IM393-L6F
CIPOS™ Tiny IPM 600V/15A
IM393-L6F
Description
IM393-L6F is a 15A, 600V Integrated Power Hybrid IC with Open Emitter pins for advanced Appliance Motor
Drives applications such as energy efficient fan and pumps. Infineon’s technology offers an extremely
compact, high performance AC motor-driver in a single isolated package to simplify design.
This advanced IPM is a combination of Infineon’s newest low VCE(on) Trench IGBT technology optimized for
best trade-off between conduction and switching losses and the industry benchmark 3 phase high voltage,
high speed driver (3.3V compatible) in a fully isolated thermally enhanced package. A built-in high precision
temperature monitor and over-current protection feature, along with the short-circuit rated IGBTs and
integrated under-voltage lockout function, deliver high level of protection and fail-safe operation. Using a
single in line package with full transfer mold structure resolves isolation problems to heatsink.
Features
•
Integrated gate drivers and bootstrap function
•
Temperature monitor
•
Protection shutdown pin
•
Low VCE (on) Trench IGBT technology
•
Under voltage lockout for all channels
•
Matched propagation delay for all channels
•
3.3V Schmitt-triggered input logic
•
Cross-conduction prevention logic
•
Isolation 2000VRMS min and CTI > 600
•
Recognized by UL (File Number : E314539)
Tiny SIP
IM393-L6F
Potential applications
•
•
•
•
•
•
Washing machines
Air-conditioners
Refrigerators
Fans
Dishwashers
Low power motor drives
Product validation
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.
Table1
Part Ordering Table
Base part number
Package Type
IM393-L6F
SIP 34x15
Final Datasheet
www.infineon.com
Standard Pack
Form
Quantity
36 Tubes
540
Please read the important Notice and Warnings at the end of this document
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Table of Contents
Table of Contents
Description .................................................................................................................................... 1
Features ........................................................................................................................................ 1
Potential Applications .................................................................................................................... 1
Product validation ......................................................................................................................... 1
Table of Contents ........................................................................................................................... 2
1
Internal Electrical Schematic .................................................................................................. 3
2
Pin Configuration .................................................................................................................. 4
2.1 Pin Assignment ................................................................................................................................................. 5
2.2 Pin Descriptions ............................................................................................................................................... 6
3
Absolute Maximum Rating ...................................................................................................... 8
3.1 Module .............................................................................................................................................................. 8
3 .2 Inverter ............................................................................................................................................................. 8
3 .3 Control .............................................................................................................................................................. 8
4
Thermal Characteristics ......................................................................................................... 9
5
Recommended Operating Conditions ……………………………………………………………………...10
6
Static Parameters …………………………………………………………………………………………... 11
6.1 Inverter …………………………………………………………………………………………………………… 11
6 .2 Control ……………………………………………………………………………………………………………..11
7
Dynamic Parameters ............................................................................................................ 13
7.1 Inverter ........................................................................................................................................................... 13
7 .2 Control ........................................................................................................................................................ 13
8
Thermistor Characteristics .................................................................................................... 14
9
Mechanical Characteristics and Ratings .................................................................................. 15
10 Qualification Information ...................................................................................................... 16
11 Diagrams & Tables ................................................................................................................ 17
11.1 Tc Measurement Point ................................................................................................................................... 17
11.2 Input-Output Logic Table .............................................................................................................................. 17
11.3 Switching Time Definitions ........................................................................................................................... 18
12 Application Notes ................................................................................................................ 19
12.1 Typical Application Schematic ...................................................................................................................... 19
12.2 Performance Charts ....................................................................................................................................... 20
12.3 TJ vs TTH ........................................................................................................................................................... 20
12.4 –VS Immunity .................................................................................................................................................. 21
13 Package Outline ................................................................................................................... 22
Revision History ........................................................................................................................... 23
Final Datasheet
2
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Internal Electrical Schematic
1
Internal Electrical Schematic
(1) P
(3) VS(W) / W
(4) VB(W)
VB3
HO3
(6) VS(V) / V
VS3
VB2
(7) VB(V)
HO2
(9) VS(U) / U
(10) VB(U)
VB1
(12) VDD
VDD
(13) VTH
VS2
HO1
VS1
-t°
(14) COM
COM
(15) COM
VSS
(16) ITRIP
ITRIP
(17) RFE
RFE
(18) HIN(U)
HIN1
(19) HIN(V)
HIN2
(20) HIN(W)
HIN3
(21) LIN(U)
LIN1
(22) LIN(V)
LIN2
(23) LIN(W)
LIN3
LO3
LO2
LO1
(24) N(W)
(25) N(V)
(26) N(U)
Figure 1
Final Datasheet
Internal electrical schematic
3
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Pin Configuration
2
2.1
Pin Configuration
Pin Assignment
(1) P
(3) VS(W) / W
(4) VB(W)
(6) VS(V) / V
(7) VB(V)
(9) VS(U) / U
(10) VB(U)
(12) VDD
(13) VTH
(14) COM
(15) COM
(16) ITRIP
(17) RFE
(18) HIN(U)
(19) HIN(V)
(20) HIN(W)
(21) LIN(U)
(22) LIN(V)
(23) LIN(W)
(24) N(W)
(25) N(V)
(26) N(U)
Figure 2
Final Datasheet
Pin configuration
4
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Pin Configuration
Table 2
Pin Assignment
Pin
Name
1
(2)
3
4
(5)
6
7
(8)
P
N/A
VS(W) / W
VB(W)
N/A
VS(V) / V
VB(V)
N/A
Positive bus input voltage
None
W-phase high side floating supply offset voltage / W-phase output
W-phase high side floating supply voltage
None
V-phase high side floating supply offset voltage / V-phase output
V-phase high side floating supply voltage
None
9
VS(U) /U
U-phase high side floating supply offset voltage / U-phase output
10
VB(U)
( 11 )
N/A
None
12
VDD
Low side control supply
13
VTH
Temperature monitor
14
15
16
17
18
19
20
21
22
23
24
25
26
COM
COM
ITRIP
RFE
HIN(U)
HIN(V)
HIN(W)
LIN(U)
LIN(V)
LIN(W)
N(W)
N(V)
N(U)
Final Datasheet
Description
U-phase high side floating supply voltage
Low side control negative supply
Low side control negative supply
Over current protection input
RCIN / Fault / Enable
U-phase high side gate driver input
V-phase high side gate driver input
W-phase high side gate driver input
U-phase low side gate driver input
V-phase low side gate driver input
W-phase low side gate driver input
W-phase low side emitter
V-phase low side emitter
U-phase low side emitter
5
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Pin Descriptions
2.2
Pin Descriptions
VDD, COM (Low side control supply and reference
HIN(U,V,W) and LIN(U,V,W) (Low side and high
side control pins)
VDD is the control supply and it provides power both
to input logic and to output power stage. Input
logic is referenced to COM ground.
These pins are positive logic and they are
responsible for the control of the integrated
IGBT. The Schmitt-trigger input thresholds of
them are such to guarantee LSTTL and CMOS
compatibility down to 3.3V controller outputs.
Pull-down resistor of about 4k is internally
provided to pre-bias inputs during supply startup and an ESD diode is provided for pin
protection purposes. Input Schmitt-trigger and
noise filter provide beneficial noise rejection to
short input pulses.
The under-voltage circuit enables the device to
operate at power on when a supply voltage of at
least a typical voltage of VDDUV+ = 10.4V is present.
The IC shuts down all the gate drivers power
outputs, when the VDD supply voltage is below
VDDUV- = 9.4V. This prevents the external power
switches from critically low gate voltage levels
during on-state and therefore from excessive power
dissipation.
The noise filter suppresses control pulses which
are below the filter time TFILIN. The filter acts
according to Figure 4.
VB(U,V,W) and VS(U,V,W) (High side supplies)
VB to VS is the high side supply voltage. The high
side circuit can float with respect to COM following
the external high side power device emitter
voltage.
TM
CIPOS
Schmitt-Trigger
HINx
LINx
INPUT NOISE
FILTER
4 k
Figure 3
a)
Due to the low power consumption, the floating
driver stage is supplied by integrated bootstrap
circuit.
SWITCH LEVEL
VIH; VIL
COM
The under-voltage detection operates with a rising
supply threshold of typical VBSUV+ = 10.41V and a
falling threshold of VBSUV- = 9.4V.
Input pin structure
b)
tFILIN
VS(U,V,W) provide a high robustness against negative
voltage in respect of COM. This ensures very stable
designs even under rough conditions.
tFILIN
HIN(X)
LIN(X)
HIN(X)
LIN(X)
N(U, V, W) (Low side emitters)
high
HOx
LOx
Figure 4
low
HOx
LOx
The low side emitters are available for current
measurements of each phase leg. It is
recommended to keep the connection to pin COM
as short as possible in order to avoid unnecessary
inductive voltage drops.
Input filter timing diagram
The integrated gate drive provides additionally a
shoot through prevention capability which avoids
the simultaneous on-state of the high-side and
low-side switch of the same inverter phase. A
minimum dead time insertion of typically 275ns
is also provided by driver IC, in order to reduce
cross-conduction of the external power switches .
Final Datasheet
VTH (Thermistor)
A UL certified NTC is integrated in the module with
one terminal of the chip connected to COM and the
other to VTH. When pulled up to a rail voltage such
as VDD or 3.3V by a resistor, the VTH pin provides an
analog voltage signal corresponding to the
temperature of the thermistor
6
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Pin Configuration
RFE (RCIN / Fault / Enable)
The RFE pin combines 3 functions in one pin: RCIN or
RC-network based programmable fault clear timer,
fault output and enable input.
VRFE(t) = 3.3V * e-t/RC < VIN,TH-
The RFE pin is normally connected to an RC network
on the PCB per the schematic in Figure 5. Under
normal operating conditions, RRCIN pulls the RFE pin
to 3.3V, thus enabling all the functions in the IPM.
The microcontroller can pull this pin low to disable
the IPM functionality. This is is the Enable function.
Consider VIN,TH- of 0.8V and RRFE_ON of 50ohm, CRCIN
should be less than 4.9nF. It is also suggested to
use a RRCIN of between 0.5MΩ and 2MΩ.
CRCIN < 350ns / ( - ln (VIN,TH- / 3.3V) * RRFE_ON)
HIN(X)
LIN(X)
RR CIN
To Microcontroller
RFE
CR CIN
CIPOS TM TINY
+3.3V
Input
Noise
filter
Typical PCB circuit connected
to the RFE pin
The Fault function allows the IPM to report a Fault
condition to the microcontroller by pulling the RFE
pin low in one of two situations. The first is an undervoltage condition on VDD and the second is when the
ITRIP pin sees a voltage rising above VIT,TH+.
RFE
The programmable fault clear timer function
provides a means of automatically re-enabling the
module operation a preset amount of time (TFLT-CLR)
after the fault condition has disappeared. Figure 6
shows the RFE-related circuit block diagram inside
the IPM .
Figure 6
Deadtime &
Shoot-Through
Prevention
VDD
Undervoltage
detection
COM
ITRIP
Figure 5
Input
Noise
filter
ITRIP
Noise
filter
Noise
filter
RFE internal circuit structure
The length of TFLT-CLR can be determined by using
the formula below.
VS1, VS2, VS3 (High side emitter and low side
collector)
VRFE(t) = 3.3V * (1 – e-t/RC)
These pins are motor U, V, W input pins.
TFLT-CLR = -RRCIN * CRCIN * ln(1-VIN,TH+/3.3V)
P (Positive bus input voltage)
For example, if RRCIN is 1.2MΩ and CRCIN is 1nF, the TFLTCLR is about 1.7ms with VIN,TH+ of 2.5V. It is also
important to note that CRCIN needs to be minimized
in order to make sure it is fully discharged in case of
over current event.
The high side IGBTs are connected to the bus
voltage. It is noted that the bus voltage does not
exceed 450V.
Since the ITRIP pin has a 350ns input filter, it is
appropriate to ensure that CRCIN will be discharged
below VIN,TH- by the open-drain MOSFET, after 350ns.
Therefore, the max CRCIN can be calculated as:
Final Datasheet
7
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Absolute Maximum Rating
3
Absolute Maximum Rating
3.1
Module
Table 3
Parameter
Symbol
Conditions
Units
-40 ~ 150
°C
Operating junction temperature
TJ
Operating case temperature
TC
-40 ~ 125
°C
Storage temperature
TSTG
-40 ~ 125
°C
Isolation test voltage
VISO
2000
V
3.2
IGBT, diode, HVIC
Value
AC RMS, 1 minute, 60Hz
Inverter
Table 4
Parameter
Symbol
Conditions
Value
Units
Blocking voltage
VCES
IGBT, diode, HVIC
600
V
DC –link supply voltage of P-N
VPN
Applied between P and N
450
V
VPN(surge)
Applied between P and N
500
V
TC = 25°C, TJ < 150°C
TC = 25°C, TJ < 150°C,less than
1ms
±15
A
±22.5
A
23
W
3
μs
DC –link supply voltage (surge) of P-N
Output current
Peak output Current
IO
Io(peak)
Power dispassion per IGBT
Ptot
Short Circuit withstand time
TSC
3.3
TJ < 150°C, VDC = 360V, VDD = 15V
Control
Table 5
Parameter
Symbol
Logic supply voltage
VDD
Input voltage
VIN
High side floating supply voltage
Final Datasheet
Conditions
LIN, HIN, ITRIP, RFE
VBS(U,V,W)
8
Value
Units
-0.3 ~ 20
V
-0.3 ~ 20
V
-0.3 ~ 20
V
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Thermal Characteristics
4
Thermal Characteristics
Table 6
Parameter
Symbol
Conditions
Single IGBT thermal resistance,
junction-case
RTH(J-C)
Single diode thermal resistance,
junction-case
RTH(J-C)D
Final Datasheet
Value
Units
Min.
Typ.
Max.
Low side W-phase
IGBT (See Figure 8 for
TC measurement point)
-
4.7
5.4
°C/W
Low side W-phase
diode (See Figure 8 for
TC measurement point)
-
6.1
7.0
°C/W
9
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Recommended Operating Conditions
5
Recommended Operating Conditions
For proper operation the device should be used within the recommended conditions. All voltages are absolute
referenced to COM. The VS offset is tested with all supplies biased at 15V differential.
Table 7
Parameter
Symbol
Conditions
Value
Min.
Typ.
Max.
Units
Positive DC bus input voltage
VDC
-
-
450
V
Low side control supply voltage
VDD
13.5
15
16.5
V
High side floating supply voltage
VBS
12.5
15
17.5
V
Input voltage
VIN
0
-
5
V
LIN, HIN, ITRIP, RFE
PWM carrier frequency
FPWM
-
20
-
kHz
Voltage between COM and N (including surge)
VCOM
-5
-
5
V
DT
PWIN(ON)
PWIN(OFF)
1
-
-
µs
1
-
-
µs
External dead time between HIN & LIN
Input pulse width
Final Datasheet
10
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Static Parameters
6
Static Parameters
6.1
Inverter
VBIAS(VDD, VBS(U,V,W))=15V, TJ=25°C unless otherwise specified
Table 8
Parameter
Symbol
Collector-Emitter saturation voltage
VCE(ON)
Collector-Emitter leakage current
ICES
Diode forward voltage drop
VF
6.2
Value
Conditions
Min. Typ. Max.
Units
IC = 7.5A
-
1.5
1.9
V
IC = 7.5A, TJ = 150°C
-
1.7
-
V
VIN = 0V, VCE = 600V
-
10
80
μA
VIN = 0V, VCE = 600V, TJ=150°C
-
80
-
μA
IC = 7.5A
-
1.7
2.2
V
IC = 7.5A, TJ = 150°C
-
1.7
-
V
Control
VBIAS(VDD, VBS(U,V,W))=15V, TJ=25ºC, unless otherwise specified. The VIN parameters are referenced to COM and are
applicable to all six channels
Table 9
Parameter
Symbol
Conditions
Value
Min.
Typ.
Max.
Units
Logic “1” input voltage
VIN,TH+
LIN, HIN, RFE
2.5
-
-
V
Logic “0” input voltage
VDD/VBS supply undervoltage,
positive going threshold
VDD/VBS supply undervoltage,
negative going threshold
VIN,TH-
LIN, HIN, RFE
-
-
0.8
V
VDD,UV+, VBS,UV+
9.6
10.4
11.2
V
VDD,UV-, VBS,UV-
8.6
9.4
10.2
V
VDD/VBS supply undervoltage
lock-out hysteresis
VDDUVH, VBSUVH
-
1
-
V
Quiescent VBS supply current
IQBS
-
-
150
μA
Quiescent VDD supply current
IQDD
-
-
3.2
mA
Offset supply leakage
current
Input bias current for LIN,
HIN
Input bias current for RFE
ILK
VS = 600V
-
-
50
μA
IIN+
VIN = 3.3V
-
825
1110
μA
IIN,RFE+
VREF = 3.3V
-
0
1
μA
Input bias current for ITRIP
ITRIP+
VITRIP = 3.3V
-
4
16
μA
ITRIP threshold voltage
VITRIP
0.44
0.49
0.54
V
Final Datasheet
11
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Static Parameters
Parameter
Symbol
ITRIP input hysteresis
Conditions
Value
Units
Min.
Typ.
Max.
VITRIP,HYS
-
0.07
-
V
Bootstrap resistance
RBS
-
200
-
Ω
RFE low on resistance
RRFE
-
50
100
Ω
Final Datasheet
12
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Dynamic Parameters
7
Dynamic Parameters
7.1
Inverter
VBIAS(VDD, VBS(U,V,W))=15V, TJ=25ºC, unless otherwise specified.
Table 10
Parameter
Symbol
Input to output turn-on propagation
delay
Input to output turn-off propagation
delay
RFE low to six switch turn-off
propagation delay
ITRIP to six switch turn-off propagation
delay
IC = 7.5A, VDC = 300V
-
-
1.15
μs
TOFF
IC = 7.5A, VDC = 300V
-
-
1.15
μs
TEN
VRFE = 5V to 0V
-
-
1.35
μs
TITRIP
IC = 7.5A, VDC = 300V
-
-
1.5
μs
EON
VDC = 300V, IC = 7.5A,
TJ = 25°C
150°C
-
220
330
-
μJ
EOFF
VDC = 300V, IC = 7.5A,
TJ = 25°C
150°C
-
110
155
-
μJ
EREC
VDC = 300V, IC = 7.5A,
TJ = 25°C
150°C
-
30
60
-
μJ
TJ = 150°C, IC = 30A, VP = 600V,
VDC = 450V,VDD = +15V to 0V
FULL SQUARE
IGBT turn-off energy
Diode reverse recovery energy
7.2
Value
Units
Min. Typ. Max.
TON
IGBT turn-on energy
Reverse Bias Safe Operating Area
Conditions
RBSOA
Control
VBIAS(VDD, VBS(U,V,W))=15V, TJ=25ºC, unless otherwise specified.
Table 11
Parameter
Symbol
Conditions
Input filter time (HIN, LIN, ITRIP)
TFILIN
VIN = 0 or VIN = 5V
Input filter time (RFE)
TFILRFE
Value
Min. Typ. Max.
Units
-
350
-
ns
VRFE = 0 or VRFE = 5V
100
200
-
ns
ITRIP to Fault propagation delay
TFLT
VIN = 0 or VIN = 5V, VITRIP = 5V
400
600 800
ns
Internal injected dead time
TDT
VIN = 0 or VIN = 5V
190
275 420
ns
Matching propagation delay time
(On & Off) all channels
MT
External dead time > 420ns
Final Datasheet
13
-
-
50
ns
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Thermistor Characteristics
8
Thermistor Characteristics
Table 12
Parameter
Symbol
Resistance
R25
Resistance
R125
B-constant
B
Value
Conditions
Units
Min.
Typ.
Max.
T = 25°C, ±5% tolerance
44.65
47
49.35
kΩ
T = 125°C
1.27
1.41
1.56
25-50°C, R2=R1e[B1/T2-1/T1)]
3989
4050
4111
kΩ
K
-40
-
125
°C
Temperature Range
Thermistor Pin Read-Out Volage, VTHERM [V]
5.0
+5V
4.5
REXT
4.0
VTHERM
RTHERM
3.5
3.0
2.5
Max
Typ
2.0
Min
1.5
1.0
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
130
Thermistor Temperature [ C]
Figure 7
Final Datasheet
Thermistor readout vs. temperature (with 4.7kohm REXT pull-up resistor) and typical
thermistor resistance values vs. temperature table (For more details, please refer to the
application note ‘AN2018-13 CIPOS™ IM393-XX IPM technical description_1R0_final’)
14
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Mechanical Characteristics and Ratings
9
Mechanical Characteristics and Ratings
Table 13
Parameter
Symbol
Thermal resistance, caseheatsink
Comparative Tracking Index
Curvature of module backside
Flat, greased surface. Heatsink
RTH(C-S) compound thermal conductivity
1W/mK
CTI
BKC
Mounting torque
T
Weight
W
Figure 8
Final Datasheet
Conditions
M3 screw and washer
Value
Units
Min.
Typ.
Max.
-
0.25
-
°C/W
600
-
-
V
0
-
150
µm
0.6
0.7
0.8
Nm
-
5.7
-
g
Backside curvature measurement position
15
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Qualification Information
10
Qualification Information
Table 14
UL Certified
File Number : E314539
RoHS Compliant
Yes
ESD
Final Datasheet
Human body model class
2
Charged device model class
C2a
16
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Diagram & Tables
11
Diagram & Tables
11.1
Tc Measurement Point
Figure 9
TC measurement point
11.2
Input-Output Logic Table
P
Ho
HIN(U, V, W)
LIN(U, V, W)
ITRIP
RFE
Figure 10
U, V, W
Driver
IC
Lo
Module block diagram
Table 15
Input-output logic level table
RFE
ITRIP
HIN(U,V,W)
LIN(U,V,W)
U,V,W
1
0
1
0
VDC
1
0
0
1
0
1
1
0
0
0
Off*
0
1
1
Off*
1
1
X
X
Off*
0
X
X
X
Off*
* Voltage depends on direction of phase current
Final Datasheet
17
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Diagrams & Tables
11.3
Switching Time Definitions
HIN(U, V, W)
LIN(U, V, W)
50%
ITRIP
50%
TFLT
50%
RFE
U, V, W
50%
50%
TITRIP
Figure 11
TFLT-CLR
ITRIP time waveform
50%
RFE
TEN
U, V, W
Figure 12
50%
Output disable timing diagram
HINx
LINx
2.1V
0.9V
trr
toff
ton
10%
iCx
90%
90%
tf
vCEx
10%
tr
10%
tc(on)
tc(off)
Figure 13
Final Datasheet
10%
10%
Switching times definition
18
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Application Guide
12
Application Guide
12.1
Typical Application Schematic
#5
(1) P
#4
(3) VS(W)
(4) VB(W)
VB3
VS3
(7) VB(V)
VB2
(9) VS(U)
HO2
(10) VB(U)
#3
HO3
(6) VS(V)
3-ph AC
Motor
5 or 3.3V
15V
#8
(12) VDD
VDD
(13) VTH
#2
#9
VB1
(14) COM
COM
(15) COM
VSS
(16) ITRIP
LO3
ITRIP
(17) RFE
Micro
Controller
HO1
VS1
-t°
5 or 3.3V
VS2
RFE
(18) HIN(U)
(19) HIN(V)
(20) HIN(W)
(21) LIN(U)
(22) LIN(V)
(23) LIN(W)
HIN1
LO2
HIN2
HIN3
LIN1
LIN2
LO1
LIN3
(24) N(W)
#1
(25) N(V)
(26) N(U)
#6
Control GND
Power GND
#7
Figure 14
Typical application connection
1. Input circuit
-RC filter can be used to reduce input signal noise (100Ω, 1nF)
-The capacitors should be located close to CIPOS™ Tiny (to COM terminal especially).
2. Itrip circuit
-To prevent a mis operation of protection function, RC filter is recommended
-The capacitor must be located close to Itrip and COM terminals.
3. VTH circuit
-This terminal should be pulled up to the bias voltage of 5V/3.3V through a proper resistor to define
suitable voltage for temperature monitoring.
-It is recommended that RC filter is placed close to the controller
4. VB-VS circuit
-Capacitors for high side floating supply voltage should be placed close to VB and VS terminals.
-Additional high frequency capacitors, typically 0.1µF, are strongly recommended.
-Overlap of pattern to motor and pattern to bootstrap capacitors should be minimized.
5. Snubber capacitor
-The wiring among CIPOS™ Tiny, snubber capacitor and shunt resistors should be short as possible.
6. Shunt resistor
-SMD type shunt resistors are strongly recommended to minimize its internal stray inductance.
7. Ground pattern
-Pattern overlap of power ground and signal ground should be minimized. The patterns should be
connected at the common end of shunt resistors only for the same potential.
8 .COM pattern
-Both of the COM terminals should be connected together.
9. RFE circuit
-To setup R and C parameter for fault clear time, please refer to Figure 5.
-This R is also mandatory for fault out reporting function because it is open drain structure.
Final Datasheet
19
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Application Guide
12.2
Performance Charts
18
16
RMS Current [A]
14
12
FPWM=6kHz
10
8
FPWM=16kHz
6
V+ = 300V, VDD=VBS=15V,
TJ≤150 C, TC≤125 C, MI=0.8,
PF=0.8, Sinusoidal PWM
4
2
0
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
Case Temperature Tc [℃]
Figure 15
Maximum operating current SOA
1. This maximum operating current SOA is just one of example based on typical characteristics for this product.
It can be change by each user’s actual operating conditions.
12.3
Tj vs. Tth
160
IGBT Junction Temperature - °C
TJ avg = 1.25 x TTherm + 19
150
140
130
120
110
100
105
90
65
70
75
80
85
90
95
100
105
110
115
Internal Thermistor Temperature Equivalent Read Out - °C
Figure 16
Final Datasheet
Typical Tj vs Tth correlation, sinusoidal modulation, VDC = 300V, Iphase=5Arms, fsw=16kHz,
fmod=50Hz, MI=0.8, PF=0.6
20
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Application Guide
12.4
–VS Immunity
Figure 17
Negative transient Vs SOA for integrated gate driver
Final Datasheet
21
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Package Information
13
Package Outline
MISSING PIN : 2, 5, 8, 11
32.00?
.30
8X0.60
7.00
16.00
15.00
7.50
3.20
1.90
.20
3.50
1.70?
(25X)1.27
1
3 4
7
9 10
13
15
17
19
21
23
0.50?
26
0? 4?
15.875
.05
4.00
31.75
7.00
.15
3.80
34.00
.01
4.45?
22X0.60?
Default tolerance : ? 0.5mm
DATASH
Figure 18
Final Datasheet
IM393-L6F
22
V2.1
2022-08-12
CIPOS™ Tiny
IM393-L6F
Revision History
Revision History
Major changes since the last revision
Page or Reference
Revision
Date
Description of changes
Page 16
2022-08-12
ESD class changed
Final Datasheet
V2.1
23
V2.1
2022-08-12
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2022-08-12
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2022 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about this
document?
Email: erratum@infineon.com
Document reference
ifx1
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).
With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.
In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and
standards concerning customer’s products and any
use of the product of Infineon Technologies in
customer’s applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.
For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).
Please note that this product is not qualified
according to the AEC Q100 or AEC Q101 documents
of the Automotive Electronics Council.
WARNINGS
Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized
representatives
of
Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal
injury.