0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ICE5QR2270AZXKLA1

ICE5QR2270AZXKLA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    DIP7

  • 描述:

    ICCTRLRSPSQUASI-RESON7DIP

  • 数据手册
  • 价格&库存
ICE5QR2270AZXKLA1 数据手册
ICE5QRxxxxAx Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Product Highlights          Integrated 700 V/800 V avalanche rugged CoolMOS™ Novel Quasi-Resonant operation and proprietary implementation for low EMI Enhanced Active Burst Mode with selectable entry and exit standby power PG-DIP-7 Active Burst Mode to reach the lowest standby power VREF_B VCS_BL1 = 0.31 V 0.90 V 2.75 V 2 VFB < VREF_B VCS_BL2 = 0.35 V 1.05 V 2.75 V During IC first startup, the internal RefGOOD signal is logic low when VCC < 4 V. It will reset the Burst Mode level Detection latch. When the Burst Mode Level Detection latch is low and IC is in OFF state, the IC internal RFB resistor is disconnected from the FB pin and a current source Isel is turned on instead. From Vcc=4 V to Vcc on threshold, the FB pin will start to charge to a voltage level associated with RSel resistor. When Vcc reaches Vcc on threshold, the FB voltage is sensed. The burst mode thresholds are then chosen according to the FB voltage level. The Burst Mode Level Detection latch is then set to high. Once the detection latch is set high, any change of the FB level will not change the threshold selection. The current source Isel is turned off in 2 μs after VCC reaches VCC on threshold and the RFB resistor is re-connected to FB pin (see Figure 9). Vdd Isel S2 UVLO 2μs delay R RFB Ref good S1 FB Burst mode detection latch VCS_BLx VFB _E BL x Selection Logic Compare logic VREF_B RSel S Control unit Datasheet 12 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Functional Description Figure 9 3.5.1 Burst mode detect and adjust Entering Active Burst Mode Operation For determination of entering Active Burst Mode operation, three conditions apply:  the feedback voltage is lower than the threshold of VFB_EBLX  the up/down counter is 8 for low line or 10 for high line and  the above two conditions remain after a certain blanking time tFB_BEB (20 ms). Once all of these conditions are fulfilled, the Active Burst Mode flip-flop is set and the controller enters Active Burst Mode operation. This multi-condition determination for entering Active Burst Mode operation prevents mis-triggering of entering Active Burst Mode operation, so that the controller enters Active Burst Mode operation only when the output power is really low during the preset blanking time. 3.5.2 During Active Burst Mode Operation After entering the Active Burst Mode the feedback voltage rises as VO starts to decrease due to the inactive PWM section. One comparator observes the feedback signal if the voltage level VFB_BOn is exceeded. In that case the internal circuit is power up to restrart with switching. Turn-on of the power MOSFET is triggered by ZC counter with a fixed value of 8 ZC for low line and 10 ZC for high line. Turn-off is resulted if the voltage across the shunt resistor at CS pin hits the threshold VCS_BLX. If the output load is still low, the feedback signal decreases as the PWM section is operating. When feedback signal reaches the low threshold VFB_BOff , the internal circuit is reset again and the PWM section is disabled until next time VFB signal increases beyond the VFB_BOn threshold. In Active Burst Mode, the feedback signal is changing like a saw tooth between VFB_BOff and VFB_BOn (see Figure 10). 3.5.3 Leaving Active Burst Mode Operation The feedback voltage immediately increases if there is a high load jump. This is observed by a comparator with threshold of VFB_LB. As the current limit is VCS_BLX (31% or 35%) during Active Burst Mode, a certain load is needed so that feedback voltage can exceed VFB_LB. After leaving active burst mode, normal peak current control through VFB is re-activated. In addition, the up/down counter will be set to 1 (low line) or 3 (high line) immediately after leaving Active Burst Mode. This is helpful to minimize the output voltage undershoot. Datasheet 13 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Functional Description VFB Entering Active Burst Mode VFB_LB VFB_BOn VFB_BOff Leaving Active Burst Mode VFB_EBx Time to 8th/10th ZC and Blanking time (tFB_BEB) VCS VCS_N t Current limit level during Active Burst Mode VCS_BLx VVCC t VVCC_OFF VO t Max. Ripple < 1% t Figure 10 3.6 Signals in Active Burst Mode Protection Functions The ICE5QRxxxxAx provides numerous protection functions which considerably improve the power supply system robustness, safety and reliability. The following table summarizes these protection functions. There are 3 different kinds of protection mode; non switch auto restart, auto restart and odd skip auto restart. The details can refer to the Figure 11, Figure 12 and Figure 13. Table 5 Protection functions Protection Functions Normal Mode Burst Mode Line Over Voltage √ Burst ON √ Brownout √ √ Datasheet 14 of 54 Protection Mode Burst OFF √ Non switch Auto Restart √ Non switch Auto Restart V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Functional Description Protection Functions Normal Mode Burst Mode Protection Mode Burst ON Burst OFF VCC Over Voltage √ √ NA1 VCC Under Voltage √ √ √ Over Load √ NA1 NA1 Odd skip Auto Restart Output Over Voltage √ √ NA1 Odd skip Auto Restart Over Temperature √ √ √ 3.6.1 Odd skip Auto Restart Auto Restart Non switch Auto Restart Line Over Voltage The AC Line Over Voltage Protection is detected by sensing bus capacitor voltage through VIN pin via 2 potential divider resistors, Rl1 and Rl2 (see Figure 1). Once VVIN voltage is higher than the line over voltage threshold VVIN_LOVP, the controller enters Line Over Voltage Protection and it releases the protection mode after VVIN is lower than VVIN_LOVP. 3.6.2 Brownout The Brownout protection is observed by VIN pin similar to line over voltage Protection method with a different voltage threshold level. When VVIN voltage is lower than the brownout threshold (VVIN_BO), the controller enters Brownout Protection and it releases the protection mode after VVIN higher than brownin threshold (VVIN_BI). 3.6.3 VCC Ovder Voltage or Under Voltage During operation, the VCC voltage is continuously monitored. In case of a VCC Over Voltage or Under Voltage, the IC is reset and the main power switch is then kept off. After the VCC voltage falls below the threshold VVCC_OFF, the new start up sequence is activated. The VCC capacitor is then charged up. Once the voltage exceeds the threshold VVCC_ON, the IC begins to operate with a new soft-start. 3.6.4 Over Load In case of open control loop or output Over Load, the feedback voltage will be pulled up and exceed VFB_OLP. After a blanking time of tFB_OLP_B, the IC enters auto restart mode. The blanking time here enables the converter to operate for a certain time during a sudden load jump. 3.6.5 Output Over Voltage During off-time of the power MOSFET, the voltage at the ZCD pin is monitored for Output Over Voltage detection. If the voltage is higher than the preset threshold VZCD_OVP for 10 consecutive pulses, the IC enters Output Over Voltage Protection. 3.6.6 Over Temperature If the junction temperature of controller chip exceeds Tjcon_OTP, the IC enters into Over Temperature protection (OTP) auto restart mode. The controller implements with a 40 °C hysteresis. In another word, the controller/IC can only resume from OTP if its junction temperature drops 40 °C from OTP trigger point. Please be noted that the separated CoolMOSTM chip may have different temperature (mostly higher) from the controller chip. Not Applicable Datasheet 1 15 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Functional Description Fault detected Fault released Start up and detect at every charging cycle VVCC Switching start at the following restartt cycle VCC_ON VCC_OFF VCS t No switching t Figure 11 Non switch Auto Restart Mode Fault detected Fault released Start up and detect at every charging cycle VVCC Switching start at the t cycle following restart VCC_ON VCC_OFF VCS t t Figure 12 Datasheet Auto Restart Mode 16 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Functional Description Fault detected Fault released Start up and detect at every even charging cycle VVCC No detect No detect Switching start at the following event restart cycle VCC_ON VCC_OFF VCS t t Figure 13 Datasheet Odd skip Auto Restart Mode 17 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Electrical Characteristics 4 Electrical Characteristics Attention: All voltages are measured with respect to ground (Pin 8 for DIP-7 and Pin12 for DSO-12). The voltage levels are valid if other ratings are not violated. 4.1 Absolute Maximum Ratings Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. System design needs to ensure not to exceed the maximum limit. Ta=25°C unless otherwise specified. Table 6 Absolute Maximum Ratings Parameter Symbol Limit Values Min. Max. Unit Note / Test Condition Drain Source Voltage (CoolMOS ) ICE5QRxx70Ax VDS - 700 V Tj = 25 °C Drain Source Voltage (CoolMOSTM) ICE5QRxx80Ax VDS - 800 V Tj = 25 °C Pulse drain current ICE5QR4770AZ1 ICE5QR4780AZ1 ICE5QR2270AZ2 ICE5QR2280AZ2 ICE5QR1070AZ2 ICE5QR0680AZ2 ICE5QR4770AG1 ICE5QR1680AG2 ICE5QR0680AG2 ID_Pulse Avalanche energy, repetitive, tAR limited by max. TJ=150°C with TJ,Start=25°C ICE5QR4770AZ ICE5QR4780AZ ICE5QR2270AZ ICE5QR2280AZ ICE5QR1070AZ ICE5QR0680AZ ICE5QR4770AG ICE5QR1680AG EAR TM Pulse width tP limited by Tj,Max Pulse width tP=20 µs and limited by Tj,Max Datasheet A - 2.2 2.6 5.8 5.8 5.8 5.8 2.2 5.8 5.8 mJ - 0.02 0.02 0.07 0.05 0.06 0.22 0.02 0.07 ID=0.14 A, VDD=50 V ID=0.2 A, VDD=50 V ID=0.4 A, VDD=50 V ID=0.4 A, VDD=50 V ID=0.38 A, VDD=50 V ID=1.8 A, VDD=50 V ID=0.14 A, VDD=50 V ID=0.6 A, VDD=50 V 1 2 18 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Electrical Characteristics ICE5QR0680AG - Avalanche current, repetitive, tAR limited by max. TJ=150°C with TJ,Start=25°C ICE5QR4770AZ ICE5QR4780AZ ICE5QR2270AZ ICE5QR2280AZ ICE5QR1070AZ ICE5QR0680AZ ICE5QR4770AG ICE5QR1680AG ICE5QR0680AG IAR VCC Supply Voltage 0.22 ID=1.8 A, VDD=50 V A - 0.14 0.2 0.4 0.4 0.82 1.8 0.14 0.6 1.8 VCC -0.3 27.0 V FB Voltage VFB -0.3 3.6 V ZCD Voltage VZCD -0.3 27 V CS Voltage VCS -0.3 3.6 V VIN Voltage VIN -0.3 3.6 V -10.0 10.0 mA Maximum DC current on any pin except DRAIN & CS pins ESD robustness HBM VESD_HBM - 2000 V ESD robustness CDM VESD_CDM - 500 V According to EIA/JESD22 Junction temperature range TJ -40 150 °C Controller & CoolMOS Storage Temperature TSTORE -55 150 °C Thermal Resistance (JunctionAmbient) ICE5QR4770AZ ICE5QR4780AZ ICE5QR2270AZ ICE5QR2280AZ ICE5QR1070AZ ICE5QR0680AZ ICE5QR4770AG ICE5QR1680AG ICE5QR0680AG RthJA Datasheet K/W - 106 107 103 104 100 100 104 95 94 19 of 54 Setup according to the JESD51 standard and using minimum drain pin copper area in a 2 oz copper single sided PCB V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Electrical Characteristics 4.2 Operating Range Note : Within the operating range the IC operates as described in the functional description. Table 7 Operating Range Parameter Symbol VCC Supply Voltage VVCC Limit Values Unit Min. Max. VVCC_OFF VVCC_OVP Junction Temperature of controller TjCon_op -40 TjCon_OTP ˚C Junction Temperature of CoolMOS TjCoolMOS_op -40 150 ˚C 4.3 Remark Max value limited due to OTP of controller chip Operating Conditions Note: The electrical characteristics involve the spread of values within the specified supply voltage and junction temperature range TJ from – 40 °C to 125 °C. Typical values represent the median values, which are related to 25°C. If not otherwise stated, a supply voltage of VCC = 18 V is assumed. Table 8 Operating Conditions Parameter Symbol Limit Values Unit Note / Test Condition Min. Typ. Max. IVCC_Charge1 -0.35 -0.2 -0.09 mA VVCC=0V, RStartUp=50MΩ and VDRAIN=90V IVCC_Charge2 - -3.2 - mA VVCC=3V, RStartUp=50MΩ and VDRAIN=90V IVCC_Charge3 -5 -3 -1 mA VVCC=15V, RStartUp=50MΩ and VDRAIN=90V Current Consumption, Startup Current IVCC_Startup - 0.19 - mA Current Consumption, Normal IVCC_Normal - 0.9 - mA Current Consumption, Auto Restart IVCC_AR - 320 - µA Current Consumption, Burst Mode IVCC_Burst Mode - 0.5 - mA VCC Turn-on Threshold Voltage VVCC_ON 15.3 16 16.5 V VCC Turn-off Threshold Voltage VVCC_OFF 9.5 10 10.5 V VCC Short Circuit Protection VVCC_SCP - 1.1 1.9 V VCC Turn-off blanking tVCC_OFF_B - 50 - µs VCC Charge Current Datasheet 20 of 54 VVCC=15V IFB=0A (No gate switching) VFB=1.8V V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Electrical Characteristics 4.4 Internal Voltage Reference Table 9 Internal Voltage Reference Parameter Internal Reference Voltage 4.5 PWM Section Table 10 PWM Section Parameter Symbol Limit Values VREF Min. 3.2 Symbol Limit Values Typ. 3.3 Unit Max. 3.39 V Unit Min. Typ. Max. Feedback Pull-Up Resistor RFB 11 15 20 kΩ PWM-OP Gain GPWM 1.95 2.05 2.15 - Offset for Voltage Ramp VPWM 0.42 0.5 0.58 V Maximum on time in normal operation tOnMax 20 35 60 µs Maximum off time in normal operation tOffMax 24 42.5 71 µs Symbol Limit Values Peak current limitation in normal operation VCS_N Min. 0.94 Typ. 1.00 Max. 1.06 V Leading Edge Blanking time tCS_LEB 118 220 462 ns Peak Current Limitation in Active Burst Mode – Level 1 VCS_BL1 0.26 0.31 0.36 V Peak Current Limitation in Active Burst Mode – Level 2 VCS_BL2 0.3 0.35 0.4 V VCS_STG 0.06 0.10 0.15 V PCS_STG - 3 - cycle 2.3 5 - µs 4.6 Current Sense Table 11 Current Sense Parameter Abnormal CS voltage threshold Abnormal CS voltage Consecutive Trigger Abnormal CS voltage Sample period tCS_STG_SAM Datasheet 21 of 54 Unit Note / Test Condition Measured at pin FB IFB=0 Note / Test Condition Note / Test Condition V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Electrical Characteristics 4.7 Soft Start Table 12 Soft Start Parameter Symbol Soft-Start time Soft-start time step Internal regulation voltage at first step Internal regulation voltage step at soft start Unit Note / Test Condition Min. Typ. Max. tSS tSS_S1 8.5 - 12 ms 3 - VSS11 - 0.30 - V CS peak voltage VSS_S1 - 0.15 - V CS peak voltage 4.8 Digital Zero Crossing Table 13 Digital Zero Crossing Parameter Limit Values Symbol ms Limit Values Unit Min. Typ. Max. Note / Test Condition Zero crossing threshold voltage Zero crossing Ringing suppression threshold Minimum ringing suppression time VZCD_CT VZCD_RS 60 - 100 0.45 150 - mV V tZCD_RS1 1.5 2.5 4.1 µs VZCD > VZCD,RS Maximum ringing suppression time tZCD_RS2 - 25.00 - µs VZCD < VZCD,RS Threshold to reset Up/Down Counter Threshold for downward counting VFB_R - 2.80 - V VFB_HLC - 2.05 - V Threshold for upward counting VFB_LHC - 1.55 - V Counter Time tCOUNT - 48 - ms ZCD resistance RZCD 2.5 3.0 3.5 kΩ VIN voltage threshold for line selection Blanking time for VIN voltage threshold for line selection VVIN_REF 1.48 1.52 1.58 V tVIN_REF - 16.00 - ms The parameter is not subjected to production test - verified by design/characterization Datasheet 22 of 54 Internal resistor at ZCD pin 1 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Electrical Characteristics 4.9 Active Burst Mode Table 14 Active Burst Mode Parameter Symbol Limit Values Unit Min. Typ. Max. Charging current to select burst mode Isel 2.1 3 3.9 µA Burst mode selection reference voltage VREF_B 2.65 2.75 2.85 V Feedback voltage for entering Active Burst Mode for level 1 VFB_EBL1 0.86 0.90 0.94 V Feedback voltage for entering Active Burst Mode for level 2 VFB_EBL2 1.0 1.05 1.1 V Blanking time for entering Active Burst Mode Feedback voltage for leaving Active Burst Mode Feedback voltage for burst-on tFB_BEB - 20 - ms VFB_LB 2.65 2.75 2.85 V VFB_BOn 2.3 2.40 2.5 V Feedback voltage for burst-off VFB_BOff 1.9 2.00 2.1 V 4.10 Line Over Voltage Protection Table 15 Line OVP Parameter Symbol Line Over Voltage threshold VVIN_LOVP Limit Values Min. Typ. 2.8 2.9 Line Over Voltage Blanking tVIN_LOVP_B - 4.11 Brownout Protection Table 16 Brownout Protection Parameter Symbol 250 Unit Max. 3.0 V - µs Limit Values Unit Min. Typ. Max. BrownIn threshold BrownIn Blanking VVIN_BI tVIN_BI_B 0.63 - 0.66 250 0.69 - V µs BrownOut threshold VVIN_BO 0.40 tVIN_BO_B 0.43 - V BrownOut Blanking 0.37 - Datasheet 23 of 54 250 Note / Test Condition Note / Test Condition Note / Test Condition µs V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Electrical Characteristics 4.12 VCC Over Voltage Protection Table 17 Vcc Over Voltage Protection Parameter Symbol Limit Values VCC Over Voltage threshold VVCC_OVP Min. 24 Typ. 25.50 Max. 27 V VCC Over Voltage blanking tVCC_OVP_B - 50.00 - µs 4.13 Over Load Protection Table 18 Overload Protection Parameter Symbol Unit Limit Values Unit Min. Typ. Max. Over Load Detection threshold for OLP protection at FB pin VFB_OLP 2.65 2.75 2.85 V Over Load Protection Blanking Time tFB_OLP_B - 30 - ms 4.14 Output Over Voltage Protection Table 19 Output OVP Parameter Symbol Limit Values Unit Min. Typ. Max. Output Over Voltage threshold VZCD_OVP 1.9 2.0 2.1 V Output Over Voltage Blanking Pulse PZCD_OVP_B - 10 - pulse 4.15 Thermal Protection Table 20 Thermal Protection Parameter Symbol Limit Values Unit Min. Typ. Max. Over temperature protection1 Tjcon_OTP 129 140 150 °C Over temperature Hysteresis Over temperature Blanking Time TjHYS_OTP tjcon_OTP_B - 40 50 - °C µs The parameter is not subjected to production test - verified by design/characterization Datasheet 24 of 54 Note / Test Condition Note / Test Condition Note / Test Condition Consecutive Pulse Note / Test Condition Junction temperature of the controller chip (not the CoolMOS™ chip) 1 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Electrical Characteristics 4.16 CoolMOS™ Section Table 21 ICE5QRxxxxAx Parameter Symbol Limit Values Min. Drain Source Breakdown Voltage ICE5QRxx70Ax ICE5QRxx80Ax Typ. Unit Max. V V(BR)DSS 700 800 - Note / Test Condition Tj = 25°C - Drain to CS On-Resistance (inclusive RDSon of low side MOSFET) Ω ICE5QR4770AZ - 4.73 8.73 5.18 - Tj = 25°C Tj=125°C1, ID =0.4A ICE5QR4780AZ - 4.13 8.69 4.85 - Tj = 25°C Tj=125°C1, ID =0.4A ICE5QR2270AZ - 2.13 4.31 2.33 - Tj = 25°C Tj=125°C1, ID =1A ICE5QR2280AZ - 2.13 4.31 2.35 - Tj = 25°C Tj=125°C1, ID =1A ICE5QR1070AZ - 1.15 1.85 1.25 Tj = 25°C Tj=125°C1, ID =1.1A ICE5QR0680AZ - 0.71 1.27 0.80 - Tj = 25°C Tj=125°C1, ID =2A ICE5QR4770AG - 4.73 8.73 5.18 - Tj = 25°C Tj=125°C1, ID =0.4A ICE5QR1680AG - 1.53 3.01 1.75 - Tj = 25°C Tj=125°C1, ID =1.4A ICE5QR0680AG - 0.71 1.27 0.80 - Tj = 25°C Tj=125°C1, ID =2A Effective output capacitance, energy related1 pF Co(er) ICE5QR4770AZ - 3.4 - VGS=0V,VDS=0~480V ICE5QR4780AZ - 3 - VGS=0V,VDS=0~500V ICE5QR2270AZ - 10 - VGS=0V,VDS=0~480V ICE5QR2280AZ - 7 - VGS=0V,VDS=0~500V ICE5QR1070AZ - 13 - VGS=0V,VDS=0~400V ICE5QR0680AZ - 24 - VGS=0V,VDS=0~500V ICE5QR4770AG - 3.4 - VGS=0V,VDS=0~480V ICE5QR1680AG - 8 - VGS=0V,VDS=0~500V ICE5QR0680AG - 24 - VGS=0V,VDS=0~500V The parameter is not subjected to production test - verified by design/characterization Datasheet 25 of 54 1 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Electrical Characteristics Rise Time1 trise - 30 - ns Fall Time2 tfall - 30 - ns Measured in a Typical Flyback Converter Application Datasheet 1 26 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics 5 CoolMOS™ Performance Characteristics Figure 14 Safe Operating Area (SOA) curve for ICE5QR4770AZ Figure 15 Safe Operating Area (SOA) curve for ICE5QR4780AZ Datasheet 27 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 16 Safe Operating Area (SOA) curve for ICE5QR2270AZ Figure 17 Safe Operating Area (SOA) curve for ICE5QR2280AZ Datasheet 28 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 18 Safe Operating Area (SOA) curve for ICE5QR1070AZ Figure 19 Safe Operating Area (SOA) curve for ICE5QR0680AZ Datasheet 29 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 20 Safe Operating Area (SOA) curve for ICE5QR4770AG Figure 21 Safe Operating Area (SOA) curve for ICE5QR1680AG Datasheet 30 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 22 Safe Operating Area (SOA) curve for ICE5QR0680AG Figure 23 Power dissipation of ICE5QR4770AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded) Datasheet 31 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 24 Power dissipation of ICE5QR4780AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded) Figure 25 Power dissipation of ICE5QR2270AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded) Datasheet 32 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 26 Power dissipation of ICE5QR2280AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded) Figure 27 Power dissipation of ICE5QR1070AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded) Datasheet 33 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 28 Power dissipation of ICE5QR0680AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded) Figure 29 Power dissipation of ICE5QR4770AG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded) Datasheet 34 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 30 Power dissipation of ICE5QR1680AG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded) Figure 31 Power dissipation of ICE5QR0680AG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded) Datasheet 35 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics 780 760 VBR(DSS) [V] 740 720 700 680 660 640 620 -75 -50 -25 0 25 50 75 100 125 150 175 TJ [°C] Figure 32 Drain-source breakdown voltage ICE5QRxx70Ax; VBR(DSS)=f(TJ), ID=1 mA Figure 33 Drain-source breakdown voltage ICE5QRxx80Ax; VBR(DSS)=f(TJ), ID=1 mA Datasheet 36 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 34 Typical CoolMOS™ capacitances of ICE5QR4770Ax (C=f(VDS);VGS=0 V; f=1 MHz) Figure 35 Typical CoolMOS™ capacitances of ICE5QR4780AZ (C=f(VDS);VGS=0 V; f=250 kHz) Datasheet 37 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 36 Typical CoolMOS™ capacitances of ICE5QR2270AZ (C=f(VDS);VGS=0 V; f=1 MHz) Figure 37 Typical CoolMOS™ capacitances of ICE5QR2280AZ (C=f(VDS);VGS=0 V; f=250 kHz) Datasheet 38 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 38 Typical CoolMOS™ capacitances of ICE5QR1070AZ (C=f(VDS);VGS=0 V; f=250 kHz) Figure 39 Typical CoolMOS™ capacitances of ICE5QR0680Ax (C=f(VDS);VGS=0 V; f=250 kHz) Datasheet 39 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package CoolMOS™ Performance Characteristics Figure 40 Datasheet Typical CoolMOS™ capacitances of ICE5QR1680AG(C=f(VDS);VGS=0 V; f=250 kHz) 40 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Output Power Curve 6 Output Power Curve The calculated output power curves giving the typical output power versus ambient temperature are shown below. The curves are derived based on a typical discontinuous mode flyback in an open frame design at Ta=50°C, TJ=125°C (integrated high voltage MOSFET), using minimum drain pin copper area in a 2 oz copper single sided PCB and steady state operation only (no design margins for abnormal operation modes are included). The output power figure is for selection purpose only. The actual power can vary depending on particular designs. In a power supply system, appropriate thermal design margins must be applied to make sure that the maximum ratings given in section 4.1 are respected at all times. Figure 41 Output power curve of ICE5QR4770AZ, VIN=85~300 VAC; POut=f(Ta) Figure 42 Output power curve of ICE5QR4770AZ, VIN=220 VAC; POut=f(Ta) Datasheet 41 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Output Power Curve Figure 43 Output power curve of ICE5QR4780AZ, VIN=85~300 VAC; POut=f(Ta) Figure 44 Output power curve of ICE5QR4780AZ, VIN=220 VAC; POut=f(Ta) Datasheet 42 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Output Power Curve Figure 45 Output power curve of ICE5QR2270AZ, VIN=85~300 VAC; POut=f(Ta) Figure 46 Output power curve of ICE5QR2270AZ, VIN=220 VAC; POut=f(Ta) Datasheet 43 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Output Power Curve Figure 47 Output power curve of ICE5QR2280AZ, VIN=85~300 VAC; POut=f(Ta) Figure 48 Output power curve of ICE5QR2280AZ, VIN=220 VAC; POut=f(Ta) Datasheet 44 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Output Power Curve Figure 49 Output power curve of ICE5QR1070AZ, VIN=85~300 VAC; POut=f(Ta) Figure 50 Output power curve of ICE5QR1070AZ, VIN=220 VAC; POut=f(Ta) Datasheet 45 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Output Power Curve Figure 51 Output power curve of ICE5QR0680AZ, VIN=85~300 VAC; POut=f(Ta) Figure 52 Output power curve of ICE5QR0680AZ, VIN=220 VAC; POut=f(Ta) Datasheet 46 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Output Power Curve Figure 53 Output power curve of ICE5QR4770AG, VIN=85~300 VAC; POut=f(Ta) Figure 54 Output power curve of ICE5QR4770AG, VIN=220 VAC; POut=f(Ta) Datasheet 47 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Output Power Curve Figure 55 Output power curve of ICE5QR1680AG, VIN=85~300 VAC; POut=f(Ta) Figure 56 Output power curve of ICE5QR1680AG, VIN=220 VAC; POut=f(Ta) Datasheet 48 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Output Power Curve Figure 57 Output power curve of ICE5QR0680AG, VIN=85~300 VAC; POut=f(Ta) Figure 58 Output power curve of ICE5QR0680AG, VIN=220 VAC; POut=f(Ta) Datasheet 49 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Outline Dimension 7 Figure 59 Datasheet Outline Dimension PG-DIP-7 50 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Outline Dimension Figure 60 Datasheet PG-DSO-12 51 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Marking 8 Marking Figure 61 Marking of DIP-7 Figure 62 Marking of DSO-12 Datasheet 52 of 54 V 2.2 2020-02-03 Quasi-Resonant 700 V/800 V CoolSET™ - in DIP-7 and DSO-12 Package Revision history Revision history Document version Date of release Description of changes V2.0 4 Jul 2017 Page 2, 17, 18, 24~44 Addition of ICE5QR1070AZ Page 35 Update of 700V CoolSET™ Drain-source breakdown voltage as shown in Figure 32 reference to errata sheet #10157AERRA V2.1 11 Aug 2017 Page 8 ~14 Text content revised Page 17, 18 and 19 (reference to errata sheet 10160AERRA) Table 6, the limit values for VDS shall be at the maximum column Table 8, the polarity for maximum limit on IVCC_Charge1 shall be negative Additional text content revised V 2.2 3 Feb 2020 Update of CS pin function and description (refer to errata sheet ES_2001_PL83_2002_024629) Datasheet 53 of 54 V 2.2 2020-02-03 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2020-02-03 Published by Infineon Technologies AG 81726 München, Germany © 2020 Infineon Technologies AG. All Rights Reserved. Do you have a question about this document? Email: erratum@infineon.com Document reference IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
ICE5QR2270AZXKLA1 价格&库存

很抱歉,暂时无法提供与“ICE5QR2270AZXKLA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货