active
8 MHz. With IMO. While (1).
–
–
VDDD = 3.3 V, Buck ON, Max
at 60 °C
mA
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
Execute with Cache Enabled
SIDC5
SIDC6
IDD9
IDD10
Execute from Cache;CM4 Off, CM0+
Active 100 MHz. With IMO & FLL.
Dhrystone.
Execute from Cache;CM4 Off, CM0+
Active 8 MHz. With IMO. Dhrystone.
–
–
mA
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
Cortex M4. Sleep Mode
SIDS1
SIDS2
SIDS3
IDD11
IDD12
IDD13
CM4 Sleep 100 MHz, CM0+ Sleep 25
MHz. With IMO & FLL.
CM4 Sleep 50 MHz, CM0+ Sleep 25 MHz.
With IMO & FLL.
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz.
With IMO.
Document Number: 002-23185 Rev. *Q
–
–
–
mA
mA
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
Page 49 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 14. CPU Current and Transition Times (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
1.3
2
2.05
3
3.6
6.8
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.7
1.3
VDDD = 3.3 V, Buck ON, Max
at 60 °C
0.95
1.5
1.7
5
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.85
1.8
VDDD = 3.3 V, Buck ON, Max
at 60 °C
1.18
2
2.2
5.5
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.9
1.5
VDDD = 3.3 V, Buck ON, Max
at 60 °C
1.27
2
2.2
5.5
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.8
1.5
VDDD = 3.3 V, Buck ON, Max
at 60 °C
1.14
2
2.1
5.5
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.8
1.5
VDDD = 3.3 V, Buck ON,
Max at 60 °C
1.15
2
2.1
5.5
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
0.65
1.2
VDDD = 3.3 V, Buck ON, Max
at 60 °C
0.95
1.7
1.6
5
Cortex M0+. Sleep Mode
SIDS4
SIDS5
IDD14
IDD15
CM4 Off, CM0+ Sleep 50 MHz. With IMO
& FLL.
CM4 Off, CM0+ Sleep 8 MHz. With IMO.
–
–
VDDD = 3.3 V, Buck ON, Max
at 60 °C
mA
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
Cortex M4. Minimum Regulator Current Mode
SIDLPA1
SIDLPA2
IDD16
IDD17
Execute from Flash; CM4 Active 8 MHz,
CM0+ Sleep 8 MHz. With IMO. While (1).
Execute from Cache; CM4 Active 8 MHz,
CM0+ Sleep 8 MHz. With IMO. Dhrystone.
–
–
mA
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
Cortex M0+. Minimum Regulator Current Mode
SIDLPA3
SIDLPA4
IDD18
IDD19
Execute from Flash; CM4 Off, CM0+
Active 8 MHz. With IMO. While (1).
Execute from Cache; CM4 Off, CM0+
Active 8 MHz. With IMO. Dhrystone.
–
–
mA
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
Cortex M4. Minimum Regulator Current Mode
SIDLPS1
IDD20
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz.
With IMO.
Document Number: 002-23185 Rev. *Q
–
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
Page 50 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 14. CPU Current and Transition Times (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
0.64
1.2
0.93
1.7
1.6
5
Units
Details / Conditions
Cortex M0+. Minimum Regulator Current Mode
SIDLPS3
IDD22
CM4 Off, CM0+ Sleep 8 MHz. With IMO.
–
VDDD = 3.3 V, Buck ON, Max
at 60 °C
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
VDDD = 1.8 to 3.3 V, LDO,
max at 60 °C
ULP Range Power Specifications (for VCCD = 0.9 V using the Buck). ULP mode is valid from –20 to +85 °C.
Cortex M4. Active Mode
Execute with Cache Disabled (Flash)
SIDF5
SIDF6
IDD3
IDD4
Execute from Flash; CM4 Active 50 MHz,
CM0+ Sleep 25 MHz. With IMO & FLL.
While(1).
Execute from Flash; CM4 Active 8 MHz,
CM0+ Sleep 8 MHz. With IMO. While (1).
VDDD = 3.3 V, Buck ON, Max
at 60 °C
2.15
2.9
2.85
3.4
VDDD = 1.8 V, Buck ON, Max
at 60 °C
0.65
1.2
VDDD = 3.3 V, Buck ON, Max
at 60 °C
0.8
1.4
VDDD = 1.8 V, Buck ON, Max
at 60 °C
1.85
2.5
VDDD = 3.3 V, Buck ON, Max
at 60 °C
2.9
3.5
VDDD = 1.8 V, Buck ON, Max
at 60 °C
0.65
1.2
VDDD = 3.3 V, Buck ON, Max
at 60 °C
0.8
1.3
VDDD = 1.8 V, Buck ON, Max
at 60 °C
1.1
1.5
VDDD = 3.3 V, Buck ON, Max
at 60 °C
1.55
2.2
VDDD = 1.8 V, Buck ON, Max
at 60 °C
0.55
1.2
VDDD = 3.3 V, Buck ON, Max
at 60 °C
0.73
1.4
VDDD = 1.8 V, Buck ON, Max
at 60 °C
1
1.5
VDDD = 3.3 V, Buck ON,
–
mA
–
mA
Execute with Cache Enabled
SIDC8
SIDC9
IDD10
IDD11
Execute from Cache; CM4 Active 50 MHz,
CM0+ Sleep 25 MHz. With IMO & FLL.
Dhrystone.
Execute from Cache; CM4 Active 8 MHz,
CM0+ Sleep 8 MHz. With IMO. Dhrystone.
–
mA
–
mA
Cortex M0+. Active Mode
Execute with Cache Disabled (Flash)
SIDF7
SIDF8
IDD16
IDD17
Execute from Flash; CM4 Off, CM0+
Active 25 MHz. With IMO & FLL. Write(1).
Execute from Flash; CM4 Off, CM0+
Active 8 MHz. With IMO. While(1).
–
mA
–
mA
Execute with Cache Enabled
SIDC10
IDD18
Execute from Cache; CM4 Off, CM0+
Active 25 MHz. With IMO & FLL.
Dhrystone.
Document Number: 002-23185 Rev. *Q
–
mA
1.5
2
Max at 60 °C
VDDD = 1.8 V, Buck ON,
Max at 60 °C
Page 51 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 14. CPU Current and Transition Times (continued)
Spec ID#
SIDC11
Parameter
IDD19
Description
Execute from Cache; CM4 Off, CM0+
Active 8 MHz. With IMO. Dhrystone.
Min
Typ
Max
0.55
0.95
–
Units
Details / Conditions
VDDD = 3.3 V, Buck ON,
mA
Max at 60 °C
0.73
1.3
VDDD = 1.8 V, Buck ON,
0.85
1.2
VDDD = 3.3 V, Buck ON,
Max at 60 °C
Cortex M4. Sleep Mode
SIDS7
SIDS8
IDD21
IDD22
CM4 Sleep 50 MHz, CM0+ Sleep 25 MHz.
With IMO & FLL.
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz.
With IMO.
–
mA
Max at 60 °C
1.2
1.8
VDDD = 1.8 V, Buck ON,
0.45
0.9
VDDD = 3.3 V, Buck ON,
–
Max at 60 °C
mA
Max at 60 °C
0.59
1
VDDD = 1.8 V, Buck ON,
0.62
1.2
VDDD = 3.3 V, Buck ON,
Max at 60 °C
Cortex M0+. Sleep Mode
SIDS9
SIDS10
IDD23
IDD24
CM4 Off, CM0+ Sleep 25 MHz. With IMO
& FLL.
CM4 Off, CM0+ Sleep 8 MHz. With IMO.
–
mA
Max at 60 °C
0.88
1.5
VDDD = 1.8 V, Buck ON,
0.41
0.72
VDDD = 3.3 V, Buck ON,
–
Max at 60 °C
mA
Max at 60 °C
0.58
1.3
VDDD = 1.8 V, Buck ON,
0.65
1.2
VDDD = 3.3 V, Buck ON,
Max at 60 °C
Cortex M4. Minimum Regulator Current Mode °
SIDLPA5
SIDLPA6
IDD25
IDD26
Execute from Flash. CM4 Active 8 MHz,
CM0+ Sleep 8 MHz. With IMO. While(1).
Execute from Cache. CM4 Active 8 MHz,
CM0+ Sleep 8 MHz. With IMO. Dhrystone.
–
mA
0.8
0.6
Max at 60 °C
1.4
VDDD = 1.8 V, Buck ON,
1
VDDD = 3.3 V, Buck ON,
–
Max at 60 °C
mA
Max at 60 °C
VDDD = 1.8 V, Buck ON,
0.78
1.4
0.55
1
0.75
1.4
VDDD = 1.8 V, Buck ON, Max
at 60 °C
0.5
1
VDDD = 3.3 V, Buck ON, Max
at 60 °C
0.7
1.4
Max at 60 °C
Cortex M0+. Minimum Regulator Current Mode
SIDLPA7
SIDLPA8
IDD27
IDD28
Execute from Flash. CM4 Off, CM0+
Active 8 MHz. With IMO. While (1).
Execute from Cache. CM4 Off, CM0+
Active 8 MHz. With IMO. Dhrystone.
Document Number: 002-23185 Rev. *Q
–
mA
–
mA
VDDD = 3.3 V, Buck ON, Max
at 60 °C
VDDD = 1.8 V, Buck ON, Max
at 60 °C
Page 52 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 14. CPU Current and Transition Times (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
0.45
1
0.57
1.1
VDDD = 1.8 V, Buck ON, Max
at 60 °C
0.4
1
VDDD = 3.3 V, Buck ON, Max
at 60 °C
0.56
1.1
Cortex M4. Minimum Regulator Current Mode
SIDLPS5
IDD29
CM4 Sleep 8 MHz, CM0 Sleep 8 MHz.
With IMO.
–
mA
VDDD = 3.3 V, Buck ON, Max
at 60 °C
Cortex M0+. Minimum Regulator Current Mode
SIDLPS7
IDD31
CM4 Off, CM0+ Sleep 8 MHz. With IMO.
–
mA
VDDD = 1.8 V, Buck ON, Max
at 60 °C
Deep Sleep Mode
SIDDS1
IDD33A
With internal Buck enabled and 64-KB
SRAM retention.
–
7
–
µA
Max value is at 85 °C
SIDDS1_B
IDD33A_B
With internal Buck enabled and 64-KB
SRAM retention.
–
7
–
µA
Max value is at 60 °C
SIDDS2
IDD33B
With internal Buck enabled and 256-KB
SRAM retention.
–
9
–
µA
Max value is at 85 °C
SIDDS2_B
IDD33B_B
With internal Buck enabled and 256-KB
SRAM retention.
–
9
–
µA
Max value is at 60 °C
Hibernate Mode
SIDHIB1
IDD34
VDDD = 1.8 V
–
300
–
nA
No clocks running
SIDHIB2
IDD34A
VDDD = 3.3 V
–
2100
–
nA
No clocks running
–
–
35
µs
Including PLL lock time
Power Mode Transition Times
SID12
TLPACT_ACT Minimum Regulator Current to LP
transition time.
SID13
TDS_LPACT
Deep Sleep to LP transition time
–
–
21
µs
Guaranteed by design
SID14
THIB_ACT
Hibernate to LP transition time
–
1000
–
µs
Including PLL lock time
Min
Typ
Max
Units
–
300
500
nA
VDDD = 1.8 V
XRES
Table 15. XRES DC Specifications
Spec ID#
Parameter
Description
Details / Conditions
SID17
TXRES_IDD
IDD when XRES asserted
SID17A
TXRES_IDD_1
IDD when XRES asserted
–
2100
10500
nA
VDDD = 3.3 V
SID77
VIH
Input voltage HIGH threshold
0.7 * VDD
–
–
V
CMOS input
SID78
VIL
Input voltage LOW threshold
–
–
0.3 * VDD
V
CMOS input
SID80
CIN
Input capacitance
–
3
–
pF
–
SID81
VHYSXRES
Input voltage hysteresis
–
100
–
mV
–
IDIODE
Current through protection diode to
VDD/VSS
–
–
100
µA
SID82
Document Number: 002-23185 Rev. *Q
–
Page 53 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 16. XRES AC Specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
SID15
TXRES_ACT
POR or XRES release to Active
transition time
–
1000
–
µs
Normal mode, 50-MHz
CM0+.
SID16
TXRES_PW
XRES pulse width
5
–
–
µs
–
Min
Typ
Max
Units
0.7 * VDD
–
–
V
CMOS Input
GPIO
Table 17. GPIO DC Specifications
Spec ID#
Parameter
Description
Details / Conditions
SID57
VIH
Input voltage HIGH threshold
SID57A
IIHS
Input current when Pad > VDDIO
for OVT inputs
–
–
10
µA
Per I2C Spec
SID58
VIL
Input voltage LOW threshold
–
–
0.3 * VDD
V
CMOS Input
SID241
VIH
LVTTL input, VDD < 2.7 V
0.7 * VDD
–
–
V
–
SID242
VIL
LVTTL input, VDD < 2.7 V
–
–
0.3 * VDD
V
–
SID243
VIH
LVTTL input, VDD ≥ 2.7 V
2.0
–
–
V
–
SID244
VIL
LVTTL input, VDD ≥ 2.7 V
–
–
0.8
V
–
SID59
VOH
Output voltage HIGH level
VDD – 0.5
–
–
V
IOH = 8 mA
SID62A
VOL
Output voltage LOW level
–
–
0.4
V
IOL = 8 mA
SID63
RPULLUP
Pull-up resistor
3.5
5.6
8.5
kΩ
–
SID64
RPULLDOWN
Pull-down resistor
3.5
5.6
8.5
kΩ
–
SID65
IIL
Input leakage current (absolute
value)
–
–
2
nA
SID66
CIN
Input capacitance
–
–
5
pF
SID67
VHYSTTL
Input hysteresis LVTTL VDD >
2.7 V
100
0
–
mV
SID68
VHYSCMOS
Input hysteresis CMOS
0.05 * VDD
–
–
mV
SID69
IDIODE
Current through protection diode
to VDD/VSS
–
–
100
µA
SID69A
ITOT_GPIO
Maximum total source or sink
chip current
–
–
200
mA
Min
Typ
Max
Units
Details / Conditions
25 °C, VDD = 3.0 V
–
–
–
–
–
Table 18. GPIO AC Specifications
Spec ID#
Parameter
Description
SID70
TRISEF
Rise time in Fast Strong Mode.
10% to 90% of VDD.
–
–
2.5
ns
Cload = 15 pF, 8-mA drive
strength
SID71
TFALLF
Fall time in Fast Strong Mode.
10% to 90% of VDD.
–
–
2.5
ns
Cload = 15 pF, 8-mA drive
strength
SID72
TRISES_1
Rise time in Slow Strong Mode.
10% to 90% of VDD.
52
–
142
ns
Cload = 15 pF, 8-mA drive
strength, VDD 2.7 V
–
102
ns
TRISES_2
Rise time in Slow Strong Mode.
10% to 90% of VDD.
48
SID72A
Cload = 15 pF, 8-mA drive
strength, 2.7 V < VDD
3.6 V
Document Number: 002-23185 Rev. *Q
Page 54 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 18. GPIO AC Specifications (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
44
–
211
ns
Cload = 15 pF, 8-mA drive
strength, VDD 2.7 V
42
–
93
ns
Cload = 15 pF, 8-mA drive
strength, 2.7 V < VDD
3.6 V
–
250
ns
Cload = 10 pF to 400 pF,
8-mA drive strength
–
–
100
MHz 90/10%, 15-pF load, 60/40
duty cycle
–
–
1.5
MHz 90/10%, 15-pF load, 60/40
duty cycle
–
–
100
MHz 90/10%, 25-pF load, 60/40
duty cycle
–
–
1.3
MHz 90/10%, 25-pF load, 60/40
duty cycle
–
–
100
MHz
SID73
TFALLS_1
Fall time in Slow Strong Mode.
10% to 90% of VDD.
SID73A
TFALLS_2
Fall time in Slow Strong Mode.
10% to 90% of VDD.
SID73G
TFALL_I2C
Fall time (30% to 70% of VDD) in 20 * VDDIO /
5.5
Slow Strong mode.
SID74
FGPIOUT1
GPIO Fout. Fast Strong mode.
SID75
FGPIOUT2
GPIO Fout; Slow Strong mode.
SID76
FGPIOUT3
GPIO Fout; Fast Strong mode.
SID245
FGPIOUT4
GPIO Fout; Slow Strong mode.
SID246
FGPIOIN
GPIO input operating frequency;
1.71 V VDD 3.6 V
90/10% VIO
Analog Peripherals
Low-Power (LP) Comparator
Table 19. LP Comparator DC Specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/Conditions
–10
–
10
mV
–
SID84
VOFFSET1
Input offset voltage. Normal power
mode.
SID85A
VOFFSET2
Input offset voltage. Low-power
mode.
–25
±12
25
mV
–
SID85B
VOFFSET3
Input offset voltage. Ultra
low-power mode.
–25
±12
25
mV
–
SID86
VHYST1
Hysteresis when enabled in
Normal mode
–
–
60
mV
–
SID86A
VHYST2
Hysteresis when enabled in
Low-power mode
–
–
80
mV
–
SID87
VICM1
Input common mode voltage in
Normal mode
0
–
VDDIO1 – 0.1
V
–
SID247
VICM2
Input common mode voltage in Low
power mode
0
–
VDDIO1 – 0.1
V
–
SID247A
VICM3
Input common mode voltage in
Ultra low power mode
0
–
VDDIO1 – 0.1
V
–
SID88
CMRR
Common mode rejection ratio in
Normal power mode
50
–
–
dB
–
SID89
ICMP1
Block current, Normal mode
–
–
150
µA
–
SID248
ICMP2
Block current, Low-power mode
–
–
10
µA
–
SID259
ICMP3
Block current in Ultra low-power
mode
–
0.3
0.85
µA
–
SID90
ZCMP
DC input impedance of comparator
35
–
–
MΩ
–
Document Number: 002-23185 Rev. *Q
Page 55 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 20. LP Comparator AC Specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details/Conditions
SID91
TRESP1
Response time, Normal mode, 100
mV overdrive
–
–
100
ns
–
SID258
TRESP2
Response time, Low power mode,
100 mV overdrive
–
–
1000
ns
–
SID92
TRESP3
Response time, Ultra-low power
mode, 100 mV overdrive
–
–
20
µs
–
SID92E
T_CMP_EN1
Time from Enabling to operation
–
–
10
µs
Normal and low-power modes
SID92F
T_CMP_EN2
Time from Enabling to operation
–
–
50
µs
Ultra-low-power mode
Temperature Sensor
Table 21. Temperature Sensor Specifications
Spec ID
SID93
Parameter
TSENSACC
Description
Temperature sensor accuracy
Min
–5
Typ
±1
Max
5
Min
1.188
Typ
1.2
Max
1.212
Units
Details/Conditions
°C –40 to +85 °C
Internal Reference
Table 22. Internal Reference Specification
Spec ID
SID93R
Parameter
VREFBG
Description
–
Units
V
Details/Conditions
–
SAR ADC
Table 23. 12-bit SAR ADC DC Specifications
Spec ID
Parameter
SID94
A_RES
Min
Typ
Max
Units
SAR ADC resolution
Description
–
–
12
bits
Details/Conditions
SID95
A_CHNLS_S
Number of channels - single-ended
–
–
16
–
8 full speed.
SID96
A-CHNKS_D
Number of channels - differential
–
–
8
–
Diff inputs use neighboring I/Os
SID97
A-MONO
Monotonicity
–
–
-
–
Yes.
SID98
A_GAINERR
Gain error
–
–
±0.2
%
With external reference.
SID99
A_OFFSET
Input offset voltage
–
–
2
mV
Measured with 1-V reference
1.05
mA
At 1 Msps. External reference
mode
1.3
mA
At 1 Msps. Internal reference mode
1.65
mA
At 2 Msps. External reference
mode
At 2 Msps. Internal reference mode
SID100
A_ISAR_1
Current consumption at 1 Msps
–
–
SID100A
A_ISAR_2
Current consumption at 1 Msps
–
–
SID1002
A_ISAR_3
Current consumption at 2 Msps
–
–
SID1003
A_ISAR_4
Current consumption at 2 Msps
–
–
2.15
mA
SID101
A_VINS
Input voltage range - single-ended
VSS
–
VDDA
V
SID102
A_VIND
Input voltage range - differential
VSS
–
VDDA
V
SID103
A_INRES
Input resistance
–
1
–
KΩ
SID104
A_INCAP
Input capacitance
–
5
–
pF
Document Number: 002-23185 Rev. *Q
Page 56 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 24. 12-bit SAR ADC AC Specifications
Min
Typ
Max
Units
SID106
Spec ID
A_PSRR
Parameter
Power supply rejection ratio
Description
70
–
–
dB
Details/Conditions
SID107
A_CMRR
Common mode rejection ratio
66
–
–
dB
SID1081
A_SAMP_1
Sample rate with external reference
With bypass cap
–
–
2
Msps VDDA 2.7–3.6
SID1082
A_SAMP_1
Sample rate with external reference
With bypass cap
–
–
1
Msps VDDA 1.7–3.6
SID108A1 A_SAMP_2
Sample rate with VDD reference;
No Bypass Cap
–
–
2
Msps VDDA 2.7–3.6
SID108A2 A_SAMP_2
Sample rate with VDD Reference;
No Bypass Cap
–
–
1
Msps VDDA 1.7–3.6
SID108B
A_SAMP_3
Sample rate with internal reference;
With Bypass Cap.
–
–
1
Msps
SID108C
A_SAMP_4
Sample rate with internal reference.
No Bypass Cap
–
–
200
ksps
SID109
A_SINAD
Signal-to-noise and distortion ratio
(SINAD).
64
–
–
dB
SID111A
A_INL
Integral non-linearity.
Up to 1 Msps
–2
–
2
LSB
All reference modes
SID111B
A_INL
Integral non-linearity. 2 Msps.
–2.5
–
2.5
LSB
External reference or VDDA
Reference Mode, VREF ≥ 2 V.
VDDA = 2.7 V to 3.6 V
SID112A
A_DNL
Differential non-linearity. Up to 1 Msps
–1
–
1.5
LSB
All reference modes
SID112B
A_DNL
Differential non-linearity. 2 Msps.
–1
–
1.6
LSB
External reference or VDDA
Reference Mode, VREF ≥ 2 V.
VDDA = 2.7 to 3.6V
SID113
A_THD
Total harmonic distortion. 1 Msps.
–
–
-65
dB
Description
Min
Typ
Max
Units
Details / Conditions
Max allowed ripple on power supply,
DC to 10 MHz
–
–
±50
mV
VDDA > 2 V (with ripple), 25 °C
TA, sensitivity = 0.1 pF
±25
mV
VDDA > 1.75 V (with ripple),
25 °C TA,
Parasitic capacitance (CP) <
20 pF, Sensitivity ≥ 0.4 pF
–
Measured at 1 V
Fin = 10 kHz
FIN = 10 kHz. VDDA = 2.7–3.6 V
CSD
Table 25. CapSense Sigma-Delta (CSD) Specifications
Spec ID#
Parameter
CSD V2 Specifications
SYS.PER#3
VDD_RIPPLE
SYS.PER#16
Max allowed ripple on power supply,
VDD_RIPPLE_1.8
DC to 10 MHz
–
–
SID.CSD.BLK
ICSD
Maximum block current
–
–
4500
µA
VREF
Voltage reference for CSD and
Comparator
0.6
1.2
VDDA –
0.6
V
VDDA – VREF ≥ 0.6 V
SID.CSD#15A VREF_EXT
External Voltage reference for CSD
and Comparator
0.6
–
VDDA –
0.6
V
VDDA – VREF ≥ 0.6 V
SID.CSD#16
IDAC1IDD
IDAC1 (7-bits) block current
–
–
1900
µA
–
SID.CSD#17
IDAC2IDD
IDAC2 (7-bits) block current
–
–
1900
µA
–
SID308
VCSD
Voltage range of operation
1.7
–
3.6
V
SID.CSD#15
Document Number: 002-23185 Rev. *Q
1.71–3.6 V
Page 57 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 25. CapSense Sigma-Delta (CSD) Specifications (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
SID308A
VCOMPIDAC
Voltage compliance range of IDAC
0.6
–
VDDA –
0.6
V
SID309
IDAC1DNL
DNL
–1
–
1
LSB
–
SID310
IDAC1INL
INL
–3
–
3
LSB
If VDDA < 2 V then for LSB of
2.4 µA or less
SID311
IDAC2DNL
DNL
–1
–
1
LSB
–
SID312
IDAC2INL
INL
–3
–
3
LSB
If VDDA < 2 V then for LSB of
2.4 µA or less
VDDA – VREF ≥ 0.6 V
SNRC of the following is Ratio of counts of finger to noise. Measured typical devices at room temperature using Dual IDAC + PRS
Clock Mode. Best performance is when using the PASS reference and the PLL.
SID313_1A
SNRC_1
SRSS Reference. IMO + FLL Clock
Source. 0.1-pF sensitivity.
5
–
–
Ratio 9.5-pF max. capacitance
SID313_1B
SNRC_2
SRSS Reference. IMO + FLL Clock
Source. 0.3-pF sensitivity.
5
–
–
Ratio 31-pF max. capacitance
SID313_1C
SNRC_3
SRSS Reference. IMO + FLL Clock
Source. 0.6-pF sensitivity.
5
–
–
Ratio 61-pF max. capacitance
SID313_2A
SNRC_4
PASS Reference. IMO + FLL Clock
Source. 0.1-pF sensitivity.
5
–
–
Ratio 12-pF max. capacitance
SID313_2B
SNRC_5
PASS Reference. IMO + FLL Clock
Source. 0.3-pF sensitivity.
5
–
–
Ratio 47-pF max. capacitance
SID313_2C
SNRC_6
PASS Reference. IMO + FLL Clock
Source. 0.6-pF sensitivity.
5
–
–
Ratio 86-pF max. capacitance
SID313_3A
SNRC_7
PASS Reference. IMO + PLL Clock
Source. 0.1-pF sensitivity.
5
–
–
Ratio 25-pF max. capacitance
SID313_3B
SNRC_8
PASS Reference. IMO + PLL Clock
Source. 0.3-pF sensitivity.
5
–
–
Ratio 86-pF max. capacitance
SID313_3C
SNRC_9
PASS Reference. IMO + PLL Clock
Source. 0.6-pF sensitivity.
5
–
–
Ratio 168-pF Max. capacitance
SID314
IDAC1CRT1
Output current of IDAC1 (7 bits) in
low range
4.2
–
5.7
µA
LSB = 37.5-nA typ.
SID314A
IDAC1CRT2
Output current of IDAC1 (7 bits) in
medium range
33.7
–
45.6
µA
LSB = 300-nA typ.
SID314B
IDAC1CRT3
Output current of IDAC1 (7 bits) in
high range
270
–
365
µA
LSB = 2.4-µA typ.
SID314C
IDAC1CRT12
Output current of IDAC1 (7 bits) in
low range, 2X mode
8
–
11.4
µA
LSB = 37.5-nA typ. 2X output
stage
SID314D
IDAC1CRT22
Output current of IDAC1 (7 bits) in
medium range, 2X mode
67
–
91
µA
LSB = 300-nA typ. 2X output
stage
SID314E
IDAC1CRT32
Output current of IDAC1 (7 bits) in
high range, 2X mode. VDDA > 2 V
540
–
730
µA
LSB = 2.4-µA typ. 2X output
stage
SID315
IDAC2CRT1
Output current of IDAC2 (7 bits) in
low range
4.2
–
5.7
µA
LSB = 37.5-nA typ.
SID315A
IDAC2CRT2
Output current of IDAC2 (7 bits) in
medium range
33.7
–
45.6
µA
LSB = 300-nA typ.
SID315B
IDAC2CRT3
Output current of IDAC2 (7 bits) in
high range
270
–
365
µA
LSB = 2.4-µA typ.
Document Number: 002-23185 Rev. *Q
Page 58 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 25. CapSense Sigma-Delta (CSD) Specifications (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
SID315C
IDAC2CRT12
Output current of IDAC2 (7 bits) in
low range, 2X mode
8
–
11.4
µA
LSB = 37.5-nA typ. 2X output
stage
SID315D
IDAC2CRT22
Output current of IDAC2 (7 bits) in
medium range, 2X mode
67
–
91
µA
LSB = 300-nA typ. 2X output
stage
SID315E
IDAC2CRT32
Output current of IDAC2 (7 bits) in
high range, 2X mode. VDDA > 2V
540
–
730
µA
LSB = 2.4-µA typ. 2X output
stage
SID315F
IDAC3CRT13
Output current of IDAC in 8-bit mode
in low range
8
–
11.4
µA
LSB = 37.5-nA typ.
SID315G
IDAC3CRT23
Output current of IDAC in 8-bit mode
in medium range
67
–
91
µA
LSB = 300-nA typ.
SID315H
IDAC3CRT33
Output current of IDAC in 8-bit mode
in high range. VDDA > 2V
540
–
730
µA
LSB = 2.4-µA typ.
SID320
IDACOFFSET
All zeroes input
–
–
1
LSB
SID321
IDACGAIN
Full-scale error less offset
–
–
±15
%
LSB = 2.4-µA typ.
SID322
IDACMIS-
Mismatch between IDAC1 and
IDAC2 in Low mode
–
–
9.2
LSB
LSB = 37.5-nA typ.
SID322A
IDACMIS-
Mismatch between IDAC1 and
IDAC2 in Medium mode
–
–
6
LSB
LSB = 300-nA typ.
SID322B
IDACMIS-
Mismatch between IDAC1 and
IDAC2 in High mode
–
–
5.8
LSB
LSB = 2.4-µA typ.
SID323
IDACSET8
Settling time to 0.5 LSB for 8-bit
IDAC
–
–
10
µs
Full-scale transition. No
external load.
SID324
IDACSET7
Settling time to 0.5 LSB for 7-bit
IDAC
–
–
10
µs
Full-scale transition. No
external load.
SID325
CMOD
External modulator capacitor.
–
2.2
–
nF
5-V rating, X7R or NP0 cap.
MATCH1
MATCH2
MATCH3
Polarity set by source or sink
Table 26. CSD ADC Specifications
Spec ID#
Parameter
Description
Min
Typ Max Units
Details / Conditions
CSDv2 ADC Specifications
SIDA94
A_RES
Resolution
–
–
10
bits
Auto-zeroing is required every millisecond
SID95
A_CHNLS_S
Number of channels - single ended
–
–
–
16
–
SIDA97
A-MONO
Monotonicity
–
–
Yes
–
VREF mode
%
Reference source: SRSS
(VREF = 1.20 V, VDDA < 2.2 V),
(VREF = 1.6 V, 2.2 V < VDDA <
2.7 V), (VREF = 2.13 V, VDDA >
2.7 V)
%
Reference source: SRSS
(VREF=1.20 V, VDDA < 2.2V),
(VREF=1.6 V,
2.2 V < VDDA < 2.7 V),
(VREF = 2.13 V, VDDA > 2.7 V)
SIDA98
SIDA98A
A_GAINERR_VREF
A_GAINERR_VDDA
Gain error
Gain error
Document Number: 002-23185 Rev. *Q
–
–
0.6
0.2
–
–
Page 59 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 26. CSD ADC Specifications (continued)
Spec ID#
SIDA99
Parameter
A_OFFSET_VREF
Description
Input offset voltage
Min
–
Typ Max Units
0.5
Details / Conditions
–
After ADC calibration, Ref. Src =
SRSS, (VREF = 1.20 V, VDDA <
2.2 V),
LSB
(VREF = 1.6 V, 2.2 V < VDDA <
2.7 V), (VREF = 2.13 V, VDDA >
2.7 V)
SIDA99A
A_OFFSET_VDDA
Input offset voltage
–
0.5
–
After ADC calibration, Ref. Src =
SRSS, (VREF = 1.20 V, VDDA <
2.2 V),
LSB
(VREF = 1.6 V, 2.2 V < VDDA <
2.7 V),
(VREF = 2.13 V, VDDA > 2.7 V)
SIDA100
A_ISAR_VREF
Current consumption
–
0.3
–
mA
CSD ADC Block current
SIDA100A A_ISAR_VDDA
Current consumption
–
0.3
–
mA
CSD ADC Block current
SIDA101
A_VINS_VREF
Input voltage range - single ended
SIDA101A A_VINS_VDDA
Input voltage range - single ended
VSSA
–
VREF
V
(VREF = 1.20 V, VDDA < 2.2 V),
(VREF = 1.6 V, 2.2 V < VDDA <
2.7 V),
(VREF = 2.13 V, VDDA > 2.7 V)
(VREF = 1.20 V, VDDA < 2.2 V),
(VRE F = 1.6 V, 2.2 V < VDDA <
2.7 V),
(VREF = 2.13 V, VDDA > 2.7 V)
VSSA
–
VDDA
V
SIDA103
A_INRES
Input charging resistance
–
15
–
kΩ
–
SIDA104
A_INCAP
Input capacitance
–
41
–
pF
–
SIDA106
A_PSRR
Power supply rejection ratio (DC)
–
60
–
dB
–
SIDA107
A_TACQ
Sample acquisition time
–
10
–
µs
Measured with 50-Ω source
impedance. 10 µs is default
software driver acquisition time
setting. Settling to within 0.05%.
SIDA108
A_CONV8
Conversion time for 8-bit resolution at
conversion rate = Fhclk / (2"(N + 2)).
Clock frequency = 50 MHz.
–
25
–
µs
Does not include acquisition time.
SIDA108A A_CONV10
Conversion time for 10-bit resolution at
conversion rate = Fhclk / (2"(N + 2)).
Clock frequency = 50 MHz.
–
60
–
µs
Does not include acquisition time.
SIDA109
Signal-to-noise and Distortion ratio
(SINAD)
–
57
–
dB
Measured with 50-Ω source
impedance
SIDA109A A_SND_VDDA
Signal-to-noise and Distortion ratio
(SINAD)
–
52
–
dB
Measured with 50-Ω source
impedance
SIDA111
A_INL_VREF
Integral non-linearity. 11.6 ksps
–
–
2
LSB
Measured with 50-Ω source
impedance
SIDA111A A_INL_VDDA
Integral non-linearity. 11.6 ksps
–
–
2
LSB
Measured with 50-Ω source
impedance
SIDA112
A_DNL_VREF
Differential non-linearity. 11.6 ksps
–
–
1
LSB
Measured with 50-Ω source
impedance
SIDA112A A_DNL_VDDA
Differential non-linearity. 11.6 ksps
–
–
1
LSB
Measured with 50-Ω source
impedance
A_SND_VRE
Document Number: 002-23185 Rev. *Q
Page 60 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Digital Peripherals
Timer/Counter/PWM
Table 27. Timer/Counter/PWM (TCPWM) Specifications
Spec ID#
Parameter
Description
Min
Typ
Max Units
Details/Conditions
SID.TCPWM.1
ITCPWM1
Block current consumption at 8 MHz
–
–
70
µA
All modes (TCPWM)
SID.TCPWM.2
ITCPWM2
Block current consumption at 24 MHz
–
–
180
µA
All modes (TCPWM)
SID.TCPWM.2A
ITCPWM3
Block current consumption at 50 MHz
–
–
270
µA
All modes (TCPWM)
SID.TCPWM.2B
ITCPWM4
Block current consumption at 100 MHz
–
–
540
µA
All modes (TCPWM)
SID.TCPWM.3
TCPWMFREQ
Operating frequency
–
–
100
SID.TCPWM.4
Input trigger pulse width for all trigger
events
TPWMENEXT
–
ns
1.5/Fc
–
–
ns
Resolution of counter
1/Fc
–
–
ns
Minimum time between
successive counts. Fc is
counter operating frequency.
PWM resolution
1/Fc
–
–
ns
Minimum pulse width of PWM
output. Fc is counter operating
frequency.
–
ns
Minimum pulse width between
Quadrature phase inputs.
Delays from pins should be
similar. Fc is counter operating
frequency.
Details / Conditions
TPWMEXT
Output trigger pulse widths
SID.TCPWM.5A
TCRES
SID.TCPWM.5B
PWMRES
QRES
–
Trigger events can be Stop,
Start, Reload, Count, Capture,
or Kill depending on which
mode of operation is selected.
Fc is counter operating
frequency.
Minimum possible width of
Overflow, Underflow, and CC
(Counter equals Compare
value) trigger outputs. Fc is
counter operating frequency.
SID.TCPWM.5
SID.TCPWM.5C
2/Fc
MHz Maximum = 100 MHz
Quadrature inputs resolution
2/Fc
–
Serial Communication Block (SCB)
Table 28. Serial Communication Block (SCB) Specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
30
µA
–
2
Fixed I C DC Specifications
SID149
II2C1
Block current consumption at 100 kHz
–
–
SID150
II2C2
Block current consumption at 400 kHz
–
–
80
µA
–
SID151
II2C3
Block current consumption at 1 Mbps
–
–
180
µA
–
I C enabled in Deep Sleep mode
–
–
1.7
µA
At 60 °C.
Bit rate
–
–
1
SID152
II2C4
2
2
Fixed I C AC Specifications
SID153
FI2C1
Mbps –
Fixed UART DC Specifications
SID160
IUART1
Block current consumption at 100 kbps
–
–
30
µA
–
SID161
IUART2
Block current consumption at 1000 kbps
–
–
180
µA
–
–
–
3
–
–
8
Fixed UART AC Specifications
SID162A
FUART1
SID162B
FUART2
Bit Rate
Document Number: 002-23185 Rev. *Q
Mbps ULP Mode
LP Mode
Page 61 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 28. Serial Communication Block (SCB) Specifications (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
Fixed SPI DC Specifications
SID163
ISPI1
Block current consumption at 1 Mbps
–
–
220
µA
–
SID164
ISPI2
Block current consumption at 4 Mbps
–
–
340
µA
–
SID165
ISPI3
Block current consumption at 8 Mbps
–
–
360
µA
–
SID165A
ISP14
Block current consumption at 25 Mbps
–
–
800
µA
–
MHz
Fixed SPI AC Specifications for LP Mode (1.1 V) unless noted otherwise.
SID166
FSPI
SPI Operating frequency externally clocked
slave
–
–
25
SID166B
FSPI_EXT
SPI operating frequency master (Fscb is
SPI clock).
–
–
Fscb/4
FSPI_IC
SPI slave internally clocked
–
SID166A
–
12-MHz max for ULP (0.9 V)
mode
Fscb max is 100 MHz in LP
MHz (1.1 V) mode, 25 MHz in ULP
mode.
15
MHz
5 MHz max for ULP (0.9 V)
mode
Fixed SPI Master mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.
SID167
TDMO
MOSI valid after SClock driving edge
–
–
12
ns
20-ns max for ULP (0.9 V)
mode
SID168
TDSI
MISO valid before SClock capturing edge
5
–
–
ns
Full clock, late MISO
sampling
SID169
THMO
MOSI data hold time
0
–
–
ns
Referred to Slave capturing
edge
Fixed SPI Slave mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.
SID170
TDMI
MOSI valid before Sclock capturing edge
5
–
–
ns
–
SID171A
TDSO_EXT
MISO valid after Sclock driving edge in Ext.
Clk. mode
–
–
20
ns
35-ns max. for ULP (0.9 V)
mode
SID171
TDSO
MISO valid after Sclock driving edge in
Internally Clk. mode
–
–
EXT + 3 *
ns
TSCB is SCB clock period.
SID171B
TDSO
MISO Valid after Sclock driving edge in
Internally Clk. Mode with median filter
enabled.
–
–
TDSO_E
+4*
TSCB
ns
TSCB is SCB clock period.
SID172
THSO
Previous MISO data hold time
5
–
–
ns
–
SID172A
TSSELSCK1
SSEL Valid to first SCK valid edge
65
–
–
ns
–
SID172B
TSSELSCK2
SSEL Hold after Last SCK valid edge
65
–
–
ns
–
Document Number: 002-23185 Rev. *Q
TDSO_
TSCB
XT
Page 62 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
LCD Specifications
Table 29. LCD Direct Drive DC Specifications
Spec ID#
Parameter
Description
Min
Typ
Max Units
Details / Conditions
SID155
CLCDCAP
LCD capacitance per segment/common
driver
–
500
5000
SID156
LCDOFFSET
Long-term segment offset
–
20
–
mV –
SID157
ILCDOP1
PWM Mode current.
3.3 V bias. 8 MHz IMO. 25 °C.
–
0.6
–
mA
32 × 4 segments
50 Hz
SID158
ILCDOP2
PWM Mode current.
3.3 V bias. 8 MHz IMO. 25 °C.
–
0.5
–
mA
32 × 4 segments
50 Hz
Min
Typ
Max
Units
10
50
150
Hz
pF
–
Table 30. LCD Direct Drive AC Specifications
Spec ID
SID159
Parameter
FLCD
Description
LCD frame rate
Document Number: 002-23185 Rev. *Q
Details/Conditions
–
Page 63 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Memory
Table 31. Flash Specifications[4]
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/Conditions
Erase and program current
–
–
6
mA
–
TROWWRITE
Row write time (erase and program)
–
–
16
ms
Row = 512 bytes
Flash DC Specifications
SID173A
IPE
Flash AC Specifications
SID174
SID175
TROWERASE
Row erase time
–
–
11
ms
–
SID176
TROWPROGRAM
Row program time after erase
–
–
5
ms
–
SID178
TBULKERASE
Bulk erase time (2048 KB)
–
–
11
ms
–
SID179
TSECTORERASE
Sector erase time (256 KB)
–
–
11
ms
512 rows per sector
SID178S
TSSERIAE
Subsector erase time
–
–
11
ms
8 rows per subsector
SID179S
TSSWRITE
Subsector write time; 1 erase plus 8
program times
–
–
51
ms
–
SID180S
TSWRITE
Sector write time; 1 erase plus 512
program times
–
–
2.6
seconds –
SID180
TDEVPROG
Total device write time
–
–
30
seconds –
SID181
FEND
Flash endurance
100K
–
–
cycles
–
SID182
FRET1
Flash retention. TA 25 °C, 100K P/E
cycles
10
–
–
years
–
SID182A
FRET2
Flash retention. TA 85 °C, 10K P/E
cycles
10
–
–
years
–
SID182B
FRET3
Flash retention. TA 55 °C, 20K P/E
cycles
20
–
–
years
–
SID256
TWS100
Number of Wait states at 100 MHz
3
–
–
LP mode. VCCD = 1.1 V
SID257
TWS50
Number of Wait states at 50 MHz
2
–
–
ULP mode. VCCD = 0.9 V
Note
4. It can take as much as 16 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied
on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs.
Make certain that these are not inadvertently activated.
Document Number: 002-23185 Rev. *Q
Page 64 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
System Resources
Table 32. System Resources
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/Conditions
Power-On-Reset with Brown-out DC Specifications
Precise POR (PPOR)
SID190
VFALLPPOR
BOD trip voltage in Active and Sleep
modes. VDDD.
1.54
–
–
V
BOD reset guaranteed for
levels below 1.54 V
SID192
VFALLDPSLP
BOD trip voltage in Deep Sleep. VDDD.
1.54
–
–
V
–
VDDRAMP
Maximum power supply ramp rate (any
supply)
–
–
100
mV/µs Active mode
–
–
10
mV/µs BOD operation guaranteed
SID192A
POR with Brown-out AC Specification
SID194A
VDDRAMP_DS
Maximum power supply ramp rate (any
supply) in Deep Sleep
Voltage Monitors DC Specifications
SID195
VHVDI1
–
1.38 1.43
1.47
V
–
SID196
VHVDI2
–
1.57 1.63
1.68
V
–
SID197
VHVDI3
–
1.76 1.83
1.89
V
–
SID198
VHVDI4
–
1.95 2.03
2.1
V
–
SID199
VHVDI5
–
2.05 2.13
2.2
V
–
SID200
VHVDI6
–
2.15 2.23
2.3
V
–
SID201
VHVDI7
–
2.24 2.33
2.41
V
–
SID202
VHVDI8
–
2.34 2.43
2.51
V
–
SID203
VHVDI9
–
2.44 2.53
2.61
V
–
SID204
VHVDI10
–
2.53 2.63
2.72
V
–
SID205
VHVDI11
–
2.63 2.73
2.82
V
–
SID206
VHVDI12
–
2.73 2.83
2.92
V
–
SID207
VHVDI13
–
2.82 2.93
3.03
V
–
SID208
VHVDI14
–
2.92 3.03
3.13
V
–
SID209
VHVDI15
–
3.02 3.13
3.23
V
–
SID211
LVI_IDD
Block current
–
5
15
µA
–
–
–
170
ns
–
Voltage Monitors AC Specification
SID212
TMONTRIP
Voltage monitor trip time
Document Number: 002-23185 Rev. *Q
Page 65 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
SWD Interface
Table 33. SWD and Trace Specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
SWD and Trace Interface
SID214
F_SWDCLK2
1.7 V VDDD 3.6 V
–
–
25
MHz
LP Mode.
VCCD = 1.1 V.
SID214L
F_SWDCLK2L
1.7 V VDDD 3.6 V
–
–
12
MHz
ULP Mode.
VCCD = 0.9 V.
SID215
T_SWDI_SETUP T = 1/f SWDCLK
0.25 * T
–
–
ns
–
SID216
T_SWDI_HOLD
0.25 * T
–
–
ns
–
SID217
T_SWDO_VALID T = 1/f SWDCLK
–
–
0.5 * T
ns
–
SID217A
T_SWDO_HOLD T = 1/f SWDCLK
–
T = 1/f SWDCLK
1
–
–
ns
–
–
50
MHz
LP Mode. VDD = 1.1 V.
SID214T
F_TRCLK_LP1
With Trace Data setup/hold times of
2/1 ns respectively
SID215T
F_TRCLK_LP2
With Trace Data setup/hold times of
3/2 ns respectively
–
–
50
MHz
LP Mode. VDD = 1.1 V.
SID216T
F_TRCLK_ULP
With Trace Data setup/hold times of
3/2 ns respectively
–
–
20
MHz
ULP Mode. VDD = 0.9 V.
Min
Typ
Max
Units
Details/Conditions
–
9
15
µA
Internal Main Oscillator
Table 34. IMO DC Specifications
Spec ID
SID218
Parameter
IIMO1
Description
IMO operating current at 8 MHz
–
Table 35. IMO AC Specifications
Spec ID
Parameter
Description
SID223
FIMOTOL1
Frequency variation centered on
8 MHz
SID227
TJITR
Cycle-to-cycle and period jitter
Min
Typ
Max
Units
Details/Conditions
–
–
±2
%
–
–
250
–
ps
–
Min
Typ
Max
Units
–
0.3
0.7
µA
Min
Typ
Max
Units
Internal Low-Speed Oscillator
Table 36. ILO DC Specification
Spec ID
SID231
Parameter
IILO2
Description
ILO operating current at 32 kHz
Details/Conditions
–
Table 37. ILO AC Specifications
Spec ID
Parameter
Description
Details/Conditions
SID234
TSTARTILO1
ILO startup time
–
–
7
µs
Startup time to 95% of
final frequency
SID236
TLIODUTY
ILO duty cycle
45
50
55
%
–
SID237
FILOTRIM1
ILO frequency
28.8
32
36.1
kHz
Document Number: 002-23185 Rev. *Q
Factory trimmed
Page 66 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Crystal Oscillator Specifications
Table 38. ECO Specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/Conditions
Block operating current with Cload up to
18 pF
–
800
1600
µA
Crystal frequency range
16
–
35
MHz
Block operating current with 32-kHz crystal
–
0.38
1
µA
–
MHz ECO DC Specifications
SID316
IDD_MHz
Max = 35 MHz,
Typ = 16 MHz
MHz ECO AC Specifications
SID317
F_MHz
Some restrictions apply.
Refer to the device TRM.
kHz ECO DC Specifications
SID318
IDD_kHz
SID321E
ESR32K
Equivalent series resistance
–
80
–
kΩ
–
SID322E
PD32K
Drive level
–
–
1
µW
–
32.768
–
kHz
–
kHz ECO AC Specifications
SID319
F_kHz
32 kHz frequency
–
SID320
Ton_kHz
Startup time
–
–
500
ms
–
SID320E
FTOL32K
Frequency tolerance
–
50
250
ppm
–
External Clock Specifications
Table 39. External Clock Specifications
Min
Typ
Max
Units
SID305
Spec ID
EXTCLKFREQ
Parameter
External clock input frequency
Description
0
–
100
MHz
–
Details/Conditions
SID306
EXTCLKDUTY
Duty cycle; measured at VDD/2
45
–
55
%
–
PLL Specifications
Table 40. PLL Specifications
Spec ID
Parameter
Min
Typ
Max
Units
Time to achieve PLL lock
–
16
35
µs
–
PLL_OUT
Output frequency from PLL block
–
–
150
MHz
–
PLL_IDD
PLL current
–
0.55
1.1
mA
Typ. at 100 MHz out.
PLL_JTR
Period jitter
–
–
150
ps
100 MHz output
frequency
Description
Min
Typ
Max
Units
Clock switching from clk1 to clk2 in clock
periods; for example, from IMO (clk1) to FLL
(clk2).[5]
–
–
SID305P
PLL_LOCK
SID306P
SID307P
SID308P
Description
Details/Conditions
Table 41. Clock Source Switching Time
Spec ID
SID262
Parameter
TCLKSWITCH
Details/Conditions
4 clk1 +
periods –
3 clk2
Note
5. As an example, if the clk_path[1] source is changed from the IMO to the FLL (see Figure 3) then clk1 is the IMO and clk2 is the FLL.
Document Number: 002-23185 Rev. *Q
Page 67 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
FLL Specifications
Table 42. Frequency Locked Loop (FLL) Specifications
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
SID450
FLL_RANGE
Input frequency range.
0.001
–
100
MHz
Lower limit allows lock to
USB SOF signal (1 kHz).
Upper limit is for External
input.
SID451
FLL_OUT_DIV2
Output frequency range.
VCCD = 1.1 V
24.00
–
100.00
MHz
Output range of FLL
divided-by-2 output
SID451A
FLL_OUT_DIV2
Output frequency range.
VCCD = 0.9 V
24.00
–
50.00
MHz
Output range of FLL
divided-by-2 output
SID452
FLL_DUTY_DIV2
Divided-by-2 output; High or Low
47.00
–
53.00
%
–
SID454
FLL_WAKEUP
Time from stable input clock to 1% of
final value on Deep Sleep wakeup
–
–
7.50
µs
With IMO input, less than
10 °C change in
temperature while in Deep
Sleep, and Fout ≥ 50 MHz.
SID455
FLL_JITTER
Period jitter (1 sigma) at 100 MHz
–
–
35.00
ps
50 ps at 48 MHz, 35 ps at
100 MHz
SID456
FLL_CURRENT
CCO + Logic current
–
–
5.50
µA/MHz –
USB
Table 43. USB Specifications (USB requires LP Mode 1.1-V internal supply)
Spec ID
Parameter
Description
Min
Typ
Max
Units
Details/Conditions
USB Block Specifications
SID322U
Vusb_3.3
Device supply for USB operation
3.15
–
3.6
V
USB Configured
SID323U
Vusb_3
Device supply for USB operation
(functional operation only)
2.85
–
3.6
V
USB Configured
SID325U
Iusb_config
Block supply current in Active mode
–
8
–
mA
VDDD = 3.3 V
SID328
Iusb_suspend
Block supply current in suspend mode
–
0.5
–
mA
VDDD = 3.3 V, Device
connected
SID329
Iusb_suspend
Block supply current in suspend mode
–
0.3
–
mA
VDDD = 3.3 V, Device
disconnected
SID330U
USB_Drive_Res
USB driver impedance
28
–
44
Ω
Series resistors are on
chip
SID331U
USB_Pulldown
USB pull-down resistors in Host mode
14.25
–
24.8
kΩ
–
SID332U
USB_Pullup_Idle
Idle mode range
900
–
1575
Ω
Bus idle
SID333U
USB_Pullup
Active mode
1425
–
3090
Ω
Upstream device transmitting
Document Number: 002-23185 Rev. *Q
Page 68 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
QSPI
Table 44. QSPI Specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
SMIF QSPI Specifications. All specs with 15-pF load. Measured from 50% to 50% waveform transitions.
SID390Q
Fsmifclock
SMIF QSPI output clock frequency
–
–
80
MHz
LP mode (1.1 V)
SID390QU
Fsmifclocku
SMIF QSPI output clock frequency
–
–
50
MHz
ULP mode (0.9 V).
Guaranteed by Char.
SID397Q
Idd_qspi
Block current in LP mode (1.1 V)
–
–
1900
µA
LP mode (1.1 V)
SID398Q
Idd_qspi_u
Block current in ULP mode (0.9 V)
–
–
590
µA
ULP mode (0.9 V)
SID391Q
Tsetup
Input data set-up time with respect to
clock capturing falling edge
4.5
–
–
ns
Guaranteed by characterization
SID392Q
Tdatahold
Input data hold time with respect to clock
capturing falling edge
1
–
–
ns
–
SID393Q
Tdataoutvalid
Output data valid time with respect to
clock falling edge
–
–
3.7
ns
7.5-ns max for ULP
mode (0.9 V)
SID394Q
Tholdtime
Output data hold time with respect to
clock rising edge
3
–
–
ns
–
SID395Q
Tseloutvalid
Output Select valid time with respect to
clock rising edge
–
–
7.5
ns
15-ns max for ULP
mode (0.9 V)
SID396Q
Tselouthold
Output Select hold time with respect to
clock rising edge
Tsclk/2
–
–
ns
Tsclk = Fsmifclk cycle
time
Audio Subsystem
Table 45. Audio Subsystem Specifications
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
PDM Specifications
SID400P
PDM_IDD1
PDM Active current, stereo
operation, 1-MHz clock
–
175
–
µA
16-bit audio at 16 ksps
SID401
PDM_IDD2
PDM Active current, stereo
operation, 3-MHz clock
–
600
–
µA
24-bit audio at 48 ksps
SID402
PDM_JITTER
RMS jitter in PDM clock
–200
–
200
ps
–
SID403
PDM_CLK
PDM clock speed
0.384
–
3.072
MHz
–
SID403A
PDM_BLK_CLK
PDM block input clock
1.024
–
49.152
MHz
–
SID403B
PDM_SETUP
Data input set-up time to
PDM_CLK edge
10
–
–
ns
–
SID403C
PDM_HOLD
Data input hold time to PDM_CLK
edge
10
–
–
ns
–
SID404
PDM_OUT
Audio sample rate
8
–
48
ksps
–
SID405
PDM_WL
Word length
16
–
24
bits
–
SID406
PDM_SNR
Signal-to-Noise Ratio
(A-weighted)
–
100
–
dB
PDM input, 20 Hz to 20 kHz
BW
SID407
PDM_DR
Dynamic range (A-weighted)
–
100
–
dB
20 Hz to 20 kHz BW, -60 dB
FS
SID408
PDM_FR
Frequency response
–0.2
–
0.2
dB
DC to 0.45f, DC Blocking
filter off.
SID409
PDM_SB
Stop band
–
0.566
–
f
–
SID410
PDM_SBA
Stop band attenuation
–
60
–
dB
–
Document Number: 002-23185 Rev. *Q
Page 69 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 45. Audio Subsystem Specifications (continued)
Spec ID#
Parameter
Description
SID411
PDM_GAIN
Adjustable gain
SID412
PDM_ST
Startup time
Min
Typ
Max
Units
Details / Conditions
–12
–
10.5
dB
PDM to PCM, 1.5 dB/step
–
48
–
Word Select (WS) cycles
I2S Specifications. The same for LP and ULP modes unless stated otherwise.
SID413
I2S_WORD
Length of I2S Word
8
–
32
bits
SID414
I2S_WS
Word clock frequency in LP mode
–
–
192
kHz
12.288-MHz bit clock with
32-bit word
SID414M
I2S_WS_U
Word clock frequency in ULP
mode
–
–
48
kHz
3.072-MHz bit clock with
32-bit word
SID414A
I2S_WS_TDM
Word clock frequency in TDM
mode for LP
–
–
48
kHz
Eight 32-bit channels
SID414X
I2S_WS_TDM_U
Word clock frequency in TDM
mode for ULP
–
–
12
kHz
Eight 32-bit channels
I2S Slave Mode
SID430
TS_WS
WS setup time to the following
rising edge of SCK for LP mode
5
–
–
ns
–
SID430U
TS_WS_U
WS setup time to the following
rising edge of SCK for ULP mode
11
–
–
ns
–
SID430A
TH_WS
WS hold time to the following edge TMCLK_SOC[6]
of SCK
+5
–
–
ns
–
SID432
TD_SDO
Delay time of TX_SDO transition -(TMCLK_SOC
from edge of TX_SCK for LP mode
+25)
–
TMCLK_S
OC+25
ns
Associated clock edge
depends on selected
polarity
SID432U
TD_SDO_U
Delay time of TX_SDO transition
from edge of TX_SCK for ULP
mode
-(TMCLK_SOC
+70)
–
TMCLK_S
OC+70
ns
Associated clock edge
depends on selected
polarity
SID433
TS_SDI
RX_SDI setup time to the
following edge of RX_SCK in LP
mode
5
–
–
ns
–
SID433U
TS_SDI_U
RX_SDI setup time to the
following edge of RX_SCK in ULP
mode
11
–
–
ns
–
SID434
TH_SDI
RX_SDI hold time to the rising
edge of RX_SCK
TMCLK_SOC+
5
–
–
ns
–
SID435
TSCKCY
TX/RX_SCK bit clock duty cycle
45
–
55
%
–
I2S Master Mode
SID437
TD_WS
WS transition delay from falling
edge of SCK in LP mode
–10
–
20
ns
–
SID437U
TD_WS_U
WS transition delay from falling
edge of SCK in ULP mode
–10
–
40
ns
–
SID438
TD_SDO
SDO transition delay from falling
edge of SCK in LP mode
–10
–
20
ns
–
SID438U
TD_SDO
SDO transition delay from falling
edge of SCK in ULP mode
–10
–
40
ns
–
SID439
TS_SDI
SDI setup time to the associated
edge of SCK
5
–
–
ns
Associated clock edge
depends on selected
polarity
Note
6. TMCLK_SOC is the internal I2S master clock period.
Document Number: 002-23185 Rev. *Q
Page 70 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 45. Audio Subsystem Specifications (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
TMCLK_SOC+
5
–
–
ns
T is TX/RX_SCK Bit Clock
period. Associated clock
edge depends on selected
polarity.
45
–
55
%
–
1.024
–
98.304
MHz
FMCLK_SOC = 8*Bit-clock
1.024
–
24.576
MHz
FMCLK_SOC_U = 8 *
Bit-clock
MCLK_SOC duty cycle
45
–
55
%
–
MCLK_SOC input jitter
–100
–
100
ps
–
SID440
TH_SDI
SDI hold time to the associated
edge of SCK
SID443
TSCKCY
SCK bit clock duty cycle
SID445
FMCLK_SOC
MCLK_SOC frequency in LP
mode
SID445U
FMCLK_SOC_U
MCLK_SOC frequency in ULP
mode
SID446
TMCLKCY
SID447
TJITTER
Smart I/O
Table 46. Smart I/O Specifications
Min
Typ
Max
Units
SID420
Spec ID#
SMIO_BYP
Parameter
Smart I/O bypass delay
Description
–
–
2
ns
–
Details/Conditions
SID421
SMIO_LUT
Smart I/O LUT prop delay
–
8
–
ns
–
Min
Typ
Max
SD Host Controller and eMMC
Table 47. SD Host Controller and eMMC Specifications
Spec ID#
Parameter
Description
Units
Details / Conditions
SD Host Controller and eMMC Specifications (SD Host clock (see the Clocking Diagram) must be divided by 2 or more
when used as source in DDR modes. Specifications are Guaranteed by Design.
SID_SD390
SD_DS
I/O drive select
drive_sel = '01' for all modes
4
–
4
mA
SID_SD391
SD_TR
Input transition time
0.7
–
3
ns
–
SD:DS Timing
SID_SD392
SD_CLK
Interface clock period (LP mode)
–
–
25
MHz
(40-ns period)
SID_SD393
SD_CLK
Interface clock period (ULP mode)
–
–
8
MHz
(125-ns period)
SID_SD394
SD_DCMD_CL I/O loading at DATA/CMD pins
–
30
–
pF
–
SID_SD395
SD_CLK_CL
I/O loading at CLK pins
–
30
–
pF
–
SID_SD396
SD_TS_OUT
Output: Setup time of CMD/DAT prior
to CLK
5.1
–
–
ns
–
SID_SD397
SD_HLD_OUT
Output: Hold time of CMD/DAT after
CLK
5.1
–
–
ns
–
SID_SD398
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (LP mode)
24
–
–
ns
–
SID_SD399
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (ULP mode)
109
–
–
ns
–
SID_SD400
SD_HLD_IN
Input: Hold time of CMD/DAT after
CLK
2.1
–
–
ns
–
SID_SD401
SD_CLK
Interface clock period (LP mode)
–
–
45
MHz
(20-ns period)
SID_SD402
SD_CLK
Interface clock period (ULP mode)
–
–
16
MHz
(62.5-ns period)
SID_SD403
SD_DCMD_CL I/O loading at DATA/CMD pins
–
30
–
pF
–
SID_SD404
SD_CLK_CL
–
30
–
pF
–
SD:HS Timing
I/O loading at CLK pins
Document Number: 002-23185 Rev. *Q
Page 71 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 47. SD Host Controller and eMMC Specifications (continued)
Spec ID#
Parameter
Description
Min
Typ
Max
Units
Details / Conditions
6.1
–
–
ns
–
SID_SD405
SD_TS_OUT
Output: Setup time of CMD/DAT prior
to CLK
SID_SD406
SD_HLD_OUT
Output: Hold time of CMD/DAT after
CLK
2.1
–
–
ns
–
SID_SD407
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (LP mode)
8
–
–
ns
–
SID_SD408
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (ULP mode)
48
–
–
ns
–
SID_SD409
SD_HLD_IN
Input: Hold time of CMD/DAT after
CLK
2.5
–
–
ns
–
SD:SDR-12 Timing
SID_SD410
SD_CLK
Interface clock period (LP mode)
–
–
25
MHz
(40-ns period)
SID_SD411
SD_CLK
Interface clock period (ULP mode)
–
–
8
MHz
(125-ns period)
SID_SD412
SD_CLK_DC
Duty cycle of output CLK
30
–
70
%
–
SID_SD413
SD_DCMD_CL I/O loading at DATA/CMD pins
–
30
–
pF
–
SID_SD414
SD_CLK_CL
I/O loading at CLK pins
–
30
–
pF
–
SID_SD415
SD_TS_OUT
Output: Setup time of CMD/DAT prior
to CLK
3.1
–
–
ns
–
SID_SD416
SD_HLD_OUT
Output: Hold time of CMD/DAT after
CLK
0.9
–
–
ns
–
SID_SD417
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (LP mode)
24
–
–
ns
–
SID_SD418
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (ULP mode)
109
–
–
ns
–
SID_SD419
SD_HLD_IN
Input: Hold time of CMD/DAT after
CLK
1.85
–
–
ns
–
SD:SDR-25 Timing
SID_SD420
SD_CLK
Interface clock period (LP mode)
–
–
50
MHz
(20-ns period)
SID_SD421
SD_CLK
Interface clock period (ULP mode)
–
–
16
MHz
(62.5-ns period)
SID_SD422
SD_CLK_DC
Duty cycle of output CLK
30
–
70
%
–
SID_SD423
SD_DCMD_CL I/O loading at DATA/CMD pins
–
30
–
pF
–
SID_SD424
SD_CLK_CL
I/O loading at CLK pins
–
30
–
pF
–
SID_SD425
SD_TS_OUT
Output: Setup time of CMD/DAT prior
to CLK
3.1
–
–
ns
–
SID_SD426
SD_HLD_OUT
Output: Hold time of CMD/DAT after
CLK
0.9
–
–
ns
–
SID_SD427
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (LP mode)
5.8
–
–
ns
–
SID_SD428
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (ULP mode)
48
–
–
ns
–
SID_SD429
SD_HLD_IN
Input: Hold time of CMD/DAT after
CLK
1.8
–
–
ns
–
–
–
80
MHz
(12.5-ns period)
(31.25-ns period)
SD:SDR-50 Timing
SID_SD430
SD_CLK
Interface clock period (LP mode)
SID_SD431
SD_CLK
Interface clock period (ULP mode)
–
–
32
MHz
SID_SD432
SD_CLK_DC
Duty cycle of output CLK
30
–
70
%
Document Number: 002-23185 Rev. *Q
–
Page 72 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 47. SD Host Controller and eMMC Specifications (continued)
Min
Typ
Max
Units
SID_SD433
Spec ID#
SD_DCMD_CL I/O loading at DATA/CMD pins
Parameter
Description
–
20
–
pF
–
Details / Conditions
SID_SD434
SD_CLK_CL
I/O loading at CLK pins
–
20
–
pF
–
SID_SD435
SD_TS_OUT
Output: Setup time of CMD/DAT prior
to CLK
3.1
–
–
ns
–
SID_SD436
SD_HLD_OUT
Output: Hold time of CMD/DAT after
CLK
0.9
–
–
ns
–
SID_SD437
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (LP mode)
5
–
–
ns
–
SID_SD438
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (ULP mode)
23
–
–
ns
–
SID_SD439
SD_HLD_IN
Input: Hold time of CMD/DAT after
CLK
1.8
–
–
ns
–
SD:DDR-50 Timing
SID_SD440
SD_CLK
Interface clock period (LP mode)
–
–
40
MHz
(25-ns period).
SID_SD441
SD_CLK
Interface clock period (ULP mode)
–
–
16
MHz
(62.5-ns period)
SID_SD442
SD_CLK_DC
Duty cycle of output CLK
45
–
55
%
–
SID_SD443
SD_DCMD_CL I/O loading at DATA/CMD pins
–
30
–
pF
–
SID_SD444
SD_CLK_CL
I/O loading at CLK pins
–
30
–
pF
–
SID_SD445
SD_TS_OUT
Output: Setup time of CMD/DAT prior
to CLK
3.1
–
–
ns
–
SID_SD446
SD_HLD_OUT
Output: Hold time of CMD/DAT after
CLK
0.9
–
–
ns
–
SID_SD447
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (LP mode)
5.75
–
–
ns
–
SID_SD448
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (ULP mode)
24
–
–
ns
–
SID_SD449
SD_HLD_IN
Input: Hold time of CMD/DAT after
CLK
1.8
–
–
ns
–
–
26
MHz
(38.4-ns period)
(125-ns period)
eMMC:BWC Timing
SID_SD450
SD_CLK
Interface clock period (LP mode)
–
SID_SD451
SD_CLK
Interface clock period (ULP mode)
–
–
8
MHz
SID_SD452
SD_DCMD_CL I/O loading at DATA/CMD pins
–
30
–
pF
–
SID_SD453
SD_CLK_CL
I/O loading at CLK pins
–
30
–
pF
–
SID_SD454
SD_TS_OUT
Output: Setup time of CMD/DAT prior
to CLK
3.1
–
–
ns
–
SID_SD455
SD_HLD_OUT
Output: Hold time of CMD/DAT after
CLK
3.1
–
–
ns
–
SID_SD456
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (LP mode)
9.7
–
–
ns
–
SID_SD457
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (ULP mode)
96
–
–
ns
–
SID_SD458
SD_HLD_IN
Input: Hold time of CMD/DAT after
CLK
8.3
–
–
ns
–
eMMC:SDR Timing
SID_SD459
SD_CLK
Interface clock period (LP mode)
–
–
52
MHz
(19.2-ns period)
SID_SD460
SD_CLK
Interface clock period (ULP mode)
–
–
16
MHz
(62.5-ns period)
Document Number: 002-23185 Rev. *Q
Page 73 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Table 47. SD Host Controller and eMMC Specifications (continued)
Min
Typ
Max
Units
SID_SD461
Spec ID#
SD_DCMD_CL I/O loading at DATA/CMD pins
Parameter
Description
–
30
–
pF
–
Details / Conditions
SID_SD462
SD_CLK_CL
I/O loading at CLK pins
–
30
–
pF
–
SID_SD463
SD_TS_OUT
Output: Setup time of CMD/DAT prior
to CLK
3.1
–
–
ns
–
SID_SD464
SD_HLD_OUT
Output: Hold time of CMD/DAT after
CLK
3.1
–
–
ns
–
SID_SD465
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (LP mode)
5.3
–
–
ns
–
SID_SD466
SD_TS_IN
Input: Setup time of CMD/DAT prior
to CLK (ULP mode)
48
–
–
ns
–
SID_SD467
SD_HLD_IN
Input: Hold time of CMD/DAT after
CLK
2.5
–
–
ns
–
SID_SD400SD IDD_SD_1
SD Host block current consumption
at 100 MHz
–
4.65
5
mA
–
SID_SD401SD IDD_SD_2
SD Host block current consumption
at 50 MHz
–
3.75
4.3
mA
–
SD Host Block Current Specs
JTAG Boundary Scan
Table 48. JTAG Boundary Scan
Spec ID#
Parameter
Description
Min
Typ
Max
Units
JTAG Boundary Scan Parameters
JTAG Boundary Scan Parameters for 1.1 V (LP) Mode Operation:
SID468
TCKLOW
TCK LOW
52
–
–
ns
–
SID469
TCKHIGH
TCK HIGH
10
–
–
ns
–
SID470
TCK_TDO
TCK falling edge to output valid
–
40
ns
–
SID471
TSU_TCK
Input valid to TCK rising edge
12
–
–
ns
–
SID472
TCk_THD
Input hold time to TCK rising edge
10
–
–
ns
–
SID473
TCK_TDOV
TCK falling edge to output valid
(High-Z to Active).
40
–
–
ns
–
SID474
TCK_TDOZ
TCK falling edge to output valid
(Active to High-Z).
40
–
–
ns
–
TCK low
102
–
–
ns
–
20
–
–
ns
–
–
80
ns
–
JTAG Boundary Scan Parameters for 0.9 V (ULP) Mode Operation:
SID468A
TCKLOW
SID469A
TCKHIGH
TCK high
SID470A
TCK_TDO
TCK falling edge to output valid
SID471A
TSU_TCK
Input valid to TCK rising edge
22
–
–
ns
–
SID472A
TCk_THD
Input hold time to TCK rising edge
20
–
–
ns
–
SID473A
TCK_TDOV
TCK falling edge to output valid
(high-Z to active).
80
–
–
ns
–
SID474A
TCK_TDOZ
TCK falling edge to output valid
(active to high-Z).
80
–
–
ns
–
Document Number: 002-23185 Rev. *Q
Page 74 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Ordering Information
Table 49 lists the CY8C62X8 and CY8C62XA part numbers and features. See also the product selector guide.
62
Arm CM4/CM0+,
DC-DC
converter, QSPI
SMIF,
12-bit SAR ADC,
2 LPCOMPs,
13 SCBs, 32
TCPWMs, 2 I2S,
2 PDM, 2 SD
Host Controllers,
USB-FS
MPN
CM4 CPU Speed (LP/ULP)
CM0+ CPU Speed (LP/ULP)
Power
Modes
Flash
(KB)
SRAM
(KB)
CapSense
Crypto
GPIO
Pin
Package
Base Features
Family
Table 49. Ordering Information
CY8C624ABZI-S2D04
150/50
100/25
FLEX
2048
1024
–
–
100
124
BGA
CY8C624ABZI-S2D14
150/50
100/25
FLEX
2048
1024
Y
–
100
124
BGA
CY8C624AAZI-S2D14
150/50
100/25
FLEX
2048
1024
Y
–
102
128
TQFP
CY8C624ABZI-S2D44
150/50
100/25
FLEX
2048
1024
Y
Y
100
124
BGA
CY8C624AAZI-S2D44
150/50
100/25
FLEX
2048
1024
Y
Y
102
128
TQFP
CY8C624AFNI-S2D43
150/50
100/25
FLEX
2048
1024
Y
Y
82
100
WLCSP
CY8C624ALQI-S2D42
150/50
100/25
FLEX
2048
1024
Y
Y
53
68
QFN
CY8C624ALQI-S2D02
150/50
100/25
FLEX
2048
1024
–
–
53
68
QFN
CY8C6248AZI-S2D14
150/50
100/25
FLEX
1024
512
Y
–
102
128
TQFP
CY8C6248BZI-S2D44
150/50
100/25
FLEX
1024
512
Y
Y
100
124
BGA
CY8C6248AZI-S2D44
150/50
100/25
FLEX
1024
512
Y
Y
102
128
TQFP
CY8C6248FNI-S2D43
150/50
100/25
FLEX
1024
512
Y
Y
82
100
WLCSP
CY8C6248LQI-S2D42
150/50
100/25
FLEX
1024
512
Y
Y
53
68
QFN
CY8C6248LQI-S2D02
150/50
100/25
FLEX
1024
512
–
–
53
68
QFN
Document Number: 002-23185 Rev. *Q
Page 75 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
PSoC 6 MPN Decoder
CY XX 6 A B C DD E - FF G H I JJ K L
Field
Description
Values
CY
Cypress
CY
Cypress
8C
Standard
B0
“Secure Boot” v1
S0
“Standard Secure” - AWS
XX
6
A
B
Firmware
Architecture
Line
Speed
6
PSoC 6
0
Value
1
Programmable
2
Performance
3
Connectivity
4
Secured
2
100 MHz
3
150 MHz
4
150/50 MHz
0-3
C
Memory Size
(Flash/SRAM)
Meaning
Reserved
4
256K/128K
5
512K/256K
6
512K/128K
7
1024K/288K
8
1024K/512K
9
Reserved
A
2048K/1024K
Field
Description
E
Temperature Range
FF
Feature Code
Values
C
Consumer
I
Industrial
Q
Extended Industrial
S2-S6
BL
G
CPU Core
H
Attributes Code
I
GPIO count
JJ
Engineering sample
(optional)
K
Die Revision
(optional)
L
Tape/Reel Shipment
(optional)
Meaning
Cypress internal
Integrated Bluetooth LE
F
Single Core
D
Dual Core
0–9
Feature set
1
31-50
2
51-70
3
71-90
4
91-110
ES
Engineering samples or
not
Base
A1-A9
T
Die revision
Tape and Reel shipment
AZ, AX TQFP
DD
Package
LQ
QFN
BZ
BGA
FM
M-CSP
FN, FD,
WLCSP
FT
Document Number: 002-23185 Rev. *Q
Page 76 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Packaging
This product line is offered in 124-BGA, 128-TQFP, 68-QFN, and 100-WLCSP packages.
Table 50. Package Dimensions
Spec ID#
Package
Description
Package Dwg #
PKG_1
124-BGA
124 BGA, 9 mm × 9 mm × 1 mm height with 0.65-mm pitch
001-97718
PKG_2
128-TQFP
128 TQFP, 14 mm × 20 mm × 1.4 mm height with 0.5-mm pitch
51-85101
PKG_3
PKG_4
100-WLCSP 100 WLCSP, 4.1 mm × 3.9 mm × 0.5 mm height with 0.5-mm pitch
68-QFN
002-23991
68 QFN, 8 × 8 ×1.0 mm, 6.2 × 6.2 mm EPAD (Sawn Type)
001-96836
Table 51. Package Characteristics
Conditions
Min
Typ
Max
Units
TA
Parameter
Operating ambient temperature
Description
–
–40
25
85
°C
TJ
Operating junction temperature
–
–40
–
100
°C
TJA
Package JA (124-BGA)
–
–
31.9
–
°C/watt
TJC
Package JC (124-BGA)
–
–
11
–
°C/watt
TJA
Package JA (128-TQFP)
–
–
33.24
–
°C/watt
TJC
Package JC (128-TQFP)
–
–
6
–
°C/watt
TJA
Package JA (100-WLCSP)
–
–
19.1
–
°C/watt
TJC
Package JC (100-WLCSP)
–
–
0.12
–
°C/watt
TJA
Package JA (68-QFN)
–
–
15.4
–
°C/watt
TJC
Package JC (68-QFN)
–
–
2
–
°C/watt
Table 52. Solder Reflow Peak Temperature
Package
Maximum Peak Temperature
Maximum Time at Peak Temperature
All packages
260 °C
30 seconds
Table 53. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2
Package
MSL
124-BGA
MSL 3
128-TQFP
MSL 3
68-QFN
MSL 3
100-WLCSP
MSL 1
Document Number: 002-23185 Rev. *Q
Page 77 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 21. 124-BGA 9.0 × 9.0 ×1.0 mm
001-97718 *B
Document Number: 002-23185 Rev. *Q
Page 78 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 22. 128-TQFP 14.0 × 20.0 ×1.4 mm
51-85101 *F
Document Number: 002-23185 Rev. *Q
Page 79 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 23. 100-WLCSP 4.1068 × 3.9025 × 0.467mm
002-23991 *A
Document Number: 002-23185 Rev. *Q
Page 80 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Figure 24. 68-QFN Package Diagram
001-96836 *A
Document Number: 002-23185 Rev. *Q
Page 81 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Acronyms
Acronym
Description
3DES
triple DES (data encryption standard)
ADC
analog-to-digital converter
ADMA3
advanced DMA version 3, a Secure Digital data
transfer mode
AES
advanced encryption standard
AHB
AMBA (advanced microcontroller bus architecture)
high-performance bus, an Arm data transfer bus
AMUX
analog multiplexer
Acronym
ESD
Description
electrostatic discharge
ETM
embedded trace macrocell
FIFO
first-in, first-out
FLL
frequency locked loop
FPU
floating-point unit
FS
full-speed
GND
Ground
GPIO
general-purpose input/output, applies to a PSoC pin
AMUXBUS analog multiplexer bus
HMAC
Hash-based message authentication code
API
application programming interface
HSIOM
high-speed I/O matrix
Arm®
advanced RISC machine, a CPU architecture
I/O
input/output, see also GPIO, DIO, SIO, USBIO
BGA
ball grid array
I2C, or IIC
Inter-Integrated Circuit, a communications protocol
inter-IC sound
integrated circuit
BOD
brown-out detect
I2S
BREG
backup registers
IC
BWC
backward compatibility (eMMC data transfer mode)
IDAC
current DAC, see also DAC, VDAC
CAD
computer aided design
IDE
integrated development environment
CCO
current controlled oscillator
ILO
internal low-speed oscillator, see also IMO
ChaCha
a stream cipher
IMO
internal main oscillator, see also ILO
CM0+
Cortex-M0+, an Arm CPU
INL
integral nonlinearity, see also DNL
CM4
Cortex-M4, an Arm CPU
IOSS
input output subsystem
CMAC
cypher-based message authentication code
IoT
internet of things
CMOS
complementary metal-oxide-semiconductor, a
process technology for IC fabrication
IPC
inter-processor communication
IRQ
interrupt request
CMRR
common-mode rejection ratio
ISR
interrupt service routine
CPU
central processing unit
ITM
instrumentation trace macrocell
CRC
cyclic redundancy check, an error-checking protocol
JTAG
Joint Test Action Group
CSD
CapSense Sigma-Delta
LCD
liquid crystal display
LIN
Local Interconnect Network, a communications
protocol
CSV
clock supervisor
CSX
Cypress mutual capacitance sensing method. See
also CSD
LP
low power
CTI
cross trigger interface
LS
low-speed
DAC
digital-to-analog converter, see also IDAC, VDAC
LUT
lookup table
DAP
debug access port
LVD
low-voltage detect, see also LVI
DDR
double data rate
LVI
low-voltage interrupt
DES
data encryption standard
LVTTL
low-voltage transistor-transistor logic
DFT
design for test
MAC
multiply-accumulate
DMA
direct memory access, see also TD
MCU
microcontroller unit
DNL
differential nonlinearity, see also INL
MCWDT
multi-counter watchdog timer
DSI
digital system interconnect
MISO
master-in slave-out
DU
data unit
MMIO
memory-mapped input output
ECC
error correcting code
MOSI
master-out slave-in
ECC
elliptic curve cryptography
MPU
memory protection unit
ECO
external crystal oscillator
MSL
moisture sensitivity level
EEPROM
electrically erasable programmable read-only
memory
Msps
million samples per second
EMI
electromagnetic interference
MTB
micro trace buffer
eMMC
embedded MultiMediaCard
MUL
multiplier
Document Number: 002-23185 Rev. *Q
Page 82 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Acronym
Description
NC
no connect
NMI
nonmaskable interrupt
NVIC
nested vectored interrupt controller
NVL
nonvolatile latch, see also WOL
OTP
one-time programmable
OVP
over voltage protection
OVT
overvoltage tolerant
PASS
programmable analog subsystem
PCB
printed circuit board
PCM
pulse code modulation
PDM
pulse density modulation
PHY
physical layer
PICU
port interrupt control unit
PLL
phase-locked loop
PMIC
power management integrated circuit
POR
power-on reset
PPU
peripheral protection unit
PRNG
pseudo random number generator
PSoC®
Acronym
SONOS
SPI
Description
silicon-oxide-nitride-oxide-silicon, a flash memory
technology
Serial Peripheral Interface, a communications
protocol
SRAM
static random access memory
SROM
supervisory read-only memory
SRSS
system resources subsystem
SWD
serial wire debug, a test protocol
SWJ
serial wire JTAG
SWO
single wire output
SWV
single-wire viewer
TCPWM
timer, counter, pulse-width modulator
TDM
time division multiplexed
THD
total harmonic distortion
TQFP
thin quad flat package
TRM
technical reference manual
TRNG
true random number generator
TX
transmit
Programmable System-on-Chip™
UART
PSRR
power supply rejection ratio
Universal Asynchronous Transmitter Receiver, a
communications protocol
PWM
pulse-width modulator
UDB
universal digital block
QD
quadrature decoder
QSPI
quad serial peripheral interface
RAM
random-access memory
RISC
reduced-instruction-set computing
RMS
root-mean-square
ROM
read-only memory
RSA
Rivest–Shamir–Adleman, a public-key cryptography
algorithm
RTC
real-time clock
RWW
read-while-write
RX
receive
S/H
sample and hold
SAR
successive approximation register
SARMUX
SAR ADC multiplexer bus
SC/CT
switched capacitor/continuous time
SCB
serial communication block
SCL
I2C serial clock
SD
Secure Digital
SDA
I2C serial data
SDR
single data rate
Sflash
supervisory flash
SHA
secure hash algorithm
SINAD
signal to noise and distortion ratio
SMPU
shared memory protection unit
SNR
signal-to-noise ratio
SOF
start of frame
Document Number: 002-23185 Rev. *Q
ULP
ultra-low power
USB
Universal Serial Bus
WCO
watch crystal oscillator
WDT
watchdog timer
WIC
wakeup interrupt controller
WLCSP
wafer level chip scale package
XIP
execute-in-place
XRES
external reset input pin
Page 83 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Document Conventions
Units of Measure
Table 54. Units of Measure (continued)
Table 54. Units of Measure
Symbol
Symbol
Unit of Measure
Unit of Measure
µH
microhenry
microsecond
°C
degrees Celsius
µs
dB
decibel
µV
microvolt
fF
femto farad
µW
microwatt
Hz
hertz
mA
milliampere
KB
1024 bytes
ms
millisecond
kbps
kilobits per second
mV
millivolt
khr
kilohour
nA
nanoampere
kHz
kilohertz
ns
nanosecond
k
kilo ohm
nV
nanovolt
ksps
kilosamples per second
W
ohm
LSB
least significant bit
pF
picofarad
Mbps
megabits per second
ppm
parts per million
MHz
megahertz
ps
picosecond
M
mega-ohm
s
second
Msps
megasamples per second
sps
samples per second
µA
microampere
sqrtHz
square root of hertz
microfarad
V
volt
µF
Document Number: 002-23185 Rev. *Q
Page 84 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Revision History
Description Title: PSoC 6 MCU: CY8C62x8, CY8C62xA Datasheet
Document Number: 002-23185
Submission
Revision
ECN
Description of Change
Date
**
6085299
03/01/2018 New datasheet for PSoC 6A-2M.
Updated the number of SCBs and removed CAN feature and specifications.
*A
6100523
03/16/2018
Updated Multiple Alternate Functions.
Updated Features.
Updated Block Diagram.
Updated IMO Clock Source, Watchdog Timer (WDT), Clock Dividers, Serial Communication
Blocks (SCB).
Updated GPIO.
Updated Quad-SPI/Serial Memory Interface (SMIF).
Added a note in Pinouts.
Removed pins P14.1 and P14.0.
*B
6169663
05/16/2018
Updated typ value for SID15.
Updated Notes 2 and 3.
Updated description for SID246.
Updated Conditions for SID.CSD#15, SID.CSD#15A, and SID308A.
Updated min and max values for SID314A, SID315A, and SID172B.
Added SID308P
Updated specs SID454, SID455, and SID408.
Added Table 41.
Updated Block Diagram.
Updated CPU and Memory Subsystem.
*C
6184665
05/24/2018 Updated SDHC Controllers.
Updated SID262 description.
Updated SDHC and eMMC Specifications.
Added Security information (Protection Contexts and Protection Units).
Changed Power Mode nomenclature to reflect Minimum Regulator Current mode instead
*D
6235143
07/10/2018 of LPA/LPS.
Revised SDHC and eMMC specs based on STA.
Added note on drive setting valid for all AC specs. Added JTAG Boundary scan specs.
Added 128 TQFP and 100 WLCSP pin and package information.
Removed SID65A.
Updated SID75, SID76, and SID245 max values.
*E
6340009
10/09/2018 Updated SID421 typ value.
Added CY8C624ABZI-D44ES(T) in Ordering Information.
Added part numbering nomenclature table.
Added Errata
Document Number: 002-23185 Rev. *Q
Page 85 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Description Title: PSoC 6 MCU: CY8C62x8, CY8C62xA Datasheet
Document Number: 002-23185
Updated the title and replaced PSoC 6A-2M with PSoC CY8C62x8 and CY8C62xA PSoC
6 MCU: CY8C62x8, CY8C62xA Datasheet.
Updated Features and Blocks and Functionality.
Updated Development Ecosystem.
Replaced “component” with “driver”.
Updated System Resources and Fixed-Function Digital.
*F
6420256
01/21/2019
Updated Pinouts
Updated Power Supply Considerations.
Updated Power Connections diagram.
Updated CPU Current and Transition Times table.
Removed spec SID13A
Updated Ordering Information.
Replaced “dual core” with “dual CPU.”
*G
6564322
05/03/2019 Updated Block Diagram.
Updated CY8C62x8, CY8C62xA Pinouts and Multiple Alternate Functions.
Updated the title.
*H
6660660
09/16/2019
Updated Ordering Information.
Updated Features.
*I
6756960
12/20/2019 Updated Blocks and Functionality and Functional Description.
Updated Pinouts and Power Supply Considerations.
Updated Features and Functional Description
Updated Pinouts
Updated Electrical Specifications based on Characterization: Added 2Ms/sec specs to SAR
*J
6839822
03/27/2020
specs, updated SMIF, ECO, and SDHC specs
Updated Ordering Information.
Updated Errata.
Updated SAR ADC 1 Msps references to 2 Msps.
Removed reference to e.MMC DDR mode.
Edited SAR specs to split VDDA dependent specs into separate specs instead of having
*K
6854009
04/17/2020 qualifying comments. Also moved Supply Range specs from Description column to
Details/Conditions column.
Added SAR ADC 2 Msps supply current specs. Updated SAR ADC input impedance RC
values to support 9RC 2 Msps sampling.
Updated Development Ecosystem, GPIO, and LCD sections.
*L
6891487
06/11/2020 Added External Crystal Oscillators.
Updated Errata.
Document Number: 002-23185 Rev. *Q
Page 86 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Description Title: PSoC 6 MCU: CY8C62x8, CY8C62xA Datasheet
Document Number: 002-23185
Updated Flexible Clocking Options and Block Diagram.
Updated list of application notes and links in PSoC 6 MCU Resources.
Updated ModusToolbox Software.
Updated Clocking Diagram.
Updated Power Supply Considerations.
Updated CPUs and added InterProcessor Communication (IPC).
Updated
Analog Subsystem diagram.
*M
6973720
10/09/2020
Updated the XRES bullet in Reset, SID15 Description and Conditions, and System
Resources (Power-On-Reset specifications).
Updated SD Host Controllers and SD Host Controller and eMMC Specifications.
Updated SID7A conditions, SID7C description, and SID8 conditions.
Added footnote to TMCLK_SOC specs.
Integrated ECO erratum into External Crystal Oscillators. Added ECO Usage Guidelines
table.
Updated Security terminology to Infineon standards.
Changed BLE references to Bluetooth LE.
*N
7147463
06/03/2021
Added Table 12 and Figure 20 in Electrical Specifications.
Added 68-QFN pin and package details. Updated Ordering Information.
Corrected typo in Table 7.
*O
7383583
10/19/2021
Updated SIDC1 description.
Updated details/conditions for SID7A.
*P
7469751
11/24/2021
Updated SID325U, SID328, and SID329 description.
*Q
7750278
04/12/2022 Updated eFuse information in the Memory section.
Document Number: 002-23185 Rev. *Q
Page 87 of 88
PSoC 6 MCU: CY8C62x8,
CY8C62xA Datasheet
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Arm® Cortex® Microcontrollers
Automotive
cypress.com/arm
cypress.com/automotive
Clocks & Buffers
Interface
cypress.com/clocks
cypress.com/interface
Internet of Things
Memory
cypress.com/iot
cypress.com/memory
Microcontrollers
cypress.com/mcu
PSoC
cypress.com/psoc
Power Management ICs
Cypress Developer Community
Community | Code Examples | Projects | Video | Blogs | Training
| Components
Technical Support
cypress.com/support
cypress.com/pmic
Touch Sensing
cypress.com/touch
USB Controllers
Wireless Connectivity
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU
cypress.com/usb
cypress.com/wireless
© Cypress Semiconductor Corporation, 2018-2022. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This
document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks,
or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally
to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the
Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation,
or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security
Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the
responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device"
means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other
medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk
Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of
a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns
harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited
extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written
authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.
Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of
Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-23185 Rev. *Q
Revised April 12, 2022
Page 88 of 88