IKW50N65WR5
Reverse-Conducting IGBT
Reverse-Conducting IGBT with monolithic body diode
TO-247 – 3Pin
Features
•
•
•
•
•
•
•
•
•
•
•
VCE = 650 V
IC = 50 A
Powerful monolithic diode optimized for ZCS applications
High ruggedness, temperature stable behavior
Very low VCEsat and low Eoff
Easy paralleling capability due to positive temperature coefficient in VCEsat
Low EMI
Low electrical parameters depending (dependence) on temperature
Qualified according to JESD-022 for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models: http://www.infineon.com/igbt/
2021-10-27
restricted
Copyright © Infineon T
Potential applications
• Welding
• PFC
• ZCS - converters
Description
C
G
E
Type
Package
Marking
IKW50N65WR5
PG-TO247-3
K50EWR5
Datasheet
www.infineon.com
Please read the sections "Important notice" and "Warnings" at the end of this document
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
Table of contents
Table of contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
IGBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3
Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
4
Characteristics diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
6
Testing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Datasheet
2
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
1 Package
1
Package
Table 1
Characteristic values
Parameter
Symbol Note or test condition
Values
Min.
Internal emitter
inductance measured 5
mm (0.197 in.) from case
LE
Storage temperature
Tstg
Soldering temperature
Mounting torque
M
Thermal resistance,
junction-ambient
2
Max.
13.0
-55
nH
150
°C
wave soldering 1.6 mm (0.063 in.) from case
for 10 s
260
°C
M3 screw Maximum of mounting process: 3
0.6
Nm
40
K/W
Rth(j-a)
IGBT
Table 2
Maximum rated values
Parameter
Symbol Note or test condition
Collector-emitter voltage
DC collector current,
limited by Tvjmax
Pulsed collector current, tp
limited by Tvjmax
VCE
IC
Unit
650
V
Tc = 25 °C
80
A
Tc = 130 °C
50
Tvj ≥ 25 °C
limited by bondwire
150
A
150
A
±20
V
±30
V
Tc = 25 °C
282
W
Tc = 130 °C
141
VCE ≤ 650 V, Tvj ≤ 175 °C
Gate-emitter voltage
VGE
Transient gate-emitter
voltage
VGE
Power dissipation
Ptot
Table 3
Values
ICpulse
Turn-off safe operating
area
tp ≤ 10 µs, D < 0.01
Characteristic values
Parameter
Symbol Note or test condition
Values
Min.
Collector-emitter
breakdown voltage
VBRCES
IC = 0.2 mA, VGE = 0 V
Collector-emitter
saturation voltage
VCEsat
IC = 50 A, VGE = 15 V
Gate-emitter threshold
voltage
VGEth
(table continues...)
Datasheet
Typ.
Unit
IC = 0.5 mA, VCE = VGE
3
Typ.
Unit
Max.
650
V
Tvj = 25 °C
1.4
Tvj = 175 °C
1.65
3.2
4
1.8
V
4.8
V
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
2 IGBT
Table 3
(continued) Characteristic values
Parameter
Symbol Note or test condition
Values
Min.
Zero gate-voltage collector
current
ICES
VCE = 650 V, VGE = 0 V
Gate-emitter leakage
current
IGES
VCE = 0 V, VGE = 20 V
Transconductance
gfs
IC = 50 A, VCE = 20 V
Input capacitance
Cies
Output capacitance
Typ.
Tvj = 25 °C
Unit
Max.
40
µA
100
nA
65
S
VCE = 25 V, VGE = 0 V, f = 1000 kHz
6140
pF
Coes
VCE = 25 V, VGE = 0 V, f = 1000 kHz
55
pF
Reverse transfer
capacitance
Cres
VCE = 25 V, VGE = 0 V, f = 1000 kHz
23
pF
Gate charge
QG
IC = 50 A, VGE = 15 V, VCC = 520 V
230
nC
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,
RGon = 16 Ω, RGoff = 16 Ω, IC = 25 A
Lσ = 45 nH, Cσ = 32 pF
Tvj = 175 °C,
IC = 25 A
45
ns
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,
RGon = 16 Ω, RGoff = 16 Ω, IC = 25 A
Lσ = 45 nH, Cσ = 32 pF
Tvj = 175 °C,
IC = 25 A
17
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,
RGon = 16 Ω, RGoff = 16 Ω, IC = 25 A
Lσ = 45 nH, Cσ = 32 pF
Tvj = 175 °C,
IC = 25 A
417
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,
RGon = 16 Ω, RGoff = 16 Ω, IC = 25 A
Lσ = 45 nH, Cσ = 32 pF
Tvj = 175 °C,
IC = 25 A
16
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,
RGon = 16 Ω, RGoff = 16 Ω, IC = 25 A
Lσ = 45 nH, Cσ = 32 pF
Tvj = 175 °C,
IC = 25 A
0.84
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,
RGon = 16 Ω, RGoff = 16 Ω, IC = 25 A
Lσ = 45 nH, Cσ = 32 pF
Tvj = 175 °C,
IC = 25 A
0.22
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,
RGon = 16 Ω, RGoff = 16 Ω, IC = 25 A
Lσ = 45 nH, Cσ = 32 pF
Tvj = 175 °C,
IC = 25 A
1.06
Turn-on delay time
Rise time (inductive load)
Turn-off delay time
Fall time (inductive load)
Turn-on energy
Turn-off energy
Total switching energy
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
43
ns
19
ns
496
ns
11
mJ
1.04
mJ
0.32
mJ
1.36
(table continues...)
Datasheet
4
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
3 Diode
Table 3
(continued) Characteristic values
Parameter
Symbol Note or test condition
Values
Min.
IGBT thermal resistance,
junction to case
Operating junction
temperature
Note:
3
Table 4
Rth(j-c)
Tvj
-40
Max.
0.53
K/W
175
°C
Electrical Characteristic, at Tvj = 25°C, unless otherwise specified.
Diode
Maximum rated values
Parameter
Symbol Note or test condition
Repetitive peak reverse
voltage
VRRM
Diode forward current,
limited by Tvjmax
IF
Diode pulsed current, tp
limited by Tvjmax
IFpulse
Table 5
Typ.
Unit
Values
Unit
650
V
Tc = 25 °C
37
A
Tc = 100 °C
22
Tvj ≥ 25 °C
limited by bondwire
150
A
Values
Unit
Characteristic values
Parameter
Symbol Note or test condition
Min.
Diode forward voltage
Diode reverse recovery
time
Diode reverse recovery
charge
VF
trr
Qrr
IF = 25 A
VR = 400 V
VR = 400 V
Typ.
Max.
Tvj = 25 °C
1.4
1.9
Tvj = 175 °C
1.5
Tvj = 25 °C,
IF = 25 A,
-diF/dt = 900 A/µs
110
Tvj = 175 °C,
IF = 25 A,
-diF/dt = 900 A/µs
145
Tvj = 25 °C,
IF = 25 A,
-diF/dt = 900 A/µs
1.8
Tvj = 175 °C,
IF = 25 A,
-diF/dt = 900 A/µs
3.5
V
ns
µC
(table continues...)
Datasheet
5
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
3 Diode
Table 5
(continued) Characteristic values
Parameter
Symbol Note or test condition
Values
Min.
Diode peak reverse
recovery current
Diode peak rate of fall of
reverse recovery current
Diode thermal resistance,
junction to case
Operating junction
temperature
Note:
Datasheet
Irrm
dirr/dt
VR = 400 V
VR = 400 V
Tvj = 25 °C,
IF = 25 A,
-diF/dt = 900 A/µs
29
Tvj = 175 °C,
IF = 25 A,
-diF/dt = 900 A/µs
39
Tvj = 25 °C,
IF = 25 A,
-diF/dt = 900 A/µs
600
Tvj = 175 °C,
IF = 25 A,
-diF/dt = 900 A/µs
1200
Rth(j-c)
Tvj
Typ.
-40
Unit
Max.
A
A/µs
2.29
K/W
175
°C
For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of
the maximum ratings stated in this datasheet.
6
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
4 Characteristics diagrams
4
Characteristics diagrams
Reverse bias safe operating area
IC = f(VCE)
Tvj ≤ 175 °C, VGE = 15 V, Tc = 25 °C
Power dissipation as a function of case temperature
Ptot = f(Tc)
Tvj ≤ 175 °C
280
100
240
200
10
160
120
1
80
40
0
0.1
1
10
100
1000
25
Collector current as a function of case temperature
IC = f(Tc)
Tvj ≤ 175 °C, VGE ≥ 15 V
50
75
100
125
150
175
Typical output characteristic
IC = f(VCE)
Tvj = 25 °C
90
150
80
135
120
70
105
60
90
50
75
40
60
30
45
20
30
10
15
0
0
25
Datasheet
50
75
100
125
150
175
0.0
7
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
4 Characteristics diagrams
Typical output characteristic
IC = f(VCE)
Tvj = 175 °C
Typical transfer characteristic
IC = f(VGE)
VCE = 20 V
150
150
135
135
120
120
105
105
90
90
75
75
60
60
45
45
30
30
15
15
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
2
Typical collector-emitter saturation voltage as a
function of junction temperature
VCEsat = f(Tvj)
VGE = 15 V
3
4
5
6
7
8
Typical switching times as a function of collector
current
t = f(IC)
VCC = 400 V, Tvj = 175 °C, VGE = 0/15 V, RG = 16 Ω
1000
2.00
1.75
1.50
100
1.25
1.00
0.75
10
0.50
0.25
0.00
25
Datasheet
50
75
100
125
150
1
175
0
8
20
40
60
80
100
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
4 Characteristics diagrams
Typical switching times as a function of gate resistor
t = f(RG)
IC = 50 A, VCC = 400 V, Tvj = 175 °C, VGE = 0/15 V
1000
1000
100
100
10
10
1
1
10
20
30
40
50
60
70
25
80
Gate-emitter threshold voltage as a function of
junction temperature
VGEth = f(Tvj)
IC = 0.5 mA
6.0
8.00
5.5
7.20
5.0
6.40
4.5
5.60
4.0
4.80
3.5
4.00
3.0
3.20
2.5
2.40
2.0
1.60
1.5
0.80
0
25
50
75
100
125
50
75
100
125
150
175
Typical switching energy losses as a function of
collector current
E = f(IC)
VCC = 400 V, Tvj = 175 °C, VGE = 0/15 V, RG = 16 Ω
1.0
Datasheet
Typical switching times as a function of junction
temperature
t = f(Tvj)
IC = 50 A, VCC = 400 V, VGE = 0/15 V, RG = 16 Ω
0.00
150
0
9
20
40
60
80
100
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
4 Characteristics diagrams
Typical switching energy losses as a function of gate
resistor
E = f(RG)
IC = 50 A, VCC = 400 V, Tvj = 175 °C, VGE = 0/15 V
Typical switching energy losses as a function of
junction temperature
E = f(Tvj)
VCC = 400 V, VGE = 0/15 V, RG = 16 Ω, IC = 50 A
7
3.5
6
3.0
5
2.5
4
2.0
3
1.5
2
1.0
1
0.5
0.0
0
10
20
30
40
50
60
70
25
80
Typical gate charge
VGE = f(QG)
IC = 50 A
50
75
100
125
150
175
Typical capacitance as a function of collector-emitter
voltage
C = f(VCE)
f = 1000 kHz, VGE = 0 V
10000
20
18
16
14
1000
12
10
8
100
6
4
2
0
10
0
Datasheet
50
100
150
200
250
300
350
0
10
3
6
9
12
15
18
21
24
27
30
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
4 Characteristics diagrams
IGBT transient thermal impedance as a function of
pulse width
Zth(j-c) = f(tp)
D = tp/T
Diode transient thermal impedance as a function of
pulse width
Zth(j-c) = f(tp)
D = tp/T
1
1
0.1
0.1
0.01
1E-6
1E-5
0.0001
0.001
0.01
0.01
1E-6
0.1
Typical reverse recovery time as a function of diode
current slope
trr = f(diF/dt)
VR = 400 V, IF = 25 A
250
1E-5
0.0001
0.001
0.01
Typical reverse recovery charge as a function of diode
current slope
Qrr = f(diF/dt)
VR = 400 V, IF = 25 A
5.0
4.5
225
4.0
200
3.5
175
3.0
150
2.5
2.0
125
1.5
100
1.0
75
0.5
50
500
Datasheet
700
900
1100
1300
0.0
500
1500
11
700
900
1100
1300
1500
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
4 Characteristics diagrams
Typical reverse recovery current as a function of diode
current slope
Irr = f(diF/dt)
VR = 400 V, IF = 25 A
60
Typical diode peak rate of fall of reverse recovery
current as a function of diode current slope
dirr/dt = f(diF/dt)
VR = 400 V, IF = 25 A
0
-200
50
-400
-600
40
-800
30
-1000
-1200
20
-1400
-1600
10
-1800
0
500
700
900
1100
1300
-2000
500
1500
700
900
1100
1300
1500
Typical diode forward current as a function of forward Typical diode forward voltage as a function of
voltage
junction temperature
IF = f(VF)
VF = f(Tvj)
2.50
150
135
2.25
120
2.00
105
1.75
90
1.50
75
60
1.25
45
1.00
30
0.75
15
0.50
0
0.0
Datasheet
0.5
1.0
1.5
2.0
2.5
3.0
25
3.5
12
50
75
100
125
150
175
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
5 Package outlines
5
Package outlines
Package Drawing PG-TO247-3
DIMENSIONS
A
A1
A2
b
b1
b2
c
D
D1
D2
E
E1
E2
E3
e
L
L1
P
Q
S
MILLIMETERS
MIN.
MAX.
4.70
5.30
2.20
2.60
1.50
2.50
1.00
1.40
1.60
2.41
2.57
3.43
0.89
0.38
21.50
20.70
17.65
13.08
1.35
0.51
16.30
15.50
14.15
12.38
5.10
3.40
2.60
1.00
5.44
20.40
19.80
4.50
3.85
3.70
3.50
6.25
5.35
6.30
6.04
DOCUMENT NO.
Z8B00003327
REVISION
06
SCALE 3:1
0 1 2 3 4 5mm
EUROPEAN PROJECTION
ISSUE DATE
25.07.2018
Figure 1
Datasheet
13
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
6 Testing conditions
6
Testing Conditions
Testing conditions
VGE(t)
I,V
90% VGE
t rr = t a + t b
Q rr = Q a + Q b
dIF/dt
a
10% VGE
b
t
Qa
IC(t)
Qb
dI
90% IC
90% IC
10% IC
10% IC
Figure C. Definition of diode switching
characteristics
t
VCE(t)
t
td(off)
tf
t
tr
td(on)
Figure A.
VGE(t)
90% VGE
Figure D.
10% VGE
t
IC(t)
CC
2% IC
t
Figure E. Dynamic test circuit
Parasitic inductance Ls,
parasitic capacitor Cs,
relief capacitor Cr,
(only for ZVT switching)
VCE(t)
t2
E
off
=
t4
VCE x IC x dt
E
t1
t1
on
=
VCE x IC x d t
2% VCC
t3
t2
t3
t4
t
Figure B.
Figure 2
Datasheet
14
Revision 1.20
2022-05-06
IKW50N65WR5
Reverse-Conducting IGBT
Revision history
Revision history
Document revision
Date of release
Description of changes
V1.1
2014-12-05
Preliminary data sheet
V1.2
2015-03-27
New dynamic parameters and graphs
V1.3
2015-05-13
V2.1
2015-12-10
Final data sheet
n/a
2020-11-30
Datasheet migrated to a new system with a new layout and new revision
number schema: target or preliminary datasheet = 0.xy; final datasheet =
1.xy
1.10
2022-03-08
Added transient gate-emitter voltage
1.20
2022-05-06
Transient gate-emitter voltage VGE added in table “Maximum rated
values” of IGBT
“Forward bias safe operating area” diagram renamed to “Reverse bias
safe operating area”
Datasheet
15
Revision 1.20
2022-05-06
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2022-05-06
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2022 Infineon Technologies AG
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IFX-AAK880-006
Important notice
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer’s products and any use of the product of
Infineon Technologies in customer’s applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.
Please note that this product is not qualified
according to the AEC Q100 or AEC Q101 documents
of the Automotive Electronics Council.
Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.