IKN03N60RC2
600 V Reverse Conducting Drive 2
600 V Reverse Conducting Drive 2 offering cost effective IGBT with monolithically integrated diode
Features
•
•
•
•
•
•
•
•
•
VCE = 600 V
IC = 3 A
Very tight parameter distribution
Operating range of 1 to 20 kHz
Maximum junction temperature 150°C
Short circuit capability of 3 µs
Humidity robust design
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models: http://www.infineon.com/rc-d2
2021-10-27
restricted
Copyright © Infineon Technologies AG 202
Potential applications
•
•
•
•
•
•
•
Ceiling fan
Countertop appliances - mixing
Kitchen hood
Refrigerators
Residential aircon indoor unit
Washing machines
General purpose drives (GPD)
Product validation
• Qualified for industrial applications according to the relevant tests of JEDEC47/20/22
Description
C
G
E
Type
Package
Marking
IKN03N60RC2
PG-SOT223-3
K3DRC2
Datasheet
www.infineon.com
Please read the sections "Important notice" and "Warnings" at the end of this document
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
Table of contents
Table of contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
IGBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3
Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
4
Characteristics diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
6
Testing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Datasheet
2
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
1 Package
1
Package
Table 1
Characteristic values
Parameter
Symbol Note or test condition
Values
Min.
Storage temperature
Tstg
Soldering temperature
Tsold
Thermal resistance,
min.footprint junctionambient
Typ.
Max.
150
°C
260
°C
Rth(j-a)
160
K/W
Thermal resistance, 6 cm2
Cu on PCB junction to
ambient
Rth(j-a)
75
K/W
IGBT thermal resistance,
junction-case1)
Rth(j-c)
19.7
K/W
Diode thermal resistance,
junction-case1)
Rth(j-c)
27
K/W
1)
-55
Unit
wave soldering / reflow soldering (MSL1
according to JEDEC J-STA-020)
Rth/Zth based on single cooling pulse. Please be aware that a correct Rth measurement of the IGBT, is not possible using a thermocouple.
2
IGBT
Table 2
Maximum rated values
Parameter
Collector-emitter voltage
DC collector current,
limited by Tvjmax 1)
Pulsed collector current, tp
limited by Tvjmax
Symbol Note or test condition
VCE
Values
Unit
600
V
Tc = 25 °C
5.7
A
Tc = 100 °C
3
Tvj ≥ 25 °C
IC
ICpulse
Turn-off safe operating
area
9
A
9
A
±20
V
±30
V
3
µs
Tc = 25 °C
6.3
W
Tc = 100 °C
2.5
VCE ≤ 600 V, tp = 1 µs, Tvj ≤ 150 °C
Gate-emitter voltage
VGE
Transient gate-emitter
voltage
VGE
tp ≤ 10 µs, D < 0.01
Short-circuit withstand
time
tSC
VCC ≤ 400 V, VGE = 15 V, Allowed number of
short circuits < 1000, Time between short
circuits ≥ 1.0 s, Tvj = 150 °C
Power dissipation
Ptot
1)
DPAK equivalent
Datasheet
3
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
2 IGBT
Table 3
Characteristic values
Parameter
Symbol Note or test condition
Values
Min.
Typ.
Max.
Tvj = 25 °C
2
2.3
V
Tvj = 150 °C
2.3
5.7
V
Tvj = 25 °C
25
µA
Tvj = 150 °C
2500
Collector-emitter
saturation voltage
VCEsat
Gate-emitter threshold
voltage
VGEth
IC = 35 µA, VCE = VGE
Zero gate-voltage collector
current
ICES
VCE = 600 V, VGE=0 V
Gate-emitter leakage
current
IGES
VCE = 0 V, VGE = 20 V
Transconductance
gfs
IC = 3 A, VCE = 20 V
1.7
S
Input capacitance
Cies
VCE = 25 V, VGE=0 V, f = 1000 kHz
140
pF
Output capacitance
Coes
VCE = 25 V, VGE=0 V, f = 1000 kHz
7
pF
Reverse transfer
capacitance
Cres
VCE = 25 V, VGE=0 V, f = 1000 kHz
6
pF
Gate charge
QG
IC = 3 A, VCC = 480 V, VGE = 15 V
18
nC
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 3 A
RGon = 49 Ω, RGoff = 49 Ω,
Tvj = 150 °C,
Lσ = 30 nH, Cσ = 32 pF
IC = 3 A
7
ns
Turn-on delay time
Rise time (inductive load)
Turn-off delay time
Fall time (inductive load)
Turn-on energy
Turn-off energy
Total switching energy
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
IC = 3 A, VGE = 15 V
Unit
4.3
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 3 A
RGon = 49 Ω, RGoff = 49 Ω,
Tvj = 150 °C,
Lσ = 30 nH, Cσ = 32 pF
IC = 3 A
5
100
6.5
8
ns
8.5
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 3 A
RGon = 49 Ω, RGoff = 49 Ω,
Tvj = 150 °C,
Lσ = 30 nH, Cσ = 32 pF
IC = 3 A
77.5
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 3 A
RGon = 49 Ω, RGoff = 49 Ω,
Tvj = 150 °C,
Lσ = 30 nH, Cσ = 32 pF
IC = 3 A
48.5
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 3 A
RGon = 49 Ω, RGoff = 49 Ω,
Tvj = 150 °C,
Lσ = 30 nH, Cσ = 32 pF
IC = 3 A
62
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 4 A
RGon = 49 Ω, RGoff = 49 Ω,
Tvj = 150 °C,
Lσ = 30 nH, Cσ = 32 pF
IC = 3 A
44
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 3 A
RGon = 49 Ω, RGoff = 49 Ω,
Tvj = 150 °C,
Lσ = 30 nH, Cσ = 32 pF
IC = 3 A
nA
ns
113
ns
36.5
µJ
84
µJ
75.7
106
µJ
160
(table continues...)
Datasheet
4
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
3 Diode
Table 3
(continued) Characteristic values
Parameter
Symbol Note or test condition
Values
Min.
Operating junction
temperature
Note:
Tvj
-40
Max.
150
°C
Electrical Characteristic, at Tvj = 25°C, unless otherwise specified
3
Diode
Table 4
Maximum rated values
Parameter
Symbol Note or test condition
Repetitive peak reverse
voltage
VRRM
Diode forward current,
limited by Tvjmax 1)
IF
Diode pulsed current, tp
limited by Tvjmax
IFpulse
1)
Typ.
Unit
Values
Unit
600
V
Tc = 25 °C
3.9
A
Tc = 100 °C
1.8
Tvj ≥ 25 °C
9
A
Values
Unit
DPAK equivalent
Table 5
Characteristic values
Parameter
Symbol Note or test condition
Min.
Diode forward voltage
Diode reverse recovery
time
Diode reverse recovery
charge
Diode peak reverse
recovery current
VF
trr
Qrr
Irrm
IF = 3 A
VR = 400 V, RGon = 49 Ω
VR = 400 V, RGon = 49 Ω
VR = 400 V, RGon = 49 Ω
Typ.
Max.
Tvj = 25 °C
1.85
2.2
Tvj = 150 °C
1.9
Tvj = 25 °C, IF = 3 A,
-diF/dt = 362 A/µs
38
Tvj = 150 °C,
IF = 3 A,
-diF/dt = 397 A/µs
89.4
Tvj = 25 °C, IF = 3 A,
-diF/dt = 362 A/µs
0.085
Tvj = 150 °C,
IF = 3 A,
-diF/dt = 397 A/µs
0.17
Tvj = 25 °C, IF = 3 A,
-diF/dt = 362 A/µs
3.8
Tvj = 150 °C,
IF = 3 A,
-diF/dt = 397 A/µs
4.9
V
ns
µC
A
(table continues...)
Datasheet
5
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
3 Diode
Table 5
(continued) Characteristic values
Parameter
Symbol Note or test condition
Values
Min.
Diode peak rate of fall of
reverse recovery current
Operating junction
temperature
Note:
Datasheet
dirr/dt
VR = 400 V, RGon = 49 Ω
Tvj
Typ.
Tvj = 25 °C, IF = 3 A,
-diF/dt = 362 A/µs
129
Tvj = 150 °C,
IF = 3 A,
-diF/dt = 397 A/µs
61
-40
Unit
Max.
A/µs
150
°C
For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of
the maximum ratings stated in this datasheet.
6
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
4 Characteristics diagrams
4
Characteristics diagrams
Power dissipation as a function of heatsink
temperature
Ptot = f(Tc)
Tvj ≤ 150 °C
Collector current as a function of heatsink
temperature
IC = f(Tc)
Tvj ≤ 150 °C, VGE ≥ 15 V
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
25
50
75
100
125
150
25
Typical output characteristic
IC = f(VCE)
Tvj = 25 °C
75
100
125
150
3
4
5
Typical output characteristic
IC = f(VCE)
Tvj = 150 °C
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
0
Datasheet
50
1
2
3
4
5
0
7
1
2
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
4 Characteristics diagrams
Typical transfer characteristic
IC = f(VGE)
VCE = 20 V
Typical collector-emitter saturation voltage as a
function of junction temperature
VCEsat = f(Tvj)
VGE = 15 V
9
4.0
8
3.5
7
3.0
6
2.5
5
2.0
4
1.5
3
1.0
2
0.5
1
0.0
0
4
5
6
7
8
9
10
11
25
12
Gate-emitter threshold voltage as a function of
junction temperature
VGEth = f(Tvj)
IC = 35 µA
50
75
100
125
150
Typical switching times as a function of collector
current
t = f(IC)
VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V, RG = 49 Ω
1000
7
6
5
100
4
3
10
2
1
0
25
Datasheet
50
75
100
125
1
150
0
8
1
2
3
4
5
6
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
4 Characteristics diagrams
Typical switching times as a function of gate resistor
t = f(RG)
IC = 3 A, VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V
Typical switching times as a function of junction
temperature
t = f(Tvj)
IC = 3 A, VCC = 400 V, VGE = 0/15 V, RG = 49 Ω
1000
1000
100
100
10
10
1
1
0
200
400
600
800
25
1000
Typical switching energy losses as a function of
collector current
E = f(IC)
VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V, RG = 49 Ω
50
75
100
125
150
Typical switching energy losses as a function of gate
resistor
E = f(RG)
IC = 3 A, VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V
350
1000
900
300
800
250
700
600
200
500
150
400
300
100
200
50
100
0
0
1
Datasheet
2
3
4
5
6
0
9
200
400
600
800
1000
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
4 Characteristics diagrams
Typical switching energy losses as a function of
junction temperature
E = f(Tvj)
IC = 3 A, VCC = 400 V, VGE = 15/0 V, RG = 49 Ω
Typical switching energy losses as a function of
collector emitter voltage
E = f(VCE)
IC = 3 A, Tvj = 150 °C, VGE = 0/15 V, RG = 49 Ω
200
250
200
150
150
100
100
50
50
0
25
50
75
100
125
0
150
200
Typical gate charge
VGE = f(QG)
IC = 3 A
250
300
350
400
450
500
Typical capacitance as a function of collector-emitter
voltage
C = f(VCE)
f = 1000 kHz, VGE = 0 V
1000
15
12
100
9
6
10
3
0
1
0
Datasheet
4
8
12
16
20
0
10
5
10
15
20
25
30
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
4 Characteristics diagrams
Typical short circuit collector current as a function of
gate-emitter voltage
IC(SC) = f(VGE)
Tvj ≤ 150 °C, VCC ≤ 400 V
IGBT transient thermal impedance as a function of
pulse width
Zth(j-c) = f(tp)
D = tp/T
100
30
25
10
20
1
15
10
0.1
5
0.01
1E-6
0
12
13
14
15
16
17
18
Diode transient thermal impedance as a function of
pulse width
Zth(j-c) = f(tp)
D = tp/T
100
1E-5
0.0001 0.001
0.01
0.1
1
10
Typical diode forward current as a function of forward
voltage
IF = f(VF)
9.0
7.5
10
6.0
1
4.5
0.1
3.0
0.01
0.001
1E-7 1E-6 1E-5 0.0001 0.001 0.01
Datasheet
1.5
0.1
1
0.0
10
0.0
11
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
4 Characteristics diagrams
Typical diode forward voltage as a function of
junction temperature
VF = f(Tvj)
Typical reverse recovery time as a function of diode
current slope
trr = f(diF/dt)
VR = 400 V, IF = 3 A
3.5
250
3.0
200
2.5
150
2.0
1.5
100
1.0
50
0.5
0.0
25
50
75
100
125
0
150
0
Typical reverse recovery charge as a function of diode
current slope
Qrr = f(diF/dt)
VR = 400 V, IF = 3 A
0.25
200
400
600
800
1000
1200
Typical reverse recovery current as a function of
diode current slope
Irr = f(diF/dt)
VR = 400 V, IF = 3 A
9
8
0.20
7
6
0.15
5
4
0.10
3
2
0.05
1
0.00
0
0
Datasheet
200
400
600
800
1000
1200
0
12
200
400
600
800
1000
1200
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
4 Characteristics diagrams
Typical diode peak rate of fall of reverse recovery
current as a function of diode current slope
dirr/dt = f(diF/dt)
VR = 400 V, IF = 3 A
0
-50
-100
-150
-200
-250
-300
-350
-400
-450
0
Datasheet
200
400
600
800
1000
1200
13
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
5 Package outlines
5
Package outlines
PG-SOT223-3
DOCUMENT NO.
Z8B00180553
SCALE
DIM
A
A1
A2
b
b2
c
D
E
E1
e
e1
L
N
O
MILLIMETERS
MAX
MIN
1.80
1.52
0.10
1,50
1.70
0.80
0.60
3.10
2.95
0.32
0.24
6.30
6.70
7.30
6.70
3.70
3.30
2.3 BASIC
4.6 BASIC
0.75
1.10
3
0
INCHES
MIN
0.060
0.059
0.024
0.116
0.009
0.248
0.264
0.130
MAX
0.071
0.004
0.067
0.031
0.122
0.013
0.264
0.287
0.146
0.091 BASIC
0.181 BASIC
0.030
0.043
3
2.5
0
2.5
5mm
EUROPEAN PROJECTION
ISSUE DATE
24-02-2016
REVISION
01
Figure 1
Datasheet
14
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
6 Testing conditions
6
Testing Conditions
Testing conditions
VGE(t)
I,V
90% VGE
t rr = t a + t b
Q rr = Q a + Q b
dIF/dt
a
10% VGE
b
t
Qa
IC(t)
Qb
dI
90% IC
90% IC
10% IC
10% IC
Figure C. Definition of diode switching
characteristics
t
VCE(t)
t
td(off)
tf
t
tr
td(on)
Figure A.
VGE(t)
90% VGE
Figure D.
10% VGE
t
IC(t)
CC
2% IC
t
Figure E. Dynamic test circuit
Parasitic inductance Ls,
parasitic capacitor Cs,
relief capacitor Cr,
(only for ZVT switching)
VCE(t)
t2
E
off
=
t4
VCE x IC x dt
E
t1
t1
on
=
VCE x IC x d t
2% VCC
t3
t2
t3
t4
t
Figure B.
Figure 2
Datasheet
15
Revision 1.10
2022-09-21
IKN03N60RC2
600 V Reverse Conducting Drive 2
Revision history
Revision history
Document revision
Date of release
Description of changes
1.00
2021-09-28
Final datasheet
1.01
2021-10-15
Change of Potential Applications
1.10
2022-09-21
Add of wave soldering conditions
Datasheet
16
Revision 1.10
2022-09-21
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2022-09-21
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2022 Infineon Technologies AG
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IFX-ABB687-003
Important notice
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer’s products and any use of the product of
Infineon Technologies in customer’s applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.
Please note that this product is not qualified
according to the AEC Q100 or AEC Q101 documents
of the Automotive Electronics Council.
Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.