0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CY95F698KPMC1-G-UNE2

CY95F698KPMC1-G-UNE2

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    52-LQFP

  • 描述:

    F²MC-8FX F²MC-8FX MB95690K 微控制器 IC 8 位 16MHz 60KB(60K x 8) 闪存 52-LQFP(10x10)

  • 数据手册
  • 价格&库存
CY95F698KPMC1-G-UNE2 数据手册
MB95690K Series New 8FX 8-bit Microcontrollers The MB95690K Series is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral functions. ❐ Features ■ ■ F2MC-8FX CPU core ❐ Instruction set optimized for controllers • Multiplication and division instructions • 16-bit arithmetic operations • Bit test branch instructions • Bit manipulation instructions, etc. ■ ■ Clock Selectable main clock source • Main oscillation clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz) • External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz) • Main CR clock (4 MHz 2%) • Main CR PLL clock - The main CR PLL clock frequency becomes 8 MHz 2% when the PLL multiplication rate is 2. - The main CR PLL clock frequency becomes 10 MHz 2% when the PLL multiplication rate is 2.5. - The main CR PLL clock frequency becomes 12 MHz 2% when the PLL multiplication rate is 3. - The main CR PLL clock frequency becomes 16 MHz 2% when the PLL multiplication rate is 4. ❐ Selectable subclock source • Suboscillation clock (32.768 kHz) • External clock (32.768 kHz) • Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 150 kHz) Timer 8/16-bit composite timer  2 channels ❐ 8/16-bit PPG  3 channels ❐ 16-bit PPG timer  1 channel (can work independently or together with the multi-pulse generator) ❐ 16-bit reload timer  1 channel (can work independently or together with the multi-pulse generator) ❐ Time-base timer  1 channel ❐ Watch prescaler  1 channel ■ UART/SIO  1 channel Full duplex double buffer ❐ Capable of clock asynchronous (UART) serial data transfer and clock synchronous (SIO) serial data transfer ■ I2C bus interface  1 channel ❐ Built-in wake-up function ■ Low power consumption (standby) modes There are four standby modes as follows: • Stop mode • Sleep mode • Watch mode • Time-base timer mode ❐ In standby mode, two further options can be selected: normal standby mode and deep standby mode. ❐ ■ I/O port FPT-44P-M25 (number of I/O ports: 41) • General-purpose I/O ports (CMOS I/O):37 • General-purpose I/O ports (N-ch open drain):4 ❐ FPT-48P-M49, FPT-52P-M02, LCC-48P-M11 (number of I/O ports: 45) • General-purpose I/O ports (CMOS I/O):41 • General-purpose I/O ports (N-ch open drain):4 ❐ ■ On-chip debug 1-wire serial control ❐ Serial writing supported (asynchronous mode) ❐ ■ Hardware/software watchdog timer Built-in hardware watchdog timer ❐ Built-in software watchdog timer ❐ ■ Power-on reset A power-on reset is generated when the power is switched on. ❐ Multi-pulse generator (MPG) (for DC motor control)  1 channel 16-bit reload timer  1 channel ❐ 16-bit PPG timer  1 channel ■ ❐ Cypress Semiconductor Corporation Document Number: 002-04692 Rev. *A 8/10-bit A/D converter FPT-44P-M25: 8 channels ❐ FPT-48P-M49, FPT-52P-M02, LCC-48P-M11: 12 channels ❐ 8-bit or 10-bit resolution can be selected. ❐ ❐ ■ External interrupt FPT-44P-M25: 7 channels ❐ FPT-48P-M49, FPT-52P-M02, LCC-48P-M11: 8 channels ❐ Interrupt by edge detection (rising edge, falling edge, and both edges can be selected) ❐ Can be used to wake up the device from different low power consumption (standby) modes ❐ ❐ ■ LIN-UART Full duplex double buffer ❐ Capable of clock asynchronous serial data transfer and clock synchronous serial data transfer ❐ ❐ ■ Waveform sequencer (including a 16-bit timer equipped with a buffer and a compare clear function) • 198 Champion Court Low-voltage detection (LVD) reset circuit The LVD function is enabled by default. For details, see “20.2 Recommended Operating Conditions” in “Electrical Characteristics”. ❐ • San Jose, CA 95134-1709 • 408-943-2600 Revised March 29, 2016 MB95690K Series ❐ The LVD function can be controlled through software. The LVD reset circuit control register (LVDCC) enables or disables the LVD reset. ❐ The LVD reset circuit has an internal low-voltage detector. The combination of detection voltage and release voltage can be selected from four options. ■ ❐ ■ Comparator  2 channels Built-in dedicated BGR ❐ The comparator reference voltage can be selected between the BGR voltage and the comparator pin. ❐ Document Number: 002-04692 Rev. *A Clock supervisor counter Built-in clock supervisor counter ❐ ■ Dual operation Flash memory The program/erase operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously. ❐ ■ Flash memory security function Protects the content of the Flash memory. ❐ Page 2 of 128 MB95690K Series Contents 14.4 Program area .................................................... 32 14.5 Memory space map........................................... 33 Features............................................................................. 1 15. Areas For Specific Applications ............................. 34 1. Product Line-up ............................................................ 4 16. I/O Map....................................................................... 35 2. Packages And Corresponding Products.................... 6 6. Pin Functions (FPT-48P-M49, FPT-52P-M02, LCC-48P-M11) ................................................................. 16 17. I/O Ports..................................................................... 17.1 Port 0................................................................. 17.2 Port 1................................................................. 17.3 Port 4................................................................. 17.4 Port 6................................................................. 17.5 Port 7................................................................. 17.6 Port F................................................................. 17.7 Port G ................................................................ 7. I/O Circuit Type ........................................................... 21 18. Interrupt Source Table ............................................. 80 8. Handling Precautions................................................. 8.1 Precautions for Product Design........................... 8.2 Precautions for Package Mounting ..................... 8.3 Precautions for Use Environment........................ 19. Pin States In Each Mode .......................................... 81 3. Differences Among Products And Notes On Product Selection ............................................................. 7 4. Pin Assignment ............................................................ 8 5. Pin Functions (FPT-44P-M25).................................... 12 23 23 24 26 9. Notes On Device Handling......................................... 26 10. Pin Connection ......................................................... 27 11. Block Diagram (FPT-44P-M25) ................................ 29 12. Block Diagram (FPT-48P-M49, FPT-52P-M02, LCC-48P-M11) ................................................................. 30 42 43 50 55 62 67 74 77 20. Electrical Characteristics......................................... 84 20.1 Absolute Maximum Ratings............................... 84 20.2 Recommended Operating Conditions ............... 86 20.3 DC Characteristics ............................................ 87 20.4 AC Characteristics............................................. 90 20.5 A/D Converter................................................. 109 20.6 Flash Memory Program/Erase Characteristics 113 21. Sample Characteristics.......................................... 114 13. CPU Core................................................................... 31 22. Ordering Information.............................................. 121 14. Memory Space .......................................................... 14.1 I/O area (addresses: 0x0000 to 0x007F)........... 14.2 Extended I/O area (addresses: 0x0F80 to 0x0FFF) ................................ 14.3 Data area........................................................... 23. Package Dimension................................................ 122 Document Number: 002-04692 Rev. *A 32 32 32 32 24. Major Changes In This Edition .............................. 126 Document History Page ............................................... 127 Sales, Solutions, and Legal Information .................... 128 Page 3 of 128 MB95690K Series 1. Product Line-up Part number MB95F694K MB95F696K MB95F698K Parameter Type Clock supervisor counter Flash memory product It supervises the main clock oscillation and the subclock oscillation. Flash memory capacity 20 Kbyte 36 Kbyte 60 Kbyte RAM capacity 512 bytes 1 Kbyte 2 Kbyte Power-on reset Yes Low-voltage detection reset Controlled through software Reset input Selected through software • • • CPU functions • • • Generalpurpose I/O Number of basic instructions Instruction bit length Instruction length Data bit length Minimum instruction execution time Interrupt processing time : 136 : 8 bits : 1 to 3 bytes : 1, 8 and 16 bits : 61.5 ns (machine clock frequency = 16.25 MHz) : 0.6 µs (machine clock frequency = 16.25 MHz) • FPT-44P-M25 - I/O port : 41 - CMOS I/O : 37 - N-ch open drain :4 • FPT-48P-M49, FPT-52P-M02, LCC-48P-M11 - I/O port : 45 - CMOS I/O : 41 - N-ch open drain :4 Time-base timer Interval time: 0.256 ms to 8.3 s (external clock frequency = 4 MHz) Hardware/ • Reset generation cycle software Main oscillation clock at 10 MHz: 105 ms (Min) watchdog timer • The sub-CR clock can be used as the source clock of the software watchdog timer. Wild register It can be used to replace 3 bytes of data. LIN-UART • • • • 8/10-bit A/D converter A wide range of communication speed can be selected by a dedicated reload timer. It has a full duplex double buffer. Both clock synchronous serial data transfer and clock asynchronous serial data transfer are enabled. The LIN function can be used as a LIN master or a LIN slave. • FPT-44P-M25: 8 channels • FPT-48P-M49, FPT-52P-M02, LCC-48P-M11: 12 channels 8-bit or 10-bit resolution can be selected. Document Number: 002-04692 Rev. *A Page 4 of 128 MB95690K Series Part number MB95F694K MB95F696K MB95F698K Parameter 2 channels • The timer can be configured as an “8-bit timer × 2 channels” or a “16-bit timer × 1 channel”. 8/16-bit • It has the following functions: interval timer function, PWC function, PWM function and input capture composite timer function. • Count clock: it can be selected from internal clocks (seven types) and external clocks. • It can output square wave. External interrupt On-chip debug • FPT-44P-M25: 7 channels • FPT-48P-M49, FPT-52P-M02, LCC-48P-M11: 8 channels • Interrupt by edge detection (The rising edge, falling edge, and both edges can be selected.) • It can be used to wake up the device from different standby modes. • 1-wire serial control • It supports serial writing (asynchronous mode). 1 channel UART/SIO • Data transfer with UART/SIO is enabled. • It has a full duplex double buffer, variable data length (5/6/7/8 bits), an internal baud rate generator and an error detection function. • It uses the NRZ type transfer format. • LSB-first data transfer and MSB-first data transfer are available to use. • Both clock asynchronous (UART) serial data transfer and clock synchronous (SIO) serial data transfer are enabled. 1 channel I2C bus interface • Master/slave transmission and reception • It has the following functions: bus error function, arbitration function, transmission direction detection function, wake-up function, and functions of generating and detecting repeated START conditions. 3 channels 8/16-bit PPG • Each channel can be used as an “8-bit timer  2 channels” or a “16-bit timer  1 channel”. • The counter operating clock can be selected from eight clock sources. 1 channel 16-bit PPG timer • • • • PWM mode and one-shot mode are available to use. The counter operating clock can be selected from eight clock sources. It supports external trigger start. It can work independently or together with the multi-pulse generator. 1 channel 16-bit reload timer Multi-pulse generator (for DC motor control) • • • • • Two clock modes and two counter operating modes are available to use. It can output square wave. Count clock: it can be selected from internal clocks (seven types) and external clocks. Two counter operating modes: reload mode and one-shot mode It can work independently or together with the multi-pulse generator. • • • • 16-bit PPG timer: 1 channel 16-bit reload timer operations: toggle output, one-shot output Event counter: 1 channel Waveform sequencer (including a 16-bit timer equipped with a buffer and a compare clear function) Document Number: 002-04692 Rev. *A Page 5 of 128 MB95690K Series Part number MB95F694K MB95F696K MB95F698K Parameter Watch prescaler Eight different time intervals can be selected. 2 channels Comparator Flash memory The reference voltage of each channel can be selected between the BGR voltage and the comparator pin. • It supports automatic programming (Embedded Algorithm), and program/erase/erasesuspend/erase-resume commands. • It has a flag indicating the completion of the operation of Embedded Algorithm. • Flash security feature for protecting the content of the Flash memory Number of program/erase cycles Data retention time 1000 20 years 10000 10 years 100000 5 years There are four standby modes as follows: • Stop mode • Sleep mode Standby mode • Watch mode • Time-base timer mode In standby mode, two further options can be selected: normal standby mode and deep standby mode. FPT-44P-M25 FPT-48P-M49 FPT-52P-M02 LCC-48P-M11 Package 2. Packages And Corresponding Products Part number MB95F694K MB95F696K MB95F698K FPT-44P-M25    FPT-48P-M49    FPT-52P-M02    LCC-48P-M11    Package : Available Document Number: 002-04692 Rev. *A Page 6 of 128 MB95690K Series 3. Differences Among Products And Notes On Product Selection • Current consumption When using the on-chip debug function, take account of the current consumption of Flash memory program/erase. For details of current consumption, see “Electrical Characteristics”. • Package For details of information on each package, see “Packages And Corresponding Products” and “Package Dimension”. • Operating voltage The operating voltage varies, depending on whether the on-chip debug function is used or not. For details of operating voltage, see “Electrical Characteristics”. • On-chip debug function The on-chip debug function requires that VCC, VSS and one serial wire be connected to an evaluation tool. For details of the connection method, refer to “CHAPTER 25 EXAMPLE OF SERIAL PROGRAMMING CONNECTION” in “New 8FX MB95690K Series Hardware Manual”. Document Number: 002-04692 Rev. *A Page 7 of 128 MB95690K Series Vss PG2/X1A/SNI2 1 2 PG1/X0A/SNI1 Vcc C P40/AN08 3 4 5 6 7 8 P67*1/OPT5/PPG21*2/TRG1 P01/INT01/AN01/CMP0_N P00/INT00/AN00/CMP0_P P03/INT03/AN03/CMP1_P 38 37 36 35 34 39 PF1/X1 PF0/X0 PF2/RST P06/INT06/AN06 P05/INT05/AN05/CMP1_O P04/INT04/AN04/CMP1_N 44 43 42 41 40 (TOP VIEW) LQFP44 FPT-44P-M25 9 21 P72/SCL P73/SDA P66*1/OPT4/PPG20*2/PPG1 P65*1/OPT3/PPG11*2 31 30 29 P64*1/OPT2/PPG10*2/EC1 28 27 P61*1/TI1 P60*1/DTTI 26 25 24 23 P77/UI0 P76/UO0 P63*1/OPT1/PPG01*2/TO11 P62*1/OPT0/PPG00*2/TO10 P75/UCK0 P74/EC0 22 20 P71/TO01 P70/TO00 17 18 19 P15/PPG20*2 P14/PPG01*2 P13/PPG00*2 P11/PPG11*2 P12/DBG P16/PPG21*2 P17/SNI0 10 11 12 P45/SCK P46/SOT P47/SIN P10/PPG10*2 33 32 13 14 15 16 P44/TO1 P02/INT02/AN02/CMP0_O 4. Pin Assignment *1: High-current pin (8 mA/12 mA) *2: The 8/16-bit PPG output pins are mapped to port 1 by default. To map the 8/16-bit PPG output pins to port 6, write “1” to the PPGSEL bit in the SYSC register. Document Number: 002-04692 Rev. *A Page 8 of 128 PG2/X1A/SNI2 PG1/X0A/SNI1 Vcc 1 2 3 C P40/AN08 P41/AN09 P42/AN10 P43/AN11 4 5 6 7 8 Vss PF1/X1 PF0/X0 PF2/RST P07/INT07/AN07 P06/INT06/AN06 P05/INT05/AN05/CMP1_O P04/INT04/AN04/CMP1_N P03/INT03/AN03/CMP1_P P02/INT02/AN02/CMP0_O P01/INT01/AN01/CMP0_N P00/INT00/AN00/CMP0_P 48 47 46 45 44 43 42 41 40 39 38 37 MB95690K Series (TOP VIEW) LQFP48 FPT-48P-M49 36 35 34 33 P67*1/OPT5/PPG21*2/TRG1 P66*1/OPT4/PPG20*2/PPG1 32 31 30 29 P63*1/OPT1/PPG01*2/TO11 P62*1/OPT0/PPG00*2/TO10 P65*1/OPT3/PPG11*2 P64*1/OPT2/PPG10*2/EC1 P61*1/TI1 P60*1/DTTI 22 23 24 P71/TO01 P72/SCL P73/SDA P16/PPG21*2 P15/PPG20*2 P12/DBG P13/PPG00*2 P11/PPG11*2 20 P75/UCK0 P74/EC0 21 26 25 P17/SNI0 11 12 P70/TO00 P76/UO0 P46/SOT P47/SIN 17 18 19 P77/UI0 27 P14/PPG01*2 28 13 14 15 16 9 10 P10/PPG10*2 P44/TO1 P45/SCK *1: High-current pin (8 mA/12 mA) *2: The 8/16-bit PPG output pins are mapped to port 1 by default. To map the 8/16-bit PPG output pins to port 6, write “1” to the PPGSEL bit in the SYSC register. Document Number: 002-04692 Rev. *A Page 9 of 128 PG2/X1A/SNI2 PG1/X0A/SNI1 1 2 Vcc C P40/AN08 P41/AN09 NC P42/AN10 P43/AN11 3 4 5 6 7 8 9 P02/INT02/AN02/CMP0_O P01/INT01/AN01/CMP0_N 42 41 40 P00/INT00/AN00/CMP0_P P03/INT03/AN03/CMP1_P 43 44 Vss PF1/X1 PF0/X0 PF2/RST P07/INT07/AN07 P06/INT06/AN06 NC P05/INT05/AN05/CMP1_O P04/INT04/AN04/CMP1_N 52 51 50 49 48 47 46 45 MB95690K Series (TOP VIEW) LQFP52 FPT-52P-M02 39 38 37 36 P67*1/OPT5/PPG21*2/TRG1 P66*1/OPT4/PPG20*2/PPG1 35 34 33 32 P63*1/OPT1/PPG01*2/TO11 P62*1/OPT0/PPG00*2/TO10 31 P60*1/DTTI P65*1/OPT3/PPG11*2 P64*1/OPT2/PPG10*2/EC1 NC P61*1/TI1 P76/UO0 P46/SOT 12 13 28 27 P75/UCK0 P74/EC0 P73/SDA 24 25 26 P71/TO01 P72/SCL P70/TO00 P17/SNI0 P15/PPG20*2 NC P16/PPG21*2 P14/PPG01*2 P12/DBG P13/PPG00*2 P10/PPG10*2 P11/PPG11*2 14 15 16 P47/SIN 22 23 P77/UI0 29 21 30 20 10 11 17 18 19 P44/TO1 P45/SCK *1: High-current pin (8 mA/12 mA) *2: The 8/16-bit PPG output pins are mapped to port 1 by default. To map the 8/16-bit PPG output pins to port 6, write “1” to the PPGSEL bit in the SYSC register. Document Number: 002-04692 Rev. *A Page 10 of 128 PG2/X1A/SNI2 PG1/X0A/SNI1 1 2 Vcc C 3 4 P40/AN08 P41/AN09 5 6 P42/AN10 P43/AN11 7 8 9 P44/TO1 Vss PF1/X1 PF0/X0 PF2/RST P07/INT07/AN07 P06/INT06/AN06 P05/INT05/AN05/CMP1_O P04/INT04/AN04/CMP1_N P03/INT03/AN03/CMP1_P P02/INT02/AN02/CMP0_O P01/INT01/AN01/CMP0_N P00/INT00/AN00/CMP0_P 48 47 46 45 44 43 42 41 40 39 38 37 MB95690K Series (TOP VIEW) QFN48 LCC-48P-M11 36 35 34 33 P67*1/OPT5/PPG21*2/TRG1 P66*1/OPT4/PPG20*2/PPG1 P65*1/OPT3/PPG11*2 32 31 30 29 28 P63*1/OPT1/PPG01*2/TO11 P62*1/OPT0/PPG00*2/TO10 P64*1/OPT2/PPG10*2/EC1 P61*1/TI1 P60*1/DTTI P77/UI0 22 23 24 P71/TO01 P72/SCL P73/SDA P16/PPG21*2 P15/PPG20*2 P12/DBG P13/PPG00*2 P11/PPG11*2 21 P74/EC0 P70/TO00 25 20 12 P17/SNI0 P75/UCK0 P47/SIN 17 18 19 P76/UO0 26 P14/PPG01*2 27 11 13 14 15 16 10 P46/SOT P10/PPG10*2 P45/SCK *1: High-current pin (8 mA/12 mA) *2: The 8/16-bit PPG output pins are mapped to port 1 by default. To map the 8/16-bit PPG output pins to port 6, write “1” to the PPGSEL bit in the SYSC register. Document Number: 002-04692 Rev. *A Page 11 of 128 MB95690K Series 5. Pin Functions (FPT-44P-M25) Pin no. 1 I/O Pin name circuit type*1 VSS — PG2 2 3 X1A C SNI2 PG1 General-purpose I/O port X0A VCC 5 C 8 9 10 11 12 13 14 15 16 17 Subclock I/O oscillation pin Trigger input pin for the position detection function of the MPG waveform sequencer 4 7 Power supply pin (GND) P40 AN08 P44 TO1 P45 SCK P46 SOT P47 SIN P10 PPG10 P11 PPG11 P12 DBG P13 PPG00 P14 PPG01 P15 PPG20 P16 PPG21 Input — Output OD*2 PU*3 — — — Hysteresis CMOS —  Hysteresis CMOS —  — — — — Hysteresis/ CMOS analog —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS  — Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  General-purpose I/O port C Subclock input oscillation pin Trigger input pin for the position detection function of the MPG waveform sequencer SNI1 6 I/O type Function — — E F F F I F F G F F F F Power supply pin Decoupling capacitor connection pin General-purpose I/O port 8/10-bit A/D converter analog input pin General-purpose I/O port 16-bit reload timer ch. 1 output pin General-purpose I/O port LIN-UART clock I/O pin General-purpose I/O port LIN-UART data output pin General-purpose I/O port LIN-UART data input pin General-purpose I/O port 8/16-bit PPG ch. 1 output pin General-purpose I/O port 8/16-bit PPG ch. 1 output pin General-purpose I/O port DBG input pin General-purpose I/O port 8/16-bit PPG ch. 0 output pin General-purpose I/O port 8/16-bit PPG ch. 0 output pin General-purpose I/O port 8/16-bit PPG ch. 2 output pin General-purpose I/O port 8/16-bit PPG ch. 2 output pin Document Number: 002-04692 Rev. *A — — CMOS — — Page 12 of 128 MB95690K Series Pin no. I/O Pin name circuit type*1 P17 18 19 20 21 22 23 24 25 26 27 28 29 SNI0 P70 TO00 P71 TO01 P72 SCL P73 SDA P74 EC0 P75 UCK0 P76 UO0 P77 UI0 P60 F F F H H F F F I D Trigger input pin for the position detection function of the MPG waveform sequencer General-purpose I/O port 8/16-bit composite timer ch. 0 output pin General-purpose I/O port 8/16-bit composite timer ch. 0 output pin General-purpose I/O port I2C bus interface ch. 0 clock I/O pin General-purpose I/O port I2C bus interface ch. 0 data I/O pin General-purpose I/O port 8/16-bit composite timer ch. 0 clock input pin General-purpose I/O port UART/SIO ch. 0 clock I/O pin General-purpose I/O port UART/SIO ch. 0 data output pin General-purpose I/O port UART/SIO ch. 0 data input pin General-purpose I/O port High-current pin DTTI MPG waveform sequencer input pin P61 General-purpose I/O port High-current pin D TI1 16-bit reload timer ch. 1 input pin P62 General-purpose I/O port High-current pin OPT0 D TO11 MPG waveform sequencer output pin Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  CMOS CMOS  — CMOS CMOS  — Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  8/16-bit composite timer ch. 1 output pin General-purpose I/O port High-current pin P63 PPG01 Output OD*2 PU*3 8/16-bit PPG ch. 0 output pin TO10 OPT1 Input General-purpose I/O port PPG00 30 I/O type Function D MPG waveform sequencer output pin 8/16-bit PPG ch. 0 output pin 8/16-bit composite timer ch. 1 output pin Document Number: 002-04692 Rev. *A Page 13 of 128 MB95690K Series Pin no. I/O Pin name circuit type*1 OPT2 D PPG10 32 8/16-bit composite timer ch. 1 clock input pin P65 General-purpose I/O port High-current pin D 35 D PPG1 16-bit PPG timer ch. 1 output pin D 8/16-bit PPG ch. 2 output pin TRG1 16-bit PPG timer ch. 1 trigger input pin P00 General-purpose I/O port INT00 External interrupt input pin E 8/10-bit A/D converter analog input pin P01 General-purpose I/O port INT01 External interrupt input pin AN01 INT02 AN02 E 8/10-bit A/D converter analog input pin  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis/ CMOS analog —  Hysteresis/ CMOS analog —  Hysteresis/ CMOS analog —  Hysteresis/ CMOS analog —  General-purpose I/O port E External interrupt input pin 8/10-bit A/D converter analog input pin Comparator ch. 0 digital output pin P03 General-purpose I/O port INT03 External interrupt input pin CMP1_P — Comparator ch. 0 inverting analog input (negative input) pin CMP0_O AN03 Hysteresis CMOS Comparator ch. 0 non-inverting analog input (positive input) pin P02 38 MPG waveform sequencer output pin PPG21 AN00  General-purpose I/O port High-current pin CMP0_N 37 MPG waveform sequencer output pin 8/16-bit PPG ch. 2 output pin CMP0_P 36 MPG waveform sequencer output pin PPG20 OPT5 — General-purpose I/O port High-current pin P67 34 Hysteresis CMOS 8/16-bit PPG ch. 1 output pin P66 OPT4 Output OD*2 PU*3 8/16-bit PPG ch. 1 output pin PPG11 33 MPG waveform sequencer output pin EC1 OPT3 Input General-purpose I/O port High-current pin P64 31 I/O type Function E 8/10-bit A/D converter analog input pin Comparator ch. 1 non-inverting analog input (positive input) pin Document Number: 002-04692 Rev. *A Page 14 of 128 MB95690K Series Pin no. 39 General-purpose I/O port INT04 External interrupt input pin AN04 E INT05 AN05 E 43 44 RST PF0 X0 PF1 X1 —  External interrupt input pin 8/10-bit A/D converter analog input pin Hysteresis/ CMOS analog —  Hysteresis/ CMOS analog —  Hysteresis CMOS  — Hysteresis CMOS — — Hysteresis CMOS — — General-purpose I/O port E AN06 PF2 CMOS Comparator ch. 1 digital output pin P06 42 CMOS/ analog Output OD*2 PU*3 General-purpose I/O port CMP1_O INT06 8/10-bit A/D converter analog input pin Input Comparator ch. 1 inverting analog input (negative input) pin P05 41 Function P04 CMP1_N 40 I/O type I/O Pin name circuit type*1 External interrupt input pin 8/10-bit A/D converter analog input pin A B B General-purpose I/O port Reset pin General-purpose I/O port Main clock input oscillation pin General-purpose I/O port Main clock I/O oscillation pin : Available *1: For the I/O circuit types, see “I/O Circuit Type”. *2: N-ch open drain *3: Pull-up Document Number: 002-04692 Rev. *A Page 15 of 128 MB95690K Series 6. Pin Functions (FPT-48P-M49, FPT-52P-M02, LCC-48P-M11) Pin no. I/O circuit Pin name LQFP48* , LQFP52*3 type*4 QFN48*2 1 PG2 2 1 Output OD*5 PU*6 Subclock I/O oscillation pin C SNI2 Trigger input pin for the position detection function of the MPG waveform sequencer PG1 General-purpose I/O port X0A Subclock input oscillation pin C 2 Input General-purpose I/O port X1A 1 I/O type Function SNI1 Trigger input pin for the position detection function of the MPG waveform sequencer Hysteresis CMOS —  Hysteresis CMOS —  3 3 VCC — Power supply pin — — — — 4 4 C — Decoupling capacitor connection pin — — — — 5 5 Hysteresis/ CMOS analog —  6 6 Hysteresis/ CMOS analog —  — 7 — — 7 8 Hysteresis/ CMOS analog —  8 9 Hysteresis/ CMOS analog —  9 10 Hysteresis CMOS —  10 11 Hysteresis CMOS —  11 12 Hysteresis CMOS —  12 13 CMOS —  13 14 Hysteresis CMOS —  P40 AN08 General-purpose I/O port E P41 AN09 NC General-purpose I/O port E — P42 AN10 P45 SCK P46 SOT P47 SIN P10 PPG10 Document Number: 002-04692 Rev. *A It is an internally connected pin. Always leave it unconnected. 8/10-bit A/D converter analog input pin General-purpose I/O port E P44 TO1 8/10-bit A/D converter analog input pin General-purpose I/O port E P43 AN11 8/10-bit A/D converter analog input pin 8/10-bit A/D converter analog input pin — — General-purpose I/O port F F F I F 16-bit reload timer ch. 1 output pin General-purpose I/O port LIN-UART clock I/O pin General-purpose I/O port LIN-UART data output pin General-purpose I/O port LIN-UART data input pin General-purpose I/O port 8/16-bit PPG ch. 1 output pin CMOS Page 16 of 128 MB95690K Series Pin no. I/O circuit Pin name LQFP48* , LQFP52*3 type*4 QFN48*2 1 14 15 15 16 16 17 17 18 18 19 — 20 19 21 P11 PPG11 P12 DBG P13 PPG00 P14 PPG01 P15 PPG20 NC P16 PPG21 F G F F F — F P17 20 22 SNI0 23 TO00 F 24 TO01 F 25 SCL F 26 SDA H 27 26 28 27 29 EC0 P75 UCK0 P76 UO0 Document Number: 002-04692 Rev. *A General-purpose I/O port 8/16-bit PPG ch. 0 output pin General-purpose I/O port 8/16-bit PPG ch. 0 output pin General-purpose I/O port 8/16-bit PPG ch. 2 output pin It is an internally connected pin. Always leave it unconnected. General-purpose I/O port 8/16-bit PPG ch. 2 output pin  Hysteresis CMOS  — Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  — — Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  — — Trigger input pin for the position detection function of the MPG waveform sequencer 8/16-bit composite timer ch. 0 output pin 8/16-bit composite timer ch. 0 output pin I2C bus interface ch. 0 clock I/O pin CMOS CMOS  — CMOS CMOS  — Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  General-purpose I/O port H P74 25 DBG input pin — General-purpose I/O port P73 24 General-purpose I/O port Hysteresis CMOS General-purpose I/O port P72 23 8/16-bit PPG ch. 1 output pin Output OD*5 PU*6 General-purpose I/O port P71 22 General-purpose I/O port Input General-purpose I/O port P70 21 I/O type Function I2C bus interface ch. 0 data I/O pin General-purpose I/O port F F F 8/16-bit composite timer ch. 0 clock input pin General-purpose I/O port UART/SIO ch. 0 clock I/O pin General-purpose I/O port UART/SIO ch. 0 data output pin Page 17 of 128 MB95690K Series Pin no. I/O circuit Pin name LQFP48* , LQFP52*3 type*4 QFN48*2 1 28 30 P77 UI0 I P60 29 30 31 32 D 33 34 35 General-purpose I/O port High-current pin D NC OPT0 — 34 36 37 It is an internally connected pin. Always leave it unconnected. D MPG waveform sequencer output pin 8/16-bit PPG ch. 0 output pin TO10 8/16-bit composite timer ch. 1 output pin D MPG waveform sequencer output pin 8/16-bit PPG ch. 0 output pin TO11 8/16-bit composite timer ch. 1 output pin D MPG waveform sequencer output pin 8/16-bit PPG ch. 1 output pin EC1 8/16-bit composite timer ch. 1 clock input pin P65 General-purpose I/O port High-current pin PPG11 Document Number: 002-04692 Rev. *A —  Hysteresis CMOS —  Hysteresis CMOS —  — — Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  Hysteresis CMOS —  — — General-purpose I/O port High-current pin PPG10 OPT3 Hysteresis CMOS General-purpose I/O port High-current pin PPG01 OPT2 Output OD*5 PU*6 General-purpose I/O port High-current pin PPG00 OPT1 Input 16-bit reload timer ch. 1 input pin P64 33 General-purpose I/O port High-current pin P61 P63 32 UART/SIO ch. 0 data input pin DTTI P62 31 General-purpose I/O port MPG waveform sequencer input pin TI1 — I/O type Function D MPG waveform sequencer output pin 8/16-bit PPG ch. 1 output pin Page 18 of 128 MB95690K Series Pin no. I/O circuit Pin name LQFP48* , LQFP52*3 type*4 QFN48*2 1 38 OPT4 D 8/16-bit PPG ch. 2 output pin PPG1 16-bit PPG timer ch. 1 output pin 37 39 40 D 8/16-bit PPG ch. 2 output pin TRG1 16-bit PPG timer ch. 1 trigger input pin P00 General-purpose I/O port INT00 External interrupt input pin E 41 General-purpose I/O port INT01 External interrupt input pin E 42 General-purpose I/O port INT02 External interrupt input pin E 43 8/10-bit A/D converter analog input pin P03 General-purpose I/O port INT03 External interrupt input pin AN03 CMP1_P Document Number: 002-04692 Rev. *A  Hysteresis CMOS —  Hysteresis/ CMOS analog —  Hysteresis/ CMOS analog —  Hysteresis/ CMOS analog —  Hysteresis/ CMOS analog —  Comparator ch. 0 digital output pin CMP0_O 40 8/10-bit A/D converter analog input pin P02 AN02 — Comparator ch. 0 inverting analog input (negative input) pin CMP0_N 39 8/10-bit A/D converter analog input pin P01 AN01 Hysteresis CMOS Comparator ch. 0 non-inverting analog input (positive input) pin CMP0_P 38 MPG waveform sequencer output pin PPG21 AN00 Output OD*5 PU*6 General-purpose I/O port High-current pin P67 36 MPG waveform sequencer output pin PPG20 OPT5 Input General-purpose I/O port High-current pin P66 35 I/O type Function E 8/10-bit A/D converter analog input pin Comparator ch. 1 non-inverting analog input (positive input) pin Page 19 of 128 MB95690K Series Pin no. I/O type I/O circuit Pin name LQFP48* , LQFP52*3 type*4 QFN48*2 Function 1 41 44 P04 General-purpose I/O port INT04 External interrupt input pin AN04 E 45 P05 General-purpose I/O port INT05 External interrupt input pin AN05 E 46 NC — P06 43 47 INT06 E INT07 49 46 50 47 51 48 52 PF2 RST PF0 X0 PF1 X1 VSS  Hysteresis/ CMOS analog —  It is an internally connected pin. Always leave it unconnected. — — Hysteresis/ CMOS analog —  Hysteresis/ CMOS analog —  Hysteresis CMOS  — Hysteresis CMOS — — Hysteresis CMOS — — — — — — External interrupt input pin General-purpose I/O port E External interrupt input pin 8/10-bit A/D converter analog input pin AN07 45 8/10-bit A/D converter analog input pin 8/10-bit A/D converter analog input pin P07 48 — General-purpose I/O port AN06 44 CMOS Comparator ch. 1 digital output pin CMP1_O — CMOS/ analog Output OD*5 PU*6 Comparator ch. 1 inverting analog input (negative input) pin CMP1_N 42 8/10-bit A/D converter analog input pin Input A B B — General-purpose I/O port Reset pin General-purpose I/O port Main clock input oscillation pin General-purpose I/O port Main clock I/O oscillation pin Power supply pin (GND) — — : Available *1: FPT-48P-M49 *2: LCC-48P-M02 *3: FPT-52P-M11 *4: For the I/O circuit types, see “I/O Circuit Type”. *5: N-ch open drain *6: Pull-up Document Number: 002-04692 Rev. *A Page 20 of 128 MB95690K Series 7. I/O Circuit Type Type Circuit A Remarks Reset input / Hysteresis input Reset output / Digital output • N-ch open drain output • Hysteresis input • Reset output N-ch B P-ch Port select Digital output N-ch Digital output Standby control Hysteresis input • Oscillation circuit • High-speed side Feedback resistance: approx. 1 M • CMOS output • Hysteresis input Clock input X1 X0 Standby control / Port select P-ch Port select Digital output N-ch Digital output Standby control Hysteresis input C Port select R Pull-up control P-ch P-ch • Oscillation circuit • Low-speed side Feedback resistance: approx. 5 M Digital output N-ch Digital output Standby control Hysteresis input • CMOS output • Hysteresis input • Pull-up control Clock input X1A X0A Standby control / Port select Port select R Pull-up control Digital output P-ch Digital output N-ch Digital output Standby control Hysteresis input Document Number: 002-04692 Rev. *A Page 21 of 128 MB95690K Series Type Circuit Remarks D Pull-up control R P-ch Digital output P-ch • • • • CMOS output Hysteresis input Pull-up control High current output • • • • CMOS output Hysteresis input Pull-up control Analog input Digital output N-ch Standby control Hysteresis input E Pull-up control R P-ch Digital output P-ch Digital output N-ch Analog input A/D control Standby control Hysteresis input F Pull-up control R P-ch • CMOS output • Hysteresis input • Pull-up control Digital output P-ch Digital output N-ch Standby control Hysteresis input G Standby control • N-ch open drain output • Hysteresis input Hysteresis input Digital output N-ch H Digital output • N-ch open drain output • CMOS input N-ch Standby control CMOS input Document Number: 002-04692 Rev. *A Page 22 of 128 MB95690K Series Type Circuit Remarks I Pull-up control R P-ch • CMOS output • CMOS input • Pull-up control Digital output P-ch Digital output N-ch Standby control CMOS input 8. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. 8.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices.  Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.  Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.  Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. (1) Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. (2) Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. (3) Handling of Unused Input Pins Document Number: 002-04692 Rev. *A Page 23 of 128 MB95690K Series Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.  Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. (2) Be sure that abnormal current flows do not occur during the power-on sequence.  Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.  Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.  Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 8.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress’s recommended conditions. For detailed information about mount conditions, contact your sales representative.  Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Document Number: 002-04692 Rev. *A Page 24 of 128 MB95690K Series  Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.  Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.  Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. (3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.  Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h  Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 M). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. (4) Ground all fixtures and instruments, or protect with anti-static measures. (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. Document Number: 002-04692 Rev. *A Page 25 of 128 MB95690K Series 8.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: (1) Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. (2) Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. (3) Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. (4) Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. (5) Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives. 9. Notes On Device Handling • Preventing latch-ups When using the device, ensure that the voltage applied does not exceed the maximum voltage rating. In a CMOS IC, if a voltage higher than VCC or a voltage lower than VSS is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in “20.1 Absolute Maximum Ratings” of “Electrical Characteristics” is applied to the VCC pin or the VSS pin, a latch-up may occur. When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed. • Stabilizing supply voltage Supply voltage must be stabilized. A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply. • Notes on using the external clock When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode. Document Number: 002-04692 Rev. *A Page 26 of 128 MB95690K Series 10. Pin Connection • Treatment of unused pins If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latchups. Always pull up or pull down an unused input pin through a resistor of at least 2 k. Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected. • Power supply pins To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the VCC pin and the VSS pin to the power supply and ground outside the device. In addition, connect the current supply source to the VCC pin and the VSS pin with low impedance. It is also advisable to connect a ceramic capacitor of approximately 0.1 µF as a bypass capacitor between the VCC pin and the VSS pin at a location close to this device. • DBG pin Connect the DBG pin to an external pull-up resistor of 2 k or above. After power-on, ensure that the DBG pin does not stay at “L” level until the reset output is released. The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor. • RST pin Connect the RST pin to an external pull-up resistor of 2 k or above. To prevent the device from unintentionally entering the reset mode due to noise, minimize the interconnection length between a pull-up resistor and the RST pin and that between a pull-up resistor and the VCC pin when designing the layout of the printed circuit board. The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC register. • C pin Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the VCC pin must have a capacitance equal to or larger than the capacitance of CS. For the connection to a decoupling capacitor CS, see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and CS and the distance between CS and the VSS pin when designing the layout of a printed circuit board. • DBG/RST/C pins connection diagram DBG C RST Cs Document Number: 002-04692 Rev. *A Page 27 of 128 MB95690K Series • Note on serial communication In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board to prevent noise from occurring. Taking account of the reception of wrong data, take measures such as adding a checksum to the end of data in order to detect errors. If an error is detected, retransmit the data. Document Number: 002-04692 Rev. *A Page 28 of 128 MB95690K Series 11. Block Diagram (FPT-44P-M25) F2MC-8FX CPU PF2*1/RST*2 Reset with LVD Dual operation Flash with security function (60/36/20 Kbyte) PF0/X0*2 PF1/X1*2 PG1/X0A*2 Oscillator circuit CR oscillator RAM (2048/1024/512 bytes) PG2/X1A*2 Interrupt controller Clock control P70/TO00 Watch prescaler C 8/16-bit composite timer ch. 0 P71/TO01 P74/EC0 P12*1/DBG On-chip debug (P62*3/TO10) Wild register 8/16-bit composite timer ch. 1 (P63*3/TO11) (P64*3/EC1) (P00/INT00 to P06/INT06) External interrupt P45/SCK P75/UCK0 P76/UO0 UART/SIO ch. 0 P77/UI0 P13/PPG00*4, (P62*3/PPG00*4) P14/PPG01*4, (P63*3/PPG01*4) P10/PPG10*4, (P64*3/PPG10*4) P11/PPG11*4, (P65*3/PPG11*4) 8/16-bit PPG ch. 0 8/16-bit PPG ch. 1 Internal bus LIN-UART P46/SOT P47/SIN (P00/CMP0_P) Comparator ch. 0 (P01/CMP0_N) (P02/CMP0_O) (P03/CMP1_P) Comparator ch. 1 (P04/CMP1_N) (P05/CMP1_O) P15/PPG20*4, (P66*3/PPG20*4) P16/PPG21*4, (P67*3/PPG21*4) 8/16-bit PPG ch. 2 MPG 16-bit reload timer ch. 1 (P00/AN00 to P06/AN06) P40/AN08 P44/TO1 P61*3/TI1 8/10-bit A/D converter P17/SNI0, PG1/SNI1, PG2/SNI2 P72*1/SCL *1/SDA P73 I2C bus interface ch. 0 Waveform sequencer P60*3/DTTI P61*3/TI1 (P62*3/OPT0 to P67*3/OPT5) 16-bit PPG timer ch. 1 Port (P66*3/PPG1) (P67*3/TRG1) Port Vcc Vss *1: P12, P72, P73 and PF2 are N-ch open drain pins. *2: Software select *3: P60 to P67 are high-current pins. *4: The 8/16-bit PPG output pins are mapped to port 1 by default. To map the 8/16-bit PPG output pins to port 6, write “1” to the PPGSEL bit in the SYSC register. Note: Pins in parentheses indicate that those pins are shared among different peripheral functions. Document Number: 002-04692 Rev. *A Page 29 of 128 MB95690K Series 12. Block Diagram (FPT-48P-M49, FPT-52P-M02, LCC-48P-M11) F2MC-8FX CPU PF2*1/RST*2 Reset with LVD Dual operation Flash with security function (60/36/20 Kbyte) PF0/X0*2 PF1/X1*2 PG1/X0A*2 PG2/X1A Oscillator circuit CR oscillator RAM (2048/1024/512 bytes) *2 Interrupt controller Clock control P70/TO00 C Watch prescaler 8/16-bit composite timer ch. 0 P71/TO01 P74/EC0 P12*1/DBG On-chip debug (P62*3/TO10) Wild register 8/16-bit composite timer ch. 1 (P63*3/TO11) (P64*3/EC1) (P00/INT00 to P07/INT07) External interrupt P45/SCK P75/UCK0 UART/SIO ch. 0 P77/UI0 P13/PPG00*4, (P62*3/PPG00*4) P14/PPG01*4, (P63*3/PPG01*4) P10/PPG10*4, (P64*3/PPG10*4) P11/PPG11*4, (P65*3/PPG11*4) 8/16-bit PPG ch. 0 8/16-bit PPG ch. 1 Internal bus P76/UO0 LIN-UART P46/SOT P47/SIN (P00/CMP0_P) Comparator ch. 0 (P01/CMP0_N) (P02/CMP0_O) (P03/CMP1_P) Comparator ch. 1 (P04/CMP1_N) (P05/CMP1_O) P15/PPG20*4, (P66*3/PPG20*4) P16/PPG21*4, (P67*3/PPG21*4) 8/16-bit PPG ch. 2 MPG 16-bit reload timer ch. 1 (P00/AN00 to P07/AN07) P40/AN08 to P43/AN11 P44/TO1 P61*3/TI1 8/10-bit A/D converter P17/SNI0, PG1/SNI1, PG2/SNI2 P72*1/SCL P73*1/SDA I2C bus interface ch. 0 Waveform sequencer P60*3/DTTI P61*3/TI1 (P62*3/OPT0 to P67*3/OPT5) 16-bit PPG timer ch. 1 Port (P66*3/PPG1) (P67*3/TRG1) Port Vcc Vss *1: P12, P72, P73 and PF2 are N-ch open drain pins. *2: Software select *3: P60 to P67 are high-current pins. *4: The 8/16-bit PPG output pins are mapped to port 1 by default. To map the 8/16-bit PPG output pins to port 6, write “1” to the PPGSEL bit in the SYSC register. Note: Pins in parentheses indicate that those pins are shared among different peripheral functions. Document Number: 002-04692 Rev. *A Page 30 of 128 MB95690K Series 13. CPU Core • Memory space The memory space of the MB95690K Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as generalpurpose registers and a vector table. The memory maps of the MB95690K Series are shown below. • Memory maps MB95F694K 0x0000 0x0080 0x0090 0x0100 0x0200 0x0290 I/O area Access prohibited RAM 512 bytes Registers MB95F696K 0x0000 0x0080 0x0090 0x0100 0x0200 I/O area Access prohibited RAM 1 Kbyte Registers MB95F698K 0x0000 0x0080 0x0090 0x0100 0x0200 I/O area Access prohibited RAM 2 Kbyte Registers 0x0490 Access prohibited Access prohibited 0x0890 Access prohibited 0x0F80 0x0F80 0x0F80 Extended I/O area Extended I/O area Extended I/O area 0x1000 0x1000 0x1000 Flash memory 4 Kbyte Flash memory 4 Kbyte 0x2000 0x2000 Access prohibited Access prohibited 0x8000 Flash memory 60 Kbyte Flash memory 32 Kbyte 0xC000 Flash memory 16 Kbyte 0xFFFF Document Number: 002-04692 Rev. *A 0xFFFF 0xFFFF Page 31 of 128 MB95690K Series 14. Memory Space The memory space of the MB95690K Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and a program area. The memory space includes areas for specific applications such as general-purpose registers and a vector table. 14.1 I/O area (addresses: 0x0000 to 0x007F) • This area contains the control registers and data registers for built-in peripheral functions. • As the I/O area forms part of the memory space, it can be accessed in the same way as the memory. It can also be accessed at high-speed by using direct addressing instructions. 14.2 Extended I/O area (addresses: 0x0F80 to 0x0FFF) • This area contains the control registers and data registers for built-in peripheral functions. • As the extended I/O area forms part of the memory space, it can be accessed in the same way as the memory. 14.3 • • • • Data area Static RAM is incorporated in the data area as the internal data area. The internal RAM size varies according to product. The RAM area from 0x0090 to 0x00FF can be accessed at high-speed by using direct addressing instructions. In MB95F698K, the area from 0x0090 to 0x047F is an extended direct addressing area. It can be accessed at highspeed by direct addressing instructions with a direct bank pointer set. • In MB95F696K, the area from 0x0090 to 0x047F is an extended direct addressing area. It can be accessed at highspeed by direct addressing instructions with a direct bank pointer set. • In MB95F694K, the area from 0x0090 to 0x028F is an extended direct addressing area. It can be accessed at highspeed by direct addressing instructions with a direct bank pointer set. • In MB95F694K/F696K/F698K, the area from 0x0100 to 0x01FF can be used as a general-purpose register area. 14.4 • • • • Program area The Flash memory is incorporated in the program area as the internal program area. The Flash memory size varies according to product. The area from 0xFFC0 to 0xFFFF is used as the vector table. The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register. Document Number: 002-04692 Rev. *A Page 32 of 128 MB95690K Series 14.5 Memory space map 0x0000 0x0080 0x0090 0x0100 I/O area Direct addressing area Access prohibited Registers (General-purpose register area) Extended direct addressing area 0x0200 0x047F Data area 0x088F 0x0890 Access prohibited 0x0F80 0x0FFF 0x1000 Extended I/O area Program area 0xFFC0 0xFFFF Document Number: 002-04692 Rev. *A Vector table area Page 33 of 128 MB95690K Series 15. Areas For Specific Applications The general-purpose register area and vector table area are used for the specific applications. • General-purpose register area (Addresses: 0x0100 to 0x01FF) • This area contains the auxiliary registers used for 8-bit arithmetic operations, transfer, etc. • As this area forms part of the RAM area, it can also be used as conventional RAM. • When the area is used as general-purpose registers, general-purpose register addressing enables high-speed access with short instructions. • Non-volatile register data area (Addresses: 0xFFBB to 0xFFBF) • The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register. For details, refer to “CHAPTER 27 NON-VOLATILE REGISTER (NVR) INTERFACE” in “New 8FX MB95690K Series Hardware Manual”. • Vector table area (Addresses: 0xFFC0 to 0xFFFF) • This area is used as the vector table for vector call instructions (CALLV), interrupts, and resets. • The top of the Flash memory area is allocated to the vector table area. The start address of a service routine is set to an address in the vector table in the form of data. “Interrupt Source Table” lists the vector table addresses corresponding to vector call instructions, interrupts, and resets. For details, refer to “CHAPTER 4 RESET”, “CHAPTER 5 INTERRUPTS” and “A.2 Special Instruction ■ Special Instruction ● CALLV #vct” in “APPENDIX” in “New 8FX MB95690K Series Hardware Manual”. • Direct bank pointer and access area Direct bank pointer (DP[2:0]) Operand-specified dir Access area 0bXXX (It does not affect mapping.) 0x0000 to 0x007F 0x0000 to 0x007F 0b000 (initial value) 0x0090 to 0x00FF 0x0090 to 0x00FF 0b001 0x0100 to 0x017F 0b010 0x0180 to 0x01FF 0b011 0x0200 to 0x027F 0b100 0x0080 to 0x00FF 0x0280 to 0x02FF*1 0b101 0x0300 to 0x037F 0b110 0x0380 to 0x03FF 0b111 0x0400 to 0x047F*2 *1: Due to the memory size limit, the available access area is up to “0x028F” in MB95F694K. *2: Due to the memory size limit, the available access area is up to “0x047F” in MB95F696K/F698K. Document Number: 002-04692 Rev. *A Page 34 of 128 MB95690K Series 16. I/O Map Address Register abbreviation 0x0000 PDR0 0x0001 Register name R/W Initial value Port 0 data register R/W 0b00000000 DDR0 Port 0 direction register R/W 0b00000000 0x0002 PDR1 Port 1 data register R/W 0b00000000 0x0003 DDR1 Port 1 direction register R/W 0b00000000 0x0004 — — — 0x0005 WATR Oscillation stabilization wait time setting register R/W 0b11111111 0x0006 PLLC PLL control register R/W 0b000X0000 0x0007 SYCC System clock control register R/W 0bXXX11011 0x0008 STBC Standby control register R/W 0b00000000 0x0009 RSRR Reset source register R/W 0b000XXXXX 0x000A TBTC Time-base timer control register R/W 0b00000000 0x000B WPCR Watch prescaler control register R/W 0b00000000 0x000C WDTC Watchdog timer control register R/W 0b00XX0000 0x000D SYCC2 System clock control register 2 R/W 0bXXXX0011 0x000E STBC2 Standby control register 2 R/W 0b00000000 0x000F to 0x0011 — — — 0x0012 PDR4 Port 4 data register R/W 0b00000000 0x0013 DDR4 Port 4 direction register R/W 0b00000000 0x0014, 0x0015 — — — 0x0016 PDR6 Port 6 data register R/W 0b00000000 0x0017 DDR6 Port 6 direction register R/W 0b00000000 0x0018 PDR7 Port 7 data register R/W 0b00000000 0x0019 DDR7 Port 7 direction register R/W 0b00000000 0x001A to 0x0027 — — — 0x0028 PDRF Port F data register R/W 0b00000000 0x0029 DDRF Port F direction register R/W 0b00000000 0x002A PDRG Port G data register R/W 0b00000000 0x002B DDRG Port G direction register R/W 0b00000000 0x002C PUL0 Port 0 pull-up register R/W 0b00000000 0x002D PUL1 Port 1 pull-up register R/W 0b00000000 0x002E, 0x002F — — — (Disabled) (Disabled) (Disabled) (Disabled) Document Number: 002-04692 Rev. *A (Disabled) Page 35 of 128 MB95690K Series Address Register abbreviation 0x0030 PUL4 0x0031 R/W Initial value Port 4 pull-up register R/W 0b00000000 PUL6 Port 6 pull-up register R/W 0b00000000 0x0032 PUL7 Port 7 pull-up register R/W 0b00000000 0x0033, 0x0034 — — — 0x0035 PULG Port G pull-up register R/W 0b00000000 0x0036 T01CR1 8/16-bit composite timer 01 status control register 1 R/W 0b00000000 0x0037 T00CR1 8/16-bit composite timer 00 status control register 1 R/W 0b00000000 0x0038 T11CR1 8/16-bit composite timer 11 status control register 1 R/W 0b00000000 0x0039 T10CR1 8/16-bit composite timer 10 status control register 1 R/W 0b00000000 0x003A PC01 8/16-bit PPG timer 01 control register R/W 0b00000000 0x003B PC00 8/16-bit PPG timer 00 control register R/W 0b00000000 0x003C PC11 8/16-bit PPG timer 11 control register R/W 0b00000000 0x003D PC10 8/16-bit PPG timer 10 control register R/W 0b00000000 0x003E PC21 8/16-bit PPG timer 21 control register R/W 0b00000000 0x003F PC20 8/16-bit PPG timer 20 control register R/W 0b00000000 0x0040 TMCSRH1 16-bit reload timer control status register (upper) ch. 1 R/W 0b00000000 0x0041 TMCSRL1 16-bit reload timer control status register (lower) ch. 1 R/W 0b00000000 0x0042 CMR0 Comparator control register ch. 0 R/W 0b11000101 0x0043 CMR1 Comparator control register ch. 1 R/W 0b11000101 0x0044 PCNTH1 16-bit PPG status control register (upper) R/W 0b00000000 0x0045 PCNTL1 16-bit PPG status control register (lower) R/W 0b00000000 0x0046, 0x0047 — — — 0x0048 EIC00 External interrupt circuit control register ch. 0/ch. 1 R/W 0b00000000 0x0049 EIC10 External interrupt circuit control register ch. 2/ch. 3 R/W 0b00000000 0x004A EIC20 External interrupt circuit control register ch. 4/ch. 5 R/W 0b00000000 0x004B EIC30 External interrupt circuit control register ch. 6/ch. 7 R/W 0b00000000 0x004C, 0x004D — — — 0x004E LVDR LVD reset voltage selection ID register R/W 0b00000000 0x004F LVDCC LVD reset circuit control register R/W 0b00000001 0x0050 SCR LIN-UART serial control register R/W 0b00000000 0x0051 SMR LIN-UART serial mode register R/W 0b00000000 0x0052 SSR LIN-UART serial status register R/W 0b00001000 RDR LIN-UART receive data register TDR LIN-UART transmit data register R/W 0b00000000 R/W 0b00000100 0x0053 0x0054 ESCR Register name (Disabled) (Disabled) (Disabled) LIN-UART extended status control register Document Number: 002-04692 Rev. *A Page 36 of 128 MB95690K Series Address Register abbreviation 0x0055 ECCR 0x0056 Register name R/W Initial value LIN-UART extended communication control register R/W 0b000000XX SMC10 UART/SIO serial mode control register 1 ch. 0 R/W 0b00000000 0x0057 SMC20 UART/SIO serial mode control register 2 ch. 0 R/W 0b00100000 0x0058 SSR0 UART/SIO serial status and data register ch. 0 R/W 0b00000001 0x0059 TDR0 UART/SIO serial output data register ch. 0 R/W 0b00000000 0x005A RDR0 UART/SIO serial input data register ch. 0 R 0b00000000 0x005B to 0x005F — — — 0x0060 IBCR00 I2C bus control register 0 ch. 0 R/W 0b00000000 0x0061 IBCR10 I2C bus control register 1 ch. 0 R/W 0b00000000 0x0062 IBSR0 I2C bus status register ch. 0 R/W 0b00000000 0x0063 IDDR0 I2C data register ch. 0 R/W 0b00000000 0x0064 IAAR0 I2C address register ch. 0 R/W 0b00000000 0x0065 ICCR0 I2C clock control register ch. 0 R/W 0b00000000 0x0066 OPCUR 16-bit MPG output control register (upper) R/W 0b00000000 0x0067 OPCLR 16-bit MPG output control register (lower) R/W 0b00000000 0x0068 IPCUR 16-bit MPG input control register (upper) R/W 0b00000000 0x0069 IPCLR 16-bit MPG input control register (lower) R/W 0b00000000 0x006A NCCR 16-bit MPG noise cancellation control register R/W 0b00000000 0x006B TCSR 16-bit MPG timer control status register R/W 0b00000000 0x006C ADC1 8/10-bit A/D converter control register 1 R/W 0b00000000 0x006D ADC2 8/10-bit A/D converter control register 2 R/W 0b00000000 0x006E ADDH 8/10-bit A/D converter data register (upper) R/W 0b00000000 0x006F ADDL 8/10-bit A/D converter data register (lower) R/W 0b00000000 0x0070 — — — 0x0071 FSR2 Flash memory status register 2 R/W 0b00000000 0x0072 FSR Flash memory status register R/W 0b000X0000 0x0073 SWRE0 Flash memory sector write control register 0 R/W 0b00000000 0x0074 FSR3 Flash memory status register 3 R 0b000XXXXX 0x0075 FSR4 Flash memory status register 4 R/W 0b00000000 0x0076 WREN Wild register address compare enable register R/W 0b00000000 0x0077 WROR Wild register data test setting register R/W 0b00000000 0x0078 — — — 0x0079 ILR0 Interrupt level setting register 0 R/W 0b11111111 0x007A ILR1 Interrupt level setting register 1 R/W 0b11111111 0x007B ILR2 Interrupt level setting register 2 R/W 0b11111111 (Disabled) (Disabled) Mirror of register bank pointer (RP) and direct bank pointer (DP) Document Number: 002-04692 Rev. *A Page 37 of 128 MB95690K Series Address Register abbreviation 0x007C ILR3 0x007D Register name R/W Initial value Interrupt level setting register 3 R/W 0b11111111 ILR4 Interrupt level setting register 4 R/W 0b11111111 0x007E ILR5 Interrupt level setting register 5 R/W 0b11111111 0x007F — — — 0x0F80 WRARH0 Wild register address setting register (upper) ch. 0 R/W 0b00000000 0x0F81 WRARL0 Wild register address setting register (lower) ch. 0 R/W 0b00000000 0x0F82 WRDR0 Wild register data setting register ch. 0 R/W 0b00000000 0x0F83 WRARH1 Wild register address setting register (upper) ch. 1 R/W 0b00000000 0x0F84 WRARL1 Wild register address setting register (lower) ch. 1 R/W 0b00000000 0x0F85 WRDR1 Wild register data setting register ch. 1 R/W 0b00000000 0x0F86 WRARH2 Wild register address setting register (upper) ch. 2 R/W 0b00000000 0x0F87 WRARL2 Wild register address setting register (lower) ch. 2 R/W 0b00000000 0x0F88 WRDR2 Wild register data setting register ch. 2 R/W 0b00000000 0x0F89 to 0x0F91 — — — 0x0F92 T01CR0 8/16-bit composite timer 01 status control register 0 R/W 0b00000000 0x0F93 T00CR0 8/16-bit composite timer 00 status control register 0 R/W 0b00000000 0x0F94 T01DR 8/16-bit composite timer 01 data register R/W 0b00000000 0x0F95 T00DR 8/16-bit composite timer 00 data register R/W 0b00000000 0x0F96 TMCR0 8/16-bit composite timer 00/01 timer mode control register R/W 0b00000000 0x0F97 T11CR0 8/16-bit composite timer 11 status control register 0 R/W 0b00000000 0x0F98 T10CR0 8/16-bit composite timer 10 status control register 0 R/W 0b00000000 0x0F99 T11DR 8/16-bit composite timer 11 data register R/W 0b00000000 0x0F9A T10DR 8/16-bit composite timer 10 data register R/W 0b00000000 0x0F9B TMCR1 8/16-bit composite timer 10/11 timer mode control register R/W 0b00000000 0x0F9C PPS01 8/16-bit PPG01 cycle setting buffer register R/W 0b11111111 0x0F9D PPS00 8/16-bit PPG00 cycle setting buffer register R/W 0b11111111 0x0F9E PDS01 8/16-bit PPG01 duty setting buffer register R/W 0b11111111 0x0F9F PDS00 8/16-bit PPG00 duty setting buffer register R/W 0b11111111 0x0FA0 PPS11 8/16-bit PPG11 cycle setting buffer register R/W 0b11111111 0x0FA1 PPS10 8/16-bit PPG10 cycle setting buffer register R/W 0b11111111 0x0FA2 PDS11 8/16-bit PPG11 duty setting buffer register R/W 0b11111111 0x0FA3 PDS10 8/16-bit PPG10 duty setting buffer register R/W 0b11111111 0x0FA4 PPGS 8/16-bit PPG start register R/W 0b00000000 0x0FA5 REVC 8/16-bit PPG output inversion register R/W 0b00000000 (Disabled) (Disabled) Document Number: 002-04692 Rev. *A Page 38 of 128 MB95690K Series Address Register abbreviation 0x0FA6 PPS21 0x0FA7 0x0FA8 0x0FA9 Register name R/W Initial value 8/16-bit PPG21 cycle setting buffer register R/W 0b11111111 PPS20 8/16-bit PPG20 cycle setting buffer register R/W 0b11111111 TMRH1 16-bit reload timer timer register (upper) ch. 1 TMRLRH1 16-bit reload timer reload register (upper) ch. 1 R/W 0b00000000 R/W 0b00000000 TMRL1 16-bit reload timer timer register (lower) ch. 1 TMRLRL1 16-bit reload timer reload register (lower) ch. 1 0x0FAA PDS21 8/16-bit PPG21 duty setting buffer register R/W 0b11111111 0x0FAB PDS20 8/16-bit PPG20 duty setting buffer register R/W 0b11111111 0x0FAC to 0x0FAF — — — 0x0FB0 PDCRH1 16-bit PPG downcounter register (upper) ch. 1 R 0b00000000 0x0FB1 PDCRL1 16-bit PPG downcounter register (lower) ch. 1 R 0b00000000 0x0FB2 PCSRH1 16-bit PPG cycle setting buffer register (upper) ch. 1 R/W 0b11111111 0x0FB3 PCSRL1 16-bit PPG cycle setting buffer register (lower) ch. 1 R/W 0b11111111 0x0FB4 PDUTH1 16-bit PPG duty setting buffer register (upper) ch. 1 R/W 0b11111111 0x0FB5 PDUTL1 16-bit PPG duty setting buffer register (lower) ch. 1 R/W 0b11111111 0x0FB6 to 0x0FBB — — — 0x0FBC BGR1 LIN-UART baud rate generator register 1 R/W 0b00000000 0x0FBD BGR0 LIN-UART baud rate generator register 0 R/W 0b00000000 0x0FBE PSSR0 UART/SIO dedicated baud rate generator prescaler select register ch. 0 R/W 0b00000000 0x0FBF BRSR0 UART/SIO dedicated baud rate generator baud rate setting register ch. 0 R/W 0b00000000 0x0FC0, 0x0FC1 — — — 0x0FC2 AIDRH A/D input disable register (upper) R/W 0b00000000 0x0FC3 AIDRL A/D input disable register (lower) R/W 0b00000000 0x0FC4 OPDBRH0 16-bit MPG output data buffer register (upper) ch. 0 R/W 0b00000000 0x0FC5 OPDBRL0 16-bit MPG output data buffer register (lower) ch. 0 R/W 0b00000000 0x0FC6 OPDBRH1 16-bit MPG output data buffer register (upper) ch. 1 R/W 0b00000000 0x0FC7 OPDBRL1 16-bit MPG output data buffer register (lower) ch. 1 R/W 0b00000000 0x0FC8 OPDBRH2 16-bit MPG output data buffer register (upper) ch. 2 R/W 0b00000000 0x0FC9 OPDBRL2 16-bit MPG output data buffer register (lower) ch. 2 R/W 0b00000000 0x0FCA OPDBRH3 16-bit MPG output data buffer register (upper) ch. 3 R/W 0b00000000 0x0FCB OPDBRL3 16-bit MPG output data buffer register (lower) ch. 3 R/W 0b00000000 0x0FCC OPDBRH4 16-bit MPG output data buffer register (upper) ch. 4 R/W 0b00000000 (Disabled) (Disabled) (Disabled) Document Number: 002-04692 Rev. *A Page 39 of 128 MB95690K Series Address Register abbreviation 0x0FCD OPDBRL4 0x0FCE Register name R/W Initial value 16-bit MPG output data buffer register (lower) ch. 4 R/W 0b00000000 OPDBRH5 16-bit MPG output data buffer register (upper) ch. 5 R/W 0b00000000 0x0FCF OPDBRL5 16-bit MPG output data buffer register (lower) ch. 5 R/W 0b00000000 0x0FD0 OPDBRH6 16-bit MPG output data buffer register (upper) ch. 6 R/W 0b00000000 0x0FD1 OPDBRL6 16-bit MPG output data buffer register (lower) ch. 6 R/W 0b00000000 0x0FD2 OPDBRH7 16-bit MPG output data buffer register (upper) ch. 7 R/W 0b00000000 0x0FD3 OPDBRL7 16-bit MPG output data buffer register (lower) ch. 7 R/W 0b00000000 0x0FD4 OPDBRH8 16-bit MPG output data buffer register (upper) ch. 8 R/W 0b00000000 0x0FD5 OPDBRL8 16-bit MPG output data buffer register (lower) ch. 8 R/W 0b00000000 0x0FD6 OPDBRH9 16-bit MPG output data buffer register (upper) ch. 9 R/W 0b00000000 0x0FD7 OPDBRL9 16-bit MPG output data buffer register (lower) ch. 9 R/W 0b00000000 0x0FD8 OPDBRHA 16-bit MPG output data buffer register (upper) ch. A R/W 0b00000000 0x0FD9 OPDBRLA 16-bit MPG output data buffer register (lower) ch. A R/W 0b00000000 0x0FDA OPDBRHB 16-bit MPG output data buffer register (upper) ch. B R/W 0b00000000 0x0FDB OPDBRLB 16-bit MPG output data buffer register (lower) ch. B R/W 0b00000000 0x0FDC OPDUR 16-bit MPG output data register (upper) R 0b0000XXXX 0x0FDD OPDLR 16-bit MPG output data register (lower) R 0bXXXXXXXX 0x0FDE CPCUR 16-bit MPG compare clear register (upper) R/W 0bXXXXXXXX 0x0FDF CPCLR 16-bit MPG compare clear register (lower) R/W 0bXXXXXXXX 0x0FE0 LVDPW LVD reset circuit password register R/W 0b00000000 0x0FE1 — — — 0x0FE2 TMBUR 16-bit MPG timer buffer register (upper) R 0bXXXXXXXX 0x0FE3 TMBLR 16-bit MPG timer buffer register (lower) R 0bXXXXXXXX 0x0FE4 CRTH Main CR clock trimming register (upper) R/W 0b000XXXXX 0x0FE5 CRTL Main CR clock trimming register (lower) R/W 0b000XXXXX 0x0FE6 — — — 0x0FE7 CRTDA Main CR clock temperature dependent adjustment register R/W 0b000XXXXX 0x0FE8 SYSC System configuration register R/W 0b11000011 0x0FE9 CMCR Clock monitoring control register R/W 0b00000000 0x0FEA CMDR Clock monitoring data register R 0b00000000 0x0FEB WDTH Watchdog timer selection ID register (upper) R 0bXXXXXXXX 0x0FEC WDTL Watchdog timer selection ID register (lower) R 0bXXXXXXXX 0x0FED, 0x0FEE — — — 0x0FEF WICR R/W 0b01000000 (Disabled) (Disabled) (Disabled) Interrupt pin selection circuit control register Document Number: 002-04692 Rev. *A Page 40 of 128 MB95690K Series Address Register abbreviation Register name R/W Initial value 0x0FF0 to 0x0FFF — (Disabled) — — • R/W access symbols R/W : Readable/Writable R : Read only • Initial value symbols 0 : The initial value of this bit is “0”. 1 : The initial value of this bit is “1”. X : The initial value of this bit is undefined. Note: Do not write to an address that is “(Disabled)”. If a “(Disabled)” address is read, an indeterminate value is returned. Document Number: 002-04692 Rev. *A Page 41 of 128 MB95690K Series 17. I/O Ports • List of port registers Register name Read/Write Initial value Port 0 data register PDR0 R, RM/W 0b00000000 Port 0 direction register DDR0 R/W 0b00000000 Port 1 data register PDR1 R, RM/W 0b00000000 Port 1 direction register DDR1 R/W 0b00000000 Port 4 data register PDR4 R, RM/W 0b00000000 Port 4 direction register DDR4 R/W 0b00000000 Port 6 data register PDR6 R, RM/W 0b00000000 Port 6 direction register DDR6 R/W 0b00000000 Port 7 data register PDR7 R, RM/W 0b00000000 Port 7 direction register DDR7 R/W 0b00000000 Port F data register PDRF R, RM/W 0b00000000 Port F direction register DDRF R/W 0b00000000 Port G data register PDRG R, RM/W 0b00000000 Port G direction register DDRG R/W 0b00000000 Port 0 pull-up register PUL0 R/W 0b00000000 Port 1 pull-up register PUL1 R/W 0b00000000 Port 4 pull-up register PUL4 R/W 0b00000000 Port 6 pull-up register PUL6 R/W 0b00000000 Port 7 pull-up register PUL7 R/W 0b00000000 Port G pull-up register PULG R/W 0b00000000 A/D input disable register (upper) AIDRH R/W 0b00000000 A/D input disable register (lower) AIDRL R/W 0b00000000 R/W : Readable/writable (The read value is the same as the write value.) R, RM/W : Readable/writable (The read value is different from the write value. The write value is read by the readmodify-write (RMW) type of instruction.) Document Number: 002-04692 Rev. *A Page 42 of 128 MB95690K Series 17.1 Port 0 Port 0 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in “New 8FX MB95690K Series Hardware Manual”. 17.1.1 Port 0 configuration Port 0 is made up of the following elements. • General-purpose I/O pins/peripheral function I/O pins • Port 0 data register (PDR0) • Port 0 direction register (DDR0) • Port 0 pull-up register (PUL0) • A/D input disable register (lower) (AIDRL) 17.1.2 Block diagrams of port 0 • P00/INT00/AN00/CMP0_P pin This pin has the following peripheral functions: • External interrupt input pin (INT00) • 8/10-bit A/D converter analog input pin (AN00) • Comparator ch. 0 non-inverting analog input (positive input) pin (CMP0_P) • P01/INT01/AN01/CMP0_N pin This pin has the following peripheral functions: • External interrupt input pin (INT01) • 8/10-bit A/D converter analog input pin (AN01) • Comparator ch. 0 inverting analog input (negative input) pin (CMP0_N) • P03/INT03/AN03/CMP1_P pin This pin has the following peripheral functions: • External interrupt input pin (INT03) • 8/10-bit A/D converter analog input pin (AN03) • Comparator ch. 1 non-inverting analog input (positive input) pin (CMP1_P) • P04/INT04/AN04/CMP1_N pin This pin has the following peripheral functions: • External interrupt input pin (INT04) • 8/10-bit A/D converter analog input pin (AN04) • Comparator ch. 1 inverting analog input (negative input) pin (CMP1_N) Document Number: 002-04692 Rev. *A Page 43 of 128 MB95690K Series • Block diagram of P00/INT00/AN00/CMP0_P, P04/INT04/AN04/CMP1_N Comparator analog input Comparator analog input disable Peripheral function input P01/INT01/AN01/CMP0_N, P03/INT03/AN03/CMP1_P A/D analog input Peripheral function input enable (INT00, INT01, INT03 and INT04) Hysteresis 0 Pull-up 1 PDR0 read PDR0 Pin PDR0 write Internal bus Executing bit manipulation instruction DDR0 read DDR0 DDR0 write Stop mode, watch mode (SPL = 1) PUL0 read PUL0 PUL0 write AIDRL read AIDRL AIDRL write Document Number: 002-04692 Rev. *A Page 44 of 128 and MB95690K Series • P02/INT02/AN02/CMP0_O pin This pin has the following peripheral functions: • External interrupt input pin (INT02) • 8/10-bit A/D converter analog input pin (AN02) • Comparator ch. 0 digital output pin (CMP0_O) • P05/INT05/AN05/CMP1_O pin This pin has the following peripheral functions: • External interrupt input pin (INT05) • 8/10-bit A/D converter analog input pin (AN05) • Comparator ch. 1 digital output pin (CMP1_O) • Block diagram of P02/INT02/AN02/CMP0_O and P05/INT05/AN05/CMP1_O Peripheral function input A/D analog input Peripheral function input enable (INT02 and INT05) Peripheral function output enable Peripheral function output Hysteresis Pull-up 0 1 PDR0 read 1 PDR0 0 Pin PDR0 write Internal bus Executing bit manipulation instruction DDR0 read DDR0 DDR0 write Stop mode, watch mode (SPL = 1) PUL0 read PUL0 PUL0 write AIDRL read AIDRL AIDRL write Document Number: 002-04692 Rev. *A Page 45 of 128 MB95690K Series • P06/INT06/AN06 pin This pin has the following peripheral functions: • External interrupt input pin (INT06) • 8/10-bit A/D converter analog input pin (AN06) • P07/INT07/AN07 pin This pin has the following peripheral functions: • External interrupt input pin (INT07) • 8/10-bit A/D converter analog input pin (AN07) • Block diagram of P06/INT06/AN06 and P07/INT07/AN07 Peripheral function input A/D analog input Peripheral function input enable (INT06 and INT07) Hysteresis 0 Pull-up 1 PDR0 read PDR0 Pin PDR0 write Internal bus Executing bit manipulation instruction DDR0 read DDR0 DDR0 write Stop mode, watch mode (SPL = 1) PUL0 read PUL0 PUL0 write AIDRL read AIDRL AIDRL write Document Number: 002-04692 Rev. *A Page 46 of 128 MB95690K Series 17.1.3 Port 0 registers • Port 0 register functions Register abbreviation PDR0 DDR0 PUL0 AIDRL Data Read Read by read-modify-write (RMW) instruction Write 0 Pin state is “L” level. PDR0 value is “0”. As output port, outputs “L” level. 1 Pin state is “H” level. PDR0 value is “1”. As output port, outputs “H” level. 0 Port input enabled 1 Port output enabled 0 Pull-up disabled 1 Pull-up enabled 0 Analog input enabled 1 Port input enabled • Correspondence between registers and pins for port 0 Correspondence between related register bits and pins Pin name P07 P06 P05 P04 P03 P02 P01 P00 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 PDR0 DDR0 PUL0 AIDRL Document Number: 002-04692 Rev. *A Page 47 of 128 MB95690K Series 17.1.4 Port 0 operations • Operation as an output port • A pin becomes an output port if the bit in the DDR0 register corresponding to that pin is set to “1”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • When a pin is used as an output port, it outputs the value of the PDR0 register to external pins. • If data is written to the PDR0 register, the value is stored in the output latch and is output to the pin set as an output port as it is. • Reading the PDR0 register returns the PDR0 register value. • Operation as an input port • A pin becomes an input port if the bit in the DDR0 register corresponding to that pin is set to “0”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • When using a pin shared with the analog input function as an input port, set the corresponding bit in the A/D input disable register (lower) (AIDRL) to “1”. • If data is written to the PDR0 register, the value is stored in the output latch but is not output to the pin set as an input port. • Reading the PDR0 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned. • Operation as a peripheral function output pin • A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin. • The pin value can be read from the PDR0 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR0 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned. • Operation as a peripheral function input pin • To set a pin as an input port, set the bit in the DDR0 register corresponding to the input pin of a peripheral function to “0”. • When using a pin shared with the analog input function as another peripheral function input pin, configure it as an input port by setting the bit in the AIDRL register corresponding to that pin to “1”. • Reading the PDR0 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned. • Operation at reset If the CPU is reset, all bits in the DDR0 register are initialized to “0” and port input is enabled. As for a pin shared with the analog input function, its port input is disabled because the AIDRL register is initialized to “0”. • Operation in stop mode and watch mode • If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR0 register value. The input of that pin is locked to “L” level and blocked in order to prevent leaks due to input open. However, if the interrupt input is enabled for the external interrupt (INT00 to INT07), the input is enabled and not blocked. • If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained. • Operation as an analog input pin • Set the bit in the DDR0 register bit corresponding to the analog input pin to “0” and the bit corresponding to that pin in the AIDRL register to “0”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. In addition, set the Document Number: 002-04692 Rev. *A Page 48 of 128 MB95690K Series corresponding bit in the PUL0 register to “0”. • Operation as an external interrupt input pin • Set the bit in the DDR0 register corresponding to the external interrupt input pin to “0”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • The pin value is always input to the external interrupt circuit. When using a pin for a function other than the interrupt, disable the external interrupt function corresponding to that pin. • Operation of the pull-up register Setting the bit in the PUL0 register to “1” makes the pull-up resistor be internally connected to the pin. When the pin output is “L” level, the pull-up resistor is disconnected regardless of the value of the PUL0 register. • Operation as a comparator input pin (only for P00 and P03) • Set the bit in the AIDRL register corresponding to the comparator input pin to “0”. • Regardless of the value of the PDR0 register and that of the DDR0 register, if the comparator analog input enable bit in the comparator control register ch. 0/ch. 1 (CMR0/CMR1:VCID) is set to “0”, the comparator input function is enabled. • To disable the comparator input function, set the VCID bit to “1”. • For details of the comparator, refer to “CHAPTER 28 COMPARATOR” in “New 8FX MB95690K Series Hardware Manual”. • Operation as a comparator input pin (only for P01 and P04) • Set the bit in the AIDRL register corresponding to the comparator input pin to “0”. • Regardless of the value of the PDR0 register and that of the DDR0 register, if the comparator analog input enable bit (VCID) and the negative analog input voltage source select bit (BGRS) in the comparator control register ch. 0/ch. 1 (CMR0/CMR1) are both set to “0”, the comparator input function is enabled. • To disable the comparator input function, set the VCID bit or the BGRS bit to “1”. • For details of the comparator, refer to “CHAPTER 28 COMPARATOR” in “New 8FX MB95690K Series Hardware Manual”. Document Number: 002-04692 Rev. *A Page 49 of 128 MB95690K Series 17.2 Port 1 Port 1 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in “New 8FX MB95690K Series Hardware Manual”. 17.2.1 Port 1 configuration Port 1 is made up of the following elements. • General-purpose I/O pins/peripheral function I/O pins • Port 1 data register (PDR1) • Port 1 direction register (DDR1) • Port 1 pull-up register (PUL1) 17.2.2 Block diagrams of port 1 • P10/PPG10* pin This pin has the following peripheral function: • 8/16-bit PPG ch. 1 output pin (PPG10) • P11/PPG11* pin This pin has the following peripheral function: • 8/16-bit PPG ch. 1 output pin (PPG11) • P13/PPG00* pin This pin has the following peripheral function: • 8/16-bit PPG ch. 0 output pin (PPG00) • P14/PPG01* pin This pin has the following peripheral function: • 8/16-bit PPG ch. 0 output pin (PPG01) • P15/PPG20* pin This pin has the following peripheral function: • 8/16-bit PPG ch. 2 output pin (PPG20) • P16/PPG21* pin This pin has the following peripheral function: • 8/16-bit PPG ch. 2 output pin (PPG21) *: The 8/16-bit PPG output pins are mapped to pins according to the setting of the PPGSEL bit in the SYSC register. See the table below for details. SYSC:PPGSEL = 0 SYSC:PPGSEL = 1 8/16-bit PPG output pin Pin PPG00 P13 P62 PPG01 P14 P63 PPG10 P10 P64 PPG11 P11 P65 PPG20 P15 P66 PPG21 P16 P67 Document Number: 002-04692 Rev. *A Page 50 of 128 MB95690K Series • Block diagram of P10/PPG10, P11/PPG11, P13/PPG00, P14/PPG01, P15/PPG20 and P16/PPG21 Peripheral function output enable Peripheral function output Hysteresis Pull-up 0 1 PDR1 read 1 PDR1 Pin 0 PDR1 write Internal bus Executing bit manipulation instruction DDR1 read DDR1 DDR1 write Stop mode, watch mode (SPL = 1) PUL1 read PUL1 PUL1 write • P12/DBG pin This pin has the following peripheral function: • DBG input pin (DBG) • Block diagram of P12/DBG Hysteresis 0 1 PDR1 read Internal bus PDR1 Pin OD PDR1 write Executing bit manipulation instruction DDR1 read DDR1 DDR1 write Stop mode, watch mode (SPL = 1) Document Number: 002-04692 Rev. *A Page 51 of 128 MB95690K Series • P17/SNI0 pin This pin has the following peripheral function: • Trigger input pin for the position detection function of the MPG waveform sequencer (SNI0) • Block diagram of P17/SNI0 Peripheral function input Hysteresis 0 Pull-up 1 PDR1 read PDR1 Pin PDR1 write Internal bus Executing bit manipulation instruction DDR1 read DDR1 DDR1 write Stop mode, watch mode (SPL = 1) PUL1 read PUL1 PUL1 write Document Number: 002-04692 Rev. *A Page 52 of 128 MB95690K Series 17.2.3 Port 1 registers • Port 1 register functions Register abbreviation PDR1 DDR1 PUL1 Data Read Read by read-modify-write (RMW) instruction Write 0 Pin state is “L” level. PDR1 value is “0”. As output port, outputs “L” level. 1 Pin state is “H” level. PDR1 value is “1”. As output port, outputs “H” level.* 0 Port input enabled 1 Port output enabled 0 Pull-up disabled 1 Pull-up enabled *: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z. • Correspondence between registers and pins for port 1 Correspondence between related register bits and pins Pin name P17 P16 P15 P14 P13 P12 P11 P10 bit7 bit6 bit5 bit4 bit3 bit2* bit1 bit0 PDR1 DDR1 PUL1 *: Though P12 has no pull-up function, bit2 in the PUL1 register can still be accessed. The operation of P12 is not affected by the setting of bit2 in the PUL1 register. Document Number: 002-04692 Rev. *A Page 53 of 128 MB95690K Series 17.2.4 Port 1 operations • Operation as an output port • A pin becomes an output port if the bit in the DDR1 register corresponding to that pin is set to “1”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • When a pin is used as an output port, it outputs the value of the PDR1 register to external pins. • If data is written to the PDR1 register, the value is stored in the output latch and is output to the pin set as an output port as it is. • Reading the PDR1 register returns the PDR1 register value. • Operation as an input port • A pin becomes an input port if the bit in the DDR1 register corresponding to that pin is set to “0”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • If data is written to the PDR1 register, the value is stored in the output latch but is not output to the pin set as an input port. • Reading the PDR1 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned. • Operation as a peripheral function output pin • A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin. • The pin value can be read from the PDR1 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR1 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned. • Operation as a peripheral function input pin • To set a pin as an input port, set the bit in the DDR1 register corresponding to the input pin of a peripheral function to “0”. • Reading the PDR1 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned. • Operation at reset If the CPU is reset, all bits in the DDR1 register are initialized to “0” and port input is enabled. • Operation in stop mode and watch mode • If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR1 register value. The input of that pin is locked to “L” level and blocked in order to prevent leaks due to input open. • If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained. • Operation of the pull-up register Setting the bit in the PUL1 register to “1” makes the pull-up resistor be internally connected to the pin. When the pin output is “L” level, the pull-up resistor is disconnected regardless of the value of the PUL1 register. Document Number: 002-04692 Rev. *A Page 54 of 128 MB95690K Series 17.3 Port 4 Port 4 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in “New 8FX MB95690K Series Hardware Manual”. 17.3.1 Port 4 configuration Port 4 is made up of the following elements. • General-purpose I/O pins/peripheral function I/O pins • Port 4 data register (PDR4) • Port 4 direction register (DDR4) • Port 4 pull-up register (PUL4) • A/D input disable register (upper) (AIDRH) 17.3.2 Block diagrams of port 4 • P40/AN08 pin This pin has the following peripheral function: • 8/10-bit A/D converter analog input pin (AN08) • P41/AN09 pin This pin has the following peripheral function: • 8/10-bit A/D converter analog input pin (AN09) • P42/AN10 pin This pin has the following peripheral function: • 8/10-bit A/D converter analog input pin (AN10) • P43/AN11 pin This pin has the following peripheral function: • 8/10-bit A/D converter analog input pin (AN11) Document Number: 002-04692 Rev. *A Page 55 of 128 MB95690K Series • Block diagram of P40/AN08, P41/AN09, P42/AN10 and P43/AN11 A/D analog input Hysteresis 0 Pull-up 1 PDR4 read PDR4 Pin PDR4 write Internal bus Executing bit manipulation instruction DDR4 read DDR4 DDR4 write Stop mode, watch mode (SPL = 1) PUL4 read PUL4 PUL4 write AIDRH read AIDRH AIDRH write Document Number: 002-04692 Rev. *A Page 56 of 128 MB95690K Series • P44/TO1 pin This pin has the following peripheral function: • 16-bit reload timer ch. 1 output pin (TO1) • P46/SOT pin This pin has the following peripheral function: • LIN-UART data output pin (SOT) • Block diagram of P44/TO1 and P46/SOT Peripheral function output enable Peripheral function output Hysteresis Pull-up 0 1 PDR4 read 1 PDR4 0 Pin PDR4 write Internal bus Executing bit manipulation instruction DDR4 read DDR4 DDR4 write Stop mode, watch mode (SPL = 1) PUL4 read PUL4 PUL4 write Document Number: 002-04692 Rev. *A Page 57 of 128 MB95690K Series • P45/SCK pin This pin has the following peripheral functions: • LIN-UART clock I/O pin (SCK) • Block diagram of P45/SCK Peripheral function input Peripheral function input enable Peripheral function output enable Peripheral function output Hysteresis Pull-up 0 1 PDR4 read 1 PDR4 0 Pin PDR4 write Internal bus Executing bit manipulation instruction DDR4 read DDR4 DDR4 write Stop mode, watch mode (SPL = 1) PUL4 read PUL4 PUL4 write • P47/SIN pin This pin has the following peripheral function: • LIN-UART data input pin (SIN) Document Number: 002-04692 Rev. *A Page 58 of 128 MB95690K Series • Block diagram of P47/SIN Peripheral function input Peripheral function input enable CMOS 0 Pull-up 1 PDR4 read PDR4 Pin PDR4 write Internal bus Executing bit manipulation instruction DDR4 read DDR4 DDR4 write Stop mode, watch mode (SPL = 1) PUL4 read PUL4 PUL4 write Document Number: 002-04692 Rev. *A Page 59 of 128 MB95690K Series 17.3.3 Port 4 registers • Port 4 register functions Register abbreviation PDR4 DDR4 PUL4 AIDRH Data Read Read by read-modify-write (RMW) instruction Write 0 Pin state is “L” level. PDR4 value is “0”. As output port, outputs “L” level. 1 Pin state is “H” level. PDR4 value is “1”. As output port, outputs “H” level. 0 Port input enabled 1 Port output enabled 0 Pull-up disabled 1 Pull-up enabled 0 Analog input enabled 1 Port input enabled • Correspondence between registers and pins for port 4 Correspondence between related register bits and pins Pin name P47 P46 P45 P44 bit7 bit6 bit5 bit4 - - - - P43 P42 P41 P40 bit3 bit2 bit1 bit0 PDR4 DDR4 PUL4 AIDRH Document Number: 002-04692 Rev. *A Page 60 of 128 MB95690K Series 17.3.4 Port 4 operations • Operation as an output port • A pin becomes an output port if the bit in the DDR4 register corresponding to that pin is set to “1”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • When a pin is used as an output port, it outputs the value of the PDR4 register to external pins. • If data is written to the PDR4 register, the value is stored in the output latch and is output to the pin set as an output port as it is. • Reading the PDR4 register returns the PDR4 register value. • Operation as an input port • A pin becomes an input port if the bit in the DDR4 register corresponding to that pin is set to “0”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • When using a pin shared with the analog input function as an input port, set the corresponding bit in the A/D input disable register (upper) (AIDRH) to “1” • If data is written to the PDR4 register, the value is stored in the output latch but is not output to the pin set as an input port. • Reading the PDR4 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR4 register, the PDR4 register value is returned. • Operation as a peripheral function output pin • A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin. • The pin value can be read from the PDR4 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR4 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR4 register, the PDR4 register value is returned. • Operation as a peripheral function input pin • To set a pin as an input port, set the bit in the DDR4 register corresponding to the input pin of a peripheral function to “0”. • When using a pin shared with the analog input function as another peripheral function input pin, configure it as an input port by setting the bit in the AIDRH register corresponding to that pin to “1”. • Reading the PDR4 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR4 register, the PDR4 register value is returned. • Operation at reset If the CPU is reset, all bits in the DDR4 register are initialized to “0” and port input is enabled. As for a pin shared with the analog input function, its port input is disabled because the AIDRH register is initialized to “0”. • Operation in stop mode and watch mode • If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR4 register value. The input of that pin is locked to “L” level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P45/SCK and P47/SIN is enabled by the external interrupt control register ch. 0 (EIC00) of the external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt pin selection circuit, the input is enabled and is not blocked. • If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained. • Operation as an analog input pin • Set the bit in the DDR4 register bit corresponding to the analog input pin to “0” and the bit corresponding to that pin in the AIDRH register to “0”. Document Number: 002-04692 Rev. *A Page 61 of 128 MB95690K Series • For a pin shared with other peripheral functions, disable the output of such peripheral functions. In addition, set the corresponding bit in the PUL4 register to “0”. • Operation of the pull-up register Setting the bit in the PUL4 register to “1” makes the pull-up resistor be internally connected to the pin. When the pin output is “L” level, the pull-up resistor is disconnected regardless of the value of the PUL4 register. 17.4 Port 6 Port 6 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in “New 8FX MB95690K Series Hardware Manual”. 17.4.1 Port 6 configuration Port 6 is made up of the following elements. • General-purpose I/O pins/peripheral function I/O pins • Port 6 data register (PDR6) • Port 6 direction register (DDR6) • Port 6 pull-up register (PUL6) 17.4.2 Block diagrams of port 6 • P60/DTTI pin This pin has the following peripheral function: • MPG waveform sequencer input pin (DTTI) • P61/TI1 pin This pin has the following peripheral function: • 16-bit reload timer ch. 1 input pin (TI1) • Block diagram of P60/DTTI and P61/TI1 Peripheral function input Hysteresis 0 Pull-up 1 PDR6 read PDR6 Pin PDR6 write Internal bus Executing bit manipulation instruction DDR6 read DDR6 DDR6 write Stop mode, watch mode (SPL = 1) PUL6 read PUL6 PUL6 write Document Number: 002-04692 Rev. *A Page 62 of 128 MB95690K Series • P62/OPT0/PPG00/TO10 pin This pin has the following peripheral functions: • MPG waveform sequencer output pin (OPT0) • 8/16-bit PPG ch. 0 output pin (PPG00) • 8/16-bit composite timer ch. 1 output pin (TO10) • P63/OPT1/PPG01/TO11 pin This pin has the following peripheral functions: • MPG waveform sequencer output pin (OPT1) • 8/16-bit PPG ch. 0 output pin (PPG01) • 8/16-bit composite timer ch. 1 output pin (TO11) • P65/OPT3/PPG11 pin This pin has the following peripheral functions: • MPG waveform sequencer output pin (OPT3) • 8/16-bit PPG ch. 1 output pin (PPG11) • P66/OPT4/PPG20/PPG1 pin This pin has the following peripheral functions: • MPG waveform sequencer output pin (OPT4) • 8/16-bit PPG ch. 2 output pin (PPG20) • 16-bit PPG timer ch. 1 output pin (PPG1) • Block diagram of P62/OPT0/PPG00/TO10, P63/OPT1/PPG01/TO11, P65/OPT3/PPG11 and P66/OPT4/PPG20/PPG1 Peripheral function output enable Peripheral function output Hysteresis Pull-up 0 1 PDR6 read 1 PDR6 0 Pin PDR6 write Internal bus Executing bit manipulation instruction DDR6 read DDR6 DDR6 write Stop mode, watch mode (SPL = 1) PUL6 read PUL6 PUL6 write Document Number: 002-04692 Rev. *A Page 63 of 128 MB95690K Series • P64/OPT2/PPG10/EC1 pin This pin has the following peripheral functions: • MPG waveform sequencer output pin (OPT2) • 8/16-bit PPG ch. 1 output pin (PPG10) • 8/16-bit composite timer ch. 1 clock input pin (EC1) • P67/OPT5/PPG21/TRG1 pin This pin has the following peripheral functions: • MPG waveform sequencer output pin (OPT5) • 8/16-bit PPG ch. 2 output pin (PPG21) • 16-bit PPG timer ch. 1 trigger input pin (TRG1) • Block diagram of P64/OPT2/PPG10/EC1 and P67/OPT5/PPG21/TRG1 Peripheral function input Peripheral function input enable Peripheral function output enable Peripheral function output Hysteresis Pull-up 0 1 PDR6 read 1 PDR6 0 Pin PDR6 write Internal bus Executing bit manipulation instruction DDR6 read DDR6 DDR6 write Stop mode, watch mode (SPL = 1) PUL6 read PUL6 PUL6 write Document Number: 002-04692 Rev. *A Page 64 of 128 MB95690K Series 17.4.3 Port 6 registers • Port 6 register functions Register abbreviation PDR6 DDR6 PUL6 Data Read Read by read-modify-write (RMW) instruction Write 0 Pin state is “L” level. PDR6 value is “0”. As output port, outputs “L” level. 1 Pin state is “H” level. PDR6 value is “1”. As output port, outputs “H” level. 0 Port input enabled 1 Port output enabled 0 Pull-up disabled 1 Pull-up enabled • Correspondence between registers and pins for port 6 Correspondence between related register bits and pins Pin name P67 P66 P65 P64 P63 P62 P61 P60 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 PDR6 DDR6 PUL6 Document Number: 002-04692 Rev. *A Page 65 of 128 MB95690K Series 17.4.4 Port 6 operations • Operation as an output port • A pin becomes an output port if the bit in the DDR6 register corresponding to that pin is set to “1”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • When a pin is used as an output port, it outputs the value of the PDR6 register to external pins. • If data is written to the PDR6 register, the value is stored in the output latch and is output to the pin set as an output port as it is. • Reading the PDR6 register returns the PDR6 register value. • Operation as an input port • A pin becomes an input port if the bit in the DDR6 register corresponding to that pin is set to “0”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • If data is written to the PDR6 register, the value is stored in the output latch but is not output to the pin set as an input port. • Reading the PDR6 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned. • Operation as a peripheral function output pin • A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin. • The pin value can be read from the PDR6 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR6 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned. • Operation as a peripheral function input pin • To set a pin as an input port, set the bit in the DDR6 register corresponding to the input pin of a peripheral function to “0”. • Reading the PDR6 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned. • Operation at reset If the CPU is reset, all bits in the DDR6 register are initialized to “0” and port input is enabled. • Operation in stop mode and watch mode • If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR6 register value. The input of that pin is locked to “L” level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P64/EC1 and P67/TRG1 is enabled by the external interrupt control register ch. 0 (EIC00) of the external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt pin selection circuit, the input is enabled and is not blocked. • If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained. • Operation of the pull-up register Setting the bit in the PUL6 register to “1” makes the pull-up resistor be internally connected to the pin. When the pin output is “L” level, the pull-up resistor is disconnected regardless of the value of the PUL6 register. Document Number: 002-04692 Rev. *A Page 66 of 128 MB95690K Series 17.5 Port 7 Port 7 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in “New 8FX MB95690K Series Hardware Manual”. 17.5.1 Port 7 configuration Port 7 is made up of the following elements. • General-purpose I/O pins/peripheral function I/O pins • Port 7 data register (PDR7) • Port 7 direction register (DDR7) • Port 7 pull-up register (PUL7) 17.5.2 Block diagrams of port 7 • P70/TO00 pin This pin has the following peripheral function: • 8/16-bit composite time ch. 0 output pin (TO00) • P71/TO01 pin This pin has the following peripheral function: • 8/16-bit composite timer ch. 0 output pin (TO01) • P76/UO0 pin This pin has the following peripheral function: • UART/SIO ch. 0 data output pin (UO0) • Block diagram of P70/TO00, P71/TO01 and P76/UO0 Peripheral function output enable Peripheral function output Hysteresis Pull-up 0 1 PDR7 read 1 PDR7 0 Pin PDR7 write Internal bus Executing bit manipulation instruction DDR7 read DDR7 DDR7 write Stop mode, watch mode (SPL = 1) PUL7 read PUL7 PUL7 write Document Number: 002-04692 Rev. *A Page 67 of 128 MB95690K Series • P72/SCL pin This pin has the following peripheral function: • I2C bus interface ch. 0 clock I/O pin (SCL) • P73/SDA pin This pin has the following peripheral function: • I2C bus interface ch. 0 data I/O pin (SDA) • Block diagram of P72/SCL and P73/SDA Peripheral function input Peripheral function input enable Peripheral function output enable Peripheral function output CMOS 0 1 PDR7 read PDR7 Internal bus Pin 1 0 OD PDR7 write Executing bit manipulation instruction DDR7 read DDR7 DDR7 write Stop mode, watch mode (SPL = 1) • P74/EC0 pin This pin has the following peripheral functions: • 8/16-bit composite timer ch. 0 clock input pin (EC0) Document Number: 002-04692 Rev. *A Page 68 of 128 MB95690K Series • Block diagram of P74/EC0 Peripheral function input Peripheral function input enable Hysteresis 0 Pull-up 1 PDR7 read PDR7 Pin PDR7 write Internal bus Executing bit manipulation instruction DDR7 read DDR7 DDR7 write Stop mode, watch mode (SPL = 1) PUL7 read PUL7 PUL7 write Document Number: 002-04692 Rev. *A Page 69 of 128 MB95690K Series • P75/UCK0 pin This pin has the following peripheral function: • UART/SIO ch. 0 clock I/O pin (UCK0) • Block diagram of P75/UCK0 Peripheral function input Peripheral function input enable Peripheral function output enable Peripheral function output Hysteresis Pull-up 0 1 PDR7 read 1 PDR7 0 Pin PDR7 write Internal bus Executing bit manipulation instruction DDR7 read DDR7 DDR7 write Stop mode, watch mode (SPL = 1) PUL7 read PUL7 PUL7 write Document Number: 002-04692 Rev. *A Page 70 of 128 MB95690K Series • P77/UI0 pin This pin has the following peripheral function: • UART/SIO ch. 0 data input pin (UI0) • Block diagram of P77/UI0 Peripheral function input Peripheral function input enable CMOS 0 Pull-up 1 PDR7 read PDR7 Pin PDR7 write Internal bus Executing bit manipulation instruction DDR7 read DDR7 DDR7 write Stop mode, watch mode (SPL = 1) PUL7 read PUL7 PUL7 write Document Number: 002-04692 Rev. *A Page 71 of 128 MB95690K Series 17.5.3 Port 7 registers • Port 7 register functions Register abbreviation PDR7 DDR7 PUL7 Data Read Read by read-modify-write (RMW) instruction Write 0 Pin state is “L” level. PDR7 value is “0”. As output port, outputs “L” level. 1 Pin state is “H” level. PDR7 value is “1”. As output port, outputs “H” level.* 0 Port input enabled 1 Port output enabled 0 Pull-up disabled 1 Pull-up enabled *: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z. • Correspondence between registers and pins for port 7 Correspondence between related register bits and pins Pin name P77 P76 P75 P74 bit7 bit6 bit5 bit4 PDR7 DDR7 PUL7 Document Number: 002-04692 Rev. *A P73 P72 bit3 bit2 - - P71 P70 bit1 bit0 Page 72 of 128 MB95690K Series 17.5.4 Port 7 operations • Operation as an output port • A pin becomes an output port if the bit in the DDR7 register corresponding to that pin is set to “1”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • When a pin is used as an output port, it outputs the value of the PDR7 register to external pins. • If data is written to the PDR7 register, the value is stored in the output latch and is output to the pin set as an output port as it is. • Reading the PDR7 register returns the PDR7 register value. • Operation as an input port • A pin becomes an input port if the bit in the DDR7 register corresponding to that pin is set to “0”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • If data is written to the PDR7 register, the value is stored in the output latch but is not output to the pin set as an input port. • Reading the PDR7 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR7 register, the PDR7 register value is returned. • Operation as a peripheral function output pin • A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin. • The pin value can be read from the PDR7 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR7 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR7 register, the PDR7 register value is returned. • Operation as a peripheral function input pin • To set a pin as an input port, set the bit in the DDR7 register corresponding to the input pin of a peripheral function to “0”. • Reading the PDR7 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR7 register, the PDR7 register value is returned. • Operation at reset If the CPU is reset, all bits in the DDR7 register are initialized to “0” and port input is enabled. • Operation in stop mode and watch mode • If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR7 register value. The input of that pin is locked to “L” level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P74/EC0, P75/UCK0 and P77/UI0 is enabled by the external interrupt control register ch. 0 (EIC00) of the external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt pin selection circuit, the input is enabled and is not blocked. • If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained. • Operation of the pull-up register Setting the bit in the PUL7 register to “1” makes the pull-up resistor be internally connected to the pin. When the pin output is “L” level, the pull-up resistor is disconnected regardless of the value of the PUL7 register. Document Number: 002-04692 Rev. *A Page 73 of 128 MB95690K Series 17.6 Port F Port F is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in “New 8FX MB95690K Series Hardware Manual”. 17.6.1 Port F configuration Port F is made up of the following elements. • General-purpose I/O pins/peripheral function I/O pins • Port F data register (PDRF) • Port F direction register (DDRF) 17.6.2 Block diagrams of port F • PF0/X0 pin This pin has the following peripheral function: • Main clock input oscillation pin (X0) • PF1/X1 pin This pin has the following peripheral function: • Main clock I/O oscillation pin (X1) • Block diagram of PF0/X0 and PF1/X1 Hysteresis 0 1 PDRF read Internal bus PDRF Pin PDRF write Executing bit manipulation instruction DDRF read DDRF DDRF write Stop mode, watch mode (SPL = 1) • PF2/RST pin This pin has the following peripheral function: • Reset pin (RST) Document Number: 002-04692 Rev. *A Page 74 of 128 MB95690K Series • Block diagram of PF2/RST Reset input Reset input enable Reset output enable Reset output Hysteresis 0 1 PDRF read Internal bus Pin 1 PDRF OD 0 PDRF write Executing bit manipulation instruction DDRF read DDRF DDRF write Stop mode, watch mode (SPL = 1) 17.6.3 Port F registers • Port F register functions Register abbreviation PDRF DDRF Data Read Read by read-modify-write (RMW) instruction Write 0 Pin state is “L” level. PDRF value is “0”. As output port, outputs “L” level. 1 Pin state is “H” level. PDRF value is “1”. As output port, outputs “H” level.* 0 Port input enabled 1 Port output enabled *: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z. • Correspondence between registers and pins for port F Correspondence between related register bits and pins Pin name PDRF DDRF - - - - - PF2 PF1 PF0 - - - - - bit2* bit1 bit0 *: When the external reset is selected (SYSC:RSTEN = 1), the port function cannot be used. Document Number: 002-04692 Rev. *A Page 75 of 128 MB95690K Series 17.6.4 Port F operations • Operation as an output port • A pin becomes an output port if the bit in the DDRF register corresponding to that pin is set to “1”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • When a pin is used as an output port, it outputs the value of the PDRF register to external pins. • If data is written to the PDRF register, the value is stored in the output latch and is output to the pin set as an output port as it is. • Reading the PDRF register returns the PDRF register value. • Operation as an input port • A pin becomes an input port if the bit in the DDRF register corresponding to that pin is set to “0”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • If data is written to the PDRF register, the value is stored in the output latch but is not output to the pin set as an input port. • Reading the PDRF register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRF register, the PDRF register value is returned. • Operation at reset If the CPU is reset, all bits in the DDRF register are initialized to “0” and port input is enabled. • Operation in stop mode and watch mode • If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRF register value. The input of that pin is locked to “L” level and blocked in order to prevent leaks due to input open. • If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained. Document Number: 002-04692 Rev. *A Page 76 of 128 MB95690K Series 17.7 Port G Port G is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in “New 8FX MB95690K Series Hardware Manual”. 17.7.1 Port G configuration Port G is made up of the following elements. • General-purpose I/O pins/peripheral function I/O pins • Port G data register (PDRG) • Port G direction register (DDRG) • Port G pull-up register (PULG) 17.7.2 Block diagram of port G • PG1/X0A/SNI1 pin This pin has the following peripheral functions: • Subclock input oscillation pin (X0A) • Trigger input pin for the position detection function of the MPG waveform sequencer (SNI1) • PG2/X1A/SNI2 pin This pin has the following peripheral functions: • Subclock I/O oscillation pin (X1A) • Trigger input pin for the position detection function of the MPG waveform sequencer (SNI2) • Block diagram of PG1/X0A/SNI1 and PG2/X1A/SNI2 Peripheral function input Hysteresis 0 Pull-up 1 PDRG read PDRG Pin PDRG write Internal bus Executing bit manipulation instruction DDRG read DDRG DDRG write Stop mode, watch mode (SPL = 1) PULG read PULG PULG write Document Number: 002-04692 Rev. *A Page 77 of 128 MB95690K Series 17.7.3 Port G registers • Port G register functions Register abbreviation PDRG DDRG PULG Data Read Read by read-modify-write (RMW) instruction Write 0 Pin state is “L” level. PDRG value is “0”. As output port, outputs “L” level. 1 Pin state is “H” level. PDRG value is “1”. As output port, outputs “H” level. 0 Port input enabled 1 Port output enabled 0 Pull-up disabled 1 Pull-up enabled • Correspondence between registers and pins for port G Correspondence between related register bits and pins Pin name - - - - - PG2 PG1 - - - - - - bit2 bit1 - PDRG DDRG PULG Document Number: 002-04692 Rev. *A Page 78 of 128 MB95690K Series 17.7.4 Port G operations • Operation as an output port • A pin becomes an output port if the bit in the DDRG register corresponding to that pin is set to “1”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • When a pin is used as an output port, it outputs the value of the PDRG register to external pins. • If data is written to the PDRG register, the value is stored in the output latch and is output to the pin set as an output port as it is. • Reading the PDRG register returns the PDRG register value. • Operation as an input port • A pin becomes an input port if the bit in the DDRG register corresponding to that pin is set to “0”. • For a pin shared with other peripheral functions, disable the output of such peripheral functions. • If data is written to the PDRG register, the value is stored in the output latch but is not output to the pin set as an input port. • Reading the PDRG register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRG register, the PDRG register value is returned. • Operation as a peripheral function input pin • To set a pin as an input port, set the bit in the DDRG register corresponding to the input pin of a peripheral function to “0”. • Reading the PDRG register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDRG register, the PDRG register value is returned. • Operation at reset If the CPU is reset, all bits in the DDRG register are initialized to “0” and port input is enabled. • Operation in stop mode and watch mode • If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRG register value. The input of that pin is locked to “L” level and blocked in order to prevent leaks due to input open. • If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained. • Operation of the pull-up register Setting the bit in the PULG register to “1” makes the pull-up resistor be internally connected to the pin. When the pin output is “L” level, the pull-up resistor is disconnected regardless of the value of the PULG register. Document Number: 002-04692 Rev. *A Page 79 of 128 MB95690K Series 18. Interrupt Source Table Interrupt source External interrupt ch. 0 External interrupt ch. 4 External interrupt ch. 1 External interrupt ch. 5 External interrupt ch. 2 External interrupt ch. 6 External interrupt ch. 3 External interrupt ch. 7 UART/SIO ch. 0 MPG (DTTI) 8/16-bit composite timer ch. 0 (lower) 8/16-bit composite timer ch. 0 (upper) LIN-UART (reception) LIN-UART (transmission) 8/16-bit PPG ch. 1 (lower) 8/16-bit PPG ch. 1 (upper) 8/16-bit PPG ch. 2 (upper) 8/16-bit PPG ch. 0 (upper) 8/16-bit PPG ch. 0 (lower) 8/16-bit composite timer ch. 1 (upper) 8/16-bit PPG ch. 2 (lower) 16-bit reload timer ch. 1 MPG (write timing/compare clear) I2C bus interface ch. 0 16-bit PPG timer ch. 1 MPG (position detection/compare interrupt) 8/10-bit A/D converter Time-base timer Watch prescaler Comparator ch. 0 Comparator ch. 1 8/16-bit composite timer ch. 1 (lower) Flash memory Document Number: 002-04692 Rev. *A Interrupt request number Vector table address Upper Lower Interrupt level setting register Register Bit IRQ00 0xFFFA 0xFFFB ILR0 L00 [1:0] IRQ01 0xFFF8 0xFFF9 ILR0 L01 [1:0] IRQ02 0xFFF6 0xFFF7 ILR0 L02 [1:0] IRQ03 0xFFF4 0xFFF5 ILR0 L03 [1:0] IRQ04 0xFFF2 0xFFF3 ILR1 L04 [1:0] IRQ05 0xFFF0 0xFFF1 ILR1 L05 [1:0] IRQ06 0xFFEE 0xFFEF ILR1 L06 [1:0] IRQ07 IRQ08 IRQ09 IRQ10 IRQ11 IRQ12 IRQ13 0xFFEC 0xFFEA 0xFFE8 0xFFE6 0xFFE4 0xFFE2 0xFFE0 0xFFED 0xFFEB 0xFFE9 0xFFE7 0xFFE5 0xFFE3 0xFFE1 ILR1 ILR2 ILR2 ILR2 ILR2 ILR3 ILR3 L07 [1:0] L08 [1:0] L09 [1:0] L10 [1:0] L11 [1:0] L12 [1:0] L13 [1:0] IRQ14 0xFFDE 0xFFDF ILR3 L14 [1:0] IRQ15 0xFFDC 0xFFDD ILR3 L15 [1:0] IRQ16 0xFFDA 0xFFDB ILR4 L16 [1:0] IRQ17 0xFFD8 0xFFD9 ILR4 L17 [1:0] IRQ18 IRQ19 0xFFD6 0xFFD7 0xFFD4 0xFFD5 ILR4 ILR4 L18 [1:0] L19 [1:0] IRQ20 0xFFD2 0xFFD3 ILR5 L20 [1:0] IRQ21 0xFFD0 0xFFD1 ILR5 L21 [1:0] IRQ22 0xFFCE 0xFFCF ILR5 L22 [1:0] IRQ23 0xFFCC 0xFFCD ILR5 L23 [1:0] Priority order of interrupt sources of the same level (occurring simultaneously) High Low Page 80 of 128 MB95690K Series 19. Pin States In Each Mode Pin name Normal operation Sleep mode Oscillation input Oscillation input PF0/X0 I/O port* 1 I/O port* 1 Oscillation input Oscillation input PF1/X1 PF2/RST I/O port*1 I/O port*1 Reset input*4 Reset input*4 I/O port I/O port I/O port*1 I/O port*1 Oscillation input Oscillation input PG2/X1A/ SNI2 P00/INT00/ AN00/ CMP0_P P01/INT01/ AN01/ CMP0_N P03/INT03/ AN03/ CMP1_P P04/INT04/ AN04/ CMP1_N P02/INT02/ AN02/ CMP0_O P05/INT05/ AN05/ CMP1_O P06/INT06/ AN06 P07/INT07/ AN07 I/O port* 1 I/O port* Hi-Z Hi-Z - Previous state - Hi-Z kept - Input - Input blocked*1, *2 1, 2 blocked* * Hi-Z Hi-Z - Previous state - Hi-Z kept - Input - Input blocked*1, *2 blocked*1, *2 Reset input Reset input - Previous state - Hi-Z kept - Input - Input blocked*1, *2 1, 2 blocked* * Oscillation input Oscillation input PG1/X0A/ SNI1 Stop mode SPL=0 SPL=1 1 Hi-Z Hi-Z - Previous state - Hi-Z*5 kept - Input - Input blocked*1, *2 blocked*1, *2 Hi-Z Hi-Z Watch mode SPL=0 SPL=1 Hi-Z Hi-Z - Previous state - Hi-Z kept - Input - Input blocked*1, *2 1, 2 blocked* * Hi-Z Hi-Z - Previous state - Hi-Z kept - Input - Input blocked*1, *2 blocked*1, *2 Reset input Reset input - Previous state - Hi-Z kept - Input - Input blocked*1, *2 1, 2 blocked* * Hi-Z Hi-Z - Previous state - Hi-Z*5 kept - Input - Input blocked*1, *2 blocked*1, *2 Hi-Z Hi-Z - Previous state - Hi-Z*5 kept - Input - Input blocked*1, *2 1, 2 blocked* * - Previous state - Hi-Z*5 kept - Input - Input blocked*1, *2 1, 2 blocked* * On reset — - Hi-Z - Input enabled*3 (However, it does not function.) — - Hi-Z - Input enabled*3 (However, it does not function.) Reset input*4 - Hi-Z - Input enabled*3 (However, it does not function.) — - Hi-Z - Input enabled*3 (However, it does not function.) — - Hi-Z - Input enabled*3 (However, it does not function.) I/O port/ peripheral function I/O/ analog input I/O port/ peripheral function I/O/ analog input - Previous state - Hi-Z*5 kept - Input - Input blocked*2, *6 blocked*2, *6 - Previous state - Hi-Z*5 kept - Input - Input blocked*2, *6 blocked*2, *6 - Hi-Z - Input blocked*2 I/O port/ peripheral function I/O/ analog input I/O port/ peripheral function I/O/ analog input - Previous state - Hi-Z*5 kept*8 - Input - Input blocked*2, *7 2, 7 blocked* * - Previous state - Hi-Z*5 kept*8 - Input - Input blocked*2, *7 2, 7 blocked* * - Hi-Z - Input blocked*2 I/O port/ peripheral function I/O/ analog input I/O port/ peripheral function I/O/ analog input - Previous state - Hi-Z*5 kept - Input - Input blocked*2, *7 blocked*2, *7 - Previous state - Hi-Z*5 kept - Input - Input blocked*2, *7 blocked*2, *7 - Hi-Z - Input blocked*2 Document Number: 002-04692 Rev. *A Page 81 of 128 MB95690K Series Pin name P12/DBG P10/PPG10 P11/PPG11 P13/PPG00 P14/PPG01 P15/PPG20 P16/PPG21 P17/SNI0 P40/AN08 P41/AN09 P42/AN10 P43/AN11 P44/TO1 P46/SOT P45/SCK P47/SIN Normal operation Sleep mode Stop mode SPL=0 SPL=1 Watch mode SPL=0 SPL=1 On reset - Hi-Z - Input enabled*3 (However, it does not function.) I/O port/ peripheral function I/O - Previous state - Previous state - Hi-Z - Hi-Z kept kept - Input blocked*2 - Input blocked*2 - Input blocked*2 - Input blocked*2 I/O port/ peripheral function I/O I/O port/ peripheral function I/O - Hi-Z - Input - Previous state - Previous state enabled*3 - Hi-Z*5 - Hi-Z*5 kept kept 2 2 Input blocked* Input blocked* (However, it - Input blocked*2 - Input blocked*2 does not function.) I/O port/ analog input I/O port/ analog input - Previous state - Previous state - Hi-Z - Hi-Z*5 - Hi-Z kept kept - Input - Input blocked*2 - Input blocked*2 - Input blocked*2 - Input blocked*2 blocked*2 I/O port/ peripheral function I/O - Hi-Z - Input - Previous state - Previous state enabled*3 - Hi-Z*5 - Hi-Z*5 kept kept - Input blocked*2 - Input blocked*2 (However, it 2 2 - Input blocked* - Input blocked* does not function.) I/O port/ peripheral function I/O - Previous state - Previous state - Hi-Z*5 kept kept - Hi-Z*5 - Input - Input - Input blocked*7 - Input blocked*2, *7 blocked*2, *7 blocked*2, *7 I/O port/ peripheral function I/O - Hi-Z - Input - Previous state - Previous state enabled*3 - Hi-Z*5 - Hi-Z*5 kept kept 2 2 - Input blocked* - Input blocked* (However, it - Input blocked*2 - Input blocked*2 does not function.) I/O port/ peripheral function I/O - Previous state - Hi-Z*5 kept - Input - Input blocked*2, *7 blocked*2, *7 I/O port/ peripheral function I/O I/O port/ peripheral function I/O I/O port/ peripheral function I/O - Hi-Z - Input enabled*3 (However, it does not function.) P60/DTTI P61/TI1 P62/TO10/ PPG00/ OPT0 P63/TO11/ PPG01/ OPT1 I/O port/ peripheral function I/O P65/PPG11/ OPT3 P66/PPG1/ PPG20/ OPT4 P64/EC1/ PPG10/ OPT2 P67/TRG1/ PPG21/ OPT5 I/O port/ peripheral function I/O Document Number: 002-04692 Rev. *A - Previous state - Hi-Z*5 kept - Input - Input blocked*2, *7 blocked*2, *7 - Hi-Z - Input enabled*3 (However, it does not function.) Page 82 of 128 MB95690K Series (Continued) Pin name P72/SCL P73/SDA Normal operation I/O port/ peripheral function I/O Sleep mode I/O port/ peripheral function I/O Watch mode SPL=0 SPL=1 I/O port/ peripheral function I/O - Hi-Z - Input - Previous state - Previous state enabled*3 - Hi-Z*5 - Hi-Z*5 kept kept - Input blocked*2 - Input blocked*2 (However, it 2 2 - Input blocked* - Input blocked* does not function.) I/O port/ peripheral function I/O - Previous state - Hi-Z*5 kept - Input - Input blocked*2, *7 blocked*2, *7 - Previous state - Hi-Z kept - Input - Input blocked*2, *9 2, 9 blocked* * P74/EC0 I/O port/ peripheral function I/O - Hi-Z - Input enabled*3 (However, it does not function.) I/O port/ peripheral function I/O P76/UO0 P75/UCK0 On reset - Previous state - Hi-Z kept - Input - Input blocked*2, *9 2, 9 blocked* * P70/TO00 P71/TO01 Stop mode SPL=0 SPL=1 P77/UI0 - Previous state - Hi-Z*5 kept - Input - Input blocked*2, *7 blocked*2, *7 - Hi-Z - Input enabled*3 (However, it does not function.) SPL: Pin state setting bit in the standby control register (STBC:SPL) Hi-Z: High impedance *1: The pin stays at the state shown when configured as a general-purpose I/O port. *2: “Input blocked” means direct input gate operation from the pin is disabled. *3: “Input enabled” means that the input function is enabled. While the input function is enabled, execute a pull-up or pull-down operation in order to prevent leaks due to external input. If a pin is used as an output port, its pin state is the same as that of other ports. *4: The PF2/RST pin stays at the state shown when configured as a reset pin. *5: The pull-up control setting is still effective. *6: Though input is blocked, an external interrupt can be input when the external interrupt request is enabled, and an analog signal can also be input to generate a comparator interrupt when the comparator interrupt is enabled. *7: Though input is blocked, an external interrupt can be input when the external interrupt request is enabled. *8: The output function of the comparator is still in operation in stop mode and watch mode. *9: The I2C bus interface can wake up the MCU in stop mode or watch mode when its MCU standby mode wakeup function is enabled. For details of the MCU standby mode wakeup function, refer to “New 8FX MB95690K Series Hardware Manual”. Document Number: 002-04692 Rev. *A Page 83 of 128 MB95690K Series 20. Electrical Characteristics 20.1 Absolute Maximum Ratings Rating Parameter Symbol Power supply voltage*1 VCC VSS 0.3 VSS  6 V Input voltage*1 VI VSS 0.3 VSS  6 V *2 Output voltage*1 VO VSS 0.3 VSS  6 V *2 Maximum clamp current Total maximum clamp current “L” level maximum output current Min 2 mA Applicable to specific pins*3 |ICLAMP| — 20 mA Applicable to specific pins*3 IOL — 15 mA 4 — IOLAV2 “H” level maximum output current mA 12 Other than P60 to P67 Average output current = operating current  operating ratio (1 pin) P60 to P67 Average output current = operating current  operating ratio (1 pin) IOL — 100 mA IOLAV — 37 Total average output current = mA operating current  operating ratio (Total number of pins) IOH — 15 mA 4 IOHAV1 “H” level average current — mA 8 IOHAV2 “H” level total maximum output current Remarks 2 “L” level average current “L” level total average output current Unit ICLAMP IOLAV1 “L” level total maximum output current Max Other than P60 to P67 Average output current = operating current  operating ratio (1 pin) P60 to P67 Average output current = operating current  operating ratio (1 pin) IOH — 100 mA IOHAV — 47 Total average output current = mA operating current  operating ratio (Total number of pins) Power consumption Pd — 320 mW Operating temperature TA 40 85 Storage temperature Tstg 55 150 C C “H” level total average output current *1: These parameters are based on the condition that VSS is 0.0 V. *2: V1 and V0 must not exceed VCC  0.3 V. V1 must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the ICLAMP rating is used instead of the VI rating. *3: Specific pins: P00 to P07, P10, P11, P13 to P17, P40 to P47, P60 to P67, P70, P71, P74 to P77, PF0, PF1, PG1, PG2 Document Number: 002-04692 Rev. *A Page 84 of 128 MB95690K Series • Use under recommended operating conditions. • Use with DC voltage (current). • The HV (High Voltage) signal is an input signal exceeding the VCC voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal. • The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current. • When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the VCC pin, affecting other devices. • If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed. • If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset. • Do not leave the HV (High Voltage) input pin unconnected. • Example of a recommended circuit: • Input/Output equivalent circuit Protective diode VCC P-ch Limiting resistor HV(High Voltage) input (0 V to 16 V) N-ch R WARNING: Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings. Document Number: 002-04692 Rev. *A Page 85 of 128 MB95690K Series 20.2 Recommended Operating Conditions (VSS = 0.0 V) Parameter Symbol Value Min Max Unit Remarks Power supply voltage VCC 2.88 5.5 V Decoupling capacitor CS 0.022 1 µF * Operating temperature TA 40 85 Other than on-chip debug mode 5 35 C On-chip debug mode *: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the VCC pin must have a capacitance equal to or larger than the capacitance of CS. For the connection to a decoupling capacitor CS, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and CS and the distance between CS and the VSS pin when designing the layout of a printed circuit board. • DBG / RST / C pins connection diagram * DBG C RST Cs *: Connect the DBG pin to an external pull-up resistor of 2 k or above. After power-on, ensure that the DBG pin does not stay at “L” level until the reset output is released. The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor. WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions. Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand. Document Number: 002-04692 Rev. *A Page 86 of 128 MB95690K Series 20.3 DC Characteristics Parameter Symbol “H” level input voltage “L” level input voltage Open-drain output application voltage “H” level output voltage “L” level output voltage Input leak current (Hi-Z output leak current) Internal pull-up resistor Input capacitance (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 C to 85 °C) Pin name Condition VIHI P47, P72, P73, P77 VIHS Value Unit Remarks VCC  0.3 V CMOS input level — VCC  0.3 V Hysteresis input 0.8 VCC — VCC  0.3 V Hysteresis input — VSS 0.3 — 0.3 VCC V CMOS input level Other than P47, P72, P73, P77, PF2 — VSS 0.3 — 0.2 VCC V Hysteresis input PF2 — VSS 0.3 — 0.2 VCC V Hysteresis input P12, P72, P73, PF2 — VSS 0.3 — VSS  5.5 V VOH1 Output pins other than P12, IOH = 4 mA P60 to P67, PF2 VCC 0.5 — — V VOH2 P60 to P67 IOH = 8 mA VCC 0.5 — — V VOL1 Output pins other than P60 IOL = 4 mA to P67 — — 0.4 V VOL2 P60 to P67 IOL = 12 mA — — 0.4 V All input pins 0.0 V < VI < VCC 5 — 5 When the internal µA pull-up resistor is disabled Other than P12, P72, P73, PF0, VI = 0 V PF1, PF2 25 50 100 When the internal k pull-up resistor is enabled Other than VCC f = 1 MHz and VSS — 5 15 pF Min Typ Max — 0.7 VCC — Other than P47, P72, P73, P77, PF2 — 0.8 VCC VIHM PF2 — VILI P47, P72, P73, P77 VILS VILM VD ILI RPULL CIN Document Number: 002-04692 Rev. *A Page 87 of 128 MB95690K Series Parameter Power supply current*3 (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 C to 85 °C) Value Symbol Pin name Condition Unit Remarks Min Typ*1 Max*2 Except during Flash memory — 4.9 5.8 mA programming and FCH = 32 MHz erasing FMP = 16 MHz During Flash ICC Main clock mode memory (divided by 2) — 10.5 13.8 mA programming and erasing — 6.5 9.1 mA At A/D conversion FCH = 32 MHz FMP = 16 MHz ICCS — 2 3 mA Main sleep mode (divided by 2) VCC (External clock FCL = 32 kHz operation) FMPL = 16 kHz Subclock mode ICCL — 75.9 145 µA (divided by 2) TA = 25 °C FCL = 32 kHz FMPL = 16 kHz In deep standby Subsleep mode — 12.7 16 µA ICCLS mode (divided by 2) TA = 25 °C FCL = 32 kHz Watch mode In deep standby — 11 13 µA ICCT Main stop mode mode TA = 25 °C FMCRPLL = 16 MHz FMP = 16 MHz Main CR PLL clock ICCMPLL — 5.2 6.8 mA mode (multiplied by 4) TA = 25 °C VCC FCRH = 4 MHz FMP = 4 MHz — 1.4 4.6 mA ICCMCR Main CR clock mode Sub-CR clock mode (divided by 2) — 76.9 230 µA ICCSCR TA = 25 °C FCH = 32 MHz Time-base timer In deep standby — 387 455 µA ICCTS VCC mode mode (External clock TA = 25 °C operation) Substop mode In deep standby — 10.8 13 µA ICCH TA = 25 °C mode Document Number: 002-04692 Rev. *A Page 88 of 128 MB95690K Series Parameter Symbol Pin name IV ILVD ICRH Power supply current*3 VCC ICRL INSTBY Condition Current consumption of the comparator Current consumption of the low-voltage detection reset circuit Current consumption of the main CR oscillator Current consumption of the sub-CR oscillator oscillating at 100 kHz Current consumption difference between normal standby mode and deep standby mode TA = 25 °C (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 C to 85 °C) Value Unit Remarks Min Typ*1 Max*2 — 60 160 µA — 4 7 µA — 240 320 µA — 7 20 µA — 18 30 µA With the LVD reset already enabled by the LVD reset circuit control register (LVDCC) *1: VCC = 5.0 V, TA = 25 °C *2: VCC = 5.5 V, TA = 85 °C (unless otherwise specified) *3: • The power supply current is determined by the external clock. When the low-voltage detection reset circuit is selected, the power supply current is the sum of adding the current consumption of the low-voltage detection reset circuit (ILVD) to one of the values from ICC to ICCH. In addition, when both the low-voltage detection option and a CR oscillator are selected, the power supply current is the sum of adding up the current consumption of the low-voltage detection reset circuit (ILVD), the current consumption of the CR oscillators (ICRH or ICRL) and one of the values from ICC to ICCH. In on-chip debug mode, the main CR oscillator (ICRH) and the low-voltage detection reset circuit are always in operation, and current consumption therefore increases accordingly. • See “4. AC Characteristics Clock Timing” for FCH, FCL, FCRH and FMCRPLL. • See “4. AC Characteristics Source Clock/Machine Clock” for FMP and FMPL. • The power supply current value in standby mode is measured in deep standby mode. The current consumption in normal standby mode is higher than that in deep standby mode. The power supply current value in normal standby mode can be found by adding the current consumption difference between normal standby mode and deep standby mode (INSTBY) to the power supply current value in deep standby mode. For details of normal standby mode and deep standby mode, refer to “CHAPTER 3 CLOCK CONTROLLER” in “New 8FX MB95690K Series Hardware Manual”. Document Number: 002-04692 Rev. *A Page 89 of 128 MB95690K Series 20.4 AC Characteristics 20.4.1 Clock Timing Parameter Symbol Pin name Condition X0, X1 FCH X0 X0, X1 — X1: open * Min 1 1 1 3.92 FCRH — — 3.8 7.84 7.6 9.8 Clock frequency 9.5 FMCRPLL — — 11.76 11.4 15.68 15.2 — FCL X0A, X1A — — FCRL — Document Number: 002-04692 Rev. *A — 50 (VCC = 2.88 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C) Value Unit Remarks Typ Max When the main oscillation — 16.25 MHz circuit is used — 12 MHz When the main external clock — 32.5 MHz is used Operating conditions 4 4.08 MHz • The main CR clock is used. • 0 C TA 70 C Operating conditions • The main CR clock is used. 4 4.2 MHz •  40 C  TA  0 C,  70 C  TA   85 C Operating conditions 8 8.16 MHz • PLL multiplication rate: 2 • 0 C TA 70 C Operating conditions • PLL multiplication rate: 2 8 8.4 MHz •  40 C  TA  0 C,  70 C  TA   85 C Operating conditions 10 10.2 MHz • PLL multiplication rate: 2.5 • 0 C TA 70 C Operating conditions • PLL multiplication rate: 2.5 10 10.5 MHz •  40 C  TA  0 C,  70 C  TA   85 C Operating conditions 12 12.24 MHz • PLL multiplication rate: 3 • 0 C TA 70 C Operating conditions • PLL multiplication rate: 3 12 12.6 MHz •  40 C  TA  0 C,  70 C  TA   85 C Operating conditions 16 16.32 MHz • PLL multiplication rate: 4 • 0 C TA 70 C Operating conditions • PLL multiplication rate: 4 16 16.8 MHz •  40 C  TA  0 C,  70 C  TA   85 C When the sub-oscillation 32.768 — kHz circuit is used When the sub-external clock 32.768 — kHz is used When the sub-CR clock is 100 150 kHz used Page 90 of 128 MB95690K Series Parameter Symbol Pin name Condition  X0, X1 Clock cycle time tHCYL X0 X1: open X0, X1 * tLCYL X0A, X1A  X0 X1: open tWH1, tWL1 Input clock X0, X1 * pulse width tWH2, tWL2 X0A  Input clock X0, X0A X1: open rising time and tCR, tCF X0, X1, * falling time X0A, X1A Min 61.5 83.4 30.8  (VCC = 2.88 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C) Value Unit Remarks Typ Max When the main oscillation 1000 ns  circuit is used 1000 ns When an external clock is  1000 ns used      30.5   33.4 12.4 — — 15.2  — — 5 µs ns ns µs ns 5 ns When the subclock is used When an external clock is used, the duty ratio should range between 40% and 60%. When an external clock is used When the main CR clock is used When the sub-CR clock is tCRLWK — — — — 30 µs used PLL oscillation When the main CR PLL clock tMCRPLLWK — — — — 100 µs start time is used *: The external clock signal is input to X0 and the inverted external clock signal to X1. CR oscillation start time tCRHWK — — — — 50 µs • Input waveform generated when an external clock (main clock) is used tHCYL tWH1 tCR tWL1 tCF 0.8 VCC 0.8 VCC X0, X1 0.2 VCC 0.2 VCC 0.2 VCC • Figure of main clock input port external connection When a crystal oscillator or a ceramic oscillator is used X0 When an external clock is used When an external clock (X1 is open) is used X0 X1 FCH X1 X1 Open FCH Document Number: 002-04692 Rev. *A X0 FCH Page 91 of 128 MB95690K Series • Input waveform generated when an external clock (subclock) is used tLCYL tWH2 tCR tWL2 tCF 0.8 VCC 0.8 VCC X0A 0.2 VCC 0.2 VCC 0.2 VCC • Figure of subclock input port external connection When a crystal oscillator or a ceramic oscillator is used X0A X1A When an external clock is used X0A X1A Open FCL FCL • Input waveform generated when an internal clock (main CR clock) is used tCRHWK 1/FCRH Main CR clock Oscillation starts Oscillation stabilizes • Input waveform generated when an internal clock (sub-CR clock) is used tCRLWK 1/FCRL Sub-CR clock Oscillation starts Document Number: 002-04692 Rev. *A Oscillation stabilizes Page 92 of 128 MB95690K Series • Input waveform generated when an internal clock (main CR PLL clock) is used 1/FMCRPLL tMCRPLLWK Main CR PLL clock Oscillation starts Oscillation stabilizes 20.4.2 Source Clock/Machine Clock Parameter Symbol Pin name (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Min Value Typ Max Unit Remarks When the main external clock is used Min: FCH = 32.5 MHz, divided by 2 Max: FCH = 1 MHz, divided by 2 When the main CR clock is used 62.5 — 1000 ns Min: FCRH = 4 MHz, multiplied by 4 Source clock tSCLK — cycle time*1 Max: FCRH = 4 MHz, divided by 4 When the suboscillation clock is used — 61 — µs FCL = 32.768 kHz, divided by 2 When the sub-CR clock is used — 20 — µs FCL = 100 kHz, divided by 2 0.5 — 16.25 MHz When the main oscillation clock is used FSP — 4 12.5 MHz When the main CR clock is used Source clock — — 16.384 — kHz When the suboscillation clock is used frequency FSPL When the sub-CR clock is used — 50 — kHz FCRL = 100 kHz, divided by 2 When the main oscillation clock is used 61.5 — 32000 ns Min: FSP = 16.25 MHz, no division Max: FSP = 0.5 MHz, divided by 16 When the main CR clock is used Machine clock 250 — 4000 ns Min: FSP = 4 MHz, no division 2 cycle time* Max: FSP = 4 MHz, divided by 16 (minimum tMCLK — When the suboscillation clock is used instruction 61 — 976.5 µs Min: FSPL = 16.384 kHz, no division execution time) Max: FSPL = 16.384 kHz, divided by 16 When the sub-CR clock is used 20 — 320 µs Min: FSPL = 50 kHz, no division Max: FSPL = 50 kHz, divided by 16 0.031 — 16.25 MHz When the main oscillation clock is used FMP 0.25 — 16 MHz When the main CR clock is used Machine clock — 1.024 — 16.384 kHz When the suboscillation clock is used frequency FMPL When the sub-CR clock is used 3.125 — 50 kHz FCRL = 100 kHz *1: This is the clock before it is divided according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). This source clock is divided to become a machine clock according to the division ratio set by the 61.5 Document Number: 002-04692 Rev. *A — 2000 ns Page 93 of 128 MB95690K Series machine clock division ratio select bits (SYCC:DIV[1:0]). In addition, a source clock can be selected from the following. • Main clock divided by 2 • Main CR clock • PLL multiplication of main CR clock (Select a multiplication rate from 2, 2.5, 3 and 4.) • Subclock divided by 2 • Sub-CR clock divided by 2 *2: This is the operating clock of the microcontroller. A machine clock can be selected from the following. • Source clock (no division) • Source clock divided by 4 • Source clock divided by 8 • Source clock divided by 16 • Schematic diagram of the clock generation block FCH (Main oscillation clock) Divided by 2 FMCRPLL (Main CR PLL clock) SCLK (Source clock) FCRH (Main CR clock) FCL (Suboscillation clock) Division circuit × 1 × 1/4 × 1/8 × 1/16 MCLK (Machine clock) Divided by 2 Machine clock divide ratio select bits (SYCC:DIV[1:0]) FCRL (Sub-CR clock) Divided by 2 Clock mode select bits (SYCC:SCS[2:0]) • Operating voltage - Operating Frequency (TA = 40 °C to 85 °C) 5.5 Operating voltage (V) 5.0 A/D converter operation range 4.0 3.5 3.0 2.7 2.4 16 kHz 3 MHz 10 MHz 16.25 MHz Source clock frequency (FSP/FSPL) Document Number: 002-04692 Rev. *A Page 94 of 128 MB95690K Series 20.4.3 External Reset Parameter (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Value Symbol RST “L” level pulse width tRSTL Min Max 2 tMCLK* — Unit Remarks ns *: See “Source Clock/Machine Clock” for tMCLK. tRSTL RST 0.2 VCC 0.2 VCC 20.4.4 Power-on Reset (VSS = 0.0 V, TA = 40 °C to 85 °C) Parameter Symbol Condition Power supply rising time tR Power supply cutoff time tOFF tR Value Unit Min Max — — 50 ms — 1 — ms Remarks Wait time until power-on tOFF 2.5 V VCC 0.2 V 0.2 V 0.2 V Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 30 mV/ms as shown below. VCC 2.3 V Set the slope of rising to a value below 30 mV/ms. Hold condition in stop mode VSS Document Number: 002-04692 Rev. *A Page 95 of 128 MB95690K Series 20.4.5 Peripheral Input Timing (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Parameter Symbol Peripheral input “H” pulse width tILIH Peripheral input “L” pulse width tIHIL Value Pin name INT00 to INT07, EC0, EC1, TI1, TRG1 Min Max 2 tMCLK*   2 tMCLK* Unit ns ns *: See “Source Clock/Machine Clock” for tMCLK. tILIH 0.8 VCC INT00 to INT07, EC0, EC1, TI1, TRG1 tIHIL 0.8 VCC 0.2 VCC 0.2 VCC 20.4.6 LIN-UART Timing Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is disabled*2. (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0) (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Parameter Serial clock cycle time SCK  SOT delay time Symbol Pin name tSCYC SCK tSLOVI SCK, SOT Internal clock operation output pin: SCK, SIN CL = 80 pF  1 TTL SCK, SIN Valid SIN  SCK tIVSHI SCK  valid SIN hold time tSHIXI Serial clock “L” pulse width Serial clock “H” pulse width tSLSH tSHSL SCK  SOT delay time tSLOVE Valid SIN  SCK tIVSHE SCK  valid SIN hold time tSHIXE Value Condition SCK SCK SCK, SOT External clock SCK, SIN operation output pin: SCK, SIN CL = 80 pF  1 TTL t Max 5 tMCLK*3 — ns 50 50 ns MCLK 3 *  80 — ns 0 — ns * tR — ns *  10 — ns MCLK 3 3t t MCLK 3 — t Unit Min 2t *  60 ns MCLK 3 30 — ns MCLK 3 *  30 — ns SCK fall time tF SCK — 10 ns SCK rise time tR SCK — 10 ns *1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock. *2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock. *3: See “Source Clock/Machine Clock” for tMCLK. Document Number: 002-04692 Rev. *A Page 96 of 128 MB95690K Series • Internal shift clock mode tSCYC 0.8 VCC SCK 0.2 VCC 0.2 VCC tSLOVI 0.8 VCC SOT 0.2 VCC tIVSHI tSHIXI 0.7 VCC 0.7 VCC SIN 0.3 VCC 0.3 VCC • External shift clock mode tSLSH tSHSL 0.8 VCC 0.8 VCC 0.8 VCC SCK 0.2 VCC tF 0.2 VCC tR tSLOVE 0.8 VCC SOT 0.2 VCC tIVSHE tSHIXE 0.7 VCC 0.7 VCC SIN 0.3 VCC 0.3 VCC Document Number: 002-04692 Rev. *A Page 97 of 128 MB95690K Series Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is disabled*2. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0) (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Parameter Serial clock cycle time SCK  SOT delay time Symbol Pin name tSCYC SCK tSHOVI SCK, SOT Internal clock operation output pin: SCK, SIN CL = 80 pF  1 TTL SCK, SIN Valid SIN  SCK tIVSLI SCK valid SIN hold time tSLIXI Serial clock “H” pulse width Serial clock “L” pulse width tSHSL tSLSH SCK  SOT delay time tSHOVE Valid SIN  SCK tIVSLE SCK valid SIN hold time tSLIXE Value Condition SCK SCK SCK, SOT External clock SCK, SIN operation output pin: SCK, SIN CL = 80 pF  1 TTL t Max 5 tMCLK*3 — ns 50 50 ns MCLK 3 *  80 — ns 0 — ns * tR — ns *  10 — ns MCLK 3 3t t MCLK 3 — t Unit Min 2t *  60 ns MCLK 3 30 — ns MCLK 3 *  30 — ns SCK fall time tF SCK — 10 ns SCK rise time tR SCK — 10 ns *1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock. *2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock. *3: See “Source Clock/Machine Clock” for tMCLK. Document Number: 002-04692 Rev. *A Page 98 of 128 MB95690K Series • Internal shift clock mode tSCYC 0.8 VCC 0.8 VCC SCK 0.2 VCC tSHOVI 0.8 VCC SOT 0.2 VCC tIVSLI tSLIXI 0.7 VCC 0.7 VCC SIN 0.3 VCC 0.3 VCC • External shift clock mode tSHSL 0.8 VCC tSLSH 0.8 VCC SCK 0.2 VCC tR tF 0.2 VCC 0.2 VCC tSHOVE 0.8 VCC SOT 0.2 VCC tIVSLE tSLIXE 0.7 VCC 0.7 VCC SIN 0.3 VCC 0.3 VCC Document Number: 002-04692 Rev. *A Page 99 of 128 MB95690K Series Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is enabled*2. (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1) (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Parameter Symbol Pin name Value Condition Serial clock cycle time tSCYC SCK SCK SOT delay time tSHOVI SCK, SOT Internal clock SCK, SIN operation output pin: SCK, SIN CL = 80 pF  1 TTL Valid SIN  SCK tIVSLI SCK valid SIN hold time tSLIXI SOT  SCKdelay time tSOVLI SCK, SOT t Unit Min Max 5 tMCLK*3 — ns 50 50 ns MCLK 3 *  80 — ns 0 — ns * 70 — ns 3t MCLK 3 *1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock. *2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock. *3: See “Source Clock/Machine Clock” for tMCLK. tSCYC 0.8 VCC SCK 0.2 VCC SOT 0.2 VCC tSHOVI tSOVLI 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC tIVSLI SIN tSLIXI 0.7 VCC 0.7 VCC 0.3 VCC 0.3 VCC Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is enabled*2. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1) (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Parameter Symbol Pin name Serial clock cycle time tSCYC SCK SCK  SOT delay time tSLOVI SCK, SOT Internal clock SCK, SIN operation output pin: SCK, SIN CL = 80 pF  1 TTL Valid SIN  SCK tIVSHI SCK  valid SIN hold time tSHIXI SOT  SCKdelay time tSOVHI SCK, SOT Value Condition t Unit Min Max 5 tMCLK*3 — ns 50 50 ns MCLK 3 *  80 — ns 0 — ns * 70 — ns 3t MCLK 3 *1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock. *2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock. *3: See “Source Clock/Machine Clock” for tMCLK. Document Number: 002-04692 Rev. *A Page 100 of 128 MB95690K Series tSCYC 0.8 VCC SCK 0.8 VCC 0.2 VCC tSOVHI SOT tSLOVI 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC tIVSHI SIN tSHIXI 0.7 VCC 0.7 VCC 0.3 VCC 0.3 VCC 20.4.7 Low-voltage Detection Parameter (VSS = 0.0 V, TA = 40 °C to 85 °C) Symbol Release voltage* VDL Detection voltage* VDL Min 2.52 2.61 2.89 3.08 2.43 2.52 2.80 2.99 — Value Typ 2.7 2.8 3.1 3.3 2.6 2.7 3 3.2 — Max 2.88 2.99 3.31 3.52 2.77 2.88 3.20 3.41 100 Unit Remarks V At power supply rise V At power supply fall Hysteresis width VHYS mV Power supply start Voff — — 2.3 V voltage Power supply end Von 4.9 — — V voltage Power supply voltage Slope of power supply that the reset change time tr 650 — — µs release signal generates within the (at power supply rise) rating (VDL+) Power supply voltage Slope of power supply that the reset change time tf 650 — — µs release signal generates within the (at power supply fall) rating (VDL-) Reset release delay td1 — — 30 µs time Reset detection delay td2 — — 30 µs time LVD reset threshold voltage transition tstb 10 — — µs stabilization time *: After the LVD reset is enabled by the LVD reset circuit control register (LVDCC), the release voltage and the detection voltage can be selected by using the LVD reset voltage selection ID register (LVDR) in the low-voltage detection reset circuit. For details of the LVDCC register and the LVDR register, refer to “CHAPTER 16 LOW-VOLTAGE DETECTION RESET CIRCUIT” in “New 8FX MB95690K Series Hardware Manual”. Document Number: 002-04692 Rev. *A Page 101 of 128 MB95690K Series VCC Von Voff time tf tr VDL+ VHYS VDL- Internal reset signal time td2 Document Number: 002-04692 Rev. *A td1 Page 102 of 128 MB95690K Series 20.4.8 I2C Bus Interface Timing (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Value Parameter Standardmode Fast-mode Min Max Min Max 0 100 0 400 kHz SCL, SDA 4.0 — 0.6 — µs Symbol Pin name Condition SCL clock frequency fSCL (Repeated) START condition hold time SDA  SCL  tHD;STA SCL Unit SCL clock “L” width tLOW SCL 4.7 — 1.3 — µs SCL clock “H” width tHIGH SCL 4.0 — 0.6 — µs 4.7 — 0.6 — µs (Repeated) START condition setup time SCL  SDA  tSU;STA SCL, SDA Data hold time SCL  SDA  tHD;DAT SCL, SDA 0 3.45*2 0 0.9*3 µs Data setup time SDA  SCL  tSU;DAT SCL, SDA 0.25 — 0.1 — µs STOP condition setup time SCL   SDA  tSU;STO SCL, SDA 4 — 0.6 — µs tBUF SCL, SDA 4.7 — 1.3 — µs Bus free time between STOP condition and START condition R = 1.7 k, C = 50 pF*1 *1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines. *2: The maximum tHD;DAT in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at “L” (tLOW) does not extend. *3: A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, provided that the condition of tSU;DAT  250 ns is fulfilled. tWAKEUP SDA tLOW tHD;DAT tHIGH tHD;STA tBUF SCL tHD;STA Document Number: 002-04692 Rev. *A tSU;DAT fSCL tSU;STA tSU;STO Page 103 of 128 MB95690K Series (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Value*2 Pin Unit Remarks Parameter Symbol Condition name Min Max SCL clock tLOW SCL (2  nm/2)tMCLK  20 — ns Master mode “L” width SCL clock tHIGH SCL (nm/2)tMCLK  20 (nm/2)tMCLK  20 ns Master mode “H” width Master mode Maximum value is applied when START SCL, (-1  nm/2)tMCLK  20 (-1  nm)tMCLK  20 ns m, n = 1, 8. condition tHD;STA SDA Otherwise, the hold time minimum value is applied. STOP SCL, condition tSU;STO (1  nm/2)tMCLK  20 (1  nm/2)tMCLK  20 ns Master mode SDA setup time START SCL, condition tSU;STA (1  nm/2)tMCLK  20 (1  nm/2)tMCLK  20 ns Master mode SDA setup time Bus free time between STOP SCL, tBUF (2 nm  4) tMCLK  20 — ns condition SDA and START condition R = 1.7 k, SCL, Data hold C = 50 pF*1 3 tMCLK  20 — ns Master mode tHD;DAT SDA time Master mode It is assumed that “L” of SCL is not extended. The minimum value is Data setup SCL, tSU;DAT (-2  nm/2) tMCLK  20 (-1  nm/2) tMCLK  20 ns applied to the first time SDA bit of continuous data. Otherwise, the maximum value is applied. The minimum value is applied Setup time to the interrupt at between the ninth SCL. clearing tSU;INT SCL (nm/2) tMCLK  20 (1  nm/2) tMCLK  20 ns The maximum interrupt and value is applied SCL rising to the interrupt at the eighth SCL. SCL clock tLOW SCL 4 tMCLK  20 — ns At reception “L” width SCL clock tHIGH SCL 4 tMCLK  20 — ns At reception “H” width Document Number: 002-04692 Rev. *A Page 104 of 128 MB95690K Series Parameter Pin Symbol Condition name START condition detection tHD;STA SCL, SDA STOP condition detection tSU;STO SCL, SDA RESTART condition detection condition tSU;STA SCL, SDA Bus free time tBUF Data hold time tHD;DAT Data setup time tSU;DAT Data hold time tHD;DAT Data setup time tSU;DAT SDA  SCL (with wakeup function in use) tWAKEUP SCL, SDA SCL, SDA SCL, SDA SCL, SDA SCL, SDA SCL, SDA R = 1.7 k, C = 50 pF*1 (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Value*2 Unit Remarks Min Max No START condition is 2 tMCLK  20 — ns detected when 1 tMCLK is used at reception. No STOP condition is detected when 1 2 tMCLK  20 — ns tMCLK is used at reception. No RESTART condition is 2 tMCLK  20 — ns detected when 1 tMCLK is used at reception. 2 tMCLK  20 — ns At reception 2 tMCLK  20 — ns tLOW  3 tMCLK  20 — 0 — ns At reception tMCLK  20 — ns At reception Oscillation stabilization wait time 2 tMCLK  20 — ns At slave transmission mode At slave ns transmission mode *1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines. *2: • See “Source Clock/Machine Clock” for tMCLK. • m represents the CS[4:3] bits in the I2C clock control register ch. 0 (ICCR0). • n represents the CS[2:0] bits in the I2C clock control register ch. 0 (ICCR0). • The actual timing of the I2C bus interface is determined by the values of m and n set by the machine clock (tMCLK) and the CS[4:0] bits in the ICCR0 register. • Standard-mode: m and n can be set to values in the following range: 0.9 MHz  tMCLK (machine clock)  16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below. (m, n) = (1, 8) : 0.9 MHz < tMCLK  1 MHz (m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4) : 0.9 MHz < tMCLK  2 MHz (m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8) : 0.9 MHz < tMCLK  4 MHz (m, n) = (1, 98), (5, 22), (6, 22), (7, 22) : 0.9 MHz < tMCLK  10 MHz (m, n) = (8, 22) : 0.9 MHz < tMCLK  16.25 MHz • Fast-mode: m and n can be set to values in the following range: 3.3 MHz < tMCLK (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below. (m, n) = (1, 8) : 3.3 MHz < tMCLK  4 MHz (m, n) = (1, 22), (5, 4) : 3.3 MHz < tMCLK  8 MHz (m, n) = (1, 38), (6, 4), (7, 4), (8, 4) : 3.3 MHz < tMCLK  10 MHz (m, n) = (5, 8) : 3.3 MHz < tMCLK  16.25 MHz Document Number: 002-04692 Rev. *A Page 105 of 128 MB95690K Series 20.4.9 UART/SIO, Serial I/O Timing Parameter (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Symbol Pin name Value Condition Unit Min Max 4 tMCLK* — ns 190 190 ns 2 tMCLK* — ns Serial clock cycle time tSCYC UCK0 UCK  UO time tSLOV UCK0, UO0 Valid UI  UCK  tIVSH UCK0, UI0 UCK  valid UI hold time tSHIX UCK0, UI0 2 tMCLK* — ns Serial clock “H” pulse width tSHSL UCK0 4 tMCLK* — ns Serial clock “L” pulse width tSLSH UCK0 4 tMCLK* — ns UCK  UO time tSLOV UCK0, UO0 — 190 ns Valid UI  UCK  tIVSH UCK0, UI0 2 tMCLK* — ns UCK  valid UI hold time tSHIX UCK0, UI0 2 tMCLK* — ns Internal clock operation External clock operation *: See “Source Clock/Machine Clock” for tMCLK. • Internal shift clock mode tSCYC 0.8 VCC UCK0 0.2 VCC 0.2 VCC tSLOV 0.8 VCC UO0 0.2 VCC tIVSH tSHIX 0.7 VCC 0.7 VCC UI0 0.3 VCC 0.3 VCC Document Number: 002-04692 Rev. *A Page 106 of 128 MB95690K Series • External shift clock mode tSLSH tSHSL 0.8 VCC 0.8 VCC UCK0 0.2 VCC 0.2 VCC tSLOV 0.8 VCC UO0 0.2 VCC tIVSH tSHIX 0.7 VCC 0.7 VCC UI0 0.3 VCC 0.3 VCC 20.4.10 MPG Input Timing Parameter (VCC = 5.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C) Symbol Pin name Condition tTIWH, tTIWL SNI0 to SNI2, DTTI — Input pulse width Value Min Max 4 tMCLK — Unit Remarks ns 0.8 VCC 0.8 VCC SNI0 to SNI2, DTTI 0.2 VCC tTIWH Document Number: 002-04692 Rev. *A 0.2 VCC tTIWL Page 107 of 128 MB95690K Series 20.4.11 Comparator Timing Parameter (VCC = 2.88 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C) Pin name Value Unit Remarks Min Typ Max Voltage range CMP0_P, CMP0_N, CMP1_P, CMP1_N 0 — VCC  1.3 V Offset voltage CMP0_P, CMP0_N, CMP1_P, CMP1_N 15 — 15 mV Delay time CMP0_O, CMP1_O — 650 1200 ns Overdrive 5 mV — 140 420 ns Overdrive 50 mV Power down delay CMP0_O, CMP1_O — — 1200 ns Power down recovery PD: 1  0 Power up CMP0_O, stabilization wait time CMP1_O — — 1200 ns Output stabilization wait time at power up 20.4.12 BGR for Comparator (VCC = 2.88 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C) Parameter Symbol Power up stabilization wait time Output voltage Value Unit Min Typ Max — — — 150 µs VBGR 1.1495 1.21 1.2705 V Document Number: 002-04692 Rev. *A Remarks Load: 10 pF Page 108 of 128 MB95690K Series 20.5 A/D Converter 20.5.1 A/D Converter Electrical Characteristics Parameter (VCC = 2.7 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C) Value Symbol Unit Min Typ Max Resolution — — 10 bit Total error 3 — 3 LSB 2.5 — 2.5 LSB 1.9 — 1.9 LSB — Linearity error Differential linearity error Zero transition voltage V0T VSS 7.2 LSB VSS  0.5 LSB VSS  8.2 LSB V Full-scale transition voltage VFST VCC 6.2 LSB VCC 1.5 LSB VCC  9.2 LSB V Compare time — 3 — 10 Remarks µs 2.7 V  VCC  5.5 V 2.7 V  VCC  5.5 V, with external impedance  3.3 k and external capacitance = 10 pF Sampling time — 0.941 —  µs Analog input current IAIN 0.3 — 0.3 µA Analog input voltage VAIN VSS — VCC V 20.5.2 Notes on Using A/D Converter • External impedance of analog input and its sampling time The A/D converter of the MB95690K Series has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 µF to the analog input pin. • Analog input equivalent circuit Analog input Comparator R C During sampling: ON VCC R C 4.5 V ≤ VCC ≤ 5.5 V 1.45 kΩ (Max) 2.7 V ≤ VCC < 4.5 V 2.7 kΩ (Max) 14.89 pF (Max) 14.89 pF (Max) Note: The values are reference values. Document Number: 002-04692 Rev. *A Page 109 of 128 MB95690K Series • Relationship between external impedance and minimum sampling time [External impedance = 0 kΩ to 100 kΩ] 100 External impedance [kΩ] 80 60 40 20 0 0 2 4 6 8 10 12 14 16 18 20 Minimum sampling time [μs] [External impedance = 0 kΩ to 20 kΩ] External impedance [kΩ] 20 15 10 5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Minimum sampling time [μs] Note: External capacitance = 10 pF • A/D conversion error As |VCC  VSS| decreases, the A/D conversion error increases proportionately. Document Number: 002-04692 Rev. *A Page 110 of 128 MB95690K Series 20.5.3 Definitions of A/D Converter Terms • Resolution It indicates the level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into 210 = 1024. • Linearity error (unit: LSB) It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point (“0000000000”   “0000000001”) of a device to the full-scale transition point (“1111111111”   “1111111110”) of the same device. • Differential linear error (unit: LSB) It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value. • Total error (unit: LSB) It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise. Ideal I/O characteristics Total error VFST 0x3FF 0x3FF 2 LSB 0x3FD Digital output Digital output 0x3FD 0x004 0x003 Actual conversion characteristic 0x3FE 0x3FE V0T {1 LSB × (N − 1) + 0.5 LSB} 0x004 VNT 0x003 1 LSB 0x002 0x002 0x001 Actual conversion characteristic Ideal characteristic 0x001 0.5 LSB VSS Analog input 1 LSB = VCC VCC − VSS V 1024 N VSS Analog input Total error of digital output N = VCC VNT − {1 LSB × (N − 1) + 0.5 LSB} LSB 1 LSB : A/D converter digital output value VNT : Voltage at which the digital output transits from 0x(N − 1) to 0xN Document Number: 002-04692 Rev. *A Page 111 of 128 MB95690K Series Zero transition error Full-scale transition error 0x004 Ideal characteristic Actual conversion characteristic 0x3FF Actual conversion characteristic 0x002 Ideal characteristic Digital output Digital output 0x003 Actual conversion characteristic 0x3FE VFST (measurement value) 0x3FD Actual conversion characteristic 0x001 0x3FC V0T (measurement value) VSS Analog input VCC VSS Linearity error 0x3FF 0x3FE Ideal characteristic 0x(N+1) Actual conversion characteristic {1 LSB × N + V0T} VFST Digital output Digital output 0x3FD (measurement value) VNT 0x004 0x002 VCC Differential linearity error Actual conversion characteristic V(N+1)T 0xN VNT 0x(N−1) Actual conversion characteristic 0x003 Analog input Ideal characteristic Actual conversion characteristic 0x(N−2) 0x001 V0T (measurement value) VSS Analog input VCC Linearity error of digital output N = VSS VCC VNT − {1 LSB × N + V0T} 1 LSB Differential linearity error of digital output N = N Analog input V(N+1)T − VNT − 1 1 LSB : A/D converter digital output value VNT : Voltage at which the digital output transits from 0x(N − 1) to 0xN V0T (ideal value) = VSS + 0.5 LSB [V] VFST (ideal value) = VCC − 2 LSB [V] Document Number: 002-04692 Rev. *A Page 112 of 128 MB95690K Series 20.6 Flash Memory Program/Erase Characteristics Parameter Value Unit Remarks 1.6*2 s The time of writing “0x00” prior to erasure is excluded. 0.6*1 3.1*2 s The time of writing “0x00” prior to erasure is excluded. 17 272 µs System-level overhead is excluded. Program/erase cycle 100000 — — cycle Power supply voltage at program/erase 2.4 — 5.5 V 20*3 — — Average TA = 85 °C Number of program/erase cycles: 1000 or below 10*3 — — Average TA = 85 °C year Number of program/erase cycles: 1001 to 10000 inclusive 5*3 — — Min Typ Max Sector erase time (2 Kbyte sector) — 0.3*1 Sector erase time (32 Kbyte sector) — Byte writing time — Flash memory data retention time Average TA = 85 °C Number of program/erase cycles: 10001 or above *1: VCC = 5.5 V, TA = 25 °C, 0 cycle *2: VCC = 2.4 V, TA = 85 °C, 100000 cycles *3: These values were converted from the result of a technology reliability assessment. (These values were converted from the result of a high temperature accelerated test using the Arrhenius equation with the average temperature being 85 °C.) Document Number: 002-04692 Rev. *A Page 113 of 128 MB95690K Series 21. Sample Characteristics • Power supply current temperature characteristics ICC  VCC TA  25 C, FMP  2, 4, 8, 10, 16 MHz (divided by 2) Main clock mode with the external clock operating ICC  TA VCC  5.5 V, FMP  2, 4, 8, 10, 16 MHz (divided by 2) Main clock mode with the external clock operating 20 20 FMP = 16 MHz FMP = 10 MHz FMP = 8 MHz FMP = 4 MHz FMP = 2 MHz 15 ICC[mA] ICC[mA] 15 FMP = 16 MHz FMP = 10 MHz FMP = 8 MHz FMP = 4 MHz FMP = 2 MHz 10 10 5 5 0 0 2 3 4 5 6 −50 7 0 VCC[V] ICCS  VCC TA  25 C, FMP  2, 4, 8, 10, 16 MHz (divided by 2) Main sleep mode with the external clock operating +150 10 FMP = 16 MHz FMP = 10 MHz FMP = 8 MHz FMP = 4 MHz FMP = 2 MHz 8 FMP = 16 MHz FMP = 10 MHz FMP = 8 MHz FMP = 4 MHz FMP = 2 MHz 8 6 ICCS[mA] 6 ICCS[mA] +100 ICCS  TA VCC  5.5 V, FMP  2, 4, 8, 10, 16 MHz (divided by 2) Main sleep mode with the external clock operating 10 4 4 2 2 0 0 2 3 4 5 6 −50 7 0 VCC[V] +50 +100 +150 TA[°C] ICCL  VCC TA  25 C, FMPL  16 kHz (divided by 2) Subclock mode with the external clock operating ICCL  TA VCC  5.5 V, FMPL  16 kHz (divided by 2) Subclock mode with the external clock operating 100 100 75 75 ICCL[μA] ICCL[μA] +50 TA[°C] 50 25 50 25 0 0 2 3 4 5 VCC[V] Document Number: 002-04692 Rev. *A 6 7 −50 0 +50 +100 +150 TA[°C] Page 114 of 128 MB95690K Series ICCLS  TA VCC  5.5 V, FMPL  16 kHz (divided by 2) Subsleep mode with the external clock operating 80 80 70 70 60 60 50 50 ICCLS[μA] ICCLS[μA] ICCLS  VCC TA  25 C, FMPL  16 kHz (divided by 2) Subsleep mode with the external clock operating 40 30 40 30 20 20 10 10 0 0 2 3 4 5 6 −50 7 0 VCC[V] +100 +150 ICCT  TA VCC  5.5 V, FMPL  16 kHz (divided by 2) Watch mode with the external clock operating 80 80 70 70 60 60 50 50 ICCT[μA] ICCT[μA] ICCT  VCC TA  25 C, FMPL  16 kHz (divided by 2) Watch mode with the external clock operating 40 40 30 30 20 20 10 10 0 0 2 3 4 5 6 −50 7 0 VCC[V] +50 +100 +150 TA[°C] ICCTS  VCC TA  25 C, FMP  2, 4, 8, 10, 16 MHz (divided by 2) Time-base timer mode with the external clock operating ICCTS  TA VCC  5.5 V, FMP  2, 4, 8, 10, 16 MHz (divided by 2) Time-base timer mode with the external clock operating 1.4 1.4 FMP = 16 MHz FMP = 10 MHz FMP = 8 MHz FMP = 4 MHz FMP = 2 MHz 1.0 FMP = 16 MHz FMP = 10 MHz FMP = 8 MHz FMP = 4 MHz FMP = 2 MHz 1.2 1.0 ICCTS[mA] 1.2 ICCTS[mA] +50 TA[°C] 0.8 0.6 0.8 0.6 0.4 0.4 0.2 0.2 0.0 0.0 2 3 4 5 VCC[V] Document Number: 002-04692 Rev. *A 6 7 −50 0 +50 +100 +150 TA[°C] Page 115 of 128 MB95690K Series ICCH  TA VCC  5.5 V, FMPL  (stop) Substop mode with the external clock stopping 20 20 15 15 ICCH[μA] ICCH[μA] ICCH  VCC TA  25 C, FMPL  (stop) Substop mode with the external clock stopping 10 10 5 5 0 0 1 2 3 4 5 6 −50 7 0 ICCMCR  VCC TA  25 C, FMP  4 MHz (no division) Main CR clock mode +100 +150 ICCMCR  TA VCC  5.5 V, FMP  4 MHz (no division) Main CR clock mode 20 20 15 15 ICCMCR[mA] ICCMCR[mA] +50 TA[°C] VCC[V] 10 5 10 5 0 0 2 3 4 5 6 −50 7 0 VCC[V] +50 +100 +150 TA[°C] 10 10 8 8 6 6 ICCMPLL[mA] ICCMPLL[mA] ICCMPLL  VCC ICCMPLL  TA TA  25 C, FMP  16 MHz (PLL multiplication rate: 4) VCC  5.5 V, FMP  16 MHz (PLL multiplication rate: 4) Main CR PLL clock mode Main CR PLL clock mode 4 2 4 2 0 0 1 2 3 4 5 VCC[V] Document Number: 002-04692 Rev. *A 6 7 −50 0 +50 +100 +150 TA[°C] Page 116 of 128 MB95690K Series ICCSCR  TA VCC  5.5 V, FMPL  50 kHz (divided by 2) Sub-CR clock mode 200 200 150 150 ICCSCR[μA] ICCSCR[μA] ICCSCR  VCC TA  25 C, FMPL  50 kHz (divided by 2) Sub-CR clock mode 100 100 50 50 0 0 2 3 4 5 VCC[V] Document Number: 002-04692 Rev. *A 6 7 −50 0 +50 +100 +150 TA[°C] Page 117 of 128 MB95690K Series • Input voltage characteristics VIHI  VCC and VILI  VCC TA  25 C VIHS  VCC and VILS  VCC TA  25 C 5 5 VIHI VILI VIHS VILS 4 3 3 VIHI/VILI[V] VIHS/VILS[V] 4 2 1 2 1 0 0 2 3 4 5 6 7 2 3 4 VCC[V] 5 6 7 VCC[V] VIHM  VCC and VILM  VCC TA  25 C 5 VIHM VILM VIHM/VILM[V] 4 3 2 1 0 2 3 4 5 6 7 VCC[V] Document Number: 002-04692 Rev. *A Page 118 of 128 MB95690K Series • Output voltage characteristics (VCC  VOH2)  IOH TA  25 C 2.0 2.0 1.8 1.8 1.6 1.6 1.4 1.4 VCC − VOH2[V] VCC − VOH1[V] (VCC  VOH1)  IOH TA  25 C 1.2 1.0 0.8 1.2 1.0 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 IOH[mA] IOH[mA] VCC = 2.4 V VCC = 2.7 V VCC = 3.0 V VCC = 3.5 V VCC = 4.0 V VCC = 4.5 V VCC = 5.0 V VCC = 5.5 V VCC = 2.4 V VCC = 2.7 V VCC = 3.0 V VCC = 3.5 V VCC = 4.0 V VCC = 4.5 V VCC = 5.0 V VCC = 5.5 V VOL1  IOL TA  25 C VOL2  IOL TA  25 C 1.0 2.0 1.8 1.6 0.8 1.4 0.6 VOL2[V] VOL1[V] 1.2 1.0 0.8 0.4 0.6 0.4 0.2 0.2 0.0 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IOL[mA] VCC = 2.4 V VCC = 2.7 V VCC = 3.0 V VCC = 3.5 V VCC = 4.0 V VCC = 4.5 V VCC = 5.0 V VCC = 5.5 V Document Number: 002-04692 Rev. *A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IOL[mA] VCC = 2.4 V VCC = 2.7 V VCC = 3.0 V VCC = 3.5 V VCC = 4.0 V VCC = 4.5 V VCC = 5.0 V VCC = 5.5 V Page 119 of 128 MB95690K Series • Pull-up characteristics RPULL  VCC TA  25 C 200 RPULL[kΩ] 150 100 50 0 2 3 4 5 6 VCC[V] Document Number: 002-04692 Rev. *A Page 120 of 128 MB95690K Series 22. Ordering Information Part number Package MB95F694KPMC2-G-SNE2 MB95F696KPMC2-G-SNE2 MB95F698KPMC2-G-SNE2 MB95F698KPMC2-G-UNE2 44-pin plastic LQFP (FPT-44P-M25) MB95F694KPMC-G-SNE2 MB95F696KPMC-G-SNE2 MB95F698KPMC-G-SNE2 48-pin plastic LQFP (FPT-48P-M49) MB95F694KPMC1-G-SNE2 MB95F696KPMC1-G-SNE2 MB95F698KPMC1-G-SNE2 MB95F698KPMC1-G-UNE2 52-pin plastic LQFP (FPT-52P-M02) MB95F694KWQN-G-SNE1 MB95F694KWQN-G-SNERE1 MB95F696KWQN-G-SNE1 MB95F696KWQN-G-SNERE1 MB95F698KWQN-G-SNE1 MB95F698KWQN-G-SNERE1 48-pin plastic QFN (LCC-48P-M11) Document Number: 002-04692 Rev. *A Page 121 of 128 MB95690K Series 23. Package Dimension 44-pin plastic LQFP Lead pitch 0.80 mm Package width × package length 10.0 mm × 10.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm Max Code (Reference) P-LFQFP44-10×10-0.80 (FPT-44P-M25) 44-pin plastic LQFP (FPT-44P-M25) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. +0.20 1.50 –0.10 13.60±0.20(.535±.008)SQ +.008 .059 –.004 *10.00±0.10(.394±.004)SQ 33 0.10±0.10 (.004±.004) (STAND OFF) 23 Details of "A" part 22 34 0.20(.008) 0.15(.006)MAX 8.00 (.315) REF 11.60 (.457) NOM 0.50(.020)MAX INDEX Details of "B" part 12 44 0~10˚ 1 0.80(.031) TYP 11 0.35±0.10 (.014±.004) 0.10(.004) C +0.05 0.127 –0.02 .005 +.002 –.0008 2006 FUJITSU LIMITED F44033S-c-1-1 Document Number: 002-04692 Rev. *A "A" 1.00±0.20(.039±.008) "B" Dimensions in mm (inches). Note: The values in parentheses are reference values Page 122 of 128 MB95690K Series 48-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 7.00 mm × 7.00 mm Lead shape Gullwing Lead bend direction Normal bend Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.17 g (FPT-48P-M49) 48-pin plastic LQFP (FPT-48P-M49) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 9.00±0.20(.354±.008)SQ *7.00±0.10(.276±.004)SQ 36 0.145±0.055 (.006±.002) 25 24 37 0.08(.003) Details of "A" part +0.20 1.50 –0.10 +.008 INDEX 13 48 "A" 0°~8° 1 0.50(.020) (Mounting height) .059 –.004 0.10±0.10 (.004±.004) (Stand off) 12 0.22±0.05 (.008±.002) 0.08(.003) 0.25(.010) M 0.60±0.15 (.024±.006) C 2010 FUJITSU SEMICONDUCTOR LIMITED HMbF48-49Sc-1-2 Document Number: 002-04692 Rev. *A Dimensions in mm (inches). Note: The values in parentheses are reference values. Page 123 of 128 MB95690K Series 52-pin plastic LQFP Lead pitch 0.65 mm Package width × package length 10.00 × 10.00 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.32 g Code (Reference) P-LFQFP52-10× 10-0.65 (FPT-52P-M02) 52-pin plastic LQFP (FPT-52P-M02) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 12.00±0.20(.472±.008)SQ *10.00±0.10(.394±.004)SQ 39 0.145±0.055 (.006±.002) 27 Details of "A" part 40 26 +0.20 1.50 –0.10 +.008 (Mounting height) .059 –.004 0.25(.010) INDEX 0.10(.004) 52 0~8˚ 14 "A" 0.50±0.20 (.020±.008) 1 13 0.65(.026) +0.065 0.30 –0.035 +.0026 0.13(.005) M 0.10±0.10 (.004±.004) (Stand off) 0.60±0.15 (.024±.006) .012 –.0014 C 2010 FUJITSU SEMICONDUCTOR LIMITED F52002Sc-2-1 Document Number: 002-04692 Rev. *A Dimensions in mm (inches). Note: The values in parentheses are reference values Page 124 of 128 MB95690K Series 48-pin plastic QFN Lead pitch 0.50 mm Package width × package length 7.00 mm × 7.00 mm Sealing method Plastic mold Mounting height 0.80 mm MAX Weight 0.12 g (LCC-48P-M11) 48-pin plastic QFN (LCC-48P-M11) 7.00±0.10 (.276±.004) 4.40±0.15 (.173±.006) 7.00±0.10 (.276±.004) 4.40±0.15 (.173±.006) INDEX AREA +0.05 0.25 –0.07 +.002 (.010 –.003 ) 0.50(.020) 0.50±0.05 (.020±.002) 1PIN CORNER (C0.30(C.012)) (TYP) 0.75±0.05 (.030±.002) 0.02 (.001 C 2009-2010 FUJITSU SEMICONDUCTOR LIMITED C48064S-c-1-2 Document Number: 002-04692 Rev. *A +0.03 –0.02 +.001 –.001 (0.20(.008)) ) Dimensions in mm (inches). Note: The values in parentheses are reference values. Page 125 of 128 MB95690K Series 24. Major Changes In This Edition Spansion Publication Number: DS702-00014-2v0-E Page Section Details 2 ■ FEATURES Added information on FPT-44P-M25. 4 ■ PRODUCT LINE-UP Added information on FPT-44P-M25 to the parameters “General-purpose I/O” and “8/10-bit A/D converter”. 5 Added information on FPT-44P-M25 to the parameter “External interrupt”. 6 Added FPT-44P-M25 to the parameter “Package”. 7 ■ PACKAGES AND CORRESPONDING PRODUCTS Added information on FPT-44P-M25. 9 ■ PIN ASSIGNMENT Added the pin assignment diagram of FPT-44P-M25. 13 to 16 ■ PIN FUNCTIONS (FPT-44P-M25) New section 17 ■ PIN FUNCTIONS (FPT-48P-M49, FPT-52P-M02, LCC-48P-M11) Renamed the section “■ PIN FUNCTIONS” to “■ PIN FUNCTIONS (FPT-48P-M49, FPT-52P-M02, LCC48P-M11). 29 ■ PIN CONNECTION • DBG pin Revised details of “• DBG pin”. • RST pin Revised details of “• RST pin”. 30 • C pin Corrected the following statement. The bypass capacitor for the VCC pin must have a capacitance larger than CS.  The decoupling capacitor for the VCC pin must have a capacitance equal to or larger than the capacitance of CS. 31 ■ BLOCK DIAGRAM (FPT-44P-M25) New section 32 ■ BLOCK DIAGRAM (FPT-48P-M49, FPT-52P-M02, LCC-48P-M11) Renamed the section “■ BLOCK DIAGRAM” to “■ BLOCK DIAGRAM (FPT-48P-M49, FPT-52P-M02, LCC-48P-M11). 75 ■ I/O PORTS 6. Port F (4) Port F operations • Operation as an input port Added the following statement. For a pin shared with other peripheral functions, disable the output of such peripheral functions. 78 7. Port G (4) Port G operations • Operation as an input port Added the following statement. For a pin shared with other peripheral functions, disable the output of such peripheral functions. Document Number: 002-04692 Rev. *A Page 126 of 128 MB95690K Series Page 85 Section Details ■ ELECTRICAL CHARACTERISTICS Corrected the following statement in the remark of the 2. Recommended Operating Conditions parameter “Decoupling capacitor”. The bypass capacitor for the VCC pin must have a capacitance larger than CS.  The decoupling capacitor for the VCC pin must have a capacitance equal to or larger than the capacitance of CS. Revised the remark in “• DBG/RST/C pins connection diagram”. 86 3. DC Characteristics Revised the remark of the parameter “Input leak current (Hi-Z output leak current)”. When pull-up resistance is disabled  When the internal pull-up resistor is disabled Renamed the parameter “Pull-up resistance” to “Internal pull-up resistor”. Revised the remark of the parameter “Internal pull-up resistor”. When pull-up resistance is enabled  When the internal pull-up resistor is enabled 90 4. AC Characteristics (1) Clock Timing Corrected the pin names of the parameter “Input clock rising time and falling time”. X0  X0, X0A X0, X1  X0, X1, X0A, X1A 125 ■ ORDERING INFORMATION Added the part numbers of FPT-44P-M25. 126 ■ PACKAGE DIMENSION Added the package diagram of FPT-44P-M25. NOTE: Please see “Document History” about later revised information. Document History Page Document Title: MB95690K Series, New 8FX 8-bit Microcontrollers Document Number: 002-04692 Revision ECN Orig. of Change Submission Date ** - AKIH 06/17/2013 Migrated to Cypress and assigned document number 002-08453. No change to document contents or format. *A 5193921 AKIH 03/29/2016 Updated to Cypress template Added MB95F698KPMC2-G-UNE2, MB95F698KPMC1-G-UNE2 in "Ordering Information". Document Number: 002-04692 Rev. *A Description of Change Page 127 of 128 MB95690K Series Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products ARM® Cortex® Microcontrollers Automotive cypress.com/arm cypress.com/automotive Clocks & Buffers Interface Lighting & Power Control Memory cypress.com/clocks cypress.com/interface PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP Cypress Developer Community Community | Forums | Blogs | Video | Training cypress.com/powerpsoc cypress.com/memory PSoC cypress.com/psoc Touch Sensing Technical Support cypress.com/support cypress.com/touch USB Controllers Wireless/RF cypress.com/psoc cypress.com/usb cypress.com/wireless © Cypress Semiconductor Corporation 2012-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-04692 Rev. *A Revised March 29, 2016 Page 128 of 128
CY95F698KPMC1-G-UNE2 价格&库存

很抱歉,暂时无法提供与“CY95F698KPMC1-G-UNE2”相匹配的价格&库存,您可以联系我们找货

免费人工找货
CY95F698KPMC1-G-UNE2
  •  国内价格
  • 1+12.43080
  • 10+10.75680
  • 30+9.69840

库存:53