LED Driver ICs for High Power LEDs
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Data Sheet
Revision 3.2, 2014-07-09
Power Management and Multimarket
Edition 2014-07-09
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Revision History
Page or Item
Subjects (major changes since previous revision)
Revision 3.2, 2014-07-09
Table 2
Footnote 1 updated respective ESD protection on pin VS
Revision 3.1, 2014-06-05
Table 1
Pin 1 function changed to bias control input voltage
Table 2
Upper spec limit of bias control voltage changed to VS
Table 4
Operating conditions for bias control voltage VB added
Figure 6
Pin 1 to VS connection updated
Revision 3.0, 2013-10-10
All
Initial release of final data sheet
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes
Zetex Limited.
Last Trademarks Update 2011-11-11
Data Sheet
3
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Product Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5
5.1
5.2
5.3
5.4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
6.1
6.2
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Setting the average LED current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Inductor Selection Guideline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Data Sheet
4
12
12
14
15
16
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
List of Figures
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Data Sheet
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Total Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Typical Output Current Duty Cycle of Over-Temperature Protection vs. TJ and RTadj . . . . . . . . . . 13
PWM Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Typical Integrated PWM Duty Cycle vs. PWM Control Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Minimum Inductance for 0.35 A Average LED Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Minimum Inductance for 0.7 A Average LED Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Minimum Inductance for 1.5 A Average LED Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Package outline PG-DSO-8-27 (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Recommended PCB Footprint for Reflow Soldering (dimensions in mm) . . . . . . . . . . . . . . . . . . . 24
Tape Loading (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
List of Tables
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Data Sheet
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Maximum Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Digital Control Parameter at Pin PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Analog Control Parameter at Pin PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6
Revision 3.2, 2014-07-09
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
1
•
•
•
•
•
•
•
•
•
•
•
•
Features
Wide input voltage range from 4.5 V to 60 V
Capable to provide up to 1.5 A average output current
Up to 1 MHz switching frequency
Soft-start capability
Analog and PWM dimming possible
Integrated PWM generator for analog dimming input
Typical 3% output current accuracy
Very low LED current drift over temperature
Adjustable over-temperature protection
Undervoltage lockout
Over-current protection
Thermally optimized package: PG-DSO-8-27
Applications
•
•
•
•
LED driver for general lighting
Retail, office and residential downlights
Street and tunnel lighting
LED ballasts
Product Name
Package
Marking
ILD6150
PG-DSO-8-27
ILD6150
Data Sheet
7
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Product Brief
2
Product Brief
The ILD6150 is a hysteretic buck LED driver IC for driving high power LEDs in general lighting applications with
average currents up to 1.5 A.
The ILD6150 is suitable for LED applications with a wide range of supply voltages from 4.5 V to 60 V. A
multifunctional PWM input signal allows dimming of the LEDs with an analog DC voltage or an external PWM
signal. To minimize colorshifts of the LEDs an analog PWM voltage is converted to an internal 1.6 kHz PWM signal
modulating the LED current.
The ILD6150 incorporates an undervoltage lock-out that will shut down the IC when the minimum supply voltage
threshold is exceeded. The over-current protection turns off the output stage once the output current is above the
current threshold. An integrated over-temperature protection circuit will start to reduce the LED current by internal
PWM modulation once the adjustable junction temperature threshold of the IC is exceeded. Realizing a thermal
coupling between LED driver IC and LEDs this feature eliminates the need of external temperature sensors as
NTCs or PTCs.
Thanks to the hysteretic concept the current control is extremely fast and always stable. A maximum contrast ratio
of 3000:1 can be achieved depending of the dimensioning of the external components. The efficiency of the LED
driver IC is remarkable high, reaching up to 98% of efficiency over a wide range. The output current accuracy from
device to device and under all load conditions and over temperature is limited to a minimum, making ILD6150 the
perfect fit for LED ballasts.
ILD6150
Buck LED Driver
VB
1
8
Tadj
7
VS
6
Vsense
5
Vswitch
UVLO
VSTAB
PWM
2
GND
3
Vstab
I / V
VREF
Hysteretic
Comparator
DC to PWM
OTP
OCP
GND
4
EP
Figure 1
Data Sheet
Block Diagram
8
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Product Brief
Pin Definition
Table 1
Pin Definition and Function
Pin No.
Name
Pin
Type
Buffer
Type
Function
1
VB
Input
–
Bias control input voltage, recommended to connect to pin
VS
2
PWM
Input
–
Dimming signal:
• Analog dimming
• PWM dimming
3
GND
GND
–
IC ground
4
GND
GND
–
IC ground
5
Vswitch
Output
–
Power switch output
6
Vsense
Input
–
LED current sense input
7
VS
Input
–
Supply voltage
8
Tadj
Output
–
Over-temperature adjustment
EP
Exposed Pad
GND
–
IC ground and heat spreader
Data Sheet
9
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Maximum Ratings
3
Maximum Ratings
Table 2
Maximum Ratings
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Supply voltage
VS
-0.3
–
60
V
–
Bias control voltage
VB
-0.3
–
VS
V
–
PWM voltage
VPWM
-0.3
–
5.5
V
–
Tadj voltage
VTadj
-0.3
–
3.5
V
–
Sense voltage
Vsense
VS - 0.3
–
VS
V
–
Switch voltage
Vswitch
-0.3
–
60
V
–
Average switch output current
Iout
–
–
1.5
A
–
Total power dissipation, TS ≤ 116°C
Ptot
–
–
2
W
–
Junction temperature
TJ
-40
–
150
°C
–
TSTG
-65
–
150
°C
–
VESD HBM
–
–
2
kV
HBM acc. to
JESD22 - A114
Storage temperature range
ESD capability at all pins
1)
1) Two different classes of ESD protection elements are implemented within ILD6150:
1. ESD protection at pin VS will be triggered if the voltage at pin VS rises by more than 5 V with a slew rate of more than
5 V/µs. This condition is met during an ESD event, but might also occur if the LED driver gets hotplugged into a power
supply and the VS blocking capacitor has a too small capacitance. ESD protection will remain triggered as long as the
slewrate condition is met. If the ESD protection gets triggered while VS is supplied the IC might be damaged.
2. ESD protection at all other pins is triggered once the connected voltage signal exceeds a threshold higher than the
maximum voltage rating specified for each pin. No preventions regarding slew rate control need to be taken for these pins.
Attention: Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the integrated circuit.
Data Sheet
10
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Thermal Characteristics
4
Thermal Characteristics
Table 3
Maximum Thermal Resistance
Parameter
Symbol
1)
Junction - soldering point
Values
RthJS
Min.
Typ.
Max.
–
17
–
Unit
Note /
Test Condition
K/W
–
1) For calculation of RthJA please refer to application note AN077 (Thermal Resistance Calculation)
2.5
Ptot [W]
2
1.5
1
0.5
0
Figure 2
0
20
40
60
80
TS [°C]
100
120
140
160
Total Power Dissipation
The major part of the IC power dissipation is caused by the switch resistance in conductive state. Therefore
Equation (1) is a first estimation to calculate the total power dissipation of the IC
Ptot = RON ⋅ I out ⋅ D + I S ⋅ VS
2
(1)
D: Duty cycle of the output switch
For a more precise analysis measure the soldering point temperature TS of ILD6150 at GND pin and use Figure 2
as a reference.
Data Sheet
11
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Electrical Characteristics
5
Electrical Characteristics
5.1
DC Characteristics
All parameters at TA = 25 °C, unless otherwise specified.
Table 4
DC Characteristics
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Operating supply voltage
VS
4.5
–
60
V
–
Operating bias control voltage
VB
4.5
–
VS
V
recommended to
connect to VS
Under Voltage Lock Out
VS, UV, off
4.05
4.25
4.45
V
IC deactivated1)
VS, UV, on
4.15
4.35
4.50
V
IC operative
IS, OL, 4.5V 1.55
2.1
2.65
mA
VS = 4.5 V
IS, OL, 12V
1.60
2.2
2.70
mA
VS = 12 V
IS, OL, 60V
1.60
2.24
2.80
mA
VS = 60 V
Supply voltage reset time
tS, reset
105
160
210
µs
Reset time after VS
power up2)
Current of Vsense input
Isense
12
17
22
µA
At any LED current
Current of VB input
IB, 60V
35
55
70
µA
VB = 60 V
Output over current protection threshold
Iout, OCP
2.2
2.5
2.9
A
160
220
300
ns
turn off delay
Supply current consumption open load
VS = Vsense, ILED = 0 mA
Output over current protection delay time tdelay, OCP
Output over current protection time out
ttimeout, OCP 30
57
–
µs
turn off duration3)
Over-temperature protection threshold
range (typical), 10 % reduction
TOTP, range 75
–
145
°C
RTadj = 35 kΩ ... 0 Ω4)
Over-temperature protection threshold
open, 10 % reduction
TOTP, open –
115
–
°C
RTadj ≥ 150 kΩ
Over-temperature protection threshold
short, 10 % reduction
TOTP, short –
145
–
°C
RTadj = 0 Ω
Over-temperature protection, turn off
TOTP, off
–
160
–
°C
Tadj pin current source to GND
ITadj, short
-75
-60
-45
µA
RTadj = 0 Ω5)
1) IC gets deactivated once the supply voltage drops below VS, UV, off and gets operative once supply voltage rises above
VS, UV, on.
2) Reset timer starts after supply voltage exceeds the lower limit of the supply voltage. Output stage gets enabled once reset
timer expires.
3) Once the over current protection threshold has been exceeded the output switch gets disabled. It is enabled again once
the time out expired.
4) TOTP, range specifies the typical temperature tuning range achievable at a 10 % reduction of LED current using resistors with
1 % accuracy. Temperatures specified refer to junction temperature on chip. Accuracy of the temperature sensor is typical
±5 K. Any resistor value RTadj ≥ 0 Ω can be selected but it might not influence OTP temperature if out of the ranges specified.
5) Definition of current reference: Currents flowing out of the IC have a negative magnitude.
ILD6150 has an integrated over-temperature protection based upon the junction temperature on chip. The
threshold of the over-temperature protection circuit is tunable by resistor RTadj connected from pin Tadj to GND.
Data Sheet
12
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Electrical Characteristics
RTadj resistor values within 0 to 35 kΩ define the over-temperature protection behavior as shown in Figure 3. RTadj
values ≥ 150 kΩ set the OTP threshold to TOTP, open. The over-temperature protection is based upon modulation of
the LED current with an internal PWM generator. Once the junction temperature exceeds the OTP threshold the
PWM duty cycle as well as the average LED current will get reduced. Once junction temperature reaches TOTP, off
the PWM duty cycle and LED current will be reduced to zero.
100
Iout Duty Cycle [%]
80
60
40
0 kΩ
10 kΩ
20 kΩ
35 kΩ
Open
20
0
60
Figure 3
Data Sheet
70
80
90
100 110 120 130 140 150 160 170
TJ [°C]
Typical Output Current Duty Cycle of Over-Temperature Protection vs. TJ and RTadj
13
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Electrical Characteristics
5.2
Switching Characteristics
All parameters at TA = 25 °C, unless otherwise specified.
Table 5
Switching Characteristics
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Switching frequency
fswitch
–
–
1
MHz
Mean current sense threshold
voltage
Vsense
–
152
–
mV
fswitch = 100 kHz
Sense threshold hysteresis
Vsensehys
–
±22
–
%
peak to average
VS = 12 V
fswitch = 100 kHz
Output current variation over
supply voltage
Iout, Vs
–
±3
–
%
Output current variation over
temperature
Iout, Ts
–
±4
–
%
for temperatures below
OTP threshold
Output current variation over load Iout, load
–
±3
–
%
fixed VS
Switch on resistance
RON, 25°C
0.2
0.23
0.26
Ω
ISW = 1 A, TJ = 25 °C
RON, 125°C
0.29
0.34
0.39
Ω
ISW = 1 A, TJ = 125 °C
Data Sheet
14
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Electrical Characteristics
5.3
Digital Control Signals
All parameters at TA = 25 °C, unless otherwise specified.
Dimming of the LED current can be achieved by an analog or digital input voltage connected to pin PWM. A digital
input signal will modulate the LED current according to Table 6.
Table 6
Digital Control Parameter at Pin PWM1)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
PWM voltage logic high level
VPWM, high
2.6
–
5.5
V
output stage
enabled
PWM voltage logic low level
VPWM, low
-0.3
–
0.5
V
output stage
disabled
PWM output current
ICC,PWM
-23
-18
-12
µA
VPWM = 0 V
PWM delay time
td, PWM, on
–
0.8
–
µs
VPWM = rising to
2.5 V
Vswitch = falling to
1V
td, PWM, off
–
0.6
–
µs
VPWM = falling to
0.5 V
Vswitch = rising to
1V
PWM signal frequency
fPWM, ext
–
–
25
kHz
1) PWM pin has an internal pull-up circuit to high level if not connected externally on PCB
4.7 V
ICC,PWM
PWM
Figure 4
PWM Input
An analog PWM input voltage activates modulation of the LED current by the integrated PWM generator running
at frequency fPWM, int. Its duty cycle corresponds to analog PWM control voltage as shown in Table 7 and Figure 5.
Data Sheet
15
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Electrical Characteristics
Table 7
Analog Control Parameter at Pin PWM
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
PWM input voltage for 0% duty
cycle
VPWM, 0%
–
0.61
–
V
PWM input voltage for 50% duty
cycle
VPWM, 50%
–
1.52
–
V
PWM input voltage for 100% duty VPWM, 100% –
cycle
2.43
–
V
55
–
%/V
1.6
2.1
kHz
Sensitivity of PWM duty cycle vs.
PWM input voltage
D.C./VPWM –
Integrated PWM generator
frequency
fPWM, int
1.2
Note /
Test Condition
PWM Duty Cycle [%]
100
80
60
40
20
0
0
0.5
1
1.5
VPWM [V]
2
Figure 5
Typical Integrated PWM Duty Cycle vs. PWM Control Voltage
5.4
Switching Parameters
2.5
3
For all shown switching parameters ILD6150 has been measured on evaluation board ILD6150 at TA = 25 °C.
Used LEDs have a typical VfLED of 3 V. Efficiency figure shows total efficiency of the application board including
losses of external components as inductor or Schottky diode. See the application note for further details.
Data Sheet
16
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Electrical Characteristics
Performance vs. supply voltage and number of LEDs: Rsense = 100 mΩ, L = 47 µH, VfLED = 3 V
ILED versus VS and number of LEDs
Relative change of ILED versus VS and number of LEDs
3
1.540
1.530
2
ILEDrelative [%]
ILED [A]
1.520
1.510
1.500
1.490
1.480
1.470
1
0
-1
-2
1.460
0
5
10
15
20
25
4 LEDs
5 LEDs
6 LEDs
1 LED
2 LEDs
3 LEDs
30 35
VS [V]
40
45
7 LEDs
8 LEDs
9 LEDs
50
55
-3
60
10 LEDs
0
5
10
15
Efficiency versus VS and number of LEDs
30 35
VS [V]
40
7 LEDs
8 LEDs
9 LEDs
45
50
55
60
10 LEDs
fSwitch versus VS and number of LEDs
800
0.9
600
fSwitch [kHz]
Efficiency [-]
25
4 LEDs
5 LEDs
6 LEDs
1 LED
2 LEDs
3 LEDs
1
0.8
0.7
0.6
20
400
200
0
5
10
15
20
25
4 LEDs
5 LEDs
6 LEDs
1 LED
2 LEDs
3 LEDs
30 35
VS [V]
40
45
7 LEDs
8 LEDs
9 LEDs
50
55
0
60
10 LEDs
0
1 LED
2 LEDs
3 LEDs
5
10
15
20
4 LEDs
5 LEDs
6 LEDs
25
30 35
VS [V]
7 LEDs
8 LEDs
9 LEDs
40
45
50
55
60
10 LEDs
Duty Cycle versus VS and number of LEDs
1
0.9
0.8
Duty Cycle [-]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
5
1 LED
2 LEDs
3 LEDs
Data Sheet
10
15
20
4 LEDs
5 LEDs
6 LEDs
25
30 35
VS [V]
7 LEDs
8 LEDs
9 LEDs
40
45
50
55
60
10 LEDs
17
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Electrical Characteristics
Performance vs. supply voltage and number of LEDs: Rsense = 213 mΩ, L = 68 µH, VfLED = 3 V
ILED versus VS and number of LEDs
Relative change of ILED versus VS and number of LEDs
5
4
0.720
3
ILEDrelative [%]
0.730
ILED [A]
0.710
0.700
0.690
2
1
0
-1
-2
0.680
-3
0.670
-4
0
5
10
15
20
25
4 LEDs
5 LEDs
6 LEDs
1 LED
2 LEDs
3 LEDs
30 35
VS [V]
40
45
7 LEDs
8 LEDs
9 LEDs
50
55
-5
60
10 LEDs
0
5
10
15
Efficiency versus VS and number of LEDs
30 35
VS [V]
40
7 LEDs
8 LEDs
9 LEDs
45
50
55
60
10 LEDs
fSwitch versus VS and number of LEDs
800
0.9
600
fSwitch [kHz]
Efficiency [-]
25
4 LEDs
5 LEDs
6 LEDs
1 LED
2 LEDs
3 LEDs
1
0.8
0.7
0.6
20
400
200
0
5
10
15
20
25
4 LEDs
5 LEDs
6 LEDs
1 LED
2 LEDs
3 LEDs
30 35
VS [V]
40
45
7 LEDs
8 LEDs
9 LEDs
50
55
0
60
10 LEDs
0
1 LED
2 LEDs
3 LEDs
5
10
15
20
4 LEDs
5 LEDs
6 LEDs
25
30 35
VS [V]
7 LEDs
8 LEDs
9 LEDs
40
45
50
55
60
10 LEDs
Duty Cycle versus VS and number of LEDs
1
0.9
0.8
Duty Cycle [-]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
5
1 LED
2 LEDs
3 LEDs
Data Sheet
10
15
20
4 LEDs
5 LEDs
6 LEDs
25
30 35
VS [V]
7 LEDs
8 LEDs
9 LEDs
40
45
50
55
60
10 LEDs
18
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Electrical Characteristics
Performance vs. supply voltage and number of LEDs: Rsense = 422 mΩ, L = 150 µH, VfLED = 3 V
ILED versus VS and number of LEDs
Relative change of ILED versus VS and number of LEDs
5
4
0.365
3
ILEDrelative [%]
0.370
ILED [A]
0.360
0.355
0.350
2
1
0
-1
-2
0.345
-3
0.340
-4
0
5
10
15
20
25
4 LEDs
5 LEDs
6 LEDs
1 LED
2 LEDs
3 LEDs
30 35
VS [V]
40
45
7 LEDs
8 LEDs
9 LEDs
50
55
-5
60
10 LEDs
0
5
10
15
Efficiency versus VS and number of LEDs
30 35
VS [V]
40
7 LEDs
8 LEDs
9 LEDs
45
50
55
60
10 LEDs
fSwitch versus VS and number of LEDs
800
0.9
600
fSwitch [kHz]
Efficiency [-]
25
4 LEDs
5 LEDs
6 LEDs
1 LED
2 LEDs
3 LEDs
1
0.8
0.7
0.6
20
400
200
0
5
10
15
20
25
4 LEDs
5 LEDs
6 LEDs
1 LED
2 LEDs
3 LEDs
30 35
VS [V]
40
45
7 LEDs
8 LEDs
9 LEDs
50
55
0
60
10 LEDs
0
1 LED
2 LEDs
3 LEDs
5
10
15
20
4 LEDs
5 LEDs
6 LEDs
25
30 35
VS [V]
7 LEDs
8 LEDs
9 LEDs
40
45
50
55
60
10 LEDs
Duty Cycle versus VS and number of LEDs
1
0.9
0.8
Duty Cycle [-]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
5
1 LED
2 LEDs
3 LEDs
Data Sheet
10
15
20
4 LEDs
5 LEDs
6 LEDs
25
30 35
VS [V]
7 LEDs
8 LEDs
9 LEDs
40
45
50
55
60
10 LEDs
19
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Electrical Characteristics
LED current vs. soldering point temperature: Rsense = 213 mΩ, L = 47 µH, VfLED = 3 V, RTadj = 0 Ω.
Note: Soldering point temperature was measured on application PCB close to chip exposed pad. See application
note AN-EVAL-ILD6150 for board details. Over-temperature protection has been adjusted to max. threshold
connecting Tadj pin to GND with RTadj = 0 Ω.
ILED versus TS and number of LEDs, supply voltage
ILED versus TS and number of LEDs, supply voltage
4
3
0.72
2
ILEDrel [%]
ILED [A]
0.71
0.7
1
0
-1
0.69
-2
0.68
1 LED, 5 V
3 LEDs, 12 V
6 LEDs, 24 V
12 LEDs, 48 V
-40
-20
0
-3
20
40
TS [°C]
60
80
100
1 LED, 5 V
3 LEDs, 12 V
6 LEDs, 24 V
12 LEDs, 48 V
-4
-40
120
-20
0
20
40
TS [°C]
60
80
100
120
LED current vs. soldering point temperature: Rsense = 100 mΩ, L = 68 µH, VfLED = 3 V, RTadj = 0 Ω.
ILED versus TS and number of LEDs, supply voltage
ILED versus TS and number of LEDs, supply voltage
1.56
4
3
1.54
2
ILEDrel [%]
ILED [A]
1.52
1.5
1.48
1
0
-1
-2
1.46
1 LED, 5 V
3 LEDs, 12 V
6 LEDs, 24 V
12 LEDs, 48 V
1.44
-40
Data Sheet
-20
0
-3
20
40
TS [°C]
60
80
100
1 LED, 5 V
3 LEDs, 12 V
6 LEDs, 24 V
12 LEDs, 48 V
-4
-40
120
20
-20
0
20
40
TS [°C]
60
80
100
120
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Application Circuit
6
Application Circuit
Vs
RTadj
1
8
UVLO
VSTAB
PWM
2
Vstab
I/V
VREF
7
L
CPWM 1)
Rsense
3
Hysteretic
Comparator
DC to PWM
6
OTP
OCP
4
5
EP
1)
Figure 6
Exposed pad to be connected to GND
CPWM is optional for soft start
Application Circuit
A VS blocking capacitor shall be placed close to pin 7 to enable a low ripple Vsense measurement and to avoid a
false triggering of the VS ESD protection element inside the IC. To enable the bias control of the IC it is most simple
to connect pin 1 of the IC to supply voltage VS.
6.1
Setting the average LED current
The average output current for the LEDs is set by the external sense resistor Rsense. To calculate the value of this
resistor a first approximation can be calculated using Equation (2).
Vsense is slightly dependent on the supply voltage VS and the number of LEDs as shown in Chapter 5.4.
Rsense =
Vsense
I LED
(2)
Example calculation
VS = 12 V, 47 µH, VfLED = 3 V, 3 LEDs in series
→ Vsense = 152 mV
ILED = 1.5 A
→ Rsense = 101 mΩ
Data Sheet
21
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Application Circuit
An easy way to achieve these resistor values is to connect standard resistors in parallel.
6.2
Inductor Selection Guideline
The inductance of the inductor L, the supply voltage VS, the number of LEDs driven and their average LED current
significantly influence the slew rate of the LED current in on and off condition of the LED driver IC output switch.
Due to the hysteretic current control ILD6150 will toggle the output driver stage each time upper or lower current
threshold are reached. To maintain best regulation capability of the LED driver IC it is reasonable to keep a margin
to the minimum switch on and off time defined by internal propagation delay times. Disregard of this
recommendation by choosing too small inductor values might result in an increased LED current ripple and loss
of LED current regulation accuracy.
Minimum 350 ns on and off time are recommended as a reasonable design target for the inductor selection. Below
figures provide a guideline concerning minimum inductance value versus supply voltage and number of LEDs. It
is assumed that the forward voltage of each LED is within a range of 2.5 V to 3.9 V over temperature and LED
production tolerances. Minimum forward voltage (e.g. occuring at high LED temperatures) needs to be considered
with respect to the minimum switch on-time while maximum forward voltage (e.g. occuring at low temperatures)
needs to be considered with respect to the switch off-time.
The saturation current of the chosen inductor has to be higher than the peak LED current and the rating of its
continous current needs to exceed the average LED current.
0.35 A
VS [V]
5
10
15
20
25
30
35
40
45
50
55
60
Figure 7
Number of LEDs
1
2
3
4
5
6
7
8
9 10
15
22 33
47 33 47
68 47 47 47 68
68 68 68 47 68 68
100 100 68 68 68 68 100
100 100 100 100 68 68 100 100
150 100 100 100 100 100 100 100 100 150
150 150 150 100 100 100 100 100 100 150
150 150 150 150 150 100 100 100 100 150
150 150 150 150 150 150 150 100 100 150
220 220 150 150 150 150 150 150 150 150
Inductance in µH; 2.5 V ≤ VfLED ≤ 3.9 V
Data Sheet
12
13
14
15
150
150 150
150 150 150 220
150 150 150 220 220
Minimum Inductance for 0.35 A Average LED Current
0.7 A
Number of LEDs
VS [V] 1
2
3
4
5
6
7
8
9 10
6.8
5
10 15
10
22 15 22
15
33 22 22 33 33
20
33 33 33 33 33 47
25
47 47 33 33 33 47 47
30
47 47 47 47 33 47 47 47
35
68 68 47 47 47 47 47 47 68 68
40
68 68 68 68 47 47 47 47 68 68
45
68 68 68 68 68 68 47 47 68 68
50
100 100 68 68 68 68 68 68 68 68
55
100 100 100 100 68 68 68 68 68 68
60
Inductance in µH; 2.5 V ≤ VfLED ≤ 3.9 V
Figure 8
11
11
12
13
14
15
68
68
68
68
68
68 100
68 100 100 100
Minimum Inductance for 0.7 A Average LED Current
22
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Application Circuit
1.5 A
VS [V]
5
10
15
20
25
30
35
40
45
50
55
60
Figure 9
Data Sheet
Number of LEDs
1
2
3
4
5
6
7
8
9 10
4.7
6.8 10
10 10 10
15 10 10 15
15 15 15 15 15 22
22 22 15 15 15 22 22
22 22 22 22 15 22 22 22
33 33 22 22 22 22 22 22 33 33
33 33 33 33 22 22 22 22 33 33
33 33 33 33 33 33 22 22 33 33
47 33 33 33 33 33 33 33 33 33
47 47 47 33 33 33 33 33 33 33
Inductance in µH; 2.5 V ≤ VfLED ≤ 3.9 V
11
12
13
14
15
33
33
33
33
33
33
33
47
47
47
47
Minimum Inductance for 1.5 A Average LED Current
23
Revision 3.2, 2014-07-09
ILD6150
60 V / 1.5 A High Efficiency Step-Down LED Driver IC
Package Information
7
Package Information
0.35 x 45˚
1.27
0.41±0.09 2)
0.2
8˚ MAX.
0.19 +0.06
0.08 C
Seating Plane
C
M
0.1 C D 2x
1.7 MAX.
Stand Off
(1.45)
0.1+0
-0.1
3.9 ±0.11)
0.64 ±0.25
C A-B D 8x
D
0.2
6 ±0.2
M
D 8x
Bottom View
8
1
5
1
4
8
4
5
2.65 ±0.2
3 ±0.2
A
B
4.9 ±0.11)
0.1 C A-B 2x
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width
3) JEDEC reference MS-012 variation BA
Figure 10
PG-DSO-8-27-PO V01
Package outline PG-DSO-8-27 (dimensions in mm)
1.31
0.65
3
1.27
2.65
5.69
PG-DSO-8-27-FP V01
Recommended PCB Footprint for Reflow Soldering (dimensions in mm)
0.3
8
5.2
Pin 1 marking
6.4
12 ±0.3
Figure 11
1.75
2.1
PG-DSO-8-27-TP V05
Figure 12
Data Sheet
Tape Loading (dimensions in mm)
24
Revision 3.2, 2014-07-09
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG