ILD1150
Multitopology High Power LED DC/DC
Controller IC for Industrial Applications
Datasheet
Rev. 1.1, 2012-04-11
ILD1150
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
6.1
6.2
Oscillator and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7
7.1
7.2
Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8
8.1
8.2
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9
9.1
9.2
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10
10.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Datasheet
2
8
8
9
9
Rev. 1.1, 2012-04-11
Multitopology High Power LED DC/DC Controller IC for
Industrial Applications
ILD1150
ILD1150
1
Overview
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Wide Input Voltage Range from 4.75 V to 45 V
Constant Current or Constant Voltage Regulation
Drives LEDs in Boost, Buck, Buck-Boost, SEPIC and Flyback
Topology
Very Low Shutdown Current: IQ< 10 µA
Flexible Switching Frequency Range, 100 kHz to 500 kHz
Synchronization with external clock source
Output Open Circuit Diagnostic Output
PG-SSOP-14
PWM Dimming
Internal Soft Start
300mV High Side Current Sense to ensure highest flexibility and LED current accuracy
Internal 5 V Low Drop Out Voltage Regulator
Wide LED current range via simple adaptation of external components
Available in a small thermally enhanced PG-SSOP-14 package
Output Overvoltage Protection
Over Temperature Shutdown
Green Product (RoHS) Compliant
Description
The ILD1150 is a Multitopology High Power DC/DC Controller IC with built in protection features . The main function
of this device is to regulate a constant LED current. The constant current regulation is especially beneficial for LED
color accuracy and longer lifetime. The controller concept of the ILD1150 allows a multi-purpose usage such as Boost,
Buck, Buck-Boost, SEPIC and Flyback configuration with various load current levels by simply adjusting the external
components. The ILD1150 has a PWM output for dimming a LED load. The diagnostics are communicated on a status
output (pin ST) to indicate a fault condition such as an LED open circuit. The switching frequency is adjustable in the
range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The ILD1150 features an enable
function reducing the shut-down current consumption to VIVCC,RTH,d
4.5
45
V
–
-40
125
°C
–
Min.
Max.
4.75
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go
to www.jedec.org.
Pos.
4.3.1
4.3.2
Parameter
Junction to Case
Symbol
1) 2)
Junction to Ambient
4.3.3
4.3.4
1) 3)
RthJC
RthJA
RthJA
RthJA
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
10
–
K/W
–
47
–
K/W
2s2p
–
54
–
K/W
1s0p + 600 mm2
–
64
–
K/W
1s0p + 300 mm2
1) Not subject to production test, specified by design.
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and exposed pad are fixed to ambient
temperature). Ta=25°C, IC is dissipating 1W.
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink
area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5mm board. The 2s2p board has
2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu), A thermal via (diameter = 0.3mm and 25µm
plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second
outer layer (bottom) of the JEDEC PCB. Ta=25°C, IC is dissipating 1W.
Datasheet
9
Rev. 1.1, 2012-04-11
ILD1150
Regulator
5
Regulator
5.1
Description
The ILD1150 regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The constant
output current is especially useful for light emitting diode (LED) applications. The multitopology regulator function
is implemented by a pulse width modulated (PWM) current mode controller.
The PWM current mode controller uses the peak current through the external power switch and error in the output
current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode
controller it provides a PWM signal to an internal gate driver which then outputs the same PWM signal to external
n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch.
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a
characteristic of current mode controllers operating at high duty cycles (>50% duty).
An additional built-in feature is an integrated soft start that limits the current through the inductor and external
power switch during initialization. The soft start function gradually increases the inductor and switch current over
1 ms (typical) to minimize potential overvoltage at the output.
OV FB
H when
OVFB >1.25V
OVFB
V Ref =
1.25V
High when
IVCC < 4.0V
UV IVCC
COMP
FBH
x1
EA
Current
Comp
gmEA
High when
lEA - ISLOPE - I CS > 0
OFF
when H
IEA
FBL
VRef =
0.3V
Low when
Tj > 175 °C
Soft start
= V Ref
4.0V
NOR
R
&
>
1
Output Stage
OFF when
Low
R
FREQ/
SYNC
Slope Comp
S
t
Clock
&
INV
1
SWO
Q
I SL O PE
I
Q
&
Q
Current
Sense
PWM-FF
Q
Error-FF
IVCC
Gate
Driver
S
Oscillator
&
Gate Driver
Supply
NAND 2
&
SWCS
ICS
SGND
Figure 3
Datasheet
Boost Regulator Block Diagram
10
Rev. 1.1, 2012-04-11
ILD1150
Regulator
5.2
Electrical Characteristics
All parameters have been tested at 25°C, unless otherwise specified.
1)
VIN = 24V, Tj = -40 ⋅C to +125 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless
otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
VREF= VFBH -VFBL
VBO= 30 V;
IBO = 500 mA
Min.
Typ.
Max.
0.28
0.30
0.32
V
–
–
0.15
%/V
Regulator:
5.2.1
Feedback Reference Voltage
5.2.2
Voltage Line Regulation
VREF
ΔVREF
/ΔVIN
Figure 25
5.2.3
Voltage Load Regulation
(ΔVREF
/ VREF)
/ΔIBO
–
–
5
%/A
VBO = 30V;
IBO = 100 to 500 mA
5.2.4
Switch Peak Over Current
Threshold
VSWCS
130
150
170
mV
VFBH = VFBL = 5 V
VCOMP = 3.5V
5.2.5
Maximum Duty Cycle
95
%
Fixed frequency mode
Maximum Duty Cycle
–
–
%
Synchronization mode
5.2.7
Soft Start Ramp
DMAX,fixed 90
DMAX,sync 88
tSS
350
93
5.2.6
1000
1500
µs
5.2.8
Feedback Input Current
5.2.9
Switch Current Sense Input
Current
VFB rising from 5% to
95% of VFB, typ.
VFBH - VFBL = 0.3 V
VSWCS = 150 mV
5.2.10
Input Undervoltage Shutdown
5.2.11
Input Voltage Startup
Figure 25
IFBx
ISWCS
-10
-50
-100
µA
10
50
100
µA
VIN,off
VIN,on
3.75
–
–
V
–
–
4.75
V
VIN decreasing
VIN increasing
Gate Driver for external Switch
5.2.12
Gate Driver Peak Sourcing
Current1)
ISWO,SRC
–
380
–
mA
VSWO = 3.5V
5.2.13
Gate Driver Peak Sinking
Current1)
ISWO,SNK
–
550
–
mA
VSWO = 1.5V
5.2.14
Gate Driver Output Rise Time
tR,SWO
–
30
60
ns
5.2.15
Gate Driver Output Fall Time
tF,SWO
–
20
40
ns
5.2.16
Gate Driver Output Voltage1)
VSWO
4.5
–
5.5
V
CL,SWO = 3.3nF;
VSWO = 1V to 4V
CL,SWO = 3.3nF;
VSWO = 1V to 4V
CL,SWO = 3.3nF;
1) Not subject to production test, specified by design
Datasheet
11
Rev. 1.1, 2012-04-11
ILD1150
Oscillator and Synchronization
6
Oscillator and Synchronization
6.1
Description
The internal oscillator is used to determine the switching frequency of the multitopology regulator. The switching
frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching
frequency with an external resistor the following formula can be applied.
R FREQ =
1
(141 × 10 [ ])× ( f
− 12
s
Ω
FREQ
[ ])
1
s
(
) [Ω ]
− 3 . 5 × 10 3 [Ω ]
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized
frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the
internal oscillator synchronizes to this external clock frequency and the multitopology regulator switches at the
synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
FREQ
/ SYNC
Oscillator
Multiplexer
Clock Frequency
Detector
VCLK
PWM
Logic
Gate
Driver
SWO
R FREQ
Oscillator_BlkDiag_SyncFixedMode .vsd
Figure 4
Oscillator and Synchronization Block Diagram and Simplified Application Circuit
TSYNC = 1 / fSYNC
VSYNC
tSYNC,TR
tSYNC,TR
tSYNC,PWH
4.5 V
VSYNC,H
0.5 V
VSYNC,L
t
Oscillator_Timing.svg
Figure 5
Datasheet
Synchronization Timing Diagram
12
Rev. 1.1, 2012-04-11
ILD1150
Oscillator and Synchronization
6.2
Electrical Characteristics
All parameters have been tested at 25°C, unless otherwise specified.
VIN = 24V, Tj = -40 ⋅C to +125 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless
otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
fFREQ
fFREQ
250
300
350
kHz
RFREQ = 20kΩ
100
–
500
kHz
17% internal tolerance +
external resistor
tolerance
Oscillator:
6.2.1
Oscillator Frequency
6.2.2
Oscillator Frequency
Adjustment Range
6.2.3
FREQ / SYNC Supply
Current
IFREQ
–
–
-700
µA
VFREQ = 0 V
6.2.4
Frequency Voltage
VFREQ
1.16
1.24
1.32
V
fFREQ = 100 kHz
Synchronization
6.2.5
Synchronization Frequency
Capture Range
fSYNC
250
–
500
kHz
–
6.2.6
Synchronization Signal
High Logic Level Valid
VSYNC,H
3.0
–
–
V
1)
6.2.7
Synchronization Signal
Low Logic Level Valid
VSYNC,L
–
–
0.8
V
1)
6.2.8
Synchronization Signal
Logic High Pulse Width
tSYNC,PWH 200
–
–
ns
1)
1) Synchronization of external PWM ON signal to falling edge
Datasheet
13
Rev. 1.1, 2012-04-11
ILD1150
Oscillator and Synchronization
Typical Performance Characteristics of Oscillator
Switching Frequency fSW versus
Frequency Select Resistor to GND RFREQ/SYNC
600
500
fFREQ [kHz]
400
T j = 25 °C
300
200
100
0
0
10 20
30
40 50
60 70
80
RFREQ/SYNC [kohm]
Datasheet
14
Rev. 1.1, 2012-04-11
ILD1150
Enable and Dimming Function
7
Enable and Dimming Function
7.1
Description
The enable function powers on or off the device. A valid logic low signal on enable pin EN/PWMI powers off the
device and current consumption is less than 10 µA. A valid logic high enable signal on enable pin EN/PWMI
powers on the device. The enable function features an integrated pull down resistor which ensures that the IC is
shut down and the power switch is off in case the enable pin EN is left open.
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM) input
signal that is fed through to an internal gate driver. The internal gate driver outputs the same PWM signal on the
PWMO pin to an external n-channel enhancement mode MOSFET for PWM dimming an LED load. PWM dimming
an LED is a commonly practiced dimming method to prevent color shift in an LED light source. Moreover the PWM
output function may also be used for to drive other types of loads besides LED.
The enable and PWM input function share the same pin. Therefore a valid logic low signal at the EN/PWMI pin
needs to differentiate between an enable power off signal or an PWM low signal. The device differentiates between
an enable off command and PWM dimming signal by requiring the signal at the EN/PWMI pin to stay low for a
minimum of 8 ms.
IN
14
Enable
Microcontroller
EN / PWMI
13
Enable / PWMI
Logic
LDO
Enable
1
Gate
Driver
PWMI
2
Gate
Driver
5
IVCC
SWO
PWMO
EN_PWMI_BlockDiagram.svg
Figure 6
Datasheet
Block Diagram and Simplified Application Circuit Enable and LED Dimming
15
Rev. 1.1, 2012-04-11
ILD1150
Enable and Dimming Function
tEN,START
TPWMI
tPWMI,H
tEN,OFF,DEL
VEN/PWMI
VEN/PWMI,ON
VEN/PWMI,OFF
t
VIVCC
VIVCC,ON
VIVCC,RTH
t
VPWMO
t
1
fFREQ
TFREQ =
VSWO
t
Power On
Normal
Dim
Normal
Dim
Normal
SWO On
PWMO Off
SWO On
PWMO Off
SWO On
PWMO On
SWO Off
PWMO On
SWO Off
PWMO On
Power Off Delay Time
Power Off
Iq < 10 μA
EN_PWMI_Timing.svg
Figure 7
Timing Diagram Enable and LED Dimming
7.2
Electrical Characteristics
All parameters have been tested at 25°C, unless otherwise specified.
VIN = 24V, Tj = -40 ⋅C to +125 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless
otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
3.0
–
Unit
Conditions
V
–
Max.
Enable/PWM Input:
7.2.1
Enable/PWMI
Turn On Threshold
VEN/PWMI,ON
7.2.2
Enable/PWMI
Turn Off Threshold
VEN/PWMI,OFF –
–
0.8
V
–
7.2.3
Enable/PWMI Hysteresis
VEN/PWMI,HYS 50
200
400
mV
–
Datasheet
16
Rev. 1.1, 2012-04-11
ILD1150
Enable and Dimming Function
VIN = 24V, Tj = -40 ⋅C to +125 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless
otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
7.2.4
Enable/PWMI
High Input Current
IEN/PWMI,H
–
–
30
µA
VEN/PWMI = 16.0 V
7.2.5
Enable/PWMI
Low Input Current
IEN/PWMI,L
–
0.1
1
µA
VEN/PWMI = 0.5 V
7.2.6
Enable Turn Off
Delay Time
tEN,OFF,DEL
8
10
12
ms
–
7.2.7
PWMI Min Duty Time
–
–
µs
Enable Startup Time
tPWMI,H
tEN,START
4
7.2.8
100
–
–
µs
Gate Driver for Dimming Switch:
7.2.9
PWMO Gate Driver Peak
Sourcing Current1)
IPWMO,SRC
–
230
–
mA
VPWMO = 3.5V
7.2.10
PWMO Gate Driver Peak
Sinking Current1)
IPWMO,SNK
–
370
–
mA
VPWMO = 1.5V
7.2.11
PWMO Gate Driver
Output Rise Time
tR,PWMO
–
50
100
ns
7.2.12
PWMO Gate Driver
Output Fall Time
tF,PWMO
–
30
60
ns
7.2.13
PWMO Gate Driver
Output Voltage
VPWMO
4.5
–
5.5
V
CL,PWMO = 3.3nF;
VPWMO = 1V to 4V
CL,PWMO = 3.3nF;
VPWMO = 1V to 4V
CL,PWMO = 3.3nF;
Current Consumption
7.2.14
Current Consumption,
Shutdown Mode
Iq_off
–
–
10
µA
7.2.15
Current Consumption,
Active Mode2)
Iq_on
–
–
7
mA
VEN/PWMI = 0.8 V;
Tj ≤ 105C; VIN = 16V
VEN/PWMI ≥ 4.75 V;
IBO = 0 mA;
VIN = 16V
VSWO = 0% Duty
1) Not subject to production test, specified by design
2) Dependency on switching frequency and gate charge of external switches.
Datasheet
17
Rev. 1.1, 2012-04-11
ILD1150
Linear Regulator
8
Linear Regulator
8.1
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up
to 50 mA. An external output capacitor with low ESR is required on pin IVCC for stability and buffering transient
load currents. During normal operation the external MOSFET switches will draw transient currents from the linear
regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient
peak current to the gate of the external MOSFET switches.
Integrated undervoltage protection for the external switching MOSFET:
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets
the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold (VIVCC,RTH,d).
The undervoltage reset threshold for the IVCC pin helps to protect the external switches from excessive power
dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel
MOSFET.
IN
14
1
IVCC
Linear Regulator
EN / PWMI
13
Gate
Drivers
LinReg_BlckDiag.vsd
Figure 8
Datasheet
Voltage Regulator Block Diagram and Simplified Application Circuit
18
Rev. 1.1, 2012-04-11
ILD1150
Linear Regulator
8.2
Electrical Characteristics
VIN = 24V, Tj = -40 ⋅C to +125 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless
otherwise specified)
Pos.
Parameter
Symbol
Min.
Typ.
Max.
8.2.1
Output Voltage
VIVCC
4.6
5
8.2.2
Output Current Limitation
ILIM
51
8.2.3
8.2.6
VDR
Output Capacitor
CIVCC
0.47
Output Capacitor ESR
RIVCC,ESR
Undervoltage Reset Headroom VIVCC,HDRM 100
8.2.7
Undervoltage Reset Threshold VIVCC,RTH,d
8.2.8
Undervoltage Reset Threshold VIVCC,RTH,i
8.2.4
8.2.5
Limit Values
Unit
Conditions
5.4
V
6 V ≤ VIN ≤ 45 V
0.1 mA ≤ IIVCC ≤ 50 mA
90
mA
1.4
V
VIN = 13.5 V
VIVCC = 4.5V
IIVCC = 50mA 1)
–
µF
2)
0.5
Ω
–
–
mV
4.0
–
–
V
–
–
4.5
V
f = 10kHz
VIVCC decreasing
VIVCC - VIVCC,RTH,d
VIVCC decreasing
VIVCC increasing
Drop out Voltage
1) Measured when the output voltage VCC has dropped 100 mV from its nominal value.
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
Datasheet
19
Rev. 1.1, 2012-04-11
ILD1150
Protection and Diagnostic Functions
9
Protection and Diagnostic Functions
9.1
Description
The ILD1150 has integrated circuits to diagnose and protect against output overvoltage, open load, open feedback
and overtemperature faults. In case any of the four fault conditions occur the Status output ST will output an active
logic low signal to communicate that a fault has occurred. During an overvoltage or open load condition the gate
driver outputs SWO and PWMO will turn off. Figure 11 illustrates the various open load and open feedback
conditions. In the event of an overtemperature condition (Figure 14) the integrated thermal shutdown function
turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature is 175°C.
After cooling down the IC will automatically restart operation. Thermal shutdown is an integrated protection
function designed to prevent immediate IC destruction and is not intended for continuous use in normal operation.
Input
Output
Protection and
Diagnostic Circuit
Output
Overvoltage
Open Load
SWO and PWMO
Gate Driver Off
OR
Open Feedback
Overtemperature
Linear Regualtor
Off
OR
Input
Undervoltage
Pro_Diag_BlckDiag.vsd
Figure 9
Protection and Diagnostic Function Block Diagram
Input
Condition
Overvoltage
Open Load
Open Feedback
Overtemperature
Level*
False
True
False
True
False
True
False
True
ST
H
L
H
L
H
L
H
L
Pro_Diag_TT.vsd
*Note:
Sw = Switching
False = Condition does not exist
True = Condition does exist
Figure 10
Datasheet
Output
SWO
PWMO
IVCC
Sw*
H or Sw *
Active
L
L
Active
Sw*
H or Sw *
Active
L
L
Active
Sw*
H or Sw *
Active
L
L
Active
Sw*
H or Sw *
Active
L
L
Shutdown
Status Output Truth Table
20
Rev. 1.1, 2012-04-11
ILD1150
Protection and Diagnostic Functions
VBO
Output Open Circuit Conditions
Open Circuit 3
Open Circuit 1
ROVH
Open Circuit 2
9
VOVFB,TH
D1
ROVL
D2
Fault Threshold Voltage
VREF
1
Open FBH
-20 to -100 mV
2
Open FBL
0.5 to 1.0 V
3
Open VBO
VFBx < VFBx,min = 4.5V
4
Open PWMO
Detected by overvoltage
D3
Feedback Voltage
Error Amplifier
FBH
FBL
VREF
D4
6
7
D5
+
VREF
-
D6
Max Threshold = 1.0 V
D7
D8
Min Threshold = 0.5 V
D9
D10
Typical V REF = 0.3 V
Open Circuit 4
Max Threshold = -20 mV
TDIM
PWMO
Figure 11
Open FBL
OVFB
Fault Condition
Min Threshold = -100 mV
5
Open FBH
Open VBO
Overvoltage
Compartor
RFB
Open Circuit
Condition
Open Load and Open Feedback Conditions
VOVFB
example: VOUT,max=40V
VOVP,max
1.25mA
ROVH
OVFB
VOVFB,TH
9
ROVL
GND
Overvoltage Protection
ACTIVE
40V
≅ 33.2kΩ
1.25mA
1kΩ 1.25V
1.25V
Overvoltage Protection is
disabled
12
t
Figure 12
Datasheet
Overvoltage Protection description
21
Rev. 1.1, 2012-04-11
ILD1150
Protection and Diagnostic Functions
Status Output Timing Diagram
Startup
Normal
Thermal
Shutdown
1
VIVCC
Overvoltage
Open Load /
Feedback
2
3
Shutdown
VIVCC,RTH,i
VIVCC,RTH ,d
TJ
T J,SD,HYST
t
1
TJ,SD
VBO
t
2
VOVFB ≥ VOVFB,TH
VOVFB < V OVFB,T L
VFBH -VFBL
VREF,2
t
3
tSS
tSS
0.3 V Typ
t
VREF,1
VST
tSD
tSD
tSD
t
Figure 13
Datasheet
Status Output Timing Diagram
22
Rev. 1.1, 2012-04-11
ILD1150
Protection and Diagnostic Functions
VEN/PWMI
H
L
t
Tj
TjSD
ΔΤ
TjSO
t
Ta
VSWO
t
ILED
Ipeak
t
VPWMO
t
VST and
VIVCC
5V
t
Device
OFF
Figure 14
Datasheet
Normal Operation
Overtemp
Fault
ON
Overtemp
Fault
ON
Overtemp
ON
Fault
Overtemp
Fault
Device overtemperature protection behavior
23
Rev. 1.1, 2012-04-11
ILD1150
Protection and Diagnostic Functions
9.2
Electrical Characteristics
All parameters have been tested at 25°C, unless otherwise specified.
VIN = 24V, Tj = -40 ⋅C to +125 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless
otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
–
0.4
V
2
–
–
mA
–
–
1
µA
IST = 1mA
VST = 1V
VST = 5V
8
10
12
ms
–
Tj,SD
160
Tj,SD,HYST –
175
190
°C
–
15
–
°C
–
1.25
1.29
V
–
Status Output:
9.2.1
Status Output Voltage Low
9.2.2
Status Sink Current Limit
9.2.3
Status Output Current
9.2.4
Status Delay Time
VST,LOW
IST,MAX
IST,HIGH
tSD
Temperature Protection:
9.2.5
Over Temperature Shutdown
9.2.6
Over Temperature Shutdown
Hystereses
Overvoltage Protection:
9.2.7
Output Over Voltage Feedback
Threshold Increasing
VOVFB,TH
9.2.8
Output Over Voltage Feedback
Hysteresis
VOVFB,HYS 50
–
150
mV
Output Voltage
decreasing
9.2.9
Over Voltage Reaction Time
tOVPRR
2
–
10
µs
Output Voltage
decreasing
9.2.10
Over Voltage Feedback Input
Current
IOVFB
-1
0.1
1
µA
VOVFB = 1.25 V
-100
–
-20
mV
VREF = VFBH - VFBL
1.21
Open Load and Open Feedback Diagnostics
9.2.11
9.2.12
Open Load/Feedback
Threshold
VREF,1,3
Open Feedback Threshold
VREF,2
Open Circuit 1 or 3
0.5
–
1
V
VREF = VFBH - VFBL
Open Circuit 2
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Datasheet
24
Rev. 1.1, 2012-04-11
ILD1150
Application Information
10
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
LBO
DBO
VIN = 4.75V to 45V
CIN
CBO
RFB
1
VCC or VIVCC
SWO
2
SWCS
4
IN
IVCC
D1
CIVCC
RCS
SGND
3
OVFB
9
RST
STATUS
10
IC2
Microcontroller
(e.g. XC866)
ST
D3
ROVH
D4
D5
IC1
ILD1150
PWMI
D2
ROVL
D6
D7
Classic Boost Setup:
VOUT > VIN
14
VREF
TSW
D8
Digital Dimming
13
EN / PWMI
Spread
Spectrum
11
FREQ / SYNC
8
COMP
FBH
6
FBL
7
PWMO
5
D9
ILED
D10
CCOMP
PWMO
RFREQ
Figure 15
TDIM
GND
RCOMP
12
Boost to Ground Application Circuit - B2G (Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
D1 - 10
White
Osram
DBO
Schottky, 3 A, 100 VR
Vishay
CIN , CBO
100 uF, 50V
CCOMP
10 nF
CIVCC
IC1
Type
Quantity
LUW H9GP
LED
10
SS3H10
Diode
1
Panasonic
EEEFK1H101GP
Capacitor
2
EPCOS
X7R
Capacitor
1
1uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
--
Infineon
ILD1150
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML
Inductor
1
RCOMP
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 16
Datasheet
Bill of Materials for B2G Application Circuit
25
Rev. 1.1, 2012-04-11
ILD1150
Application Information
L1
DBO
CSEPIC
VIN
CIN
ISW
RFB
L2
14
IN
TSW
SWO
2
SWCS
4
ILED
VCC or VIVCC
RCS
RST
STATUS
IC2
Microcontroller
(e.g. XC866)
VREF
CBO
10
ST
PWMI
SGND
3
OVFB
9
D2
D3
IC1
ILD1150
Digital Dimming
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
8
COMP
D1
ROVH
ROVL
D4
D5
D6
D7
FBH
6
FBL
7
IVCC
1
CCOMP
DPOL
RPOL
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
VIN = 4.75V to 45V
Dn
CIVCC
RFREQ
RCOMP
PWMO
PWMO
TDIM
5
GND
12
Figure 17
SEPIC Application Circuit (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
D1 - n
White
Osram
DBO
Schottky, 3 A, 100 VR
Vishay
DPOL
80V Diode
Infineon
Type
Quantity
LUW H9GP
LED
variable
SS3H10
Diode
1
BAS1603W
Diode
1
CSEPIC
3.3 uF, 20V
EPCOS
X7R, Low ESR
Capacitor
1
CIN , CBO
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
2
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
ILD1150
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
47 uH
Coilcraft
MSS1278T-473ML
Inductor
2
alternativ: 22uH coupled
inductor
Coilcraft
MSD1278-223MLD
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPD35N10S3L-26
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 18
Datasheet
Bill of Materials for SEPIC Application Circuit
26
Rev. 1.1, 2012-04-11
ILD1150
Application Information
DBO
VIN
VIN = 4.75V to 45V
L1
CIN
ISW
RFB
L2
14
IN
TSW
SWO
2
SWCS
4
ILED
VCC or V IVCC
RCS
STATUS
10
ST
PWMI
Digital Dimming
13
Output
SGND
3
OVFB
9
R OVH
D1
D2
IC1
ILD1150
D3
R OVL
D4
D5
D6
EN / PWMI
11
FREQ / SYNC
8
COMP
FBH
6
FBL
7
IVCC
1
D7
CCOMP
DPOL
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
R ST
IC2
Microcontroller
(e.g. XC866)
VREF
CBO
RPOL
Dn
C IVCC
RFREQ
RCOMP
PWMO
GND
PWMO
12
Figure 19
TDIM
5
Flyback Application Circuit (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
3.3 uF, 50V (100V)
EPCOS
X7R, Low ESR
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
ILD1150
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
1 µH / 9 uH
EPCOS
Transformer EHP 16
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
DPOL
80 V Diode
Infineon
BAS1603W
Diode
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ, RST
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
ROVH
56.2 kΩ, 1%
Panasonic
ERJ3EKF5622V
Resistor
1
ROVL
1.24 kΩ, 1%
Panasonic
ERJ3EKF1241V
Resistor
1
RCS
5 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 20
Datasheet
Bill of Materials for Flyback Application Circuit
27
Rev. 1.1, 2012-04-11
ILD1150
Application Information
DBO
CBO
VREF
D2
D1
LBO
VIN = 4.75V to 45V
CIN
RFB
14
CIVCC
1
IN
IVCC
BUCK Setup:
VIN > VOUT
I LED
TSW
SWO
2
SWCS
4
SGND
3
OVFB
9
FBH
6
FBL
7
PWMO
5
VCC or VIVCC
RCS
RST
STATUS
10
ST
13
EN / PWMI
11
FREQ / SYNC
8
COMP
IC1
ILD1150
IC2
Microcontroller
(e.g. XC866)
Enable
Spread Spectrum
C COMP
RFREQ
Figure 21
GND
R COMP
12
Buck Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 -2
White
Osram
LE UW Q9WP
LED
2
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
4.7 uF, 50V
EPCOS
X7R
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK 1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
ILD1150
IC
1
IC2
--
Infineon
XC866
IC
1
L1
22 µH
Coilcraft
MSS1278T
Inductor
1
RCOMP
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
RCS
50 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TSW
30V, 22A
Infineon
IPB22N03S4L-15
Transistor
1
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
1
Figure 22
Datasheet
Bill of Materials for Buck Application Circuit
28
Rev. 1.1, 2012-04-11
ILD1150
Application Information
C BO
RFB
TDIM2
VIN = 4.75V to 45V
CIN
DZ
Dn
RDIM2
D1
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
R DIM1
LBO
DBO
TD IM1
ILED
ISW
PWMO
VOUT
PWMO
5
VC C or V IVCC
RST
6
FBH
7
FBL
10
2
SWCS
4
TSW
RC S
IN
14
STATUS
SWO
ST
SGND
3
OVFB
9
ROVH
IC1
ILD1150
IC2
Microcontroller
(e.g. XC866)
PWMI
Digital Dimming
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
ROVL
COMP
8
IVCC
1
CCOMP
CIVCC
GND
R FR EQ
Figure 23
RCOMP
12
Boost to Battery Application Circuit - B2B (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
Diode
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DZ
5V
Vishay
Zener
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
ILD1150
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP, RDIM1, RDIM2
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
3
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJP06F5102V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM1,TDIM2
60V Dual N-ch (3.1A) and P-ch. enh. (2A)
Infineon
BSO615CG
Transistor
1
alternativ: 100V N-ch (0.37A),
Infineon
BSP123
Transistor
1
alternativ: 60V P-ch (1.9A)
Infineon
BSP171P
Transistor
1
N-ch, OptiMOS-T2 100V, 35A
Infineon
IPD35N10S3L-26
Applicationdrawing _plus_BOM_B2B_IL
Transistor
1
D1150 _April2012 .vsd
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
1
TSW
Figure 24
Datasheet
Bill of Materials for B2B Application Circuit
29
Rev. 1.1, 2012-04-11
ILD1150
Application Information
LBO
DBO
ILoad
VIN = 4.75V to 45V
CBO
CIN
constant
VOUT
RL
14
1
CIVCC
VCC or VIVCC
IVCC
10
IC2
Microcontroller
(e.g. XC866)
5
ST
PWMO
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
4
8
COMP
RCOMP
SGND
3
OVFB
9
ROVH
ROVL
RFB1
FBH
6
RFB2
CCOMP
Figure 25
SWCS
TSW
IC1
ILD1150
Enable
RFREQ
2
RCS
RST
STATUS
SWO
IN
FBL
VREF
7
RFB3
GND
12
Boost Voltage Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF, 16V
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
Panasonic
X7R
Capacitor
1
IC1
--
Infineon
ILD1150
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kohms, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB1,RFB3
51 kohms, 1%
Panasonic
ERJ3EKF5102V
Resistor
2
RFB2
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RFREQ, RST
20 kohms, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kohms, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mohms, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
N-ch, OptiMOS-T2 100V
Infineon
IPG20N10S4L-22
Transistor
1
Figure 26
Bill of Materials for Boost Voltage Application Circuit
Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the
external components must be done accordingly to specific application requirements.
Datasheet
30
Rev. 1.1, 2012-04-11
ILD1150
Application Information
10.1
•
•
Further Application Information
For further information you may contact http://www.infineon.com/
Application Note: ILD1150 / ILD1151 DC-DC Multitopology Controller IC for Industrial Applications
“Dimensioning and Stability Guideline - Theory and Practice”
Datasheet
31
Rev. 1.1, 2012-04-11
ILD1150
Revision History
11
Revision History
Revision
Date
Changes
1.0
2011-11-16
Initial Datasheet
1.1
2012-04-11
Page 3: RoHS Logo update
Page 3: Topology update
Application Information chapter update
Datasheet
32
Rev. 1.1, 2012-04-11
ILD1150
Package Outlines
12
Package Outlines
0.15 M C A-B D 14x
0.64 ±0.25
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.2
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 C A-B 2x
14
7
8
2.65 ±0.2
0.25 ±0.05 2)
0.08 C
8˚ MAX.
C
0.65
0.1 C D
0.19 +0.06
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45˚
3.9 ±0.11)
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
PG-SSOP-14-1,-2,-3-PO V02
PG-SSOP-14
Figure 27
PG-SSOP-14
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further package information, please visit our website:
http://www.infineon.com/packages.
Datasheet
33
Dimensions in mm
Rev. 1.1, 2012-04-11
Edition 2012-04-11
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.